T. Koike Nagoya Math. J. Vol. 79 (1980), 1-22

ON THE NONWANDERING SETS OF DIFFEOMORPHISMS OF SURFACES

TOKIHIKO KOIKE

§ 1. Introduction

Let *M* be a compact manifold without boundary. Let $f: M \to M$ be a $C¹$ diffeomorphism. Then the *nonwandering set* $\Omega(f)$ is defined to be the closed invariant set consisting of $x \in M$ such that for any neighborhood *U* of *x*, there exists an integer $n \neq 0$ satisfying $f^{n}(U) \cap U \neq \phi$. In part ticular, the set Per (f) of all periodic points is included in $\Omega(f)$.

Generally, in the study of the orbit structure of diffeomorphisms their nonwandering sets play an essential role. Several results relating to the non-wandering sets established in these ten years or so have developed a new aspect of dynamics—the study of the orbit structure of dynamical systems. In his survey [8], Smale set up a concept called *Axiom A,* i.e. (a) *Ω(f) =* Per (f), (b) Tf has a hyperbolic structure over $\Omega(f)$, i.e. there exists a Tfinvariant continuous splitting $E^s \oplus E^u$ of $TM|\Omega(f)$ —the restriction of the tangent bundle TM to $\Omega(f)$ —such that for some constants $C > 0, 0 < \lambda < 1$,

$$
\begin{aligned}\n\|Tf^n(v)\| &\leq C\lambda^n\, \|v\|\, , &\qquad \forall v\in E^s,\ \forall n>0\ ,\\
\|Tf^{-n}(v)\| &\leq C\lambda^n\, \|v\|\ ,&\qquad \forall v\in E^u,\ \forall n>0\ .\n\end{aligned}
$$

After that, many important results were obtained in this direction.

On the other hand, Pugh [7] proved a very important theorem about the nonwandering sets. To state it, we shall explain the concept of ge nericity. Let $\text{Diff}^1(M)$ be the set of all C^1 diffeomorphisms endowed with the $Cⁱ$ topology. Then a property of diffeomorphisms is called *generic* if the diffeomorphisms having it form a residual subset of $\text{Diff}^1(M)$.

PUGH'S DENSITY THEOREM. The property $\Omega(f) = \text{Per}(f)$ is generic in $\mathrm{Diff}^1\,(M).$

Received July 21, 1978.

Revised November 24, 1978.

2 TOKIHIKO KOIKE

In this paper we shall study the nonwandering sets of diffeomorphisms of surfaces from the viewpoint of genericity. Our results are as follows: Let M^2 be a compact connected surface without boundary.

THEOREM 1. The property that int $\Omega(f)$, = ϕ , or f is an Anosov diffeomorphism is generic in $\text{Diff}^1(M^2)$.

Remark. For a topological space *X,* the closure and the interior of $A \subset X$ are denoted by \overline{A} and int *A* respectively.

A diffeomorphism $f: M \to M$ is called *Anosov* if Tf has a hyperbolic structure over *M.* For surfaces except a torus, there is no Anosov diffeo morphisms ([9], p. 90). So, in this case Theorem 1 is written as follows:

THEOREM 1'. The property int $\Omega(f) = \phi$ is generic in Diff¹ (M²) if M² *is not a torus.*

A diffeomorphism / is said to be *topologically Ω-stable* if *Ω(f)* is homeomorphic to $\Omega(g)$ for all g C¹ near f. We have the following from Theorem 1.

COROLLARY. If $f \in \text{Diff}^1(M^2)$ is topologically *Ω*-stable, then int $\Omega(f) = \phi$ *or f is an Anosov diffeomorphism.*

The main stage in proving Theorem 1 is the following. First we shall fix our notation.

DEFINITION. For an open subset U of M, we denote by $\mathcal{H}(U)$ the set of $f \in \text{Diff}^1(M)$ whose periodic points in U are all hyperbolic, and by the set of $f \in \text{Diff}^1(M)$ whose periodic points are dense in U.

THEOREM 2. *Let M² be a compact connected surface. Then for any open subset U of M² ,*

$$
\mathscr{D}(U)\,\cap\,{\rm int}\,\mathscr{H}(U)\subset\mathscr{D}(M^2)\;.
$$

Theorem 1 is proved in Section 2 and Theorem 2 in Section 4. Sec tions 3 and 5 are devoted to two propositions necessary for the proof of Theorem 2. In Appendix we shall prove a lemma about a non-transversal homoclinic point, which is necessary in Section 5.

Throughout this paper except Appendix, 'M' will denote a compact connected surface without boundary.

I would like to thank Professor M. Adachi for his guidance of this

area. I owe Professors G. Ikegami, M. Kurata and especially K. Shiraiwa many useful suggestions and criticisms.

§ **2. Proofs of Theorem 1 and Corollary**

In this section we prove Theorem 1, assuming Theorem 2. We denote by *si* the set of all Anosov diffeomorphisms of *M%*

LEMMA 1. If $f \in \text{int } \overline{\mathscr{D}(M)}$, then $f \in \overline{\mathscr{A}}$. Hence $\mathscr A$ is open and dense in $int \overline{\mathscr{D}(M)}$.

Proof. Let $f \in \text{int } \overline{\mathscr{D}(M)}$. First, we suppose $f \notin \text{int } \mathscr{H}(M)$. Some diffeomorphism *g* near / has a non-hyperbolic periodic point *p.* Since the dimension of *M* is 2, it is possible to make *p* a sink or a source of a small $Cⁱ$ perturbation g_i of g , i.e., if *n* is the period of *p*, then the eigenvalues of $T_p g_i^n$ have absolute values $\langle 1 \text{ (or } \rangle 1)$. Obviously, $g_i \notin \mathscr{D}(M)$. This contradicts the hypothesis, because g_i can be chosen sufficiently near f. Thus $f \in \text{int } \mathcal{H}(M)$. We can choose $f_i \in \text{int } \mathcal{H}(M) \cap \mathcal{D}(M)$ near f. We here apply a theorem of Mañé [3], i.e. int $\mathcal{H}(M) \cap \mathcal{D}(M) = \mathcal{A}$ if the dimension of *M* is 2. Hence we have $f_1 \in \mathcal{A}$. Therefore, $f \in \mathcal{A}$. q.e.d.

For each point $x \in M$, we define

$$
\mathscr{U}_x = \{f \in \text{Diff}^1(M); \ x \notin \text{int Per}(f)\}.
$$

Then we have

LEMMA 2. If $f \in \mathcal{U}_x$, then $f \in \mathcal{D}(M)$ or $f \in \overline{\text{int } \mathcal{U}_x}$.

Proof. Let $f \notin \mathcal{U}_x$. By definition, $x \in \text{int Per}(f)$. Let U be a small neighborhood of x in $\overline{\text{Per}(f)}$. When $f \in \text{int } \mathcal{H}(U)$, by Theorem 2, we have $f \in \mathscr{D}(M)$. So it is sufficient to show that $f \in \text{int } \mathscr{U}_x$, when $f \notin \text{int } \mathscr{H}(U)$. Then some f_1 near f has a non-hyperbolic periodic point p in U. Similarly, it is possible to make p a sink or a source of some $Cⁱ$ perturbation $f₂$ of f_1 . Since U is a small neighborhood of x, we can choose $h \in \text{Diff}^1(M)$ with $h(x) = p$ in a small $C¹$ neighborhood of the identity of M. Put $g =$ $h^{-1} \cdot f_2 \cdot h$. Clearly *g* is *C*¹ near *f*. Naturally $x = h^{-1}(p)$ is a sink or source of g. Hence, for any $g_i \in \text{Diff}^1(M)$ near g we have $x \notin \text{int Per}(g_i)$, or $g_i \in$ \mathscr{U}_x . This implies $g \in \text{int } \mathscr{U}_x$. Since g is near f, it follows that $f \in \text{int } \mathscr{U}_x$. q.e.d.

LEMMA 3. int $\mathscr{U}_x \cup \text{int} \overline{\mathscr{D}(M)}$ is dense in Diff¹ (*M*).

Proof. Suppose $f \in \overline{\text{int } W_x}$. It suffices to show $f \in \overline{\mathscr{D}(M)}$. When $f \in \overline{\mathscr{D}(M)}$

by Lemma 2, we have $f \in \mathcal{D}(M)$. When $f \in \mathcal{U}_x$ hence $f \in \mathcal{U}_x$ — int \mathcal{U}_x , there is a sequence $f_n \notin \mathcal{U}_x$ U $\overline{\text{int } \mathcal{U}_x}$ converging to *f*. By Lemma 2, $f_n \in \mathcal{U}_x$ Hence $f \in \overline{\mathscr{D}(M)}$ follows. q.e.d.

