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ON THE NONWANDERING SETS OF

DIFFEOMORPHISMS OF SURFACES

TOKIHIKO KOIKE

§ 1. Introduction

Let M be a compact manifold without boundary. Let /: M —> M be a
C1 diffeomorphism. Then the nonwanderίng set Ω(f) is defined to be the
closed invariant set consisting of xeil ί such that for any neighborhood
U of x, there exists an integer n Φ 0 satisfying fn{U) Π U Φ φ. In par-
ticular, the set Per (/) of all periodic points is included in <£?(/).

Generally, in the study of the orbit structure of diffeomorphisms their
nonwandering sets play an essential role. Several results relating to the
non-wandering sets established in these ten years or so have developed a new
aspect of dynamics—the study of the orbit structure of dynamical systems.
In his survey [8], Smale set up a concept called Axiom A, i.e. (a) Ω(f) =
Per (/), (b) Tf has a hyperbolic structure over Ω(f), i.e. there exists a Tf-
invariant continuous splitting Es Θ Eu of TM\ Ω(f)—the restriction of the
tangent bundle TMto Ω(f)—such that for some constants C > 0, 0 < λ < 1,

\\Tfn(v)\\< Cλn\\υ\\, weEs, Vn > 0 ,

\\Tf-n(v)\\< Cλn\\v\\ , VυeEu, Vn > 0 .

After that, many important results were obtained in this direction.
On the other hand, Pugh [7] proved a very important theorem about

the nonwandering sets. To state it, we shall explain the concept of ge-
nericity. Let Diff1 (M) be the set of all C1 diffeomorphisms endowed with
the C1 topology. Then a property of diffeomorphisms is called generic if
the diffeomorphisms having it form a residual subset of Diff1 (M).

PUGH'S DENSITY THEOREM. The property Ω(f) = Per (/) is generic in
Diff1 (M).
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In this paper we shall study the nonwandering sets of diίfeomorphisms

of surfaces from the viewpoint of genericity. Our results are as follows:

Let M2 be a compact connected surface without boundary.

THEOREM 1. The property that int Ω(f), = φ, or f is an Anosov diffeo-

morphism is generic in Diff1 (M2).

Remark. For a topological space X, the closure and the interior of

A C X are denoted by A and int A respectively.

A diίfeomorphism /: M —> M is called Anosov if Tf has a hyperbolic

structure over M. For surfaces except a torus, there is no Anosov diffeo-

morphisms ([9], p. 90). So, in this case Theorem 1 is written as follows:

THEOREM V. The property int Ω(f) = φ is generic in Diff1 (M2) if M2

is not a torus.

A diffeomorphism / is said to be topologically Ω-stable if Ω(f) is

homeomorphic to Ω(g) for all g C1 near /. We have the following from

Theorem 1.

COROLLARY. If fe Diff1 (M2) is topologically Ω-stable, then int Ω(f) = φ

or f is an Anosov diffeomorphism.

The main stage in proving Theorem 1 is the following. First we shall

fix our notation.

DEFINITION. For an open subset U of M, we denote by J^(U) the

set of fe Diff1 (M) whose periodic points in U are all hyperbolic, and by

the set of / 6 Diff1 (M) whose periodic points are dense in U.

THEOREM 2. Let M2 be a compact connected surface. Then for any

open subset U of M2,

®(U) ΓΊ i n t ^ ( [ 7 ) c @(M2) .

Theorem 1 is proved in Section 2 and Theorem 2 in Section 4. Sec-

tions 3 and 5 are devoted to two propositions necessary for the proof of

Theorem 2. In Appendix we shall prove a lemma about a non-transversal

homoclinic point, which is necessary in Section 5.

Throughout this paper except Appendix, 'M' will denote a compact

connected surface without boundary.

I would like to thank Professor M. Adachi for his guidance of this
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area. I owe Professors G. Ikegami, M. Kurata and especially K. Shiraiwa
many useful suggestions and criticisms.

§ 2. Proofs of Theorem 1 and Corollary

In this section we prove Theorem 1, assuming Theorem 2. We denote
by si the set of all Anosov diffeomorphisms of M%

LEMMA 1. If fe int^(M), then fesi. Hence si is open and dense in
int @(M).

Proof. Let / e int 9{M). First, we suppose / & int tf(M). Some diffeo-
morphism g near / has a non-hyperbolic periodic point p. Since the
dimension of M is 2, it is possible to make p a sink or a source of a small
C1 perturbation gt of g, i.e., if n is the period of p, then the eigenvalues
of Tpgι have absolute values < 1 (or >1). Obviously, gx^9{M). This
contradicts the hypothesis, because gλ can be chosen sufficiently near /.
Thus fe int J?(M). We can choose /• e int je(M) Γ) ®(M) near /. We here
apply a theorem of Mane [3], i.e. int Jf(M) Π @(M) = si if the dimension
of M is 2. Hence we have /i esi. Therefore, / e i . q.e.d.

For each point x e M, we define

%x = {/e Diff1 (M) χg int Per (/*)} .

Then we have

LEMMA 2. Ijf/g ^ , ίΛe/i fe®(M) or fe int ^ .

