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SOME ANALYTIC AND GEOMETRIC APPLICATIONS

OF THE INVARIANT THEORETIC METHOD

HISASI MORIKAWA

Determinant is a most useful tool in every branch of mathematics,
especially in linear mathematics. What kind of quantities do take a
similar universal important role as determinant, in advanced branches of
mathematics? In the present articles, showing the usefullness of semi-
invariants in the classical invariant theory, we shall give a partial answer
of the above question.

Chapter 1. Binary semi-invariants and automorphic forms

Let A be a commutative algebra over a field K of characteristic zero.
A is called an sl(2, iQ-algebra, if there exists a Lie algebra homomorphism
of sl(2, K) into the Lie algebra of derivations of A over K. The most
familier example of sl(2, iQ-algebra is a polynomial algebra K[ξ(0\ , ξ(n)]
with Cayley-Aronhold's operators;

= f; (n - 2£)ξ • ( / )

d
J = Σ (» - f̂wtl>-

on which classical theory on λi-forms works.
In the present chapter we shall show another important example of

s/(2, iQ-algebra associating with formal power series with variable coef-
ficients, which is applied to automorphic forms.
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§1. Binary semi-invariants

1.1. Let K be a field of characteristic zero, and let w = (wu , wN)
be a vector with components in K such that α ,̂ , wN are neither zero
nor positive integers, so that the generalized binary coefficients

(ί0,l,;l<j<N)

never vanish. Let ft = (£°\ £?>, £2), • •), , ξ* = (&0), £#}, fj?}, •) be vectors
of infinite length with independent variable coefficients ξψ {I = 0,1, 2,
1 < j < N). Degree, weight and index are defined on the polynomial
algebra

as follows;

deg (ξf) = 1, weight (ξf) = t, {£ = 0,1, 2, .. 1 < j <N)
( * } index(ff) = ̂ ~ 2 ^ .

Degree and weight are independent on the choice of w = (wl9 , wN)9

but index depends on w = (wί9 , uυN).
A polynomial is called to be isobaric, if it is a sum of monomials of

same weight, and a polynomial is called to be index-homogeneous, if it
is a sum of monomials of same index.

Denoting by

the vector space of index homogeneous polynomials of index u, we get
a direct sum decomposition, called index-decomposition,

To make K[ξlt • , ξN] an sl(2, l£")-algebra, we introduce Cayley-Aron-
hold's differential operators;

•** = Σ Σ fa -
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The next lemma shows that the action;

gives an sl(2, ϋC)-algebra structure on K[ξlt • • •, ξN].

LEMMA 1.1.

(1.2) \β, Δ\ = tf, [3?, 2)} = 23 , [jff, Δ] = -2Δ .

Proof. It is enough to prove the equalities for the action on the

generators ξψ;

[9, Δ]ξf = {(wj - £)(£ + 1) - ί{w, -£ + l)}ξ f

= (Wj - 2ί)ξf = Jfξf ,

= {i(w} - 2£ + 2) - (w, -

{*, Δ]ξf = {(Wj - £)(Wj -2i-2)- {w3 -

= -2(wj - S)ξιf+1) = -2Δξf .

The next lemma states that the index-decomposition

K [ ζ » ••-, ξN] = ® K[ξ „ . .-, ξN]M

u

is the eigen-space decomposition with respect to operator f̂\

LEMMA 1.2. Let ψ be an index-homogeneous polynomial of index u.

Then

= uφ .

Proof. It is enough to prove Lemma for a monomial φ. Since

= weight (φ)φ,

we have

= I Σ ^ de& (^)"2 weight (α>) U = index (0)0 .
b=i J
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LEMMA 1.3.

(1.3) [9, Δι\ = 2 ί(μ - £ + 1)4
u

(1.4) [Δ, 91] = Σ K-u - t +

7rCw] is ί/*e projection K[ξu • • - , £ * ] - * # [ & , , £γ]Ctt: ι.

Proo/. We shall prove (1.3) by induction on £. For I = 1 (1.3) coin-

cides with (1.2). Assume that

Then we have

\β, zf] = ̂ JJ*-1 - ΔSiΔ'-1 + ΔSlΔ'-1 -

= Σ (u - 2C + 2)^-'nw + Σ {£ - l)(w - 4 + 2)Jί-1τrCM:i

= Σ t(u - i + i)4*" V 3

(1.4) is also proved by the similar way.

LEMMA 1.4.

(1.5) &K[ξu •", ξN]ίul c K[ξu , ξN]ίu+U2 Ψ = 0,1, 2, . . )

(1.6) J'JΓ[£lf , f J M c K[ξ u ...9 ςNγu-ui

Proof. It is sufficient to prove £ = 1. For a monomial φ we have

(Sφ) = degfy (J0) = degf, (φ) ,

weight (@φ) = weight (φ) — 1, weight (Δφ) = weight (φ) + 1 ,

and thus

iV

index (^0) = Σ w5 άegξJ (φ) — 2 weight (0) + 2 = index (0) + 2 ,
. 7 = 1

iV

index (Δφ) = 2 ^ ; deg f i (0) — 2 weight (0) — 2 = index (0) — 2 .

DEFINITION 1.1. A polynomial ψ is called a binary semi-invariant if

%> = 0. We denote by © the iΓ-algebra of binary semi-invariants in
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Since Sf does not depends on the choice of w — (wί9 , wN), the al-

gebra of binary semi-invariants @ is independent on w = (wu , wN).

LEMMA 1.5.

(1.7) © = 0 @M ,
u

where

Proof. Let φ be an element of © and let

u

be the index-decomposition of φ. Then by virtue of (1.2) we have

= 2%> = 0 .

Since £>φu are linearly independent, we have u£$φκ = 0. Hence 2ψu = 0

for u Φ 0, and thus

%>0 = % - Σ %>ω = 0 .

The index-decomposition

depends on the choice of w = (z !̂, , M;^).

1.2. We shall next show that the ϋΓ-algebra of binary semi-invariants

© is not so complicated.

LEMMA 1.6. Denoting

(1.8) φje(ξ) = Σ ( - DP( * W % « ' f Γ " ' " * V = 2, 3, . 1 < j < N) ,

We

^ i l = 0

and
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for each l<j<N.

Proof. From the definition of 3 it follows

p=o \p/

= 0 .

From the equations

?f =

it follows

PROPOSITION 1.1.

> ^iV> S I ) ) Vn J

Proof From the definition of ^ it follows

®(ξ?Ψ? ~ ξί0)ξr) = fί0)ff - ^ 0 ) ί f = 0 (1 < i, < iV)

This means that

f» e ©[if-1, , &g>~\ f?>] , (1 < < iV).

By virtue Lemma 1.6

ξf = ξf~"-ι)ΦJt- Σ ( - W ^ t e - W W
p=i \p/

and ^^5^ = 0, hence by induction on £ we have

1.3. The following formal power series with coefficients ξψ

(1.10) ffa\z) = Σ ( ^)ff^ (1 < j < N)
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are called the basic power series, and K[ξu , ξN] is called the i£-algebra

of coefficients of the basic formal power series. We denote briefly

(1.11) ff(ξ,\z) = ^ - m,\z) (ί = 0,1, 2, 1 < j <N).
\az/

Let yu - - ,yN be dependent variables with respect to the independent

variable z% We denote briefly

yf = (4-\yj Ψ = o, l, 2 , . . . ; l < j < N).