Now Theorem 1 is proved as follows: By Lemmas 1 and 3, $\mathscr{U}_x \cup \mathscr{A}$ is generic in $\text{Diff}^1(M)$. Really it contains an open dense subset of $\text{Diff}^1(M)$. By the Pugh's density theorem, the set

$$
\mathscr{C} = \{f \in \text{Diff}^{1}(M); \Omega(f) = \overline{\text{Per}(f)}\}
$$

is generic. Let *K* be a dense countable subset of *M.* Then

$$
\mathscr{B} = \bigcap_{x \in K} (\mathscr{U}_x \cup \mathscr{A}) \cap \mathscr{C}
$$

$$
= \left(\left(\bigcap_{x \in K} \mathscr{U}_x \right) \cap \mathscr{C} \right) \cup \mathscr{A}
$$

is generic in Diff¹ (*M*). Now we need only check that if $f \in (\bigcap_{x \in K} \mathcal{U}_x) \cap \mathscr{C}$ then int $\Omega(f) = \phi$. From $f \in \bigcap_{x \in K} \mathcal{U}_x$, we have int Per $(f) \cap K = \phi$. But, since *K* is dense in *M*, int $\overline{\text{Per}(f)} = \phi$. On the other hand, $f \in \mathscr{C}$ means $\overline{\text{Per}(f)} = \Omega(f)$. Hence int $\Omega(f) = \phi$ follows. q.e.d.

Proof of Corollary. Let $f \in \text{Diff}^1(M)$ be topologically Ω -stable. First suppose $f \notin \overline{\mathscr{A}}$. By Theorem 1, there is $g \in \text{Diff}^1(M)$ near f such that int $Q(g) = \phi$. By stability, it follows from the theorem of domain invariance that int $Q(f) = \phi$.

Next suppose $f \in \overline{A}$. There is $f_i \in \mathcal{A}$ near f. Since $\Omega(f_i) = M$ ([9], p. 89), by stability, we have $\Omega(f) = M$. Hence by stability, $\Omega(g) = M$ for all g near f . By Mane [3], it follows that f is Anosov. $q.e.d.$

§ **3. Laminations**

In this section we prepare a proposition for the proof of Theorem 2. Let us begin with definitions.

DEFINITION. Let $f \in \text{Diff}^1(M)$. For a hyperbolic periodic point p of f, we denote by $W^s(p;f)$ (resp. $W^u(p;f)$) the stable (resp. unstable) manifold of f at p. We define $E^s(p;f)$ to be the tangent space of $W^s(p;f)$ at p. Likewise $E^u(p; f)$ is defined.

In what follows, we shall drop f' in these symbols when it does not give rise to confusion.

DEFINITION. A hyperbolic periodic point is called a *saddle* if it is not a sink nor source. We denote by $S(d)$ the set of all saddles of f.

DEFINITION. A $C¹$ *lamination* of M is a continuous foliation whose leaves are C^1 immersed submanifolds such that their tangent spaces, as a whole, form a continuous subbundle of *TM.*

Refer to [1, § 7] for general definitions. We shall prove the following.

PROPOSITION 1. Let $f \in \text{Diff}^1(M)$. Let U be an open subset of M such *that:*

(1) *U is invariant under f.*

(2) *The periodic points in U are all saddles and are dense in U.*

(3) There is a continuous splitting $E^* \oplus E^*$ of TM\ U whose splitting a *d* $\forall p \in S d(f) \cap U$ *is* $E^s(p; f) \oplus E^u(p; f)$.

Then there is an f-invariant C^1 *lamination* W^s *on* U *such that* (a) *all laminae are tangent to* E^s , (b) stable manifolds $W^s(p;f)$, $\forall p \in S d(f) \cap U$, *are its laminae. Likewise there is an f-invariant lamination W^u on U with the corresponding properties.*

Proof. We want to construct a lamination on a neighborhood of $\forall x_0$ $\in U$. First, we take a coordinate neighborhood (Q, φ) of x_0 with the fol lowing properties.

$$
(4) Q \subset U.
$$

$$
(5) \quad \varphi(Q) = [-1,1] \times [-1,1].
$$

(6) $\varphi(x_0) = (0, 0).$

 (7) Identify Q with $[-1, 1] \times [-1, 1]$ and E^s with $T\varphi(E^s)$. There is a C[°] map $w: Q \to \mathbb{R}$ such that $|w(x)| < 1/4$, and the vector $(1, w(x))$ spans $E^s(x)$, $\forall x \in Q$. $E^s(x)$ is the fiber of E^s at x.

We, first of all, notice that stable manifolds $W^s(p)$, $\forall p \in S d(f) \cap U$ are tangent to E^s . Because, if at a point $x \in W^s(p)$, $E^s(x)$ is not tangent to $W^s(p)$, then $E^s(f^{an}(x)) = Tf^{an}(E^s(x))$ (α is the period of p) tends to $E^u(p)$ as $n \to \infty$ by hyperbolicity of $T_p f^*$, contradicting continuity of E^* . Like wise unstable manifolds $W^u(p)$, $\forall p \in S d(f) \cap U$, are tangent to E^u .

Let $\pi_1: Q \to [-1, 1]$ be the projection on the first factor. Write $Q_1 =$ $[-1,1] \times [-1/2,1/2] \subset Q$. For $\forall p \in S d(f) \cap Q$, let K_p be the connected component of $W^s(p) \cap Q$ containing p. Let $h_p: K_p \to [-1, 1]$ be the map ping defined by

$$
h_p(x) = \pi_1(x) , \qquad \forall x \in K_p .
$$

We want to show that h_p is a homeomorphism if $p \in Sdf$ (*f*) $\cap Q_1$.

First, h_p is one to one, because K_p is an integral curve of the vector field $x \mapsto (1, w(x))$, $\forall x \in Q$, which spans E^s over Q . So we show h_p is onto. We notice that K_p cannot meet the top nor the bottom of Q , because the slope of K_p is less than 1/4. So h_p not being onto implies $\overline{K}_p - K_p \neq \phi$. Let $q \in \overline{K}_p - K_p$. See the figure.

Thus K_p includes one of the components of $W^s(p) - \{p\}$, say C. Since $f^{2a}(C) = C$, clearly we have $f^{2a}(q) = q$, namely $q \in \text{Per}(f)$. Hence, by (2), $q \in Sdf$. For $\forall x \in C$, $f^{-2a}f(x)$ tends to q as $n \to \infty$. This implies $C \subset$ $W^u(q)$. Thus C is tangent to E^{*} and E^{*} at once, which contradicts (3). Hence h_p must be onto.

We denote by Π the set of all $p \in Sdf$ (f) (Q such that h_p is onto. By the above $\text{Sd}(f) \cap Q_1 \subset \Pi$. Let $\pi_2: Q \to [-1, 1]$ be the projection on the second factor. When we put $V_0 = {\pi_2 h_p^{-1}(0); p \in \Pi} \subset [-1,1]$, it is easy to see that V_0 is dense in $[-1/2, 1/2]$. For $\forall p \in \Pi$, we write $k_u = \pi_2 \cdot h_p^{-1}$, where $u = \pi_{2} \cdot h_{p}^{-1}(0)$. Hence graph $(k_{u}) = K_{p}$. We define a function $v =$ $k(t, u), t \in [-1, 1], u \in [-1/2, 1/2]$ by the following:

$$
k(t, u) = \lim_{u \to u} k_u(t) , \qquad u' \in V_0 .
$$

The aim of the following is to prove that curves $t \mapsto (t, k(t, u))$, $u \in$ $[-1/2, 1/2]$, are C^t differentiable and tangent to E^s , and they form, as a whole, a $C¹$ lamination on a neighborhood of $x₀$.

1. $k(t, u)$ is well-defined: Let (t, u) be fixed. Take $u_1, u_2 \in V_0$ with $u_i < u < u_2$. If $p \in$ Sd $(f) \cap Q$ is in the domain between graph (k_{u_1}) and graph (k_{u_2}) , then *p* belongs to *Π*. This is proved by the method proving in the above that h_p is onto, and by the fact that subarcs K_p , K_q of dif ferent two stable manifolds never meet each other. Remark that this fact also plays an important role in the following.