Proo/. Let feWx. By definition, x € int Per (/). Let U be a small
neighborhood of x in Per (/). When feintJf(U), by Theorem 2, we have
fe@(M). So it is sufficient to show that feintWx, when / g i
Then some /i near / has a non-hyperbolic periodic point p in U. Similarly,
it is possible to make p a sink or a source of some C1 perturbation f2 of
/Ί. Since U is a small neighborhood of x, we can choose h e Diff1 (Λf)
with h(x) = p in a small C1 neighborhood of the identity of M. Put g =
h~x f2'h. Clearly g is C1 near /. Naturally x = h'\p) is a sink or source
of g. Hence, for any gx e Diff \M) near g we have a: £ int Per (gi), or & e
^a. This implies g e i n t ^ . Since g is near /, it follows that /

q.e.d.

LEMMA 3. int ^x U int ${M) is dense in Diff1 (M).

Proo/. Suppose /$ int <%x. It suffices to show fe @(M). When
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by Lemma 2, we have fe @(M). When fe °lί x hence fe%x — int %x, there
is a sequence fn&Wχ U int °U x converging to /. By Lemma 2, fn e
Hence / e @(M) follows. q.e.d.

Now Theorem 1 is proved as follows: By Lemmas 1 and 3, %x U «*/
is generic in Diff1 (M). Really it contains an open dense subset of
Diff1 (M). By the Pugh's density theorem, the set

is generic. Let K be a dense countable subset of M. Then

# = Π (** U ̂ ) Π if

= ((&*•) n * ) u *
is generic in Diff1 (M). Now we need only check that if fe (Π*e* **) Π #
then int β(/) = φ. From /e Πxe^ *«, we have int Per (/) Π K = φ. But,
since K is dense in M, intPer(/) = φ. On the other hand, fe^ means
Per (/) = Ω(f). Hence int Ω(f) = ^ follows. q.e.d.

Proof of Corollary. Let /e Diff1 (AT) be topologically fl-stable. First
suppose /gj</. By Theorem 1, there is ge Diff1 (M) near / such that
int Ω(g) = φ. By stability, it follows from the theorem of domain invari-
ance that int Ω(f) = φ.

Next suppose fe stf. There is f es/ near /. Since Ω(f) — M ([9], p.
89), by stability, we have Ω(f) = M. Hence by stability, Ω(g) = M for all
g near /. By Mane [3], it follows that / is Anosov. q.e.d.

§ 3. Laminations

In this section we prepare a proposition for the proof of Theorem 2.
Let us begin with definitions.

DEFINITION. Let fe Diff1 (M). For a hyperbolic periodic point p of /,
we denote by Ws(p;f) (resp. Wu(p;f)) the stable (resp. unstable) manifold
of / at p. We define Es(p;f) to be the tangent space of Ws(p;f) at p.
Likewise Eu(p;f) is defined.

In what follows, we shall drop '/' in these symbols when it does not
give rise to confusion.

DEFINITION. A hyperbolic periodic point is called a saddle if it is
not a sink nor source. We denote by Sd (/) the set of all saddles of /.



NONWANDERING SETS 5

DEFINITION. A C1 lamination of M is a continuous foliation whose
leaves are C1 immersed submanifolds such that their tangent spaces, as
a whole, form a continuous subbundle of TM.

Refer to [1, § 7] for general definitions.
We shall prove the following.

PROPOSITION 1. Let /e DifΓ (M). Let U be an open subset of M such
that:

(1) U is invariant under f.
(2) The periodic points in U are all saddles and are dense in U.
( 3) There is a continuous splitting Es 0 Eu of TM\ U whose splitting

at VpeSά(f) Π U is Es(p;f)®Eu(p;f).
Then there is an f-invariant C1 lamination Ws on U such that (a) all

laminae are tangent to E\ (b) stable manifolds Ws(p;f), VpeSά(f) Π U,
are its laminae. Likewise there is an f-invariant lamination Wu on U with
the corresponding properties.

Proof. We want to construct a lamination on a neighborhood of Vx0

e U. First, we take a coordinate neighborhood (Q, ψ) of x0 with the fol-
lowing properties.

(4) Qd U.

(5) φ(Q)=[-l,l]X [-1,1].
(6) ?(x0) = (0, 0).
(7) Identify Q with [-1,1] X [-1,1] and Es with Tφ(Es). There is

a C° map w:Q-> R such that \w(x)\ < 1/4, and the vector (1, w(x)) spans
Es(x), Vx e Q. Es(x) is the fiber of Es at x.

We, first of all, notice that stable manifolds Ws(p), Vp e Sd (/) Π U
are tangent to Es. Because, if at a point x e Ws(p), Es(x) is not tangent
to Ws(p), then Es(fan(x)) = Tfan(Es(x)) (a is the period of p) tends to Eu(p)
as n -> oo by hyperbolicity of Tpf

a, contradicting continuity of Es. Like-
wise unstable manifolds Wu(p), Vp e Sd (/) Π U, are tangent to Eu.

Let πx\ Q-> [—1,1] be the projection on the first factor. Write Qx =
[-1,1] X [-1/2,1/2] c Q. For VpeSά(f) Π Q, let Kp be the connected
component of Ws(p) Π Q containing p. Let hp: Kp -> [—1, 1] be the map-
ping defined by

hp(x) = πx(x) , VxeKp .

We want to show that hp is a homeomorphism if p e Sd (/) Π Qi.
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First, hp is one to one, because Kp is an integral curve of the vector

field x >-> (1, w(x)), Vx e Q, which spans Es over Q. So we show hp is onto.

We notice that Kp cannot meet the top nor the bottom of Q, because the

slope of Kp is less than 1/4. So hp not being onto implies Kp — Kp Φ φ.

Let qeKp — Kp. See the figure.

