Y. Kitaoka Nagoya Math. J. Vol. 77 (1980), 137-143

FINITE ARITHMETIC SUBGROUPS OF GL_n , II

YOSHIYUKI KITAOKA

In [1] ~ [6] the following question was treated: Let k be a totally real Galois extension of the rational number field Q, O the maximal order of k and G a finite subgroup of GL(n, O) which is stable under the operation of G(k/Q). Then does $G \subset GL(n, Z)$ hold?

An aim of this paper is to generalize this. First we introduce a notion of A-type for finite subgroups of GL(n, O). Let k be an algebraic number field, O the maximal order of k and G a finite subgroup of GL(n, O). Put $L = Z^n$ (row vectors) and operate G on $OL = O^n$ as product of matrices. Then we call G of A-type if there is a direct decomposition $L = \bigoplus_{i=1}^m L_i$ such that for each $g \in G$, there exist a root of unity $\varepsilon_i(g) \in O$ and a permutation $s(g) \in S_m$ satisfying $\varepsilon_i(g)gL_i = L_{s(g)i}$ for $i = 1, 2, \dots, m$.

If ± 1 are all roots of unity in k, then we have $G \subset GL(n, \mathbb{Z})$ if G is of A-type. Now our question is following:

Let k be a Galois extension of Q, O the maximal order of k and G a finite subgroup of GL(n, O) which is stable under operation of G(k/Q), that is, $g^{*} \in G$ for every $g \in G$, $\sigma \in G(k/Q)$. Then is G of A-type?

It is shown that this is affirmative for abelian fields.

We denote by O_k the maximal order of an algebraic number field k and mean by a positive Z-lattice a lattice on a positive definite quadratic space over the rational number field Q.

Let k be a Galois extension of Q and assume that the complex conjugate induces an element of the center of G(k|Q). Then O_k becomes a positive Z-lattice with quadratic form $\operatorname{tr}_{k/Q}|x|^2$, $(x \in O_k)$. In §1 we prove that this positive Z-lattice is of E-type in the sense of [5] if k is abelian. For positive Z-lattices $L, M, O_k L, O_k M$ become cannonically positive definite Hermitian forms. In §2 we show that if σ is an isometry from $O_k L$ on $O_k M$ and k is abelian, then there exist orthogonal decompositions $L = \prod_{i=1}^{t} L_i, M = \prod_{i=1}^{t} M_i$ and roots of unity ε_i in k such that $\varepsilon_i \sigma(L_i) = M_i$. As

Received February 6, 1979.

YOSHIYUKI KITAOKA

a corollary we can answer positively our question for abelian fields.

§1. Let k be a finite Galois extension of Q and assume that the complex conjugate induces an element of the center of G(k/Q). Then O_k becomes a positive Z-lattice with quadratic form $\operatorname{tr}_{k/Q} |x|^2$, $(x \in O_k)$. This positive lattice is denoted by \tilde{O}_k . If \tilde{O}_k is of E-type in the sense of [5], then we say that k is of E-type.

LEMMA 1. Let k, \tilde{O}_k be as above. Then we have $\min_{\substack{x \neq 0 \\ x \neq 0}} \operatorname{tr}_{k/Q} |x|^2 = [k:Q]$ and $\{x \in O_k | \operatorname{tr}_{k/Q} |x|^2 = [k:Q]\} = \{all \text{ roots of unity in } k\}.$

Proof. Take any non-zero element a in O_k . Then

$$egin{aligned} & ext{tr}_{k/oldsymbol{Q}} \, |a|^2 &= \sum\limits_{g \, \in \, G(k/oldsymbol{Q})} \, |g(a)|^2 \geq [k \colon oldsymbol{Q}] (\varPi \, |g(a)|^2)^{1/[k \colon oldsymbol{Q}]} \ &= [k \colon oldsymbol{Q}] (N_{k/oldsymbol{Q}} \, |a|^2)^{1/[k \colon oldsymbol{Q}]} \geq [k \colon oldsymbol{Q}] \; . \end{aligned}$$

Suppose $\operatorname{tr}_{k/Q} |a|^2 = [k; Q]$, then $N_{k/Q} |a|^2 = 1$ and $|g(a)|^2 = |a|^2$ for every $g \in G(k/Q)$. This implies |g(a)| = 1 for every $g \in G(k/Q)$. Hence a is a root of unity. Conversely a root of unity a in k satisfies $\operatorname{tr}_{k/Q} |a|^2 = [k; Q]$.