NONWANDERING SETS 7

So it is obvious that ${K_p; p \in \Pi}$ meet the vertical segment ${t} \times$ $[k_{u}(t), k_{u}(t)] \subset Q$ densely. That is, the set $\{k_{u}(t); u' \in V_0\}$ is dense in $[k_u(t), k_{u₂}(t)]$. Therefore, given $\varepsilon > 0$, there is a finite sequence of numbers $u'_1, u'_2, \cdots, u'_n \in V_0$ such that

 $(u_1^{\prime}) \quad u_1 = u_1^{\prime} \leq u_2^{\prime} \leq \cdots \leq u_n^{\prime} = u_2,$

(9) $k'_{u_{i+1}}(t) - k'_{u_i}(t) < \varepsilon, \forall 1 \leq i < n.$

Let *j* be the suffix with $u'_j < u < u'_{j+1}$. By (9), for $\forall u', u'' \in V_0 \cap$ $[u'_j, u'_{j+1}],$

$$
|k_{u'}(t)-k_{u''}(t)|
$$

Hence $\{k_u(t); u' \to u, u' \in V_0\}$ is a Cauchy sequence. q.e.d.

2. The convergence $k_u(t) \to k(t, u)$ is C° uniform: Given $\varepsilon > 0$, choose a finite sequence of numbers $t_1, t_2, \dots, t_n \in [-1, 1]$ such that

- (10) $-1 = t_1 < t_2 < \cdots < t_n = 1,$
- (11) $t_{i+1}-t_i<\varepsilon/2, \ \forall 1\leq i< n.$

We can take $u_1, u_2 \in V_0$ such that

 (12) $u_1 < u < u_2$

(13) $k_{u_0}(t_i) - k_{u_1}(t_i) < \varepsilon$, $\forall 1 \leq i \leq n$.

By the way, if $|t - t_i| < \varepsilon$, by (7) we have

$$
\begin{aligned} |k_{u_1}(t)-k_{u_1}(t_i)|=&\left|\int_{t_i}^t\frac{d}{dt}k_{u_1}(t)\,dt\right|\\ =&\left|\int_{t_i}^t w(t,k_{u_1}(t))dt\right|\\ \leq|t-t_i|/4<\varepsilon/4\;.\end{aligned}
$$

 $\text{Likewise } |k_{u_2}(t) - k_{u_2}(t_i)| < \varepsilon/4. \quad \text{Let } \ u' \in V_0, \ u_1 < u' < u_2. \quad \text{For } \forall t \in [-1, 1],$ $\text{choose } t_i \text{ with } |t_i-t| < \varepsilon. \quad \text{Then}$

$$
\begin{aligned}|k(t,u)-k_{u'}(t)|&\le k_{u_2}(t)-k_{u_1}(t)\\&\le |k_{u_2}(t)-k_{u_2}(t_i)|+|k_{u_2}(t_i)-k_{u_1}(t_i)|\\&+|k_{u_1}(t)-k_{u_1}(t_i)|<\varepsilon/4+\varepsilon/2+\varepsilon/4=\varepsilon\;.\end{aligned}
$$

Thus we have $|k(\cdot, u) - k_u(\cdot)| < \varepsilon$ if $u' \in V_0$, $|u' - u| < \delta$, where $\delta =$ $\min \left\{ |u_1 - u|, |u_2 - u| \right\}.$ q.e.d.

3. $\{(d/dt)k_{u'}; u' \rightarrow u, u' \in V_0\}$ is uniformly convergent: Because

$$
\frac{d}{dt}k_{u'}(t) = w(t, k_{u'}(t)),
$$

and $k_u(t)$ is uniformly convergent. $q.e.d.$

Therefore, $v = k(t, u)$, $(t, u) \in [-1, 1] \times [-1/2, 1/2]$, is C^1 differentiable in *t* and satisfies the differential equation $dv/dt = w(t, v)$.

It is easy to see that the mapping $H: [-1,1] \times [-1/2,1/2] \rightarrow Q$ defined by $H(t, u) = (t, k(t, u))$ is a homeomorphism (into). So we can define a $C¹$ lamination on a neighborhood of x_0 by letting its laminae be curves $t \mapsto$ *H(t, u),* $u \in [-1/2, 1/2]$ *.* To guarantee the existence of a global lamination *W* on *U,* we need only check that two local laminations thus defined are always consistent with each other. But, otherwise, there must be a pair of stable manifolds having an intersection by the construction of laminae.

Clearly the lamination W^s satisfies the desired conditions. q.e.d.

§4. Theorem 2

For simplicity we denote by U_f the *f* orbit of $U \subset M$. The following proposition plays a basic role in proving Theorem 2.

PROPOSITION 2. Let U be an open subset of M. If $f \in \text{int } \mathcal{H}(U)$, then *there is a continuous splitting* $E^* \oplus E^*$ of $TM|\overline{\mathrm{Sd}(f)\cap U_f}$ whose splitting at $\forall p \in \mathrm{Sd}(f) \cap U_f$ is $E^s(p;f) \oplus E^u(p;f)$.

The proof will be given in the next section. Now we prove Theorem 2.

THEOREM 2. For any open subset U of M, we have

$$
\mathscr{D}(U)\,\cap\, \mathrm{int}\,\mathscr{H}(U)\subset \mathscr{D}(M)\;.
$$

Proof. Let $f \in \mathcal{D}(U) \cap \text{int }\mathcal{H}(U)$. Clearly Per $(f) \cap U_f \subset \text{Sd}(f)$. So, Sd (*f*) is dense in U_f . Applying Proposition 2, we have a splitting $E^s \oplus$ E^u of $TM|\overline{U}_f$ whose splitting at $\forall p \in \text{Sd}(f) \cap U_f$ is $E^s(p;f) \oplus E^u(p;f)$. Hence, by Proposition 1, there are f-invariant laminations W^s and W^u such that $W^s(p;f)$ and $W^u(p;f)$, $\forall p \in S_d(f) \cap U_f$, are respectively their laminae.

It is sufficient to show $\overline{U}_f = M$, because Per (*f*) is dense in U_f . For this, we need only prove that for $\forall x_0 \in \overline{U}_f$, there is a neighborhood of x_0 included in \overline{U}_f . Let us write $\Sigma = Sd(f) \cap U_f$. We claim

(1) Let $p \in \Sigma$. Let $\varphi \colon \mathbf{R} \to W^s(p)$, $\varphi(0) = p$, be a parametrization of $W^s(p)$. Then $\varphi(\infty) = \lim_{t \to \infty} \varphi(t)$ never exists.

Proof of (1). Suppose there exists $\varphi(\infty)$. Let α be the period of p. First, $\varphi(\infty) \notin U_f$, because by Proposition 1 $W^s(p)$ is a lamina of W^s . It is

also clear that $f^{2a}(\varphi(\infty)) = \varphi(\infty)$. Since the laminations W^s , W^u are trans versal, we have $q \in \Sigma$ with $\varphi\{(0, \infty)\} \cap W^u(q) \neq \phi$. Let $y \in \varphi\{(0, \infty)\} \cap$ W^u(q). Denote by β the period of q. Since $y \in W^u(q)$, $f^{-2\alpha\beta n}(y) \rightarrow q$ as $n \to \infty$. Since $y \in \varphi\{(0, \infty)\}\,$, $f^{-2\alpha\beta n}(y) \to \varphi(\infty)$ as $n \to \infty$. Hence $q = \varphi(\infty)$. This is a contradiction, because $\varphi(\infty) \in U_f$. *.* q.e.d.

By continuity of $E^* \oplus E^*$, we may choose a coordinate neighborhood (Q, ψ) of x_0 satisfying the following $(2) \sim (4)$.

- (2) $\psi(Q)=[-1,1]\times[-1,1]$
- $(3) \quad \psi(x_0) = (0,0)$

(4) Identify Q with its image by ψ and E^s , E^u with $T\psi(E^s)$, $T\psi(E^u)$ respectively. Then we have C° functions $w_s, w_u : Q \cap \overline{U}_f \to [-1/4, 1/4]$ such that $(1, w_s(x)), (w_u(x), 1) \in T_xQ$ span respectively $E^s(x), E^u(x)$ for $\forall x \in Q \cap \overline{U}_f$.