-έ

- 1

Thus Kp includes one of the components of Ws(p) — {p}, say C. Since

f2a(C) = C, clearly we have f2a(q) = q, namely q e Per (/). Hence, by (2),

qeSά(f). For Vx e C, f-2an(x) tends t o g a s n->oo, This implies C c

Ww(g). Thus C is tangent to JSJS and 1?M at once, which contradicts (3).

Hence hp must be onto.

We denote by Π the set of all p e Sd (/) (Ί Q such that hp is onto.

By the above Sd(/) Π ft c 17. Let π2: Q-> [—1,1] be the projection on

the second factor. When we put VQ = Wζ^ίO^p e 17} C [—1,1], it is easy

to see that Vo is dense in [—1/2,1/2]. For VpeΠ, we write ku = π2-h~\

where u = π2'hp\0). Hence graph(ku) = If̂ . We define a function v =

A:(ί, w), ί e [—1,1], we [-1/2,1/2] by the following:

k(t, u) = lim ku(t) , M' e Vo .

The aim of the following is to prove that curves t *-> (t, k(t, u)), u e

[—1/2,1/2], are C1 differentiable and tangent to E\ and they form, as a

whole, a C1 lamination on a neighborhood of xQ.

1. &(£, w) is well-defined: Let (ί, w) be fixed. Take w1? u2eV0 with

Ui < u < u2. Ίf p e Sd (/) (Ί Q is in the domain between graph (kUl) and

graph (AM2), then p belongs to Π. This is proved by the method proving

in the above that hp is onto, and by the fact that subarcs Kp, Kq of dif-

ferent two stable manifolds never meet each other. Remark that this fact

also plays an important role in the following.
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So it is obvious that {Kp pe Π) meet the vertical segment {t} X

[kUl(t), kU2(t)] C Q densely. That is, the set {ku>(t); u'e Vo} is dense in

[kUl(t), kU2(t)]. Therefore, given e > 0, there is a finite sequence of numbers

u[, u2, - , u'ne Vo such that

( 8 ) 1̂  = u[< u'2< . . . < u'n= u2,

( 9 ) k'ut+1(t) - k'ut(t) < ε, VI < i < n.

Let j be the suffix with u'j < u < u'j+ί. By (9), for Vu\ u" e Vo Π

I MO - M O I < Auj+1(O - M O <

Hence {ku>(t); v! -> u, u' e Vo} is a Cauchy sequence. q.e.d.

2. The convergence ku>(t) -> ^(ί, u) is C° uniform: Given ε > 0, choose

a finite sequence of numbers tl912, , tn e [—1,1] such that

(10) - 1 = U< U< . . < tn = 1,

(11) ίί+1 - ί, < ε/2, VI < i < n.

We can take uu u2e Vo such that

(12) ux< u < u2

(13) M O - K(ti) <e,Vl<i<n.
By the way, if 11 — U \ < e, by (7) we have

Γ -^~kUl(t)
JH at

Γ Z£<ί, kUl(t))dt

Likewise |AttJ(ί) - kUt(t{)\ < e/4. Let υ! 6 Vo, ux<u' < u2. For Vί 6 [-1, 1],

choose ti with |ί t — ί| < e. Then

\k(t, u) - MO I < M*) - K(t)

+ I M 0 - M*<)l < ε/4 + εl2 + ε/4 = ε .

Thus we have \k(-, ύ) — ku{ )\ < ε if ur e Vo, \u' — u\< δ, where δ =

min {| ^! — u|, |α 2 — w|} q.e.d.

3. {(djdt)kuf; uf ->u, u! e Vo} is uniformly convergent'. Because
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and ku,{t) is uniformly convergent. q.e.d.
Therefore, υ = k(t, u), (t9 u) e [-1,1] X [-1/2,1/2], is C1 differentiate

in t and satisfies the differential equation dυjdt = w(t, v).
It is easy to see that the mapping H: [— 1,1] X [—1/2,1/2] -> Q defined

by H(t, u) — (t, k(t, u)) is a homeomorphism (into). So we can define a C1

lamination on a neighborhood of x0 by letting its laminae be curves t •->
H(t, u), ue [—1/2,1/2]. To guarantee the existence of a global lamination
W on U, we need only check that two local laminations thus defined
are always consistent with each other. But, otherwise, there must be a
pair of stable manifolds having an intersection by the construction of
laminae.

Clearly the lamination Ws satisfies the desired conditions. q.e.d.

§4. Theorem 2

For simplicity we denote by Uf the / orbit of U C M. The following
proposition plays a basic role in proving Theorem 2.

PROPOSITION 2. Let U be an open subset of M. If feint ^(U), then
there is a continuous splitting Es Θ Eu of TM\ Sd(/) Π Uf whose splitting at
VpeSά(f) Π U, is E (p;f)®E"(p;f).

The proof will be given in the next section. Now we prove Theorem 2.

THEOREM 2. For any open subset U of M9 we have

Π intJf(U) C

Proof Let fe@(U) Π int^(lT). Clearly Per (/) Π U, c Sd(/). So,
Sd (/) is dense in Uf. Applying Proposition 2, we have a splitting Es 0
Eu of TM\ Πf whose splitting at yp e Sd(/) ΓΊ U, is Es(p;f)®Eu(p;f). Hence,
by Proposition 1, there are /-invariant laminations Ws and Wu such that
Ws(p;f) and Wu(p;f), VpeSά(f) Π Uf, are respectively their laminae.

It is sufficient to show Uf = M, because Per (/) is dense in Uf. For
this, we need only prove that for Vx0 e Uf, there is a neighborhood of x0

included in Uf. Let us write Σ = Sd (/) Π ί//. We claim

(1) Let pel. Let φ:R-> W$(p), φ(0) — p, be a parametrization of

Ws(p). Then φ{oo) = l i m ^ φ{t) never exists.

