
Y. Kitaoka
Nagoya Math. J .
Vol. 77 (1980), 137-143

FINITE ARITHMETIC SUBGROUPS OF GLn, II

YOSHIYUKI KITAOKA

In [1] ~ [6] the following question was treated: Let k be a totally real
Galois extension of the rational number field Q, O the maximal order of
k and G a finite subgroup of GL(n, O) which is stable under the operation
of CKk/Q). Then does G c GL(n, Z) hold ?

An aim of this paper is to generalize this. First we introduce a
notion of A-type for finite subgroups of GL(n, O). Let k be an algebraic
number field, O the maximal order of k and G a finite subgroup of GL(n, O).
Put L = Zn (row vectors) and operate G on OL = On as product of matrices.
Then we call G of A-type if there is a direct decomposition L — φf=1 Lt

such that for each g e G, there exist a root of unity et(g) e O and a permu-
tation s(g) e Sm satisfying e^gU = L,w< for i = 1, 2, , m.

If ± 1 are all roots of unity in k, then we have G c GL(n, Z) if G
is of A-type. Now our question is following:

Let k be a Galois extension of Q, O the maximal order of k and G a
finite subgroup of GL(n, O) which is stable under operation of G(k/Q), that
is, gσe G for every geG, σeG(k/Q). Then is G of A-type?

It is shown that this is affirmative for abelian fields.

We denote by Ok the maximal order of an algebraic number field k
and mean by a positive Z-lattice a lattice on a positive definite quadratic
space over the rational number field Q.

Let έ be a Galois extension of Q and assume that the complex con-
jugate induces an element of the center of G(k/Q). Then Ok becomes a
positive Z-lattice with quadratic form trk/Q\x\2, (xe Ok). In § 1 we prove
that this positive Z-lattice is of JS-type in the sense of [5] if k is abelian.
For positive Z-lattices L, M, OkL, OkM become cannonically positive definite
Hermitian forms. In § 2 we show that if a is an isometry from OkL on
OkM and k is abelian, then there exist orthogonal decompositions L =
_U=1 Lt, M — JJ = 1 Mi and roots of unity et in k such that ε^Z^) = Mim As
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a corollary we can answer positively our question for abelian fields.

§ 1. Let k be a finite Galois extension of Q and assume that the com-

plex conjugate induces an element of the center of G{kjQ). Then Ok be-

comes a positive Z-lattice with quadratic form tr fc/Q |x|2, (xeθk). This

positive lattice is denoted by Ok. If Ok is of ίJ-type in the sense of [5],

then we say that k is of S-type.

LEMMA 1. Let k, Ok be as above. Then we have min^eo* trk/Q\x\2 = [k:Q]

and {xe Ok\tγk/Q\xf = [k: Q]} = {all roots of unity in k}.

Proof. Take any non-zero element a in Ok. Then

geG(k/Q)
t r f c / Q | α | 2 =

Suppose tr f c / Q |α| 2 = [k: Q], then iVfc/Q|α|2 = 1 and \g(a)f = \af for every

ge G(k/Q). This implies \g(a)\ = 1 for every ge G(kjQ). Hence a is a root

of unity. Conversely a root of unity a in k satisfies tr^Q \a\2 = [k:Q].

LEMMA 2. Let kί9 k2 be Galois extensions of Q and assume that the com-

plex conjugate induces an element of the center of GikijQ), (i = 1, 2). Then

we have

(i) if ki 3 k2 and kx is of E-type, then k2 is also of E-type,

(ii) if the discriminants of ku k2 are relatively prime and ku k2 are of

E-type, then the composite field kjz2 is also of E-type.