Let $p \in \Sigma \cap Q$. We denote by K_p^s (resp. K_p^u) the connected component of $W^s(p) \cap Q$ (resp. $W^u(p) \cap Q$) containing p. We express the coordinate system in Q as (t, v) . Noting that K_p^s is an integral curve of the vector $\text{field } x \mapsto (1, w_s(x)) \ (x \in Q \, \cap \, U_j), \text{ we have a function } v = k_p(t) \text{ with graph } (k_p)$ $= K_p^s$. Let *Π* be the set of all $p \in \Sigma \cap Q$ such that the domain of k_p is $[-1,1]$. Put $Q_1 = [-1,1] \times [-1/2,1/2] \subset Q$. As in the previous section, we can prove $\Sigma \cap Q_1 \subset \Pi$ by virtue of (1).

Let us fix a point $p_0 \in [-1/4, 1/4] \times [-1/4, 1/4] \cap \Sigma$. Similarly as above, we have a function $t = h(v)$, $v \in [-1, 1]$ with graph $(h) = K_{p_0}^u$. For $\forall p \in \Pi$, $K_p^s \cap K_{p_0}^u$ consists of just a point. Let $\pi_2(t, v) = v$ be the projection. Define $V_0 = \{ \pi_2(K^s_p \cap K^u_{po}); p \in \Pi \}. \quad \text{Since} \ \varSigma \, \cap \, Q_{\text{\tiny{1}}} \subset \varPi, \ V_{\text{\tiny{0}}} \ \ \text{is dense in} \ \ [-1/2,1/2].$ For $\forall u' \in V_0$, we put $k(t, u') = k_p(t)$, where $\pi_2(K_p^s \cap K_{p_0}^u) = u'$. See the figure.

Now we define a function $v = k(t, u)$, $(t, u) \in [-1, 1] \times [-1/2, 1/2]$ by

$$
\underline{k}(t, u) = \lim_{u' \uparrow u} k(t, u') , \qquad u' \in V_0 .
$$

First, this is well-defined, because $k(t, u')$ is monotonuous in $u' \in V_0$. As in the previous section, we have similarly that this convergence is $C¹$ uniform in $t \in [-1, 1]$.

Likewise we define another function $v = \bar{k}(t, u)$, $(t, u) \in [-1, 1] \times$ $[-1/2, 1/2]$ by

$$
\bar{k}(t, u) = \lim_{u' \downarrow u} k(t, u'), \qquad u' \in V_0.
$$

We want to show $\underline{k} = \overline{k}$. Suppose that for some $t_1, u_1 \underline{k}(t_1, u_1) \neq \overline{k}(t_1, u_1)$. Let *D* be the region in *Q* between the graphs of $k(\cdot, u_1)$ and $\bar{k}(\cdot, u_1)$. First we have $D \cap U_f = \phi$. If not, we can take two points $p_i, p_i \in \Sigma \cap D$. By (1), they belong to Π . So the region in Q between $K_{p_1}^s$ and $K_{p_2}^s$ is included in *D*. But this is impossible, because $\underline{k}(t_2, u_1) = \overline{k}(t_2, u_1)$ where $(t_2, u_1) \in K_{p_0}^u$. Thus $D \cap U_f = \phi$.

We also have $D \cap U_f \neq \emptyset$. This is shown as follows. Put $x_i =$ $(t_1, k(t_1, u_1))$. We notice that the graphs of $k(\cdot, u')$, $u' \in V_0$, are included in U_f . So, $x_1 = \lim_{h \to 0} (t_1, k(t_1, u')) (u' \uparrow u_1, u' \in V_0)$ is contained in \overline{U}_f . Hence we can choose a point $p \in \Sigma$ near x_1 . Then K_p^u meets the graph of $\underline{k}(\cdot, u_1)$ at a point near x_i . So it meets D, too. Since $K_p^u \subset U_f$, we have $D \cap$ $U_t \neq \phi$.

Thus we have a contradiction. Therefore, $k = \overline{k}$. Hereafter we write $k=k=\bar{k}.$

It is easily shown that the mapping $H: [-1,1] \times [-1/2,1/2] \rightarrow Q$ defined by $H(t, u) = (t, k(t, u))$ is a homeomorphism (into). Moreover, its image is in \overline{U}_f . So it is sufficient to show that $\text{Im}(H) \supset [-1/2,1/2] \times [-1/4,1/4]$.

By (4), $K^u_{p_0}$ meets the segments $[-1/2,1/2] \times \{1/2\}$, and $[-1/2,1/2] \times$ $\{-1/2\} \subset Q$. Let these intersections be y_1, y_2 respectively. By definition, $graph (k(\cdot, 1/2))$ goes through y_1 , and graph $(k(\cdot, 1/2))$ through y_2 . Hence it follows from $|(\partial/\partial t)k(t, u)| = |w_s(t, k(t, u)|) 1/4$ that for $\forall t \in [-1/2, 1/2],$ $k(t, 1/2) > 1/4$ and $k(t, -1/2) < -1/4$. Hence, as u goes from $-1/2$ to $1/2$ with $t \in [-1/2, 1/2]$ fixed, $k(t, u)$ varies from $k(t, -1/2) < -1/4$ to $k(t, 1/2)$ $> 1/4$. By continuity of k, it follows that for $\forall t \in [-1/2, 1/2]$, $\{t\} \times [-1/4, 1/2]$ $1/4 \subset Im(H)$. That is, $[-1/2, 1/2] \times [-1/4, 1/4] \subset Im(H)$. Hence $x_0 =$ $(0, 0) \in \operatorname{int} \overline{U}_f.$

Thus we have proved Theorem 2. $q.e.d.$

§5. **Proposition 2**

In the proof of Theorem 2, Proposition 2 still remains to be proved.

NONWANDERING SETS 11

PROPOSITION 2. Let U be an open subset of M. If $f \in \text{int } \mathcal{H}(U)$, then t *here is a continuous splitting* $E^s\oplus E^u$ *of* $TM|\overline{\rm{Sd}}\left(f\right)\cap\overline{U}_f$ *whose splitting* $at \forall p \in \text{Sd}(f) \cap U_f \text{ is } E^s(p;f) \oplus E^u(p;f).$

Proof. We state two assertions, which will be proved later, and using them, we obtain the proof of Proposition 2.

Let *GM* be the bundle over *M* whose fiber at *x* consists of all 1 dimensional subspaces of $T_{\mu}M$. Let *d* be the metric on *GM* induced from a Riemann metric on M .

ASSERTION 1. There is a C¹ neighborhood $\mathscr U$ of f such that

 $\inf \left\{d(E^s(p; g), E^u(p; g))\right\} ;\ g\in \mathscr{U},\ p\in {\rm Sd}\left(g\right)\ \cap \ U_g\right\} > 0\ .$

ASSERTION 2. *There is a positive integer v such that*

$$
\|Tf^*\|E^s(p)\|/\|Tf^*\|E^u(p)\|\leq 1/2\;,\qquad\forall p\in{\rm S}{\rm d}\,(f)\;\cap\;U_f\;.
$$

Now Proposition 2 is proved as follows: Let $x \in Sd(f) \cap U_f$. Let $p_n, q_n \in S$ d (*f*) \cap U_f , $n = 1, 2, \cdots$ be two sequences converging to *x* such that $E^s(p_n)$, $E^u(p_n)$; $E^s(q_n)$, $E^u(q_n)$ have a limit. Denote their limits by F^s , F^u ; G^s , G^u respectively. It is sufficient to prove $F^s = G^s$ and $F^u = G^u$. Suppose $F^s \neq G^s$, for example. It follows from Assertion 1 that $F^s \neq F^u$, $G^s \neq G^u$. Our argument is divided into three cases.

1. The case $F^s \neq G^u$. It follows from Assertion 2 that

$$
\|T_xf^{k\nu}|F^*\|\|\,T_xf^{k\nu}|F^u\|\leq 1/2^k\;,\qquad \forall k>0\;.
$$

Since $G^* \neq F^*$ and $G^* \neq F^*$, we have by this that given $\varepsilon > 0$, there is $k > 0$ such that

$$
\begin{aligned} &d(T_xf^{t\nu}(G^s),\,T_xf^{t\nu}(F^u))<\varepsilon\;,\\ &d(T_xf^{t\nu}(G^u),\,T_xf^{t\nu}(F^u))<\varepsilon\;. \end{aligned}
$$

Hence we have

$$
d(T_xf^{_{k\nu}}(G^s),\,T_xf^{_{k\nu}}(G^u))<2\varepsilon\;.
$$

This clearly contradicts Assertion 1.