Proof of (1). Suppose there exists 9(00). Let a be the period of p.
First, φ(ε°) & Uf, because by Proposition 1 Ws(p) is a lamina of W. It is
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also clear t h a t f2a(φ(oo)) = 9(00). Since the laminations Ws, Wu are trans-

versal, we have qeΣ with φ{(0, 00)} Π Wu(q) Φ φ. Let y e<p{(09 00)} Π

Wω(g). Denote by β the period of q. Since 3/ e W % ) , f~2aβn(y) -> q as

7i —• 00. Since y € <p{(0, 00)}, f~2aβn(y) -> 9(00) as n -> 00. Hence q = ^(00).

This is a contradiction, because ^(00) § Uf. q.e.d.

By continuity oΐ Es ® Eu, we may choose a coordinate neighborhood

(Q, ψ) of #0 satisfying the following (2) ~ (4).

( 2 ) * ( Q ) = [ - 1 , 1 ] X [-1,1]

( 3 ) ψ(*0) = (0,0)

(4) Identify Q with its image by ψ and E\EU with Tψ(Es), Tψ(Eu)

respectively. Then we have C° functions ws, wu: Q f] Uf-> [—1/4,1/4] such

that (1, ws(x)), (wu(x), 1) e TXQ span respectively Es(x), Eu(x) for Vx e Q Π C7,.

Let p e Σ ΓΊ Q. We denote by Kp (resp. ifp) the connected component

of Ws(p) 0 Q (resp. ^^(p) Π Q) containing p. We express the coordinate

system in Q as (t, v). Noting that Kp is an integral curve of the vector

field x >-» (1, ws(x)) (x e Q Π 17/), we have a function u = ^^(ί) with graph (kp)

= Kp. Let Π be the set of all p e 21 Π Q such that the domain of kp is

[—1,1]. Put Qi = [-1,1] X [-1/2,1/2] c Q. As in the previous section,

we can prove Σ Π Qί C 77 by virtue of (1).

Let us fix a point p0 € [—1/4, 1/4] X [—1/4,1/4] Π Σ. Similarly as above,

we have a function t = h(v), v e [—1,1] with graph (h) = Kp0. For Vp e 77,

Kp Π ifp0 consists of just a point. Let τr2(Z, u) = v be the projection. Define

Vo = {TΓ2(1Q n KZ0);peΠ}. Since 2 Π Qi c 77, yo is dense in [-1/2,1/2].

For \fuf e Vo, we put k(t, u') = kp(t), where π2(K°p Π ifpM

0) = κ;. See the figure.

- 1 Po<

2

- 1
Q

Now we define a function υ = k(t9 u), (ί, u) e [-1,1] X [-1/2,1/2] by

k(t, u) = lim A(ί, wθ , uf eV0 .
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First, this is well-defined, because k(t, uf) is monotonuous in u! e Vo.

As in the previous section, we have similarly that this convergence is C1

uniform in t e [—1,1].

Likewise we define another function v = k(t, u), (t, u) e [—1,1] X

[-1/2,1/2] by

k{t, u) = lim k(t, u') , u' eV0 .
u' { u

We want to show k = k. Suppose that for some tu ux k(tί9 u:) Φ k(tu ux).

Let D be the region in Q between the graphs of k( , u^) and k( , u^). First

we have D Π Uf = φ. If not, we can take two points pu p2eΣ f) D. By

(1), they belong to Π. So the region in Q between Ks

vx and KS

P2 is included

in D. But this is impossible, because k(t2, u^) — k(t2, u^) where (t2, z/i) € Kp0.
Thus ΰ f l Uf = φ.

We also have D f] Uf Φ φ. This is shown as follows. Put xx =

(tl9 k(tu uj). We notice that the graphs of k(-,u'), υ! € Vo, are included
in Uf. So, xt = lim (tl9 k(tu u')) (uf \ uu u

f e Vo) is contained in Uf. Hence
we can choose a point pel near xx. Then K% meets the graph of k(-, u^)
at a point near xlm So it meets D, too. Since XJ C Uf9 we have Z) (Ί

U,Φφ.
Thus we have a contradiction. Therefore, k = k. Hereafter we write

k = k = k.
It is easily shown that the mapping H: [—1,1] X [—1/2,1/2] -> Q defined

by H(t, u) — (t, k(t, u)) is a homeomorphism (into). Moreover, its image is

in Πf. So it is sufficient to show that Im(iϊ) Z) [-1/2,1/2] X [-1/4,1/4].

By (4), K^ meets the segments [-1/2,1/2] X {1/2}, and [-1/2,1/2] X

{—1/2} C Q. Let these intersections be yl9y2 respectively. By definition,

graph(k( , 1/2)) goes through^, and graph(k( , 1/2)) through y2. Hence

it follows from \(d/dt)k(t, u)\ = \w,(t, k(t, u)\ <l/4 that for Vie [-1/2,1/2],

k(t, 1/2) > 1/4 and k(t, -1/2) < -1/4. Hence, as u goes from -1/2 to 1/2

with t e [-1/2,1/2] fixed, A(ί, M) varies from k(t, -1/2) < -1/4 to k(t, 1/2)

> 1/4. By continuity of k, it follows that for Vie [-1/2,1/2], {t} X [-1/4,

1/4] C Ίm(H). That is, [-1/2, 1/2] X [-1/4,1/4] c Im(fO. Hence x0 =

(0, 0) e int Uf.