Proof. Suppose kλ ID k2. If Okl is of i?-type, then a submodule Ofc2

of Okl is also of 2?-type by virtue of Prop. 2 in [5] since 1 e Ok2 is a minimal

vector of Okl. For xeθk2 we have trkl/Q\x\2 = [kx: k2] trΛa/Q \x\2. Hence a

submodule Ofc2 of Okl is similar to Ofc2 and so Ok2 is also of £J-type. Suppose

the assumption of (ii), then Oklk2 = Okl ® Ok% and for au bx e Okl, a2, b2 e Ok2

we have trfclfc2/Q aγa2bxb2 — trfcl/Q albl'trk2/Q a2b2 where the bar denotes the

complex conjugate. Hence Oklk2 is isometric to Okl ® Ok2. Prop. 1 in [5]

completes the proof.

LEMMA 3. Letp be a prime and L = Z[uu , up_1] a quadratic lattice

defined by (ui9 Uj) = —1 if i Φj and {uu uτ) = p — 1 for every i. Then L is

a positive Z-lattice and of E-type.

Proof. Let N be a positive Z-lattice. We use the same notations
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Q(x), (x, y) for the quadratic forms and bilinear forms associated to L, N

and L<8)N. For a non-zero element x = 2?=ί ut ® w*, (M>< e N) in L®N

we have

Q(x) = 2 ] (M4, Uj)(wi9 Wj)

p-l

Hence L is positive definite. For each permutation se Sp_u ut^> us{ί) gives

an isometry of L. Hence we may assume that wl9 , wk Φ 0, M;Λ+1 =

= wp_! = 0 without changing the value of Q(x). Since wl9 , wk9 wx —

u>k+D ' '' > W\ — Wp-i are not zero, we get Q(x) > (p — ΐ)m(N) where m(N)

denotes the minimum of Q(y), (yeN,yΦ 0). If we take a special lattice

<1> as JV, then Q(x) > p — 1 for any non-zero x in L. Hence we have

m(L) = p - 1 and m(L <g) N) > m(L)m(N). Suppose that Q(x) = (p - l)m(iV).

Then M?, - ^ , (i <./), should be zero if (£,./) Φ (1, A + 1), . ., (l,p - 1),

since (p - l)m(iV) = Q(x) > Σ t i Q(^,) + Σ?-l+i Q("Ί - ^ ) > (P - l)m(2V).

Hence we have w2 = = wp_t. If w2 = 0, then x = Wj ® ẑ j. If w2 Φ 0, then

^ > 2 implies wx = i(;2 and x = ( Σ w*) ® ^ I Therefore by definition L is

of E-type.

LEMMA 4. Lβί ζ be a primitive pn-th root of unity where p is prime

and n>2. Then Q(ζ) is of E-type.

Proof. It is well known that

ί p - ^ - l ) ifp*|m,
4-y, f m J n^-1 i f TΛ71-1 II m
τTQ(O/Q^ — \ ~~P 1 X P \\m 9

[O if p^Jfm.

As an integral basis of Z[ζ] we can take υt = ζι~\ (1 <ί<Pn'\P — 1)).

Then trβ ( ς ) / Q tyϋί = trQ^/Qζ*"^. Let L = Z[w1? , wp_J be a quadratic lat-

tice defined by (ut, ut) = p — 1, (z^, ŵ ) = — 1 for i Φ j . By Lemma 3, L

is positive definte and of £J-type. We define another positive Z-lattice

M = Z[wl9 , HV-I] by (α;,, ̂ ) = p w " % . Then Λf = J_ <Pn~J> is also of

ί7-type by Prop. 1 in [5]. We determine a basis {zt} of L ® i l ί by ^ =

ub+1®wa, (ί = a + bpn'\ IKaKp71'1). Put ί = a + bpn~\ j = af +

ί/p7*"1, (1 < α, a' <pn-χ), then (^, ^ ) = (wδ+1, wδ,+1) X (^α, wa). Hence we

have (^, zt) — pn~\p — 1). Suppose i Φj. If £ Ξjmodp7 1"1, then fe, ,ε;) =

— pn~\ i^ jmodp 7 "" 1 implies (^, zά) = 0. Therefore we have trQ ( ζ ) / Q v^
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= (zi9 z3), (1 < i,j <pn~Kp — 1)). Since L®M is of ίJ-type, OQ(ζ) is also

of E-type.