An element of K[{yψ)β^Λ^^...1^j<iN\ is called a differential polynomial, and

an ideal a is called a differential ideal if (dldz)a C α. Since

ξj λ? 0 l 2 l ^ / ^ i \ Γ {yj ) ^ 0 l 2 l ^ y ^ i V t j

are three sets of algebraically independent quantities over K, there exist

if-algebra isomorphisms Θw, Φw and ¥:

such that

(1.12) Φm(ξf) =

) = /f (fil«) (̂  = 0,1, 2, 1 < j < iV) .

LEMMA 1.7.

(1.13) ΦW(Ψ) = exp {zΔ)ψ(ξ) = g -j^Δeφ{ξ)zι.

Proof. From Leibniz's rule

it follows
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1

k\

= exp (zΔ)ψ exp (zΔ)φ .

Obviously exp(^J) is a linear operator, hence exp(zJ) is a if-algebra

homomorphism of K[ξl9 -9ξN] into J?[(/J/)(f|«))/»o,i,2,...;i^^] Therefore it

is enough to show

Φw{ξf) = exp (zJ)f f (ί = 0,1, 2, 1 < j < N) .

From the definition of Φw it follows

Mi)\ 1 fw(ρ \
WJ(WJ - 1) . (wj - £ + 1)

Wj(Wj — 1) (wj — ί + 1) V dz.

= Σ —4*f y

= exp (^J)ff .

LEMMA 1.8.

(1.14)
dz

(1.15) A-oφw = φwoΔ .

dz

Proof. From the definition of Θw and J it follows

d ( β .( i )v 1 <

Ό, - 1) (W, - 6) •

Since ξf (£ = 0,1, 2, . . 1 < j < N) are generators of K[ξl9 , ξN], we

have djdz<>ΘW = ΘW<>Δ. Similarly we can prove djdzoφw = φwoΔ.

By virtue of (1.14) an ideal α of If [&, , ξN] corresponds to a dif-
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ferential ideal by θw, if and only if α is J-admissible, i.e. Δa C α.

DEFINITION 1.2. Let A be a commutative if-algebra and let aψ {ί —

0,1, 2, 1 < j' < N) be elements of A. For the system of formal power

series

with coefficients aψ we associate two ideals; the kernel α of the homomor-

phism of K[ξu , ξN] into A such that

ξf >aψ (̂  = 0,1,2, --';l<j<N)

and the kernel 21 of the homomorphism of K[(yγ))i=Qtltii....1£J£N] into

such that

yf >fr)(aj\z) (£ = 0,1, 2, . . 1 < < N) .

We call α and 21 respectively the coefficient ideal and the differential ideal

of the system {f^a^z), -,fN(aN\z)) of formal power series.

PROPOSITION 1.2. Let a and 21 be the coefficient ideal and the differential

ideal of a system of formal power series

fλ«j 12) = Σ ( Wl )afzt (l<j<N).

Let α* be the largest Δ-admίssible ideal contained in α. Then θw(a*) = 21.

Proof. By virtue of (1.13) it follows that θw(φ) belongs to the dif-

ferential ideal 2ί, if and only if

0 = Φw(φ)\ξj=aj = exp(zΔ)φ(ξ)\ξj=aj

This means that Θw(φ) e α, if and only if Δ'φ e a (β = 0,1, 2, ). On

the other hand α* = {φ\Δ'φ e α, £ = 0,1, 2, •} is the largest J-admissible

ideal contained in α.

PROPOSITION 1.3. Let p be a prime ideal of K[ξl9 ••-,£„], and let p*

be the largest Δ-admίssible ideal contained in p. Then p* is also prime.

Proof. Denote af the class of ξ(f module p and put
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/<«(α, I z) = ( A ) # g ( »* jαf zft (* = 0,1, 2, 1 < j < N) .

By virtue of Proposition 1.2 Φw induces an isomorphism

Since p is prime, the residue algebra K[ξί9 , f ̂ ]/j) is an integral domain,

hence K[ff){aj\z))^0Λ^...^j^N] is also an integral domain. Then shows

that p* is an prime ideal.

§ 2. Infinite dimensional representations of sl(2, K) and the decom-

position of K[ξu , ξN]

2.1. For each element u oΐ K we shall construct an infinite dimen-

sional sϋ(2, if)-module Wu, which is irreducible for u Φ 0,1, 2, and re-

ducible for u = 0,1, 2, .

PROPOSITION 1.4. Le£ {e^ = 0,1, 2, •} be a base of a vector space

Wu of infinite dimension over K, on which

o l / ' Vi o / ' Vo o

acts as follows

J ) , = (lί - I + l)e,., (« - 0,1, 2, • • •) ,

(o ίK-<' + * »
where e_x = 0. 7%ew ίΛe linear extension of these actions to sl(2, K) gives

an sl(2, K)-module structure on Wu. If u Φ 0, 1, 2, , then Wu is irredu-

cible, and if u = 0, 1, 2, , £/ιe i ecίor space Wu generated by {en+£+ί\£ =

0,1, 2, •} is an irreducible sl(2, K)-module isomorphic to W_u_2 such that

Wu/Wu is an irreducible sl(2, K)-module of dimension u + 1.

Proof. From the definitions of the actions it follows

i o)' (o o))et = {(£ + 1 ) ( w " £) ~ (u ~ £ + 1 ) e K
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( ( " o i ) '( i o))βί = ί ( " ~ ι +1)(" ~ 2e ~ 2 ) ~ ( " ~ 2i){u ~

(o o))β ί = {(s + 1)(" ~ 2ί" 2 ) " ( u ~

This means that Wu is an s/(2, IQ-module. Denoting P=la e Wu fi Q ) O = 0 } ,

we have

p == fXβ0 for w # 0, 1, 2,

Web + JKβu+1 for u = 0, 1, 2, ,

because u — £ + I = 0 if and only if i = u + 1. Let V be a non-zero

sl(2, IQ-submodule of Wu. For each non-zero element a there exists a po-

(0 0\w

i α = 0. This means that V Π P = {0}.

Hence, if w Φ 0, 1, 2, , then VB e0 and V = Wu, i.e. V is irreducible.

If H = 0, 1, 2, •••, then Wu is an sZ(2, iί)-module isomorphic to W_u_2,

because

The quotient WJWU is the known irreducible sl(2, if)-module of dimension

u + 1.

2.2. To proof semi-simplicity of sl(2, i£)-module K[ξu ' ,ξN], it is

necessary the next condition;

Condition (C): The set {Σf=i ^Aλ^\-> * * > ̂  ^ r e n ° t a U z e r o

non-negative integers}

contains neither zero nor positive integer.

THEOREM 1.1. If w = (wu , wN) satisfies Condition (C), then sl(2, K)-

module K[ξu , ξN] is semi-simple and K[ξu ••-,£*]& generated by binary

semi-invariants as a sl(2, K)-module.

Proof. For each non-zero element φ in &ul putting

φ^ = A-Δ°φ (9 = 0 , 1 , 2 , . . . ) ,
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we have from (1.3)

jPφi* = (μ - 2ίW>, % > w

= (u - £ + ly-"

4y,w = -^jΔ'^ψ = (£ + i

This shows that the vector subspace is an sl(2, i?)-module isomorphic to
Wu; By virtue of Condition (C), the sl(2, ϋQ-module

Wr = © KJ'φ

is an irreducible sl(2, UL)-module. Let U be the sZ(2, iΓ)-submodule of

K[ξi, > £iv] generated by binary semi-invariants. Then £7 is a semi-simple

5/(2, ϋΓ)-module. Therefore it is enough to show K [ξu ••-,£#]= U. Let

i 7 M be the vector subspace of K[ξί9 -- ,ξN] generated by Δ£&u+^ (£ =

0,1,2, . . • ) , i.e.