Thus we have proved Theorem 2. q.e.d.

§5. Proposition 2

In the proof of Theorem 2, Proposition 2 still remains to be proved.
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PROPOSITION 2. Let U be an open subset of M. If feint ^{U), then

there is a continuous splitting Es Θ Eu of TM\ Sd (/) ΓΊ Uf whose splitting

at VpeSά(f) ΓΊ Uf is Es(p;f)@Eu(p;f).

Proof. We state two assertions, which will be proved later, and using

them, we obtain the proof of Proposition 2.

Let GM be the bundle over M whose fiber at x consists of all 1-

dimensional subspaces of TXM. Let d be the metric on GM induced from

a Riemann metric on Λf.

ASSERTION 1. There is a C1 neighborhood °tt of f such that

inf {d(Es(p; g), Eu(p; g)); g e W, p e Sd (g) Γ) Ug] > 0 .

ASSERTION 2. There is a positive integer v such that

\\TΠEs(p) 11/11 Ίf IE\p) | | < 1/2 , Vp e Sd(/) Π Uf .

Now Proposition 2 is proved as follows: Let xeSd(f) Π Uf. Let

pn,qne Sd (/) Π Uf, n = 1, 2, be two sequences converging to x such

that Es(pn), Eu(pn); Es(qn), Eu(qn) have a limit. Denote their limits by F%

Fu; G% Gu respectively. It is sufficient to prove Fs = Gs and Fu = Gu.

Suppose Fs Φ G\ for example. It follows from Assertion 1 that Fs Φ Fu

r

Gs Φ Gu. Our argument is divided into three cases.

1. The case Fs Φ Gu. It follows from Assertion 2 that

| | T X Γ I F 11/11TXΓ\FU\\< l/2& , Vk > 0 .

Since Gs φ Fs and Gu Φ Fs, we have by this that given e > 0, there is

k > 0 such that

d(TxΓ(Gs), TXΓ(FU)) < ε ,

G% TXP\FU)) < ε .

Hence we have

d(TxΓ(Gs), TXΓ(GU)) < 2ε .

This clearly contradicts Assertion 1.

2. The case Fu Φ G\ This is the same with the case 1, if F and G

are interchanged.

3. The case Fs = Gu and Fu = G\ By Assertion 2, we have
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The above inequalities contradict each other, because Fs = Gu and Fu = G\
Thus we have derived a contradiction from the assumption Fs Φ G\
Hence we have Proposition 2. q.e.d.

To prove Assertions 1, 2 we prepare the following.

ASSERTION 3. For some small C1 neighborhood %x of f, there is a con-

stant 0 < λ < 1 such that for yg e Φ l f Vp e Sd (#) Π [7,

where a(p) means the g period of p.

Proof of Assertion 3. Suppose otherwise. We may assume without
loss of generality that for any ε > 0, there exists g in the ε — C1 neighbor-
hood of / with || Tgα(p) I JE'(p; g)|| > 1 - ε for some p e Sd (g) Π U. Let ex

= 1 - | | Γr c p ) I £ s(p ί ) ||. Clearly 0 < ε, < e.
By Lemma B2 in Appendix, we have a Cε -~ Cι perturbation h of the

identity of M (C is a constant as in that lemma) such that
(1) h(p)=p.
(2) Tph = (1 — εO"1/̂  where 7P: TPM<—=> is the identity.
(3) Λ(Λ:) == Λ; for # outside a small neighborhood of p.
We define & = h-ge Diff1 (M). By (1), (3), ft = ^ on the orbit of p.

Clearly Es(p;g) is invariant under Tpg
α(p). But we have

Since the dimension of Es(p;g) is one, it follows that/? is not hyperbolic
for ft. By construction, gt is near / in Diff1 (M), so feintJf'iU). This
is a contradiction. q.e.d.

Proof of Assertion 1. Suppose it is not true. Then, for any ε > 0 we
have g e °UX with

tan d(Es(p; g), Eu(p; g)) < 2"1*(1 - Λ)

for some /? 6 Sd (g) Π Z7̂ , where %x and ^ are the ones given in Assertion
3. Let α be the period of p. Take a small neighborhood Q of p with
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(1) Q 2 gn(p)9 Vl<n<a-l.
We denote by WXp; g)(W?(p; g)) the local stable (unstable) manifold of

size r > 0. We choose orthogonal coordinates (t, v) in Q with origin at

p such that the t-axis is Wf(p;g).
The function v = ψ(t) representing W?(p;g) has the form:

( 2 ) ψ(t) = c.t + R(t), te(-r,r).

( 3 ) | c | < 2"1ε(l - Λ).

( 4 ) jR(O) = Rf(0) = 0.

By (4), taking r small, we may assume:

( 5 ) \R'(t)\< 2"1e(l - λ)9 V f e ( - r , r ) .
So we have

( 6 ) \R(f)\< 2-̂ (1 - λ)r, Vte(-r,r).

Noting p = ga(p) = (0, 0), we define C1 mappings hu h2: (—r, r) ->

(—r,r) respectively by

( 7 ) hι(j0 = πtg'(t,0),

( 8 ) Λ.2(ί) = πig~"(ί, ψ(ί)), where πj is the projection on the first factor.

Since |/ιί(0)| < λ, |%(0)| < λ, by taking r small enough we have

( 9 ) I M O I ^ I ί l , |Λ2(ί)|<Λ|*|, v ί e ( - r . r ) .