THEOREM. Abelian extensions of Q are of E-type.

Proof Any abelian extension of Q is contained in Q(ζ) for some root

of unity ζ. Hence Lemma 2 and 4 complete the proof.

§ 2. Through this section we denote by k a Galois extension of Q and

assume that the complex conjugate induces an element of the center of

G(k/Q). For a positive Z-lattice L the associated bilinear form (, ) can

be generalized to OkL as follows:

For α, b e Ok and x,yeL, (ax, by) = ab(x, y), where b is the complex

conjugate of b. Hereafter OkL means this positive definite Hermitian

form.

LEMMA. Let M, N be positive Z-lattίces and σ an isometry from OkM

on OkN. Assume that there exist submodules A_T=iMi of M and ±_T=iNt

of N such that [M: ±J=1 AfJ, [N: J_f=1 Nt] < oo and ε,σ(M,) = Nt9 (1 < i < m),

for some root of unity εt in k. Then there exist orthogonal decompositions

M = ±U M'i9 N = JL?.χ N\ such that eίσ(M0 = N'i9 (1 < i < ή) for some

root of unity ej in k.

Proof. We use induction on rank M. Lemma is obvious in case of

rank M = 1. Suppose rank M > 1. Since ελσ is also an isometry from

OkM on OkN, we may assume εt = 1 without loss of generality. Take any

non-zero element u in Mu then σ(u) = veNx and σ(Oku
L) = Ofcu

x. Apply-

ing induction to G(Oku
L) = OfcU-1, we may assume that M2 = Z[w], iVΊ = Z[ϋ],

£ l = 1, Mt = M2 J_ J_M"m, iVf1 = N2 J_ ±Nm and that Λίi,iV; are direct

summands of M,N respectively. Hence MI±$.ιMt9 N/±^ιNt are finite

cyclic groups and [M: ±f=ι M<] = [OM: ±?ml OMtγ*ki Q1 = [ON: J_Γ=i ON,]1^'-Q]

= [N: JLT-iNA = r (say). Let x = r ^ a u + ΣJLiIΛ*) y = r-^a'i; + ΣΓ=2Λ,)

be generators of M/J_Γ=i Mf, N/±_f=1 JVt respectively where α, α̂  6 Z, mj 6 M t

and τii 6 iV4. K p' | | r , p*|α, (s ^ 1), then p~srx — p~sαw = p~s ΣΓ=2^ is in

M. Hence we have p~smi^Mi since A_f=2Mt is a direct summand of M.

This implies p~srxe _LjLiM< and it contradicts the definition of x. Thus

Ps\\r, (s> 1) 5άelds psJ(a and similarly-p'Jfa'. Suppose that m3 = 0 (rilί^) for

some jf > 2; then any element m in M can be written as m — ex + Σ S . i m ^

(c e Z, m̂  e M<) and m = (c(x — r"1^^) + Σ«*y m D + ( ^ + cr~ιmj). Hence
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we have M = Ms J_ Mj-. From (/(O^) = Ok2Vj follows σ(OkMj-) = OfcA7-.

Applying induction to σ{OkMj-) = OkNj-9 we complete the proof in this case.

Now we suppose mj =£ 0{rM5) for every j > 2. There is an element be Ok

such that ff(x) = byuioάO^J^f^Ni). This is equivalent to a = α'6 mod rθ f c

and (7(mf) = fe/z^ mod rOkNi. Since there is bf e Ofc such that σ(b'x) =

ymodOfc(J_JLiiV<), 6 is a unit modulo rθ f c. Hence we have (a, r) = (α', r)