It is sufficient to show

Since each element φ in K[ξu , ξN] there exists a non-negative integer
n such that 2nφ e ©, it is enough to prove the next assertion;

(*) If % e C7[M+2], then φ e Uίuλ

Case i) u Φ -2 , - 3 , -4, . . Let ̂  be an element of K[ξu , f^]^3

such that % e E7Ctt+a:l, and put

3) . -{u

Then from (1.3) we have

tA £\{U + 2)(w + 3) (u + £ + 1)

ί=ί £\{u + 2)(M + 3)-

ί=i ^ ! (U + 2)(M + 3)
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h £\(u + 2)(w + 3) (u + t + 1)

= 0,

namely 0e<5 w . Hence

φ = φ - Σ ("ly^P e U** .

Case ii) u = —2, —3, —4, . Putting n = — w — 2, with a non-

negative integer n. Let p be an element ψ of Iffo, •• ,fiv]CM] such that

%> e [7Cw+2]. Since % e t/Cw+2], we may express

Putting

έ i (̂  + 1)0? - n) 6 i (̂  + ΐ)(u + i + 2)

by virtue of (1.3) we have

2)

By virtue of Condition (C) there exists no isobaric element of index n for

n > 0. If 7i = 0, then &nl = K. Since @φ has no constant term, hence

whenever @(φ — ψ) = Jwψπ = 0. This shows that

φ = Ψ + (φ — Ψ)
φ _ ψ e ©M , 0 € Ϊ7CW] ,

and thus p e Uίu\

THEOREM 1.2 (Gram's theorem). If w = (w19 , wN) satisfies Condition

(C), then the following three conditions on an ideal a of K[ξu , ξN] are

equivalent;

i) a is an 5/(2, K)-admίssible ideal.

ii) There exists a set of index-homogeneous binary semi-invariants

{ψλ\λe A} such that a is generated by {Δeψλ\£ = 0,1, 2, λ e A} as an ideal.
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Proof. Let α be an sl{2, inadmissible ideal. Then α is an s/(2, K)-
invariant submodule, hence by virtue of Theorem 1.1 we have

α = © Δ\a Π ©) = 0 0 Δ\a- n ©M) .
£ = 0 u £ = 0

This shows that i) implies ii). Let {φλ\λ e Λ} be a set of index-homogeneous
elements of © such that α is generated by {Δeφλ \ t = 0,1, 2, λ e Λ} as
an ideal. Then elements of α are linear combinations of

φΔ'φk (φeK[ξl9 - ,ξN]ίu\ ^ = 0 , 1 , 2 , ... λ e Λ ) .

Let us examine the actions of Jf, 2, Δ on such a element φΔeφλ;

= (index (̂ ) + index (^) - 2S)φΔψ ,

— ^ +

This shows that

jfα, ^α, J α c α ,

namely α is an sZ(2, Inadmissible ideal.

§3. Robert's theorem

3.1. We shall define the action of GL(2, C) on the basic formal power
series /Ί(fi|2), '9fN($N\z) a n ( i shall prove Robert's theorem which gives a
canonical isomorphisms between the algebra of semi-invariants © and the
algebra of covariants.

For a complex number u we mean by zu the convergent power series

in the disc {\z\ \z — 1| < 1} with center at 1, which is a branch of the many
valued function zu.

Actions of elements ( *\ in GL(2, C) satisfying <^0 are defined as

follows:

\\γ a γz +
namely
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(1.18)
γZ +

d P)eGL(2,C),δΦθ,l<j<N)

\γ a/

ι

a)ξj) explicitely.

PROPOSITION 1.5.

(1.19) (ίδ PlξX* = ΣΣ(£ )(w^

\\γ a) ) p=oq=o\p/\ q

Proof. From (1.18) it follows

(C 5*'Γ-("')-i(*)'(a(
-τr("' Γ s ("' >"( l)'

Σ Σ
Λ 0 0

Putting h = p + q and replacing p by £ — p, we have

α/ / p=og=o\p/\ g

because

Applying (1.19) to special type of elements, we have,

COROLLARY 1.

(1.20)
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(1.22)

/"I OQ\
i i , -4ΌI

COROLLARY 2.

(1.24)

(1.25)

/ /1 Π\ \ v*> ί ί 0

(C W - δ(ί
/A A, Γ = Σ (w<

ί = 0 >

Proof. Since both sides of (1.24), (1.25) are derivations acting on φ(ξ),

it is sufficient to prove (1.24), (1.25) for <p(ξ) = £«>. For such a case (1.22),

(1.23) imply (1.24), (1.25), respectively.

3,2. Let us give the definition of covariants.

DEFINITION 1.3. A covariant of index u is a formal power series

with coefficients c£(ξ) in C[ξu , $N] such that

(1.26)
γ a) \γ a

...9ξN; ^±-ξ) ((δ β) e SL(2, C), δψ o) .
γz + δ) Wγ a) /

We denote by ^ C w ] the vector space of covariants of index u, and denote

<g = @u tfM is called the algebra of covariants.

LEMMA 1.9. // F(ξu -,ξN; z) is a covariant of index u, then F(ξί9 ,

ξN 0) is a binary semi-invariant of index u> and

(1.27) F(ξu -..,ξN z) = exp (^J)F(f,, , ξ N 0) .

Proof. We shall first prove (1.27). Applying Q *Λ to F(ξu , fn; z\

we have
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Since

we have

., , £*

Σ -jτ

= Σ
= exp ( « J ) F ( f „ •• , f J V ; 0 )

Similarly we have

dt\ \ tz+ 1

This means that F(ξu

(1.20), (1.21).

= 0 .

, ξN 0) is a binary semi-invariant. By virtue of

= (Wj - 2β)ξf = Hξf .

Hence, to prove index (F(ξu . . . , £ ; 0) = u, it is sufficient to show

dt \\ 0 ( l + 0 " v 1? \ 0 (1+ί)- 1 / ^^ /ί-o

= uF(ξu - ,ξN;0).

Actually we have

d pίβ + t 0 \A / 1 + ί 0 \ . n \
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ΓI> '"'*"' (i + ty
2 ) 2=0, ί = 0

= uF(ξu ,ξlr;O).

LEMMA 1.10. Let φ(ξί9 , ξN) be an element of C[ξl9 , ξN]. Then

we have

α.28)

where Φw is the isomorphism of C[ζl9 - - -,ξN] such that

*' w/u;, - 1) (a;, - ί + 1 ) / M W ;

Proof. Since

by virtue of (1.23) we have

3 Wj(Wj — 1) (Wj — I + 1) 3 j

1 ^
Xtϋj - 1) (UΛ, - ί + 1)

J(WJ -ϊ) ••• (wj- £ + ϊ) (£ + g - t)\

Since Φ̂ , is an algebra isomorphism, we can conclude

KG i>- •< 9» )-••*)•
LEMMA 1.11. Aτι element ψ(ξu , f^) o/ C ^ , , f^] is α binary semi-

invariant of index w, i/ ατιd onZy ί/

(1.29) φ((δ fylt . . . , ( * ^ ξ N j = 8»tfj*u ...,ξN) ( r , δ e C , δ Φ θ ) .

Proof. Let φ(ξlt , ξN) be an element K[ξlt , ξN]Lal. Since
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We have

Therefore it is enough to show Q)ψ — 0 if and only if

Since

the "if" part is obvious. Assume Q)φ = 0. Then we have

°> c ;

d (( 1 0\.

= ~dt\\t i

/I 0

"'">(o XX

This shows that

G > -C >.)-Λ -ωK
Let us sum up the above results in the next theorem which is the

analogy of Robert's theorem in classical invariant theory.