2. The case $F^u \neq G^s$. This is the same with the case 1, if *F* and *G* are interchanged.

3. The case $F^* = G^u$ and $F^u = G^s$. By Assertion 2, we have

$$
\begin{aligned}\|T_xf^*\|F^*\|/\|T_xf^*\|F^*\|&\leq 1/2\;,\\ \|T_xf^*\|G^*\|\|\,T_xf^*\|G^*\|\leq 1/2\;. \end{aligned}
$$

The above inequalities contradict each other, because $F^* = G^*$ and $F^* = G^*$. Thus we have derived a contradiction from the assumption $F^* \neq G^*$. Hence we have Proposition 2. $q.e.d.$

To prove Assertions 1, 2 we prepare the following.

Assertion 3. For some small $C¹$ neighborhood $\mathcal{U}₁$ of f, there is a con*stant* $0 < \lambda < 1$ *such that for* $\forall g \in \mathcal{U}_1$, $\forall p \in S$ d $(g) \cap U_g$

$$
\begin{aligned} & \|Tg^{\scriptscriptstyle{{\alpha(p)}}}|E^{\scriptscriptstyle{{\rm s}}}(p;g) \| < \lambda \;, \\ & \|Tg^{\scriptscriptstyle{{\alpha(a)}}}|E^{\scriptscriptstyle{{\rm u}}}(p;g) \| < \lambda \;, \end{aligned}
$$

where $\alpha(p)$ means the g period of p.

Proof of Assertion 3. Suppose otherwise. We may assume without loss of generality that for any $ε > 0$, there exists g in the $ε - C¹$ neighbor hood of f with $||Tg^{a(p)}||E^{s(p; p)||} > 1 - \varepsilon$ for some $p \in S_d(q) \cap U$. Let ε_1 $= 1 - \|Tg^{\alpha(p)}\| E^s(p; g) \|.$ Clearly $0 < \varepsilon_1 < \varepsilon.$

By Lemma B_2 in Appendix, we have a $C_{\epsilon} - C^1$ perturbation *h* of the identity of *M (C* is a constant as in that lemma) such that

- (1) $h(p) = p$.
- (2) $T_p h = (1 \varepsilon_1)^{-1} I_p$ where $I_p: T_p M \longrightarrow$ is the identity.
- (3) $h(x) = x$ for x outside a small neighborhood of p.

We define $g_1 = h \cdot g \in \text{Diff}^1(M)$. By (1), (3), $g_1 = g$ on the orbit of p. Clearly $E^s(p;g)$ is invariant under $T_p g^s(p)$. But we have

$$
\begin{aligned} \|T_p g^{\scriptscriptstyle{a}(p)}_1 E^{\scriptscriptstyle{s}}(p;g)\| &= \|T_p h\!\cdot\! T_p g^{\scriptscriptstyle{a}(p)} \! \mid \! E^{\scriptscriptstyle{s}}(p;g)\| \\&= (1-\varepsilon_{\rm i})^{\scriptscriptstyle{-1}} \, \|T_p g^{\scriptscriptstyle{a}(p)} \! \mid \! E^{\scriptscriptstyle{s}}(p;g)\| = 1 \ . \end{aligned}
$$

Since the dimension of $E^s(p;g)$ is one, it follows that p is not hyperbolic for g_i . By construction, g_i is near f in Diff¹(M), so $f \notin \text{int } \mathcal{H}(U)$. This is a contradiction. $q.e.d.$

Proof of Assertion 1. Suppose it is not true. Then, for any *ε* > 0 we have $g \in \mathscr{U}_1$ with

$$
\tan d(E^s(p; g), E^u(p; g)) < 2^{-1}\varepsilon(1 - \lambda)
$$

for some $p \in Sd(g) \cap U_g$, where \mathscr{U}_1 and λ are the ones given in Assertion 3. Let *α* be the period of *p.* Take a small neighborhood *Q of p* with

(1) $Q \not\supseteq g^n(p)$, $\forall 1 \leq n \leq \alpha - 1$.

We denote by $W_r^s(p; g)(W_r^u(p; g))$ the local stable (unstable) manifold of size $r > 0$. We choose orthogonal coordinates (t, v) in Q with origin at *p* such that the *t*-axis is $W_r^s(p; g)$.

The function $v = \psi(t)$ representing $W_r^u(p; g)$ has the form:

- (2) $\psi(t) = c \cdot t + R(t), t \in (-r, r).$
- (3) $|c| < 2^{-1}\epsilon(1-\lambda)$.
- (4) $R(0) = R'(0) = 0.$

By (4), taking *r* small, we may assume:

(5)
$$
|R'(t)| < 2^{-1}\varepsilon(1-\lambda), \ \forall t \in (-r, r).
$$

So we have

(6) $|R(t)| < 2^{-1}\varepsilon(1 - \lambda)r$, $\forall t \in (-r, r)$.

Noting $p = g^a(p) = (0, 0)$, we define C¹ mappings $h_1, h_2: (-r, r) \rightarrow$ $(-r, r)$ respectively by

 (7) $h_1(t) = \pi_1 g^{\alpha}(t, 0),$

(8) $h_2(t) = \pi_1 g^{-\alpha}(t, \psi(t))$, where π_1 is the projection on the first factor. Since $|h_1'(0)| < \lambda$, $|h_2'(0)| < \lambda$, by taking r small enough we have

 $(\; 9) \quad |h_{\scriptscriptstyle 1}(t)| \leq \lambda \, |t|, \ |h_{\scriptscriptstyle 2}(t)| \leq \lambda \, |t|, \ \forall t \in (-r,\,r).$

Put $b = r/2$ and $\delta = (1 - \lambda)b$. For $\forall t \in (-r, r)$ we have

(10) $|\psi(t)| \leq |c| r + |R(t)| < \varepsilon r(1 - \lambda) = 2\varepsilon \delta,$

(11) $|\psi'(t)| \leq |c| + |R'(t)| < \varepsilon(1 - \lambda) < \varepsilon$.

Let $x_1 = (b, 0), x_2 = (b, \psi(b)).$ Then

$$
|\pi_1 g^{\alpha}(x_1) - b| = |h_1(b) - b| > b - \lambda b = \delta,
$$

$$
|\pi_1 g^{\alpha}(x_2) - b| = |h_2(b) - b| > b - \lambda b = \delta.
$$

Hence we have

- $(12) \quad \|g^{\alpha}(x_1)-x_1\|>\delta,$
- $(13) \quad \|g^{-\alpha}(x_2) x_1\| > \delta.$

We define a C^1 mapping $k: Q \to Q$ as follows: Let $\phi: \mathbb{R} \to \mathbb{R}$ be a C^1 function with $\phi(-\infty, 1/2] = 1$, $\phi(1, \infty) = 0$.

(14) $k(t, v) = (t, v - \phi({(t - b)^2 + v^2/\delta^2}) \cdot \psi(t)).$

Then the following holds:

- (15) $k(t, \psi(t)) = (t, 0)$, if $|t b|$ is sufficiently small.
- (16) $k(x) = x$, if $||x x_1|| > \delta$.
- (17) *k* is near the identity of *Q* in the $C¹$ sense when ε is small.

The last is shown as follows. By (10) , (17) is true in the C° sense.

By (10), (11) and the fact that $\phi({(t - b)^2 + v^2})/\delta^2) = 0$ if $|t - b| > \delta$, we have

14 TOKIHIKO KOIKE

$$
\left\|\frac{\partial}{\partial t}\left\{k(t, v) - (t, v)\right\}\right\| = |\phi'(\left\{(t - b)^2 + v^2\right)/\delta^2) \cdot 2\delta^{-2}(t - b) \cdot \psi(t) + \phi(\left\{(t - b)^2 + v^2\right)/\delta^2) \cdot \psi'(t)|
$$

$$
\leq |\phi'| \cdot 2\delta^{-2}\delta \cdot 2\epsilon\delta + |\phi|\epsilon
$$

$$
= (4 |\phi'| + |\phi|)\epsilon \to 0.
$$

We also have the same result about *djdυ.* Thus (17) follows.

We extend k to a mapping of $M \to M$ by letting $k(x) = x$ for x outside *Q.* By (17) we make *k* a diffeomorphism of *M*. Then we define $g_i = k \cdot g$ \in Diff¹ (*M*). By (1), (16), we have

(18) $g_i^n(p) = g^n(p)$, $\forall n \in \mathbb{Z}$.

In particular, p is a periodic point of g_i .