LEMMA 2. Let k_1, k_2 be Galois extensions of Q and assume that the complex conjugate induces an element of the center of $G(k_i/Q)$, (i = 1, 2). Then we have

(i) if $k_1 \supset k_2$ and k_1 is of E-type, then k_2 is also of E-type,

(ii) if the discriminants of k_1, k_2 are relatively prime and k_1, k_2 are of *E*-type, then the composite field k_1k_2 is also of *E*-type.

Proof. Suppose $k_1 \supset k_2$. If \tilde{O}_{k_1} is of *E*-type, then a submodule O_{k_2} of \tilde{O}_{k_1} is also of *E*-type by virtue of Prop. 2 in [5] since $1 \in O_{k_2}$ is a minimal vector of \tilde{O}_{k_1} . For $x \in O_{k_2}$ we have $\operatorname{tr}_{k_1/q} |x|^2 = [k_1:k_2] \operatorname{tr}_{k_2/q} |x|^2$. Hence a submodule O_{k_2} of \tilde{O}_{k_1} is similar to \tilde{O}_{k_2} and so \tilde{O}_{k_2} is also of *E*-type. Suppose the assumption of (ii), then $O_{k_1k_2} = O_{k_1} \otimes O_{k_2}$ and for $a_1, b_1 \in O_{k_1}, a_2, b_2 \in O_{k_2}$ we have $\operatorname{tr}_{k_1k_2/q} a_1a_2\overline{b_1b_2} = \operatorname{tr}_{k_1/q} a_1\overline{b_1} \cdot \operatorname{tr}_{k_2/q} a_2\overline{b_2}$ where the bar denotes the complex conjugate. Hence $\tilde{O}_{k_1k_2}$ is isometric to $\tilde{O}_{k_1} \otimes \tilde{O}_{k_2}$. Prop. 1 in [5] completes the proof.

LEMMA 3. Let p be a prime and $L = Z[u_1, \dots, u_{p-1}]$ a quadratic lattice defined by $(u_i, u_j) = -1$ if $i \neq j$ and $(u_i, u_i) = p - 1$ for every i. Then L is a positive Z-lattice and of E-type.

Proof. Let N be a positive Z-lattice. We use the same notations

Q(x), (x, y) for the quadratic forms and bilinear forms associated to L, Nand $L \otimes N$. For a non-zero element $x = \sum_{i=1}^{p-1} u_i \otimes w_i$, $(w_i \in N)$ in $L \otimes N$ we have

$$egin{aligned} Q(x) &= \sum\limits_{i,j=1}^{p-1}{(u_i,\,u_j)(w_i,\,w_j)} \ &= \sum\limits_{i=1}^{p-1}{Q(w_i)} + \sum\limits_{i < j}{Q(w_i - w_j)} \ . \end{aligned}$$

Hence L is positive definite. For each permutation $s \in S_{p-1}$, $u_i \mapsto u_{s(i)}$ gives an isometry of L. Hence we may assume that $w_1, \dots, w_k \neq 0$, $w_{k+1} = \dots$ $= w_{p-1} = 0$ without changing the value of Q(x). Since w_1, \dots, w_k , $w_1 - w_{k+1}, \dots, w_1 - w_{p-1}$ are not zero, we get $Q(x) \ge (p-1)m(N)$ where m(N)denotes the minimum of Q(y), $(y \in N, y \neq 0)$. If we take a special lattice $\langle 1 \rangle$ as N, then $Q(x) \ge p-1$ for any non-zero x in L. Hence we have m(L) = p - 1 and $m(L \otimes N) \ge m(L)m(N)$. Suppose that Q(x) = (p-1)m(N). Then $w_i - w_j$, (i < j), should be zero if $(i, j) \ne (1, k+1), \dots, (1, p-1)$, since $(p-1)m(N) = Q(x) \ge \sum_{i=1}^k Q(w_i) + \sum_{i=k+1}^{p-1} Q(w_1 - w_j) \ge (p-1)m(N)$. Hence we have $w_2 = \dots = w_{p-1}$. If $w_2 = 0$, then $x = u_1 \otimes w_1$. If $w_2 \ne 0$, then $k \ge 2$ implies $w_1 = w_2$ and $x = (\sum u_i) \otimes w_1$. Therefore by definition L is of E-type.