THEOREM 1.3 (Robert's theorem). The isomorphism Φw gives an C-

algebra isomorphism of the algebra of binary semi-invariants © onto the

algebra of covariants <£. Moreover

Proof. Let <p(ξl9 , ξN) be an element of ©CM]. Using the matric

relation

i z)(δ β) β (
0 l)\γ a) \

o Krz+δ)\ m β\ SL(2 c)\
1 / Wγ a) V )
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by virtue of (1.20), (1.21), (1.28), (1.29) we have

_J(γz + δ 0 \/l (az + β)/(γz + δ)\ ..

~ψ\\ γ (r« + i)-'Ao l Γ' '
(γz + δ 0 \/l (az + β)/(rz + ί)\ \

fl> , (J <«

γz + δ

This means that Φm(f>) e ̂ C!t:i. Conversely, if F(ξt, • , ξN z) is an element
of ^ίu\ then by virtue of Lemmas 1.7 and 1.9 we have

(zΔ)F(ξu •• ,ξκ;0) = ΦJφXξu •• ,ξir;z).

§3. Binary semi-invariants and automorphic forms

3.1. Rankin is the first who noticed the relation between binary semi-
invariants and automorphic forms". In this paragraph we shall give more
complete and systematic treatment of the relation.

To aboid the confusion between definitions in invariant theory and
automorphic function theory, we shall use the following language:

Automorphic form of index —2k, instead of automorphic form of di-
mension —2k.

LEMMA 1.12.

w(w-l)..-(w-£+l) \d((az + β)l(rz + δ))) (

(C f ) e S L ( 2 ' c ) )C
Proof. Let us prove (1.30) by induction on £. It is obvious for £ = 0.

1) See [2].
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Assume (1.30) for i and let us show (1.30) for I + 1. Since ad - βγ = 1,

we have

d((az + β)l(γz + δ))

and

o - o
(rz
(rz + SY

w-β dz I w(w - 1) (a; - I + 1)

" w-ι δ ( iγ\k)

- 1) (w - t + k + 1)

X f(yz + <5)-™+2

(dldz)i+1-*h{z)

10(11; - 1) (w - £ - 1 + k + 1)

X (w - I + k)γk(γz + d)-w+2(e+1)-k

iι<ιι;-. 1) . . . (w- β - 1 + ^ + 1 + 1)

X (-w + 2£ - k)rk+ί(γz + a)-w+2

iϋ(iϋ - 1) (w -

, 1 f
w - £ £A w(w _ i) . . . (w - t - i + k + 1)

• γk(γz + δyn+w+v-*) I \(w _ £ + ^ ) _ ( ) ( — ^ + 2^ — k + 1)>.
l\fe/ \k—V )

Since

1 fl\
1

U) —

1

£ k\(£
£\

- k

£\
+ 1)!

w-i k\(£-k + iy. \ k
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we have

i
- i) \w(w - 1) (w - i) \d((az + β)l(γz + S))

+ A
k )

= y
w(w - 1) ••• (w- £ - 1 + k+ 1)

x γ\γz + syw+2('+1)-k.

Let D be a domain in C containing the origin, and Γ be a subgroup

of SL(2, C) which acts on D properly discontinuously. We mean by a Γ-

automorphic form of index u a meromorphic function F(z) on D such that

γz
if' β)eΓ)
\\γ a/ /

and F(z) is also meromorphic at the cusps of Γ. A Γ-automorphic form

is called to be integral, if it is holomorphic at each point in D and each

cusps.

THEOREM 1.4. Let ku , kN be positive integers and put wι = — 2kί9 ,

wN = —2kN. Let ψ{ξ) be a binary semi-invariant of index u, where index

is given by w = (wu , wN). Let hλ(z), , hN(z) be Γ-automorphίc forms

of index —2kl9 , — 2kN, respectively, and let Φ(φ)(z) be the differential poly-

nomial given by the replacement;

^ (
ζi Wjiwj - 1) (Wj - I + 1) V dz

(i = 0,1, 2, • 1 < j < N)

in φ(ξ). Then Φ(φ)(z) is a Γ-automorphic form of index u. If hλ(z), • • •, hN(z)

are integral, then Φ(φ)(z) is also integral.

Proof. Since Φ{ψ){z) is a differential polynomial in h^z), , hN(z) with

constant coefficients and h^z), , hN(z) are meromorphic in D and at the

cusps, hence Φ(ψ)(z) has the same properties. By virtue of (1.30) for each

{ ") in Γ we have

wj{wj - 1) (w, - & + 1) \ d((az + β)l(γz + g))/ Λγz + δ

d((az + β)l(Tz + δ)))
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4-
1) (w] - £ + k + 1)

jiwj -l) -(wi-£ + k+ϊ)

X (-γ(γz + δ)-r .

Since ψ( ,ξψ, • • •) is a binary semi-invariant of index u, putting t =

—γ(γz + δ)'\ we have

x •••••)

(d/dzy-%(z)

1 ° (d/dz)%(z)

(djdz)%(z)
e w Wjiwj - 1) . . (Wj - £ + 1)

= (γz + δYΦψ(z) .

Since Φ{ψ){z) is a differential polynomial in hx(z), , hN{z), Φ{ψ){z) is integral

provided that hλ{z), , /^(z) are integral.

We shall show the converse of Theorem 1.4 is also true provided that

the Zariski closure of Γ is SL(2).

PROPOSITION 1.6. Let K(z), - , hN(z) be Γ-automorphίc forms of index

—2kί9 , —2kN9 respectively, and let a be the differential ideal of

LVVcfe/ </Λ = 0,l,2,'",l<ĵ N J

consisting all the elements annihilated by (h^z), , hN(z)). Put wx =

— 2ku , wN = —2kN. If the Zariski closure of Γ coincides with SL(2),

then a is an sl(2)-admissible ideal with respect to w = (wu , wN).

Proof Replacing

(C 0
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in an element

(d/dzYyj

in α, by virtue of (1.30) we have

. ;

X ( d Yh (az+β\ . Λ
V d((«z + β)i(rz + δ))J ' \ γz + δ r )

O ^ - 1) (lϋ

X

Putting s = ^ + δ and £ = — γ(γz + δ)~\ we have

F( -.(.ŷ , f / * \ (dldzy-*h£z) , \ = Q

\ ' h>\k/ Wj(w} - 1) (Wj - £ + k + 1) ' /

This is an algebraic equation in s and t. Since the Zariski closure of Γ

is £L(2), we may put s = 1 and consider t a variable. Hence we have

F\ ' - ' δ U ) «,,<«,, - l)... (w, - i + k + l) )

Using the algebra isomorphism Θ .̂ we have

From the definition of 0

This means that ΘW{@F) is the coefficient of £ in
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F( γ(t\ t (AΛ'~\ \
\ " ' &\k) Wj(ws - 1) (jv, - £ + k + 1) \dz) y i ' " ) '

and thus

(dldz)%(z) = 0 .
«ω Wj(wj - 1) (wj - £ + 1)

Namely ®(β-\a)) c Θz\a). Since d/dz°Θw = ΘW°J, we have

This shows that Θ^Xα) is an s/(2)-admissible ideal and thus α is sZ(2)-admis-

sible with respect to w = (wu , wN).

THEOREM 1.5. Let kί9 , kN be positive integers and put wί=—2kί, ,

wN——2kN. Let h^z), , hN(z) be Γ-automorphic forms of index —2ku ,

— 2kN, which are holomorphίc at the origin. If the Zariski closure of coin-

cides with SL(2), the algebra of covariants of (hx(z), , hN(z)) with respect

to w = (wu , wN) coincides with the algebra of Γ-automorphic forms which

can be expressed as differential polynomials in hx(z), , hN{z) with constant

coefficients.