By (1) and (16) we have

$$
g_1^{\scriptscriptstyle -a}(x_{\scriptscriptstyle 1})=(g^{\scriptscriptstyle -1}k^{\scriptscriptstyle -1})^{\scriptscriptstyle a}(x_{\scriptscriptstyle 1})=g^{\scriptscriptstyle -a}(x_{\scriptscriptstyle 2})\ .
$$

So it follows from (13), (9) that

$$
g_1^{-n\alpha}(g^{-\alpha}(x_2))=g^{-n\alpha}(g^{-\alpha}(x_2)), \qquad \forall n\geq 1.
$$

Hence we have

 (19) $g_1^{-n\alpha}(x_1) = g^{-n\alpha}(x_2), \forall n \ge 1.$

This implies that $x_i \in W^u(p; g_i)$, because $g_i^{-na}(x_i)$ approaches p as $n \to \infty$. By (15), we can prove similarly that any point of the form *(t,* 0) with $\vert t - b \vert$ small enough is contained in $W^u(p;g_1)$.

By (12) and (16) , we have

$$
g_1^{\alpha}(x_1) = (k \cdot g)^{\alpha}(x_1) = k \cdot g^{\alpha}(x_1) = g^{\alpha}(x_1) .
$$

Similarly we have

 $g_1^{na}(x_1) = g^{na}(x_1), \forall n \ge 1.$

This implies that $x_i \in W^s(p; g_i)$. Also, we can prove similarly that any point of the form $(t, 0)$ with $|t - b|$ small enough is contained in $W^s(p; g_1)$.

Thus it is proved that x_1 is a non-transversal homoclinic point of g_1 . It is clear that the g_1 orbit of x_1 meets U and hence g_1 has a non transversal homoclinic point in *U.* By Lemma A in Appendix, we have a small perturbation of *g¹* with a non-hyperbolic periodic point in *U.* This contradicts the hypothesis, i.e. $f \in \text{int } \mathcal{H}(U)$. q.e.d

For the proof of Assertion 2 we first prove the following. For *Vp e* $Sd(f) \cap U_f$, we define $N(p)$ to be the smallest positive integer n such that

$$
||Tf^{n}|E^{s}(p;f)||/||Tf^{n}|E^{u}(p;f)|| < \lambda.
$$

Clearly, *N(p)* does not exceed the period of *p.*

 $\text{AssERTION 4. } \sup \{N(p); p \in \text{Sd}(f) \cap U_f\} < \infty.$

Proof. Given $\epsilon > 0$, take a positive integer n_0 such that

 (1) $(1 - \lambda)^{n_0} < \lambda \varepsilon^2$.

Suppose the above is not true. Then there is $p \in S d(f) \cap U_f$ with $N(p)$ $\geq n_0 + 3$. Let *τ* be the greatest integer such that $2\tau + 2 \leq N(p)$. Let α be the period of *p.* Then,

 (2) $n_0 + 2 \leq 2\tau + 2 \leq N(p) \leq \alpha$.

We take unit vectors $V^s \in E^s(p;f)$, $V^u \in E^u(p;f)$. In what follows, we simply write

$$
(3) \quad p_n = f^{n-1}(p),
$$

$$
(4) \quad V_n^s = Tf^{n-1}(V^s), \quad V_n^u = Tf^{n-1}(V^u), \ \forall n \in \mathbb{Z}.
$$

Note that $p_a = p_0$ but $V^s_a \neq V^s_0$, $V^u_a \neq V^u_0$.

By Lemma B_2 in Appendix we construct $h = h_1 \in \text{Diff}^1(M)$ with the following properties $(5) \sim (11)$ in such a way that h approaches the identity in the C^1 sense as $\varepsilon \to 0$.

- (5) $h(p_n) = p_n$, $\forall 0 \leq n < \alpha$.
- (6) $h(x) = x$, $\forall x$ outside a small neighborhood of $\{p_n; 0 \leq n < \alpha\}.$
- (7) $T_{p_1}h(V_1^s) = V_1^s$, $T_{p_1}h(V_1^u) = V_1^u + \varepsilon V_1^s$.
- (8) $\forall 2 \leq n \leq \tau + 1;$

$$
T_{p,n}h(V_n^s) = (1-\varepsilon)^{-1}V_n^s, \qquad T_{p,n}h(V_n^u) = (1-\varepsilon)V_n^u.
$$

(9) $\forall \tau+2\leq n\leq 2\tau+1$;

$$
T_{p_n}h(V_n^s) = (1-\varepsilon)V_n^s, \qquad T_{p_n}h(V_n^u) = (1-\varepsilon)^{-1}V_n^u.
$$

(10) $\forall 2\tau + 2 \leq n \leq \alpha - 1$; $T_{p,n}h: T_{p,n}M \longleftrightarrow$ is the identity.

(11) $T_{p_a}h(V_a^s) = V_a^s, T_{p_a}h(V_a^u) = V_a^u - \varepsilon V_a^s.$

Then we define $g = h \cdot f \in \text{Diff}^1(M)$. By (5),

(12) $g^{n}(p) = f^{n}(p)$, $\forall n \in \mathbb{Z}$.

- It follows from (8) , (9) , (10) that
	- (13) $T_{p_1}g^n = T_{p_1}f^n$, $\forall 2\tau \leq n \leq \alpha-2$.

Now we want to show that

 (T_4) $T_{p_0}g^{\alpha} = T_{p_0}f^{\alpha}.$

For this, it is sufficient to show the following:

 (T_15) $T_{p_0}g(V_0^s) = V_{\alpha}^s$, $T_{p_0}g(V_0^u) = V_{\alpha}^u$.

The first is easily shown, so we check the latter:

$$
T_{p_0}g^{\alpha}(V_0^u) = T_{p_{\alpha-1}}gT_{p_1}g^{\alpha-2}T_{p_0}g(V_0^u)
$$

\n
$$
= (T_{p_{\alpha}}hT_{p_{\alpha-1}}f) \cdot (T_{p_1}f^{\alpha-2}) \cdot (T_{p_1}hT_{p_0}f)(V_0^u) \qquad \text{(by (13))}
$$

\n
$$
= T_{p_{\alpha}}hT_{p_1}f^{\alpha-1}T_{p_1}h(V_1^u)
$$

\n
$$
= T_{p_{\alpha}}hT_{p_1}f^{\alpha-1}(V_1^u + \varepsilon V_1^s) \qquad \text{(by (7))}
$$

\n
$$
= T_{p_{\alpha}}h(V_{\alpha}^u + \varepsilon V_{\alpha}^s) \qquad \text{(by (4))}
$$

\n
$$
= (V_{\alpha}^u - \varepsilon V_{\alpha}^s) + \varepsilon V_{\alpha}^s \qquad \text{(by (11))}
$$

\n
$$
= V_{\alpha}^u.
$$

It follows from (14) that g^* is hyperbolic at p_0 and

 $(E^u(p_o; g) = E^u(p_o; g).$

It is also clear by the construction of *h* that

 $(E^s(p_n; g) = E^s(p_n; f), \ \forall 0 \leq n < \alpha.$

Now we are in a position to conclude the proof. We estimate $d(E^*(p_{r+1}; g), E^*(p_{r+1}; g))$. By virtue of (16) and (17), this is equal to the $\mathbf{g} = \mathbf{g} \mathbf{g} \mathbf{g} \mathbf{g}^{t+1}(\mathbf{V}_0^u) \text{ and } \mathbf{E}^s(\mathbf{p}_{t+1};f).$

 W rite $T_{p_0}g^{r+1}(V_0^u) = (w_s, w_u)$ regarding $E^s(p_{r+1};f) \oplus E^u(p_{r+1};f)$. Let us compute w_s , w_u .

$$
\begin{aligned} T_{p_0} g^{\tau+1}(V_0^u) &= T_p g^\tau(\varepsilon V_1^s + V_1^u) &&\textnormal{(by (7))}\\ &= \varepsilon T_p g^\tau(V_1^s) + T_p g^\tau(V_1^u) \\ &= \varepsilon (1-\varepsilon)^{-\tau} T_p f^\tau(V_1^s) + (1-\varepsilon)^{\tau} T_p f^\tau(V_1^u) \end{aligned}
$$

Hence

 (w_s) $w_s = \varepsilon (1-\varepsilon)^{-\tau} T_p f^{\tau}(V_1^s), \ w_u = (1-\varepsilon)^{\tau} T_p f^{\tau}(V_1^u).$ By (2) and the definition of *N(p),* it follows that

$$
||w_u||/||w_s|| = \varepsilon^{-1}(1-\varepsilon)^{2\epsilon} ||T_pf^{\epsilon}(V^u_1)||/||T_pf^{\epsilon}(V^s_1)|| \qquad \text{(by (18))}
$$

$$
< \varepsilon^{-1}\lambda^{-1}(1-\varepsilon)^{2\epsilon}
$$

$$
< \varepsilon^{-1}\lambda^{-1}(1-\varepsilon)^{n_0} < \varepsilon \qquad \text{(by (1))}.
$$

Hence it follows that

$$
\cos\theta = (w_s + w_u) \cdot w_u / \|w_s + w_u\| \|w_u\| > (1 - \varepsilon)/(1 + \varepsilon) \longrightarrow 1,
$$

as ε —*>* 0.