Put b = r/2 and δ = (1 - ^)6. For Vί e (-r , r) we have

(10) |ψ(ί)| < |c| r + |ΛW| < εr(l -2) = 2εδ,

(11) |ψ'(ί)| < |d + \R'(t)\ < β(l - ί ) < e.

Let a:, = (b, 0), x2 = (6, ψ(b)). Then

k i 5 (Λt) - 61 = |Λi(fe) -b\>b-λb = δ,

\*ig'(xύ -b\ = \h2(b) -b\>b-λb = δ.

Hence we have

(12) \\g'(xd-Xi\\>S,

(13) \\g-"(x2) - Xi\\ > δ.

We define a C mapping k Q-^-Q as follows: Let φ:R-+R be a C1

function with φ(—°o, 1/2] = 1, 0[1, oo) = 0.

(14) k(t, v) = (t,υ- φ({(t - bf + υ>}lδ*) ψ(t)).

Then the following holds:

(15) k(t, ψ(t)) = (ί, 0), if |ί - 61 is sufficiently small.

(16) k(x) = x, if | | * - x . i l > ί.

(17) k is near the identity of Q in the C1 sense when ε is small.

The last is shown as follows. By (10), (17) is true in the C° sense.

By (10), (11) and the fact that φ({(t - bf + u2}/32) = 0 if \t - 6| > δ, we have
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-{k(t, v) - (t, v)} = \φ'({(t - bf + vW) 2δ-2(t - b).ψ(t)
dt

<C \of\' 2δ~2δ'2ιεδ -f- \ώ\ ε

We also have the same result about djdυ. Thus (17) follows.

We extend H o a mapping of Λf-> M by letting k(x) = x for x outside

Q. By (17) we make k a diffeomorphism of M. Then we define gx = k-g

e Diff1 (M). By (1), (16), we have

(18) gΐ(p) = gn(p), VneZ.

In particular, p is a periodic point of gx.

By (1) and (16) we have

So it follows from (13), (9) that

gΓna(g-«(x2)) = ^

Hence we have

(19) gr\xd = έ Γ 7 ^ ) , V^ > 1.

This implies that xx e Wu(p;gί), because g{na(x^ approaches p as n—> oo.

By (15), we can prove similarly that any point of the form (t, 0) with

\t — b\ small enough is contained in Wu(p;gΐ).

By (12) and (16), we have

g;(xt) = (k-gYixJ = k'ga{xx) = ^ a (^) .

Similarly we have

(20) gr(xd = gna{xd, Vn > 1.

This implies that xt e VP(p gi). Also, we can prove similarly that any

point of the form (t, 0) with \t — b\ small enough is contained in Ws(p; gt).

Thus it is proved that xx is a non-transversal homoclinic point of gx.

It is clear that the gx orbit of xx meets U and hence gx has a non-

transversal homoclinic point in U. By Lemma A in Appendix, we have

a small perturbation of g1 with a non-hyperbolic periodic point in U.

This contradicts the hypothesis, i.e. /eintJf(ί7). q.e.d

For the proof of Assertion 2 we first prove the following. For Vp e

Sd (/) (Ί Uf, we define N(p) to be the smallest positive integer n such that
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Clearly, N(p) does not exceed the period of p.

ASSERTION 4. sup {N(p) p e Sd (/) Π Uf} < <χ>.

Proof. Given ε > 0, take a positive integer n0 such that

(1) (1 - λ)no < Λε2.

Suppose the above is not true. Then there is p e Sd (/) Π Uf with N(p)

> n0 + 3. Let τ be the greatest integer such that 2r + 2 < iV(p). Let a

be the period of p. Then,

(2) nQ + 2<2τ + 2 < JV(p) < α.

We take unit vectors Vs e Es(p;f), Vu e Eu(p;f). In what follows, we

simply write

(3) Pn=fnΛp),

(4) Vϊ= Tfn~\Vs), V% = Tfn-\VU), VneZ.

Note that pa = p0 but Ks Φ Vo% Va

u Φ Vo

u.

By Lemma B2 in Appendix we construct h = h6e Diff: (M) with the

following properties (5) — (11) in such a way that h approaches the

identity in the C1 sense as ε —> 0.

( 5 ) A(pn) = pn, V0 < n < a.

(6) h(x) = x, Vx outside a small neighborhood of {pn; 0 < 7Z < a}.

(7) ΓP1Λ(V?) = V?, ΓPlΛ(Vi«) = Vitt + eV?.

(8) V2< n < r + 1;

(9) V r + 2 < ^ < 2 r + l ;

= (1 - ε)Vl

(10) v2r + 2 < Λ < α - l ; ΓPlιΛ: TPnM<—= is the identity.

(11) ΓPβΛ(VΪ) = Ks, Γp.ΛίV?) - V? - εV2.

Then we define g= h-fe Diff1 (M). By (5),

(12) gn{p) = fn{p\ VneZ.

It follows from (8), (9), (10) that

(13) TPlg
n = TPlf\ v2τ<n<a-2.

Now we want to show that

(14) Tpog« = TJ\

For this, it is sufficient to show the following:

(15) TPog(Vϊ) = VI, TPog(V?) = V .
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The first is easily shown, so we check the latter:

= (TpJιT,._J)• {T,J"-*)• (TplhTpJKVr) (by (13))

= T,.hT,J-\V? + eV?) (by (7))

= T,MVΐ + eV2) (by (4))

= (V - βV2) + βV; (by (11))

= v .
It follows from (14) that g" is hyperbolic at p0 and

(16) E (Po;g) = E (pt;g).