Proof. We assume that a differential polynomial with constant coeffi-

cients in hx(z), , hN(z)

(d/dz)%(z)
' Wj(wj - 1) (wj - i + 1)

is a non-constant Γ-automorphic form of index u = —2m. Then for each

( ^) e Γ we have
XT «y

0 =

V d((az + β)l(γz +δ)J J \ γz + δ)' " Ί

- {γz + δf-Fi , — —L- j-rrriir)^^ '" ">
\ Wj(Wj — 1) (Wj — £ + 1) \ dz)
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1

This is an algebraic equation in s = γz + δ and t = — γ(γz + δ)'1. Since

the Zariski closure of Γ is SL(2). we may regard s and £ as independent

variables. Let F(ξ) = 2ϋ* Fc"af l(f) be the index-homogeneous decomposition

of F(ξ). Let α be the ideal consisting of all the polynomials φ(> , ξιf\ •)

such that

J ( d l d z Y h ^ ) ) = 0.
\ wj{wj -l) {wi-

Then α is an sZ(2)-admissible ideal. We shall show that Σί*m Fι~ie\ξ) e a.

Putting t = 0, we have

(dldz)%(z) \
Wjiw, - 1) (w} - £ + 1)' /

. jdldz)%(z) \

' WjiWj - 1) (wj - ί + 1) ' /

Namely

F( , 8 - ^ " ^ , •) - s2mF(- , if, •) e α ,

and thus

2 suF^% • ,ξf, • • • ) - β*-JF ( , I f , •)

= s2m 2 sUί-mΨι-2n( • •, ξf, • • •) e α .

Since α is index-homogeneous, we have Fι~n\ξ) eα (£ Φ m). This shows

that we may assume that F(ξ) is an index homogeneous polynomial of

index —2m. Putting s — 1. we have

F\ " ' S i * ) «.,(!<,, - 1) • • ( » , - / + 1) (dϊ) Λ ' ( * " )

- F ( • •• » , ( . . , - 1 ) • • • ( . , , - * + ! ) ( • £ ) ' » * > • •' •) " ° •

The coefficient of t in this equation must be zero, and it is nothing else

than
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This shows that @F(ξ) e α, since wu , wN are negative integers, Con-
dition (C) in § 2 is satisfied by wu . ιυN. Hence by virtue of Theorem
1.2 there exist binary semi-invariants φQ(ξ), , φm-i(ξ) of index —2m,
-2(m - 1), , - 2 such that

F(ζ) = Σ ( )

and Δkφk (0 < k < m — 1) are linearly independent. Hence by virtue of
(1.3) we have

m - l m - l

= A® 2 Δkφk{ξ) — Δ 2] [^, Δk]φk(ξ)

m-l

and thus (J^)Ψ(f) = Σt^i1 (K-rn+k+ΐ)YJkφk(ξ). On the other hand by
virtue of Proposition 1.6 we have

V9YF(ξ) = Σ(k(-m + k- ΐ)eJ«φk($) e Si (ί = 1, 2, •) .

This means

and thus

Namely

j , / (dldz)%(z) \
\ Wj(Wj - 1) (wj - & + 1) /

= 0 , ^ (dldz)%(z) \
ΨΛ ' Wjiwj - 1) (wj - i + 1) ' /

with the semi-invariant <po(ξ) .

Chapter 2. Differential invariants of linear ordinary
differential operators

We shall be concerned with linear ordinary differential operators of
order n
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where z is a complex independent variable and the coefficients px(z), ,

pn(2) are holomorphic at the origin. Similarly as in the case of binary

forms, the binomial coefficients ί ^ 1 play a quite important role.

Pseudo-group G of variable transformations

pu.x •• (*, y) — > («(*), J(*)y) ( ^ * o, i(0) * o)

acts on Ln(p\z, y) as follows,

The pseudo-group G acts also naturally on the differential polynomial

algebra

A linear differential operator Ln(Q|2, y) is called a Laguerre-Forsyth's

canonical form if Qx(z) = Q2(;ε) = 0.

Forsyth has proved that for each Ln(p\z> y) there exists a variable

transformation ^ such that Ln(ρUtλ(p)\z,y) is a Laguerre-Forsyth's canoni-

cal form. He also has proved that a variable transformation pUfλ maps

a Laguerre-Forsyth's canonical form to a Laguerre-Forsyth's canonical

form, if and only if

where

(δ P)eSIA2,C), c

A differential polynomial φ{ , (d/dzypjiz) ) is called a differential

invariant of weight p, if <p( , (dldzYp^z), - )(cte)p is invariant by the

action of G.
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Forsyth has found a system of basic differential invariants (Θ3(z), ,
Θn{z)) of L(p\z,y) such that i) θz{z), -,θn(z) are weight 3, , n, respec-
tively, ii) if Ln(Q\z,y) is a Laguerre-Forsyth's canonical form of Ln(p\z,y)>

then

1 T (- 8-2)l (d\
_ s)! 8ι V dz)

θ(z)-1 T

W ~ Y h (p _ s _ I)! (p _ s ) ! (2p
(3 < p < n)

iii) all the differential invariants of Ln(p\z,y) can be obtained from
Θ3(z), , 0w(z), by successive making of jacobians, iv) Θ3(z), Θ4(z), do not
depend on n, i.e. for n' > n (Θ3(z), , θn(z)) is a part of the system of
basic differential invariants of

In the present chapter first we shall prove that, if we put

( )
(3<P<n)

then the ring of all the differential invariants of Ln(p\z, y) is nothing else
than the ring of covariants of formal power series Θ3(z), , θn(z) in the
sense of chapter 1, namely φ is a differential invariant of Ln(p\z9 y) if and
only if there exists a binary semi-invariant F(- , ξf, •) of index wp =
— 2p such that

Φ==F(... (dldz)%(z) \

We choose a fundamental solution (̂ 1(2), , φn(z)) of Ln(p\z, y) = 0T

and consider

z >(φ1(z), .,φn(z))

a curve in projective space P71'1 of dimension n — 1. Then θΆ(z)(dz)\ ,
θn(z)(dz)n projective invariants of the portlate of the projective curve.

We shall show an application to automorphic forms as follows; let
Φι(z\ '"9 Φn(z) be a set of linearly independent integral automorphic forms
of index — 2k with respect to a group Γ, and put
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d γ-1

dz)

Ln(p\z,y) =
<•&*•

y, Φu ,Φn

Let (#3(2), , θn(z)) be the system of fundamental differential ivari-

ants of Ln(p\z,y). Then θp(z) is a Γ-automorphic form of index — 2p

whose denominator a factor of a power of Wronskian Wφ{z). It is remark-

able that the system of automorphic forms (Θ3(z), , θn(z)) is uniquely

determined by the vector space 2?-i Cφe{z). If {φx(z)9 , φn(z)} is a base

of differential forms of 1st kind of an algebraic curve of genus n, then

θz(z){dzf, , θn(z)(dz)n are invariants of the function field of the algebraic

curve.

§1. Laguerre-Forsyth's canonical forms

1.1. We shall first sketch the outline of Laguerre-Forsyth's theory of

canonical forms.

We denote by &{ri) the complex vector space of all the homogeneous

linear differential operators of degree n

whose coefficients Pι(z), , pn(z) are holomorphic at the origin. It must

be noticed that the highest coefficients of elements of ^f(n) are always 1.

We denote by G the pseudo-group of variable transformations

pUfX: (z9 y) > (u(z), λ{z)y)

such that u(z) and λ(z) are holomorphic at the origin and du(0)/dz Φ 0,

λ(0) Φ 0.

We mean by G1 the pseudo-subgroup of G consisting of all the de-

pendent variable transformations

Gx — {/Oid,A|i(oUoare holomorphic functions at the origin such that} .