Therefore, θ approaches 0 as $\varepsilon \to 0$, which contradicts Assertion 1. q.e.d.

Proof of Assertion 2. By Assertion 4, let

$$
N=\sup\left\{N(p); \, p\in\text{Sd}\left(f\right)\,\cap\,\, U_{f}\right\}<\,\infty\,\, .
$$

Put $C = ||Tf|| ||Tf^{-1}||$. We take a positive integer m with $C^N \lambda^m < 1/2$. Let $\nu = (m + 1)N$.

- For $\forall p \in S d(f) \cap U_f$, we define $q_1, q_2, \dots, q_{r+1} \in S d(f)$ as follows:
- (1) $q_1 = p$.
- (2) $q_{i+1} = f^{N(q_i)}(q_i), 1 \leq i \leq r.$
- (3) $\nu N \leq \sum_{i=1}^r N(q_i) < \nu$.

Since $N(q_i) \leq N$, $\forall 1 \leq i \leq r$, it follows that $rN \geq \nu - N = mN$ and hence $r \geq m$.

Noting E^s , E^u are 1 dimensional, we have

$$
\frac{\|Tf^{\nu}|E^s(p)\|}{\|Tf^{\nu}|E^u(p)\|} \leq C^N \prod_{i=1}^r \frac{\|Tf^{N(q_i)}|E^s(q_i)\|}{\|Tf^{N(q_i)}|E^u(q_i)\|} \\ \leq C^N \lambda^r \leq C^N \lambda^m < 1/2.
$$

(The second inequality follows from the definition of $N(q_i)$).) *).)* q.e.d.

§ **6. Appendix**

Let M be a compact manifold without boundary. Let $f: M \to M$ be a $C¹$ diffeomorphism. The purpose here is to prove the following.

LEMMA A. If $z \in M$ is a non-transversal homoclinic point of f, then *f can be approximated by a diffeomorphism with z as a non-hyperbolic periodic point.*

Remark. A similar result was proved by Newhouse [4] in a dif ferent way.

We will apply the perturbation lemmas below to the proof of Lemma A. We fix a metric d on M and a $C¹$ metric $d¹$ on a neighborhood of I in $\text{Diff}^1(M)$, where *I* is the identity of *M*.

LEMMA B_i . There are constants $C>0, \eta>0$ depending only on d and d^1 with the following property: Let $x_1, x_2 \in M$. If $d(x_1, x_2) < \varepsilon$ for $0 < \varepsilon$ $\langle \gamma, 0 \langle \delta \langle \gamma, 0 \rangle \rangle$ *fien we have* a $(C_{\epsilon}) - C^1$ perturbation k of I, i.e. $d^1(k, I)$ $\langle C \varepsilon, \text{ such that } k(x_1) = x_2, \text{ and if } d(y, x_1) > \delta, k(y) = y.$

LEMMA B_z . There are constants $C > 0$, $\eta > 0$ depending only on d^1 with *the following property:* Let $x \in M$ and let L_x : $T_xM \longleftarrow$ be a linear mapp*ing. Let I^x be the identity of TXM. If \\L^X* — *I^x * < ε *for* 0 < ε < *η, then*

18 TOKIHIKO KOIKE

for any $\delta > 0$ *we have* a $(C_{\epsilon}) - C^1$ *perturbation k of I such that* $k(x) = x$, $T_x k = L_x$, and if $d(y, x) > \delta$, $k(y) = y$.

These facts are well-known and can be proved easily, so we omit their proofs.

Proof of Lemma A. It is sufficient to consider the case where $z \in$ $W^s(p) \cap W^u(p)$ for some fixed point p because the other cases can be treated similarly. For convenience we denote by *s, u* the dimension of $W^s(p)$ and $W^u(p)$ respectively. In what follows, D^s (resp. D^u) denotes the unit disc of \mathbb{R}^s (resp. \mathbb{R}^u) centered at 0, and $B_r(x)$ the ball neighborhood of x of radius $r > 0$ in M.

We take a coordinate neighborhood (U, ψ) of p with the following properties $(1) \sim (4)$.

 (1) $\psi(U) = D^s \times D^u$.

From now on, we identify U with $D^* \times D^*$.

- $(D^s) \times \{0\} \subset W^s(p), \ \{0\} \times D^u \subset W^u(p).$
- (3) **30** $<$ λ $<$ 1;

$$
\begin{aligned}\n\|T_p f(v,0)\| &\leq \lambda \|v\|, &\forall v \in R^s, \\
\|T_p f^{-1}(0,w)\| &\leq \lambda \|w\|, &\forall w \in R^u.\n\end{aligned}
$$

(Note $T_p U \approx \mathbf{R}^s \times \mathbf{R}^u$. $\|\cdot\|$ means the Euclidean norm.) (4) $\forall x \in U \cap f(U) \cap f^{-1}(U);$

 $\|T_x f - T_p f\| < \alpha \;, \;\;\;\;\; \|T_x f^{-1} - T_p f^{-1}\| < \alpha \;,$

where $\alpha = (1 - \lambda)/4$.

Remark. As regards (3), refer to Nitecki [5], pp. 71 \sim 73.

Let $x \in U \cap f(U) \cap f^{-1}(U)$. For $(v, w) \in \mathbb{R}^s \times \mathbb{R}^u$, we write $(v_1, w_1) =$ *T*_{*x*} *f*(*v*, *w*), (*v*₂, *w*₂) = $T_x f^{-1}(v, w)$. Then we have (5) ~ (8) below. (5) If $||v||/||w|| \leq 1/2$, $||v_1||/||w_1|| \leq 1/2$.

Proof. Let $\pi_1: \mathbb{R}^s \times \mathbb{R}^u \to \mathbb{R}^s$, $\pi_2: \mathbb{R}^s \times \mathbb{R}^u \to \mathbb{R}^u$ be projections. $\mu_1 = \pi_1 T_x f(v, w)$ $= \pi_1(T_x f - T_p f)(v, w) + \pi_1 T_p f(v, 0) + \pi_1 T_p f(0, w)$.

Hence we have

$$
||v_1|| = \alpha(||v|| + ||w||) + \lambda ||v|| \leq (\lambda/2 + \alpha/2 + \alpha) ||w|| \leq ||w||/2.
$$

Similarly

$$
w_1 = \pi_2 T_x f(v, w)
$$

= $\pi_2 (T_x f - T_p f)(v, w) + \pi_2 T_p f(v, 0) + \pi_2 T_p f(0, w)$.

and hence

$$
||w_1|| \geq \lambda^{-1} ||w|| - \alpha(||v|| + ||w||) \geq (\lambda^{-1} - \alpha/2 - \alpha) ||w|| \geq ||w||.
$$

Thus $||v_1||/||w_1|| \leq 1/2$ follows. q.e.d.

 $(6) \quad \text{If } \Vert w \Vert / \Vert v \Vert \leq 1/2, \ \Vert w_2 \Vert / \Vert v_2 \Vert \leq 1/2.$

The proof is similar to (5).

(7) If $||w||/||v|| \leq 1/2$, $||v_1|| \leq \lambda_1 ||v||$ where $\lambda_1 = (1 + \lambda)/2$.

Proof. Decompose v_1 as in (5). Then we estimate

$$
||v_1|| \leq \alpha(||v|| + ||w||) + \lambda ||v|| \leq (\lambda + 2\alpha) ||v|| \leq \lambda_1 ||v||.
$$

Thus we have (7). $q.e.d.$

 $(\hspace{.06cm}8\hspace{.06cm}) \hspace{.2cm} \text{ If } \hspace{.06cm} {\|v\|}/{\|w\|} \leq 1/2, \hspace{.2cm} {\|w_{\scriptscriptstyle 2}\|} \leq \lambda_1 \hspace{.06cm} {\|w\|}.$

The proof is similar to (7).