LEMMA 4. Let ζ be a primitive p^n -th root of unity where p is prime and $n \geq 2$. Then $Q(\zeta)$ is of E-type.

Proof. It is well known that

$$\mathrm{tr}_{Q(\zeta)/Q}\,\zeta^m = egin{cases} p^{n-1}(p-1) & ext{if } p^n \,|\, m \ , \ -p^{n-1} & ext{if } p^{n-1} \|\, m \ , \ 0 & ext{if } p^{n-1} \chi m \ . \end{cases}$$

As an integral basis of $Z[\zeta]$ we can take $v_i = \zeta^{i-1}$, $(1 \le i \le p^{n-1}(p-1))$. Then $\operatorname{tr}_{Q(\zeta)/Q} v_i \overline{v_j} = \operatorname{tr}_{Q(\zeta)/Q} \zeta^{i-j}$. Let $L = Z[u_1, \cdots, u_{p-1}]$ be a quadratic lattice defined by $(u_i, u_i) = p - 1$, $(u_i, u_j) = -1$ for $i \ne j$. By Lemma 3, Lis positive define and of E-type. We define another positive Z-lattice $M = Z[w_1, \cdots, w_{p^{n-1}}]$ by $(w_i, w_j) = p^{n-1}\delta_{ij}$. Then $M = \perp \langle p^{n-1} \rangle$ is also of E-type by Prop. 1 in [5]. We determine a basis $\{z_i\}$ of $L \otimes M$ by $z_i =$ $u_{b+1} \otimes w_a$, $(i = a + bp^{n-1}, 1 \le a \le p^{n-1})$. Put $i = a + bp^{n-1}, j = a' +$ $b'p^{n-1}, (1 \le a, a' \le p^{n-1})$, then $(z_i, z_j) = (u_{b+1}, u_{b'+1}) \times (w_a, w_{a'})$. Hence we have $(z_i, z_i) = p^{n-1}(p-1)$. Suppose $i \ne j$. If $i \equiv j \mod p^{n-1}$, then $(z_i, z_j) =$ $-p^{n-1}$. $i \not\equiv j \mod p^{n-1}$ implies $(z_i, z_j) = 0$. Therefore we have $\operatorname{tr}_{Q(\zeta)/Q} v_i \overline{v_j}$

YOSHIYUKI KITAOKA

 $=(z_i, z_j), (1 \le i, j \le p^{n-1}(p-1)).$ Since $L \otimes M$ is of E-type, $\tilde{O}_{Q(\zeta)}$ is also of E-type.

THEOREM. Abelian extensions of Q are of E-type.

Proof. Any abelian extension of Q is contained in $Q(\zeta)$ for some root of unity ζ . Hence Lemma 2 and 4 complete the proof.

§2. Through this section we denote by k a Galois extension of Q and assume that the complex conjugate induces an element of the center of G(k/Q). For a positive Z-lattice L the associated bilinear form (,) can be generalized to O_kL as follows:

For $a, b \in O_k$ and $x, y \in L$, $(ax, by) = a\overline{b}(x, y)$, where \overline{b} is the complex conjugate of b. Hereafter $O_k L$ means this positive definite Hermitian form.

LEMMA. Let M, N be positive Z-lattices and σ an isometry from $O_k M$ on $O_k N$. Assume that there exist submodules $\perp_{i=1}^m M_i$ of M and $\perp_{i=1}^m N_i$ of N such that $[M: \perp_{i=1}^m M_i]$, $[N: \perp_{i=1}^m N_i] < \infty$ and $\varepsilon_i \sigma(M_i) = N_i$, $(1 \le i \le m)$, for some root of unity ε_i in k. Then there exist orthogonal decompositions $M = \perp_{i=1}^n M'_i$, $N = \perp_{i=1}^n N'_i$ such that $\varepsilon'_i \sigma(M'_i) = N'_i$, $(1 \le i \le n)$ for some root of unity ε'_i in k.