It is also clear by the construction of h that

(17) E°(pn; g) = E°(Pn;f), Vθ < n < a.

Now we are in a position to conclude the proof. We estimate

d(E (pτ+1; g), Eu(pτ+1; g)). By virtue of (16) and (17), this is equal to the

angle θ between TPΰg'+1(Vou) and Es(pz+i;f).

Write Γ,Qs'+1(V, ) = (w., wu) regarding E°(pt+ι;f)® E"(p!+1;f). Let us

compute ws, wu.

T,.g'+W?) = T,g'(eVl + Vϊ) (by (7))

= εTpg%Vt) + Tpg'(Vr)

Hence

(18) ws = e(l - e)-TPΛ(Vϊ), ιι;β = (1 - irT9f\Vf).

By (2) and the definition of N(p), it follows that

\\wu\\l\\Ws\\ = e-\l - εr\\TpnVmi\\Tpf
r(VO\\ (by

< ε-'λ-Xl - e)2τ

< e-'λ-'il - ε)wo < ε (by (1)) .

Hence it follows that

= (ws + wu) wj\\w, + wu\\ \\wu\\ > ( 1 - e)/(l + ε)

as ε —> 0.

Therefore, 0 approaches 0 as ε -> 0, which contradicts Assertion 1.

q.e.d.

Proof of Assertion 2. By Assertion 4, let
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N = sup {N(p); peSd (/) Π U,} < oo .

Put C = || Γ/ll || Tf-% We take a positive integer TO with C">ίm < 1/2. Let

v = (TO + 1) JV.

For Vp e Sd (/) Π U,, we define QΊ, g2, , qr+t e Sd (/) as follows:

(1) Q,=P.
(2) qi+1 = fNM(qt), l<i<r.

(3) v - i V < Σ L i i V ( g ί ) < ^

Since N(qt) < N, yl < i < r, it follows that rN>v — N= mN and hence

r > TO.

Noting £ s , JEM are 1 dimensional, we have

\\Tr\Es(p)\\ <c*h \\Tf»™\

< CNλr < CNλm < 1/2 .

(The second inequality follows from the definition of N(q%).) q.e.d.

§ 6. Appendix

Let M be a compact manifold without boundary. Let f:M-> M be

a C1 diffeomorphism. The purpose here is to prove the following.

LEMMA A. If ze M ίs a non-transversal homoclίnic point of /, then

f can be approximated by a diffeomorphism with z as a non-hyperbolic

periodic point.

Remark. A similar result was proved by Newhouse [4] in a dif-

ferent way.

We will apply the perturbation lemmas below to the proof of Lemma

A. We fix a metric d on M and a C1 metric d1 on a neighborhood of /

in Diff: (M), where I is the identity of M.

LEMMA B^ There are constants C> 0, η > 0 depending only on d and

d1 with the following property: Let xl9 x2 e M. If d(xu x2) < ε<5 for 0 < ε

<η, 0 < δ < Ύ), then we have a (Cε) — C1 perturbation k of 7, i.e. d\k, I)

< Cε, such that k(x^) = x2, and if d(y, x^) > δ, k(y) = y.

LEMMA B2. There are constants C > 0, η > 0 depending only on d1 with

the following property: Let xeM and let Lx: TXM<—=> be a linear mapp-

ing. Let Ix be the identity of TXM. If \\LX — Ix\\ < ε for 0 < ε < η, then
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for any δ > 0 we have a (Cε) — C1 perturbation k of I such that k(x) = x,

Txk = LX9 and if d(y, x) > δ, k(y) = y.

These facts are well-known and can be proved easily, so we omit

their proofs.

Proof of Lemma A. It is sufficient to consider the case where z e

Ws(p) Π Wu(p) for some fixed point p because the other cases can be

treated similarly. For convenience we denote by s, u the dimension of

Ws(p) and Wu(p) respectively. In what follows, Ds (resp. Du) denotes the

unit disc of Rs (resp. Ru) centered at 0, and Br(x) the ball neighborhood

of x of radius r > 0 in M.

We take a coordinate neighborhood ([/, ψ) of p with the following

properties (1) — (4).

(1) ψ(U) = DsxD\

From now on, we identify U with Ds X Du.

(2) Ds x {0} c W*(p), {0} x Dua Wu(p).

(3) 30 < >? < 1;

\\Tpf(v,0)\\<λ\\v\\, VveR* ,

\\TPΓ(0,w)\\<λ\\w\\9 VweRu.

(Note TPU & Rs X Ru. \\ || means the Euclidean norm.)

(4) vxeUf]f(U) nf'\U);

\\Txf- Tpf\\ < a , \\Txf" - Tpr\\ < a ,

where a = (1 — λ)/4.

Remark. As regards (3), refer to Nitecki [5], pp. 71 — 73.

Let xeUf]f(U)f) f'\ϋ). For (u, w) eRs X i?w, we write (ux, u^ =

Txf(υ, w), (v2, w2) = Txf-\υ9 w). Then we have (5) - (8) below.

(5) If ||v 11/11 u;|| < 1/2, IÎ H/IÎ H <l/2.

Proof Let π^.R8 X Ru-* R\ π2: R
s X Ru -> J?ω be projections.

ϋi = ^iTxf(υ9 w)

= π^TJ - Γp/)(ϋ, ιι;) + ^Tp/(v, 0) + π,Tpm w) .

Hence we have

||i;,!! = a(\\v\\ + Ni l ) + λ\\υ\\ < (λ/2 + a/2 + a)\\w\\ < \\W\\I2 .