= α" and r/α" = 0(p) if Γ Ξ 0(p). From this follows that b is congruent

to a rational integer modulo pθk for each prime p | r. Fix j > 2 and any

prime p such that p*\\r, mό §psMj. Take a basis wu w2, of Nj so that

fy = citfj, e0a{m3) = d ^ + ew2, (c, cί, e e Z). Then σ(m )̂ = 6 ^ mod rO^A^ im-

plies d = sjbc mod rθk and e = 0(r). mj^psMj yields ε^m^ = dwx +

ew2$psNj since ε^Mj) = Njβ Therefore we have d^O(ps) and εj1 =

/modp for some / e Z . Then /2 = εjhj1 = 1 modp implies / = ± l m o d p

and ±ε^ = lmodpθ f c , and from this follows easily ε̂  = ± 1 and σ(Mj) =

Nj for each j > 1. Hence we have <τ(QM) and QiV and σ(0kM) = 0kN

imply σ(M) = N. This completes the proof.

THEOREM. Let M, N be positive ZΊattices and a an isometry from OkM

on OkN. Assume that k is of E-type or rank M < 42. Then there exist

orthogonal decompositions M= A-UiMi9N = J L L i ^ and roots of unity εt

in k such that eta(Mi) — Nt. Especially M, N are isometric.

Proof. Denote by OkM OkM as a Z-module with bilinear form trk/Q( , ).

Then OkM is isometric to Ok®M. Since Ok or M is of i?-type, any

minimal vector of Ok®M is of form ε (x) m by Lemma 1 in § 1 where ε is

a root of unity in k and m is a minimal vector m of M. Hence for a

minimal vector m of M we have σ(m) = εn where ε is a root of unity in

k and n is a minimal vector of N, compairing minimal vectors in Ok ® M,

Ofc®iV. Putting σ' = ε-1σ, we get an isometry af from OkM on 0&2V such

that σ\m) = τι and σ;(0km
L) = Ofcn 1 . Applying induction on rank M to

a'iOyin1-) = Okn
L, we complete the proof by virtue of Lemma.

§3 Let k be an algebraic number field and G a finite subgroup in

GL(n,Ok). Denote by L Zn (row vectors); then G operates on OkL = Ol

from the left as product of matrices. Then we call G A-type if there is a

direct decomposition L = 0JLxL€ such that for each ge G, there exist roots
of unity ε^g) in k and a permutation s(g) e Sm satisfying εt(g)gLt = Ls(ίr)€

for i = 1, 2, , τ?2.
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LEMMA. Let k be a Galois extension of Q and assume that the complex
conjugate induces an element of the center of G(k/Q). For an indecompo-
sable positive ZΊattice L, OkL is also indecomposable.

Proof. For a positive Z-lattice M OkM is a positive definite (at every
infinite prime) Hermitian lattice and for such lattices the uniqueness of
decompositions to indecomposable ones holds as 105:1 in [7]. Hence this
lemma is proved quite similarly to Theorem 4 in [4].

THEOREM. Let k be a Galois extension and assume that the complex
conjugate induces an element of the center of G(kjQ). Then every G{kjQ)-
stable finite subgroup G in GL(n, Ok) is of A-type if k is of E-type or
n<42.

Proof. Put A = Σgea^S where the bar denotes the complex con-
jugate; then A is a positive definite symmetric matrix with rational entries.
Put L — Zn (row vectors) and (x, y) = ιxAy for x,y e OkL. For g e G we have
(g%9 §y) — (x> y) a n ( i gOkL = OkL. Hence g e G induces an isometry of OkL.
Since L is a positive Z-lattice by ( ,) , there is the orthogonal decompo-
sition L = ±_T=iLi where Li is indecomposable. By Lemma OkL = J_f=1 OkLt

is the decomposition to indecomposable lattices. Hence for g e G there
is a permutation se Sm such that g(OkLx) = OkLsiί), (i = 1, ,m). Apply-
ing Theorem in § 2, there is a root of unity et e Ok such that etgLt — Ls(ΐ).
This completes the proof.

Remark. By using this theorem, we can show a lemma corresponding
to Lemma 2 in [3] without the assumption that the complex conjugate in-
duces an element of the center of G(k/Q).
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