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SOLUTION OF THE CONGRUENCE SUBGROUP PROBLEM

FOR SOLVABLE ALGEBRAIC GROUPS

JASBIR SINGH CHAHAL

1. Statement of the theorem

Let k be an algebraic number field of finite degree over the field Q
of rational numbers. We denote by o the ring of integers in k. In gene-
ral, for a subring A, containing 1, of a universal domain Ω we denote by
GL(n, A) the subgroup of GL(n, Ω) consisting of matrices x = {xi3) with xυ

€ A and det x e Ax, the group of units of A. Now, we consider an algebraic
group G in GL(n, Ω) defined over k. For A as above, we put

G(A) = GΓ\ GL(n, A)

and for an integral ideal a Φ 0 in o, we put

G(ά) = {xe G(o), x = 1 (mod. α)}.

A subgroup Γ of G(ό) is said to be a congruence subgroup for G if Γ con-
tains G(a) for some α.

Obviously, a congruence subgroup has a finite index in G(o), but the
converse is, in general, false (cf. [1]). The purpose of this paper is to
establish the following

THEOREM. Suppose G <Ξ GL(n, Ω) is a solvable algebraic group defined

over a number field k. Then every subgroup Γ of G(o) with finite index is

a congruence subgroup.

The results and conjectures in [1] mainly concern simply connected
simple Chevalley groups of rank > 1. To see what happens when the
group is not simply connected, the author first studied the algebraic torus
defined by the Pell's equation x2 — my2 = 1. This special case** of our
main theorem was treated by an elementary method the manuscript of
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*} See the remark at the end of the paper.
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which was turned down by this Journal some months ago because a part

of the results followed from a theorem of Chevalley (cf. [5]). The author

wishes to thank the referee for drawing his attention to this work of Che-

valley which lead him to generalize the results to the much wider case of

arbitrary solvable groups.**}

2. Reduction of the proof

It is well known that an irreducible solvable algebraic group G defined

over k is a semi-direct product G — TU, where T is a torus and U is an

irreducible normal unipotent subgroup, both defined over k. In this sec-

tion, we shall show that it is enough to prove our theorem when G — T

or G = U. Without loss of generality, we can assume that G is irreducible.

It is clear that G(o) 3 Γ(o)C7(o). We know that the index [G(o): T(o)U(o)]

is finite (cf. Proposition 13 (d) of [6]). Now, since [G(o): Γ] is finite, so is

[T(ό)U(o): Γ Π T(o)U(o)]. Therefore, replacing Γ b y Γ ί Ί T(ό)U(o), we can

assume that Γ c T(o)U(o). For each finite prime p of k, denote by o, the

ring of p-adic integers in the local field kp. For the ideal pr, r > 0, we

put

G,(ί>') = {* 6 G(op)9 x = 1 (mod. i>')} .

For almost all p, we have G(op) — T(op)U(op). Let pl9 , ps be the primes

for which we have the inequality

G(op)^)T(op)U(oPj), l<j<s.

The group T(op)U(op) is compact and open in G(op) and so are the groups

Gp(pr) for all r > 0. For each p, there is an rp such that rp = 0 if p Φ p5

and 7(0^17(0,,) 2 Gp(pr*). Let c = pi1 pr

8: Then we have

T(op)U(op) 2 Gp(pr») 2 CKp'>) 2 G(c).

Let x= tue G(c) with ί e Γ(/5), u e U(k). Then ί e T(op)9 u e U(op) for all p

and so t e Γ(o), w e £/(o). Thus we have shown that

Replacing Γ again by Γ Π G(c), we can assume that G(c) 3 Γ. If we

put Γ1 = Γ f] T(o) and Γ2 - Γ Π i/(o), then the indices [ΓίoJrΓJ and

paper is based on a part of the author's Ph.D. thesis, written at the Johns
Hopkins University under the direction of Professor Takashi Ono.



CONGRUENCE SUBGROUP 143

[£7(o):Γ2] are both finite. Assuming the theorem for G = T and G = Uf

we have Γ, 5 T(6), Γ2 3 17(6) for some B and hence Γ 2 Γ(6)17(6). Let

E) = qji .. . qβ«. By the topological argument as above, we have, for large

We finally put a = qf* q?βc. It can be checked as before that if x

= tue G(a), then t e T(6), M e [7(6). Therefore, we have Γ 2 G(α), which

completes the reduction of the proof.

3. The case of the unipotent group

If dim G = 1, then G « Ga, the additive group and G(o) is isomorphic

to o up to finite index by Cor. 6.11 of [3]. If [o: Γ] = g, let a = go, the

ideal generated by g. Then Γ Ξ> G(α) — α. If now dim G = r9 we write

G = Gα [7 as semi-direct product with dim U = r — 1. Repeating the argu-

ment of the last section for the semi-direct product G = TU, we complete

the proof by induction on r.

4. The case of the algebraic tori

Let T be a torus defined over k. We begin with

PROPOSITION. Let O (resp. o) be the ring of integers of K (resp. k) where

we assume that K is a finite galois extension of k. Let Γ be a subgroup

of finite index in T(o). Then, there exists a subgroup f of T(O) of finite

index such that f Π T(o) c: Γ.

Proof. By Theorem 4 of [6], T(β) is finitely generated and so we may

assume that Γ(D) is free, since we are worried about Γ up to finite index

only. Let g be the galois group of K/k. Then we have for any natural

number r, (T(O)r)8 = (T(£)y)r, where for a group H we denote by Hr the

subgroup consisting of r-th powers and by H* the subgroup of fixed points

under the action of a group g. In fact, the inclusion (T(£))r)s c (T(O)8)r

is less trivial. Take a n x = / e (T(D)ry, with y e T(O). Then, since σ(yr)

= yr for all σ e g, we have (y~ισ(y))r = 1. Since, we assumed that Γ(O) is

free, σ(y) = y and so x e (T(D)9)r, which proves our assertion. Now put

Γ = T(Ώ)r, where r = [Γ(o): Γ]. Then obviously [^(O): f] is finite. Also,

we have f Π Γ(o) = f * = (Γ(O)r)g = (T(O)«)r = Γ(o)r, q.e.d.
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Proof of the theorem for tori.

( i ) If T = Gm, the multiplicative group, then G(k) = kx and G(o) =

o x. The proof now follows from a result of Chevalley (cf. Theoreme 1, [5]).

(ii) If T= (Gm)d, the trivial torus over k, and Γ c G(o) = (oψ, we

put Γi = π^Γ), where πt is the z-th projection. If the index [G(ό):Γ] is

finite, then so is [ox: Γt] and by (i) we have Γt => GJfid for some ideal at.

Let a = α< ad. If x = (^, , xd) = 1 (mod. α), then ^ Ξ I (mod. α<),

which implies that xt e Γt and xe Γ, i.e. ,Γ ^ G(α).

(iii) Let Γ be split by a finite galois extension Kjk. Let Γ b e a sub-

group of finite index in T^o). By the proposition, we can find a subgroup

f of Γ(O) such that it has finite index in T(O) and Γ Π Γ(o) c Γ. By

case (ii), we have Γ 3 Γ(SI) for some ideal SI in O. Put α = 2ί Π o, then

if JC 6 Γ(α), we have x e T(SI) Π Γ(o) ς f ίi Γ(o) c Γ, q.e.d.

Remark. In the case of the torus T defined by the Pell's equation

x2 — my2 = 1, one obtains a more precise result than that obtained by

merely applying the Chevalley's theorem. In fact, given Γ of finite index

in T(Z), one can choose a natural number N such that [Γ: T(N)] = 1 or

2 (cf. 4]).
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