Similarly
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w, = π2Txf(v, w)

= π2(Txf- TJ){v, w) + π2Tpf(v, 0) + π2Tpf(0, w) .

and hence

Nill > I'1 Nil - «(iN + Nil) > tf"1 - «/2 - α) Nil > Nil.

Thus || ϋt 11/11 H;,!! < 1/2 follows. q.e.d.

(6) If N | | / N | < 1/2, \\W2\\I\\V2\\ < 1/2.

The proof is similar to (5).

(7) If N11/11 υ|| < 1/2, Hz;,|| < ^| | ι; | | where λt = (1 + Jί)/2.

Proof. Decompose U! as in (5). Then we estimate

INI < α(||ι;|| + Nil) + J I N < (J + 2α)||ϋ|| < λJυW .

Thus we have (7). q.e.d.

(8) If N | / N | | < l / 2 , | | u ; 2 | | < ^ N I | .

The proof is similar to (7).

We choose integers nu n2 such that fnχ(z) e Ds X {0}, f'n2(z) e {0} X Du

respectively. Remark that these sets really imply their inverse images

by ψ. Take δ > 0 so small that

(9) fn(z) e BsizJ U Bδ(z2), Vn;-n2<n<nι

where z1 = /ni(«), 2̂ = /~n2(^).

Regarding U & Ds X Du, we write

(10) ^ = (au 0), ^2 = (0, α2).

Let ε > 0 be arbitrary. We define

Fu = {(α1? w ) e ΰ s x Du; \\w\\< εδ} ,

Fs = {(v,a2)eDsxDu;\\v\\<eδ}.

If nz is sufficiently large, then f~Uz(Fs), fnz{Fu) are represented by C1 map-

pings hx: D
s -> Du, and h2: D

u -> Ds respectively. Furthermore, we can

assume

(11) H^IKβί, H ^ I K e ί

(12) 11271,1K e/2, | |Γ/ι2 | |<ε/2.

Let V be a nonzero vector in TzW
s(p) Π T,WM(p). We put

(13) y, = Γ.ΛKV), y2 = r./-(y).
Clearly ^ has the form (IΊ, 0) with 1̂  e i?s, and V2 has the form (0, w2)

with M;2 e Ru. We put

(14) xj = (au hx{ax)), x2 = (Λ2(α2), α2).

Since ^ = f~n>(Fs) Π F u , x2 = F s Π /n s(Fw), it follows that
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(15) *,=/••(*.)•
We put

(16) w[ = TMυd.
By the definition of hi there is u2 e Rs such

(17) (ϋ,, iϋO=Γ«Λ" (ϋ.,0).

Let us write (vf, wf) = TJ'l(vz, 0), i = 0,1, , n3. Since ||iϋo*||/|| υf\\ = 0

< 1/2, it follows inductively by (6) that J| wf ||/|| vf || < 1/2, ί = 0,1, , n3.

Hence it follows by (7) that

(18) | | ι * | | < ς # ||ιM|.
Likewise we put

(19) u£ = TaMw2).

By the definition of h2 there is H^ 6 Ru such that

(20) (ι4 ίϋ2) = Γβ lΛ (0, u>i).

Applying (5) and (8) as above, we have

(21) llHMKtfllHjJ.

By (18), (21), for sufficiently large ns we have

(22) \\wM\vA\ < *fc
(23) lt^ll/II^IKe/2.
We define

(24) VI = (υ» w1 + w[), Vί = (ϋ, + vί, w2).

Then we have

= Γ . ^ ϋ i , »ί) + ^./"'(O, a;,)

= (ϋ,, 0) + K a;) (by (17), (20))

= Vζ.

That is,

(25) Txr*(Vί) = V?.
By (24), (13), (22), (23) and (12), we estimate

(26) || V L - VIW/WVΛ < ε,

(27) || Vt- Kll/HK| |<β.

By (26) we have a linear mapping Lx: R
m ->• i?m (/n = dim M) such that

(28) UYd = K,
(29) ||L, - I| | < ε, where I is the identity of Rm.

For example, take an orthogonal basis {Vt, e2, • ,em}, and define Lt by

iiftV, + ίiβ, + + ίmeTO) = ttVί + t2e2 + • • • + ίmem ,

VtiβR; 1^ ί< m.
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Similarly, by (27) we have a linear mapping L2:R
m —> Rm such that

(30) L2(Vί) = V2,

(31) | | L 2 - / | | < ε .

By the way, we defined zx = fni(z), z2 = f~n2(z). By (10), (11) and (14)

we have

(32) \\Zt-x^Ked,

(33) \\z2-x2\\<εδ.

By (29), (31), (32) and (33) we can apply Lemmas Bί and B2 to con-

structing k e Diff * (M) such that

(34) k(zd = xl9 Tzik = Lx.

(35) k(x2) = z2, TX2k = L2.

(36) k(x) = x, Vx £ Bδ(zx) U Bδ(z2).

(37) k is a (Cε) — C1 perturbation of the identity of M (C is the one

in Lemmas Bj and B2).

Now we shall conclude the proof. Define g= k feΌifί^M). First,

it follows easily from (9), (15), (34), (35) and (36) that z is a periodic point

of g of period nx + n2 + n3. We show that

= V,

which implies that z is not hyperbolic.

= Txlg
n*+n*TZlkTzf

n\V) (by (9), (36))

(by (13), (34))

(by (28))

(by (25), (35))

(by (9), (36); (30))

= V (by (13)) .

Clearly g is near / in Diίf > (M) by virtue of (37). q.e.d.
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