We choose integers n_1 , n_2 such that $f^{n_1}(z) \in D^s \times \{0\}$, $f^{-n_2}(z) \in \{0\} \times D^u$ respectively. Remark that these sets really imply their inverse images by ψ. Take *δ >* 0 so small that

 (9) $f^{n}(z) \notin B_{\delta}(z_{1}) \cup B_{\delta}(z_{2}), \forall n; -n_{2} < n < n$ where $z_1 = f^{n_1}(z)$, $z_2 = f^{-n_2}(z)$.

 $\text{Regarding }\ U\approx D^{\text{s}}\times D^{\text{u}}, \text{ we write}$

 $(10) \quad z_1 = (a_1, 0), \ z_2 = (0, a_2).$

Let $\epsilon > 0$ be arbitrary. We define

$$
F^u = \{(a_1, w) \in D^s \times D^u; ||w|| < \varepsilon \delta\},\ F^s = \{(v, a_2) \in D^s \times D^u; ||v|| < \varepsilon \delta\}.
$$

If n_i is sufficiently large, then $f^{-n_3}(F^s)$, $f^{n_3}(F^u)$ are represented by C^1 map $\text{pings} \ h_i: D^s \to D^u, \text{ and } h_i: D^u \to D^s \text{ respectively. Furthermore, we can$ assume

 $\|\hskip-1.5pt\hskip$

 $(12) \quad \|Th_1\| < \varepsilon/2, \ \|Th_2\| < \varepsilon/2.$

Let *V* be a nonzero vector in $T_zW^s(p) \cap T_zW^u(p)$. We put

(13) $V_1 = T_s f^{n_1}(V), V_2 = T_s f^{-n_2}(V).$

Clearly V_1 has the form $(v_1, 0)$ with $v_1 \in \mathbb{R}^s$, and V_2 has the form $(0, w_2)$ with $w_2 \in \mathbb{R}^u$. We put

 $x_1 = (a_1, h_1(a_1)), x_2 = (h_2(a_2), a_2).$ Since $x_1 = f^{-n_3}(F^s) \cap F^u$, $x_2 = F^s \cap f^{n_3}(F^u)$, it follows that

(15) $x_2 = f^{n_3}(x_1)$. We put (16) $w'_1 = T_{a_1} h_1(v_1)$. By the definition of h_1 there is $v_2 \in \mathbb{R}^s$ such (17) $(v_1, w'_1) = T_{x_2} f^{-x_3} (v_2, 0).$ Let us write $(v_i^*, w_i^*) = T_{x_2} f^{-i}(v_2, 0), i = 0, 1, \dots, n_s$. Since $||w_0^*||/||v_0^*|| = 0$ $1/2$, it follows inductively by (6) that $||w_i^*||/||w_i^*|| \leq 1/2$, $i = 0, 1, \dots, n_s$. Hence it follows by (7) that (18) $||v_2|| \leq \lambda_1^{n_3} ||v_1||.$ Likewise we put $(v_2') = T_{a_2}h_2(w_2).$ By the definition of h_2 there is $w_1 \in \mathbb{R}^u$ such that (20) $(v'_2, w_2) = T_{x_1}f^{x_3}(0, w_1).$ Applying (5) and (8) as above, we have (21) $\|w_1\| \leq \lambda_1^{n_3} \|w_2\|.$ By (18) , (21) , for sufficiently large $n₃$ we have (22) $\|w_1\|/\|v_1\| < \varepsilon/2$, (23) $||v_2||/||w_2|| < \varepsilon/2$. We define $V_1' = (v_1, w_1 + w_1'), V_2' = (v_2 + v_2', w_2).$ Then we have $T_{x_1}f^{n_3}(V'_1)=T_{x_2}f^{n_3}(v_1, w_1+w'_1)$ $= T_{x_1} f^{x_3}(v_1, w'_1) + T_{x_1} f^{x_3}(0, w_1)$ $=(v_2, 0) + (v'_2, w)$ (by (17), (20)) $= V_2'$. That is, (25) $T_{x_1}f^{n_3}(V'_1) = V'_2.$ By (24), (13), (22), (23) and (12), we estimate (26) $|| V_1 - V_1'|| || V_1 || < \varepsilon$, (27) $\|V_{2}-V_{2}'\|/\|V_{2}'\|<\varepsilon.$ By (26) we have a linear mapping $L_1: \mathbb{R}^m \to \mathbb{R}^m$ ($m = \dim M$) such that

 (28) $L_1(V_1) = V'_1$,

(29) $||L_1 - I|| < \varepsilon$, where *I* is the identity of R^m .

For example, take an orthogonal basis $\{V_1, e_2, \cdots, e_m\}$, and define L_i by

$$
L_1(t_1V_1 + t_2e_2 + \cdots + t_me_m) = t_1V'_1 + t_2e_2 + \cdots + t_me_m,
$$

$$
\forall t_i \in \mathbf{R}; 1 \leq i \leq m.
$$

Similarly, by (27) we have a linear mapping $L_z: \mathbb{R}^m \to \mathbb{R}^m$ such that

- (30) $L_2(V'_2) = V_2,$
- (31) $\|L_{\scriptscriptstyle 2} I\| < \varepsilon.$

By the way, we defined $z_1 = f^{n_1}(z)$, $z_2 = f^{-n_2}(z)$. By (10), (11) and (14) we have

(32) $\|z_1-x_1\|<\varepsilon\delta$,

 $(33) \quad \|z_2 - x_2\| < \varepsilon \delta.$

By (29), (31), (32) and (33) we can apply Lemmas B_1 and B_2 to con structing $k \in \text{Diff}^1(M)$ such that

$$
(34) \quad k(z_1)=x_1, \ T_{z_1}k=L_1.
$$

 $(k(x_2) = z_2, T_{x_2}k = L_2.$

(36) $k(x) = x, \forall x \in B_{\delta}(z_1) \cup B_{\delta}(z_2).$

(37) k is a $(C_{\epsilon}) - C^1$ perturbation of the identity of M (C is the one in Lemmas B_1 and B_2).

Now we shall conclude the proof. Define $g = k \cdot f \in \text{Diff}^1(M)$. First, it follows easily from (9) , (15) , (34) , (35) and (36) that z is a periodic point of g of period $n_1 + n_2 + n_3$. We show that

$$
T_{\rm z}g^{n_1+n_2+n_3}(V)=V\,,
$$

which implies that z is not hyperbolic.

$$
T_{z}g^{n_{1}+n_{2}+n_{3}}(V) = T_{x_{1}}g^{n_{2}+n_{3}}T_{z_{1}}kT_{z}f^{n_{1}}(V) \qquad \text{(by (9), (36))}
$$

\n
$$
= T_{x_{1}}g^{n_{2}+n_{3}}L_{1}(V_{1}) \qquad \text{(by (13), (34))}
$$

\n
$$
= T_{x_{1}}g^{n_{2}+n_{3}}(V'_{1}) \qquad \text{(by (28))}
$$

\n
$$
= T_{z_{2}}g^{n_{2}}L_{2}(V'_{2}) \qquad \text{(by (25), (35))}
$$

\n
$$
= T_{z_{2}}f^{n_{2}}(V_{2}) \qquad \text{(by (9), (36); (30))}
$$

\n
$$
= V \qquad \text{(by (13))}.
$$

Clearly g is near f in Diff¹ (M) by virtue of (37). $q.e.d.$

REFERENCES

- [1] M. Hirsch, C. Pugh and M. Shub, Invariant manifolds, Lecture Notes in Math., 583, Springer-Verlag, 1977.
- [2] R. Mañé, Expansive diffeomorphisms, Proc. Symp. on Dynamical Systems—Warwick, Lecture Notes in Math., 468, 162-174, Springer-Verlag, 1975.
- $[3]$ —, Contributions to the stability conjecture, Topology, 17 (1978), 383-396.
- [4] S. Newhouse, Quasi-elliptic periodic points in conservative dynamical systems, Amer. J. Math., 99 (1977), 1061-1087.
- [5] Z. Nitecki, Differentiable dynamics, The M.I.T. Press, Cambridge, Mass., 1971.
- [6] V. Pliss, The coarseness of a sequence of linear systems of second-order differential

22 TOKIHIKO KOIKE

equations with periodic coefficients, Diff. Uravneniya, 7 (1971), 261-270.

- [7] C. Pugh, An improved closing lemma and a general density theorem, Amer. J. Math., 89 (1967), 1010-1021.
- [8] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817.
- [9] J. Franks, Anosov diffeomorphisms, Proc. Symp. Pure Math., 14, Amer. Math. Soc. (1970), 61-93.

Kyoto University