Pseudo-subgroup G2 of independent variable transformations around the

origin means
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G2 = {pu.ilΐdίw/dzw&te holomorphic functions at the origin such that} .

G is generated by Gj and G2.

The action of G on ££(ri) is defined by

(2.1, L,(PnMlz,y) - (£fy + ± ( » )A.Xp),w(f )

The action of G2 is rather complicated, but the action of Gt is quite simple.

LEMMA 2.1

(2.2) L ^

Proof. From the definition of the action of piά,x it follows

Since

/ n \(n-h + k\_ (n\(h\
\h~k)\ k )~\k)\k)'

the coefficient of (dldz)n'hy in Ln(ρiΛ,λ(p)12, y) is given by

1.2. When (d/dzYpjiz) (1 <j < n; £ = 0,1,2, - •) are algebraically

independent over C, we define weight in the algebra of differential poly-

nomials
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as follows

(2.3) weight ( ( A ) ' Λ ( * ) ) = j + £.

DEFINITION 2.1. A linear differential operator Ln(P\z, y) is called a

semi-canonical form if Px(z) = 0.

PROPOSITION 2.1. For each Ln(p\z,y) there exists a unique semi-canoni-

cal form Ln(p\z,y) such that

with an element pίdjλ in pseudo-group Gx. Moreover the coefficient P£(z) of

(d/dz)n~£y in Ln(P\z,y) is expressed as an isobaric polynomial of weight £

in (d/dzYpjiz) (0 < k < n; 1 < j < n\

Proof. It is well-known in calculus that Ln(pidtλ(p)\z,y) is a semi-

canonical form if and only if

^ λ{z)Pl{z) = 0 .
dz

Since the quotient of two solutions of this equation is a constant and for

non-zero constants c

z> y) = Ln(piά,λ(p)\z, y) ,

hence the semi-canonical form

of Ln(p\z, y) is unique within Gx. Again by virtue of

P
dz

there exists an isobaric polynomial φe of weight £ in (d/dzYp^z) (0 < k < n)

such that

From (2.2) it follows
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* / £ \Σ ( , )

This shows that P£ is an isobaric polynomial of weight £ in (dldz)kpό(z)

(l<j<n;k = 0,1,2, •)•

DEFINITION 2.2. A differential polynomial φ in

is call a differential semi-invariant, if

for every p l d f 2 in G lβ

PROPOSITION 2.2. Let Ln(P\z, y) be the semi-canonical form ofLn(p\z, y).

The ring of all the differential semi-invariants coincides with

1
2£j<n; 0,1,2,...J

Proof. Since the semi-canonical form Ln(P\z, y) of Ln(p\z, y) is unique

within Gj. Therefore the coefficients Pj(z) (2 < j < ή) are differential semi-

invariants of Ln(p\z,y). Moreover the derivatives (dldz)4pj(z) (2 <j < n;

£ = 0,1, 2, ) are also differential semi-invariants. The rings of differ-

ential invariants of Ln(p\z, y) and Ln(P\z,y) coincide, because Ln(p\z, y) is

transformed to Ln(P\z,y) within Gu and the ring of differential semi-

invariants of Ln(P\z, y) is a subring of

This proves Proposition 2.2.

DEFINITION 2.3. A linear differential operator Ln(Q\z,y) is called a

Laguerre-Forsyth's canonical form if Qx(z) = Q2(z) = 0.

1.3. We shall be next concerned with the action of pseudo-group G2
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of independent variable transformations. We shall state two lemmas with-

out proofs.

LEMMA 2.3.2) Let z be a function in u and put

(2.4)

Then we have

(2 5 )

(2 6) * -

(2 7) A.,.., _ (m\( d V ( <fe\—(2 7) M
(2.8) - * - -
K ' ( m 1 ) !

)()z( + S( z
( ) 3/\dJ \du) ^ \4/\\du) )\du

LEMMA 2.3.3) Putting

we have

(2.10) P

(2.11) P (^){

(2.12) -^-^^(pMa)) - (^)~ 2 fpί( U ) - p^u), - ^ ^ - ϊ 2 + -̂
dw \dw/ I 22 2

LEMMA 2.5.

(2.13) P

2) See p. 20-22, §311 [4].
3) See (26), (26a), (27) §411 [4].
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where ( )' = (dldu)( ) and η = z"jz!.

Proof. From (2.1) it follows

On the other hand from (2.10) it follows

hence

PROPOSITION 2.2. A transformation in G

Pu,λ.u O>y) — > (u> Ku)y)

maps any semi-canonical form to a canonical form, if and only if

where c is a non-zero constant

Proof. Let Ln(P\ z, y) be a semi-canonical form, i.e. P^z) = 0. From

(2.13) it follows

hence we observe that

if and only if

λ'(u) . n - 1 z" __
Λ(u) 2 ^
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The solutions of this equation are given by

PROPOSITION 2.3. Let Ln(P\z,y) be a semi-canonical form, and let

Ln(Q\z, y) be the semi-canonical form of Ln(pUtί(P)\z,y). Then

(2.15) Q2(z) = z'

where ( )' = d/du( ), η = si'tf.

Proof. Since Ln(Q\z,y) is the semi-canonical form of Ln(ρuΛ(P)\z, y),

there exists a function λ(z) such that

and

^ ( 2 ) - J ^ + Pu>ι(P)(z) = 0 .
az

Since

dz dz

we have

Using (2.10), (2.11), (2.12) and P, = 0, we have

M + A-(3n2 - lln + 10V
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1 o a

Finally we can now prove fundamental theorems due to Forsyth.

THEOREM 2.1 (Forsyth). For each Ln(P\z,y) there exists a transforma-

tion; pu,λoy; (z, y) —> (u9 λ{u)y) such that Ln(ρUιXou(P)\z, y) is a Laguerre-Forsyth's

canonical form, i.e. pu§loU(P\ = ρu,λΛP\ = 0.

Proof. It is enough to start from a semi-canonical form Ln{P\z, y), i.e.

Pj = 0. Let ρUfλou: (z, y) -* (u, λ(u)y) be a transformation such that

λ(u) =

where c is a non-zero constant and ( / = (d/du)( ). By virtue of Propo-

sition 2.2 the first relation implies that Ln(pU)λou(P)\z,y) is a semi-canonical

form. From the second relation and (2.13) we have

Hence Ln(pu>Xou(P)\zyy) is a Laguerre-Forsyth's canonical form.

It must be notice that, to get a Laguerre-Forsyth's canonical form,

we need to solve a Ricattis equation

in

THEOREM 2.2 (Forsyth). A transformation pUll.u maps a Laguerre-For-

syth's canonical form to a Laguerre-Forsyth's canonical form, if and only if

SL(2, C),^0eC).
+ δ (γz + 3)

Proo/. Let pu>λoU be a transformation which maps a Laguerre-For-

syth's canonical form Ln(Q\z, y) to a Laguerre-Forsyth's canonical form

Then, since
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from Proposition 2.2 and Lemma 2.6 we have

χ(u) = -
v ' ^/(n-D/2

\ z' ) 2 \ zf )

The second equation means that the schwarzian {z, u} of z with respect
to u vanishes. This shows

az + β 3/ v

§2. Diflferential invariants

2.1. A linear differential operator Ln(p\z, y) is called to be algebrai-
cally generic, if (dldz)epj(z) (1 < j < n; ί = 0,1, 2, •) are algebraically
independent over C. Such a case each variable transformation pUtλ induces
a differential algebra homomorphism

such that

where u o v = z9 i.e. u(v) = z.

Let us give the rigorous definition of differential invariants of linear
differential operators.

DEFINITION 2.4. Let Ln(p\z, y) be an algebraically generic linear dif-
ferential operator, and let m be a non-negative integer. A differential in-
variant of weight m of Ln(p\z, y) means a polynomial φ( , (dldz)epό(z), •)
in (d/dzYpjiz) (1 < < n; £ = 0,1, 2, •) such that

(p*,>eG),
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where u<>υ = id, i.e. u(v) = z. Let Ln(q\z,y) be any linear differential

operator. A differential invariant of weight m of Ln(q\z, y) is the image

of a differential invariant <p( , (d/dzYpj(z), ) of weight m of Ln(p 12, y)

under the specialization:

such that

) ' ) ( έ ) < ί ( 2 ) (1 -; -
Obviously this definition of differential invariants of Ln(q\z,y) does

not depends on the choice of an algebraical generic Ln(p\z,y).

LEMMA 2.6. Let Ln(Q\z,y) = Ln(pUtXou(p)\z,y) be a Laguerre-Forsyth's

canonical form of Ln(p\z,y), and let φ(- , (d/dzYQ^z), •) be a polynomial

in (d/dzYQj(z) (3 < j < n; I = 0,1, 2, . •) such that

is invariant with respect to the transformation group

, y ) ,

exisίs α polynomial φ( , (d/duYpjfju), ) m

(1 < 7 < ^ ; ^ = 0,1, 2, •) such that

φ( ' , ( ^

m is α non-negative integer.

Proof Since the coefficients of the semi-canonical form of Ln(p\z,y)

are expressed as polynomials in {djdzYpό{z) (1 < .7 < τz; •# = 0,1, 2, ),

we may assume that Ln(p\z,y) is itself a semi-canonical form, i.e. pι = 0.

Since Ln(Q\z,y) = Ln(pid,λ(pUtί(p)\z,y), by virtue of Lemma 2.1 we have

Since Lw(p|2;,y) is a semi-canonical form, by virtue of Proposition 2.2 and

2.3 it follows
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^ * * ) A\Z) = LZ ,

(***) ηf = —rj'

where ( )' = (d\dυ)( ) and η = z"\sί.
From (**) and (***) it follows

du

and

This shows that i) λ(z)~\dldu)kλ(z) {k = 0,1,2, •) can be expressed as
polynomials in η, p2(u)9 p'2(u), p'2'(ύ), and ii) (dldz)k = ΣUgkΛy, z'-'Xd/duY
with polynomials ^ ^ in η and 27"1. Hence by virtue of (*) we can express

f( • . (•£)'««, ) - § 4 . ( έ ) pM

with a finite number of polynomials φq,r. On the other hand for ί ^J €

SL(2, C)

ίaz+βV =

\γz + δ) .γz + δ) .(γz

((az + β)Kγz + <?)
_

((az + β)l(γz + δ))' z' γz + δ γz + δ'

Since ψ{ , (d/dzYQ^z), )(dz)m is invariant with respect to H, putting

s = (γz + δf and t = -2γz!\γz + δ)~\ we observe that for (δ &) e SL(2, C)

/ ((az + j8)/(rz + δ))" Yd(( az + β
\ ((az + β)l(γz + δ))' ) Wγz + δ
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= Σ &(

Here we may choose γ and δ such that s and 2 are algebraically inde-

pendent over

hence we have q — m and r = 0. This means

K •• ( f ) ^ > > " = *-••(• ' ( D ^ B ) Ydu)m

THEOREM 2.3. Let Ln{Q\z,y) = Ln(pUtλou(p)\z,y) be a Laguerre-Forsyth's

canonical form of an algebraically generic Ln(p\z,y). Then a polynomial

φ(- , (dldzYQj(z), •) is a differential invariant of weight m of Ln(Q\z, y),

if and only if <p(- , (d/dzYQ^z), ){dz)m is invariant with respect to the

transformation group

H =
γz + δ a

Proof. Let φ(- , (d/dzYQ^z), ) ( ^ ) m be invariant with respect to H.

Then by virtue of Lemma 2.6 we get a polynomial φ( , {djduYp^u), •)

such that

=K
where 0 is uniquely determined. Let pWtμ be any element and put /oMfiβw o p~]μ

=Px,voX. Then, since Ln(Q|0, y) is also a Laguerre-Forsyth's canonical form of

Ln{pWtX(p)\z,y\ specializing (u9p1(u)9 ',pn(u))-+(x,piOtU(p)1(x), ,pw,μ(p)n(x)),

we get # . , WdxYp^ipUx), • ) ( ^ ) w = ?<•••, (d/dzYQ^z), ) ( ^ ) m =

^( ,(dlduYpj(u), - )(du)m. This means that ^( ,(dlduYpό{u), •) is a

differential invariant of weight of Ln(p\u, y). Moreover, specializing

(u, Pt(u), , pM) -• fe 0, 0, Q3(z), , Qn(z)), we get φ( , (d/dzYQ^z),

• .)(dz)w = ?(. ..ΛdldzYQfc), .)(<te)m, and thus p(. -Ad/dzYQ^z), •) is

a differential invariant of weight m of Ln(Q|£, y). Next, we assume con-

versely that φ( - , (d/dzYQj(z), •) is a differential invariant of weight m of

Ln(Q\z,y). Then there exists a differential invariant 0( , (d/dzYpjiu), •)

of Ln(p|w, y) such that ^( . , (dldzYQfc), ..•) = ?<•• Λdldz)Qs{z\ •)•
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Since φ( , (dlduYpjiu), ) is a differential invariant of weight m of

£n(p|w,y), we have

= < • ••

This shows that <p( , {djazYQ^z), , .)(cfe)m is independent on the choice

of a Laguerre-Forsyth's canonical form Ln(Q|£, y). Hence by virtue of

Theorem 2.2 it is invariant with respect to H.

2.2. We shall first quote a fundamental result on differential in-

variants due to Forsyth without proof.

THEOREM 2.44) (Forsyth). We denote

(216) Θ(z)-1 T (~l)fcα - 2 ) ! j Ί ( 2 j - f c - 2 ) ! / d \* ( )

(3 < j < n)

then Θ3(z)(dzy, , θn(z)(dz)n are invariant with respect to the transformation

group

δ ?)eSL(2,C),
γ a)+ δ (γz + δ)n~ι

COROLLARY. 63(Z), -- ,θn(z) are differential invariants of Ln(Q\z,y) of

weight 3, , rί, respectively.

This is an immediate consequence of Theorem 2.3 and Theorem 2.4.

DEFINITION 2.5. {θz(z), , θn(z)) in Theorem 2.4 is called the system

of fundamental differential invariants of Ln(Q\z, y).

DEFINITION 2.6. Let Ln(Q\z,y) = Ln(pu>λou(q)\z,y) be a Laguerre-For-

syth's canonical form of Ln(q\z, y). Then there exists a unique system of

differential invariants (θs(u)9 **-,θn(u)) of Ln(q\z,y) such that

We call (θs(u), , θn{u)) the system of fundamental differential invariants;

of Ln(q\u,y).

4) See p. 27-32, §411 [4].
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We shall next show a relation between binary semi-invariants in

chapter 1 and differential invariants of linear differential operators.

THEOREM 2.5. Let ξ3 = (ff, £?>, . . . ) ,-••,£, = (ξ«\ #>, . . . ) be vectors of

infinite length with variable entries, and put Wj= — 2/ (3 <£j <̂  ή). We regard

the polynonίal ring C[£8, , ξ J as an sZ(2, C)-admissible ring with respect

to w = (iϋ3, , ιt;n). Lei Ln(Q|2, y) 6e a Laguerre-Forsyth's canonical form

such that (d/dzYQ^z) (3 ̂ 7 <; n; £ = 0,1,2, •) are algebraically independent

over C. Then a polynomial <p( , ((dldz)eθ)(z))l(wj(w3 — 1) (u;y — ̂  + 1)))

zs a differential invariant of weight m of Ln(Q\z9 y)9 if and only if φ(ξz, , ξn)

= φ(- - , ξ(/\ - - ) is a binary semi-invariant of index —2m, where (Θ3(z), ,

dn(z)) is the system of fundamental differential invariants of Ln(Q\z,y).

Proof. Let ρUtλ be a variable transformation in H;

( β, y)->(««±A, r-f-^) ((* P)eSL(2,C)).
\ γz + δ (γz + 5)w J / \\^ α/ /

Applying pUfλ on ^̂ (<ε). we have

where 2 = (αro + β)l(γv + δ). By virtue of Lemma 1.12 we have

+ β)l(rv + δ))))%((aυ + β)Kγυ + 3))
WJ(WJ - ΐ) • • • (Wj - £ + ϊ)

_ (dl(d((av + β)l(rv
lϋ/itλ, - 1) (to, - I + 1)

= (rυ 4- 5^-^+2ί

j-V iwj-£ + k+ϊ) '

where t = — γ(γv + δ)'1 and pUfi means the homomorphism

( 3 - 7 - n ; £ = 0 > l j 2 > ' ' ' }

We first assume that F(ξ3> , ξn) = F( • , ξψ, •) is a binary semi-

invariant of index —2m, then we have

Λ " ' Wj(wj - 1) (wj - £ + 1) ' /

β)l(ΐv + δ)))yθ}((ccv + β)l(rv + δ ) ) \
WJ(WJ - 1 ) •••(Wj- £ + 1 )
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k=o\k/ WjiWj — 1) (Wj —

= (γv
w1(wj-\) {wj-£

dυ 1) ' /

= (dz (dldz)%(z)

\dυ

This shows that

( * ) F(- , (dldz)%(z)
\ ' Wj(Wj — 1) (Wj —

is invariant with respect to H, hence

(**)

• ) •

TΊΓ

(dldz)%(z)
wj(w3 -ΐ) ••• (wj- £ + 1)

is a differential invariant of weight m of Ln(Q\z,y). We assume next that
(*) is invariant with respect to H, i.e. (**) is a differential invariant of
weight m of L(Q\z,y), then, putting s = γυ + δ and t = —γ(γv + δ)"1, we
have

s2roF( ,
Wj(Wj — 1) • (Wj — £ + 1) '

.
' «;/«;, - 1) • (wj - £ + 1)

(dl(d((av + j8)/(rι>

( \

wj{wj -ϊ) ϊ)

= F( S

2«+^' T

. \
)

f \

Hence we have a polynomial relation in s and ί

' Wj(wj - 1) + 1)
.. Λ = 0
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We may choose γ and δ such that s and t are algebraically independent

over C[ , (dldvYpu>λ(θj)(v)9 •]. If we put s = 1, then the coefficient of

t in (***) given by

Fi( ';—r-

= DF(ξ3,---,ζn) =

where D = Σj Σ* £ξ{f~1)dldξ(f). Since θp(z) - Qp(z) is a polynomial in

(djdzYQ^z) (3 < j < p - 1; £ = 0,1, 2, . •), we have C[- • , {d\dzyθ&\ •)

= C[ -ΛdldzYQjiz), •], and thus (dldυYpUttfj) (3 < j < n; ^ = 0,1, 2, .)

are algebraically independent over C. This shows that DF(ξ3, . ξn) = 0,

i.e. JF(£S, ,fn) is a binary semi-invariant. Putting ί = 0 in (***), we

have

(dldvypu>λ(θ3)(v) \
' /

c
' Wjiwj - 1) {wi, - £ + 1)

= β-ίW (dldυYpUll(Wv) \
\ ' u /ii;, - 1) (w, - £ + 1) ' / '

and thus F( , s-^+Mf(i), •) = s" 2 m F( --,ξf, •)• Namely F(f,, , f J

is a binary semi-invariant of index —2m.

THEOREM 2.6. Let (#3(2), , #n(2)) 6e the system of fundamental dif-

ferential invariants of a Laguerre-Forsyth's canonical form Ln(Q\ z, y). Then

a polynomial ψ{- , (djdzYQ^z), •) is a differential invariant of weight m

of Ln(Q\z,y), if and only if it is a covariant of index —2m of (θs(z), ,

θn(z)) for the action of SL(2, C) with respect to w = (—6, — 4, , — 2n).

Proof This is an immediate consequence of Theorem 2.5 and Robert's

theorem.

2.3. We shall next be concerned with differential invariants of the

linear differential equation of automorphic forms.

THEOREM 2.7. Let Γ be a subgroup of SL(2, C) which acts properly

discontinuously on a domain in C containing the origin, and let (h^z), ,

hn(z)) be a system of linearly independent automorphic forms of index w

such that hj(z) (1 <j<n) are holomorphίc at z = 0. We denote
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Wh(z) =

«;(«; - 1) • (w - n + 2) ' ' w(w — 1) {w — n + 2)

u>(u; - 1) (w - n + 3)' ' w(w - 1) (w - n + 3)

Til,

and

Ln(p\z,y)

w(w—ϊ)' - -(u
yn-1)

w(w—1) •(&

y,

= w(w —

»-»+!)'

>-n+2)'

i) • (w -

h

Jϋ-1)"

- n + ϊ)Wh(

1

.(w-n+1)

'(w-n+2) ;—1) -(w—n+2)

where ( )(/) = (d/dzYi )• Lβί (03(», , θn(z)) be the system of fundamental

differential invariants of Ln(p\z,y). Then θs(z), , θn(z) are Γ-automorphic

forms of index —6, — 8, , —2n, respectively. If hά{z) (1 <j < ή) are

integral, then Wh(z)mjθj(z) (3 < j < ή) are integral with suitable non-negative

integers m5 (3 < j < ή).

Proof Obviously (h^z), , hn(z)) is a fundamental solution of Ln(p \ z, y)

=0. The Wronskian Wh(z) is a Γ-automorphic form, which is integral

provided that hό{z) (1 < j < ή) are integral. Moreover Wh(z)pj(z) (l<j< n)

are expressed as polynomials in hf{z) (1 < j < n; £ = 0,1, 2, , ή); hence

it is enough to show

γv + δ γ a

Putting z = (av + β)l(γv + δ) (( H e Γ j , by virtue of Lemma 1.12 we have

(dl(d((av + ^/(ri; + δ)W(rv + δ)-my

(dldvYy

w(w —

w(w- ΐ) -(w- £ + k+
-i-r(γv + δ)-1)

and
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(dl(d((<xv + β)l(rv + δ))))%((av + β)l(γυ + δ))

w(w - 1) (w - i + 1)

_ (dl(d((av

w(w - 1) (w - i + 1)

(w — 1) (w — £ + k + 1)

Hence, putting these two relations into Ln(p\(av + β)l(γv + δ), (γv + δ)~wy)y

we get

di; γv + δ
> ( + \ =

)
This means that Pufi(p)j(v)=Pj(v) (l<j<n), where puy. (z,y)->(az+β)l(γz+δ)9

(γz+δ)-my). Since θs(υ) is a differential invariant of weight j of Ln(p\n,y),

we have

( ± £ ) ( ( ± | ) ) ^ = m(d2y
γv

and thus

(C «C
COROLLARY. Differential invariants of weight m of Ln(p\z,y) are Γ-

automorphίc forms.

Proof. This is an immediate consequence of Theorem 2.6 and Theorem

1.5.
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