Proof. We use induction on rank *M*. Lemma is obvious in case of rank M = 1. Suppose rank M > 1. Since $\varepsilon_i \sigma$ is also an isometry from $O_k M$ on $O_k N$, we may assume $\varepsilon_1 = 1$ without loss of generality. Take any non-zero element u in M_1 , then $\sigma(u) = v \in N_1$ and $\sigma(O_k u^{\perp}) = O_k v^{\perp}$. Applying induction to $\sigma(O_k u^{\perp}) = O_k v^{\perp}$, we may assume that $M_1 = Z[u], N_1 = Z[v]$, $arepsilon_1=1,\ M_1^\perp=M_2 ot \dots ot M_m,\ N_1^\perp=N_2 ot \dots ot N_m \ ext{and} \ ext{that} \ M_1,N_1 \ ext{are direct}$ summands of M, N respectively. Hence $M | \prod_{i=1}^{m} M_i, N | \prod_{i=1}^{m} N_i$ are finite cyclic groups and $[M: \perp_{i=1}^{m} M_i] = [OM: \perp_{i=1}^{m} OM_i]^{1/[k:Q]} = [ON: \perp_{i=1}^{m} ON_i]^{1/[k:Q]}$ $= [N: \lim_{i=1}^{m} N_i] = r$ (say). Let $x = r^{-1}(au + \sum_{i=2}^{m} m_i) y = r^{-1}(a'v + \sum_{i=2}^{m} n_i)$ be generators of $M/ \perp_{i=1}^{m} M_i$, $N/ \perp_{i=1}^{m} N_i$ respectively where $a, a' \in \mathbb{Z}$, $m_i \in M_i$ and $n_i \in N_i$. If $p^s || r, p^s | a, (s \ge 1)$, then $p^{-s}rx - p^{-s}au = p^{-s} \sum_{i=2}^{m} m_i$ is in M. Hence we have $p^{-s}m_i \in M_i$ since $\prod_{i=2}^{m} M_i$ is a direct summand of M. This implies $p^{-s}rx \in \prod_{i=1}^{m} M_i$ and it contradicts the definition of x. Thus $p^s \| r, (s \ge 1)$ yields $p^s \not\mid a$ and similarly $p^s \not\mid a'$. Suppose that $m_j \equiv 0$ (rM_j) for some $j \ge 2$; then any element m in M can be written as $m = cx + \sum_{i=1}^{m} m'_i$, $(c \in Z, m'_i \in M_i)$ and $m = (c(x - r^{-1}m_j) + \sum_{i \neq j} m'_i) + (m'_j + cr^{-1}m_j)$. Hence

we have $M = M_i \perp M_i^{\perp}$. From $\sigma(O_k M_i) = O_k N_i$ follows $\sigma(O_k M_i^{\perp}) = O_k N_i^{\perp}$. Applying induction to $\sigma(O_k M_j^{\perp}) = O_k N_j^{\perp}$, we complete the proof in this case. Now we suppose $m_j \not\equiv 0(rM_j)$ for every $j \ge 2$. There is an element $b \in O_k$ such that $\sigma(x) \equiv by \mod O_k(\prod_{i=1}^n N_i)$. This is equivalent to $a \equiv a'b \mod rO_k$ and $\sigma(m_i) \equiv bn_i \mod rO_k N_i$. Since there is $b' \in O_k$ such that $\sigma(b'x) \equiv$ $y \mod O_k(\perp_{i=1}^m N_i)$, b is a unit modulo rO_k . Hence we have (a, r) = (a', r)= a'' and $r/a'' \equiv 0(p)$ if $r \equiv 0(p)$. From this follows that b is congruent to a rational integer modulo pO_k for each prime p | r. Fix $j \ge 2$ and any prime p such that $p^s || r, m_j \in p^s M_j$. Take a basis w_1, w_2, \cdots of N_j so that $n_j = cw_1, \, arepsilon_j \sigma(m_j) = dw_1 + ew_2, \, (c, \, d, \, e \in Z). \quad ext{Then } \sigma(m_j) \equiv bn_j ext{ mod } rO_k N_j ext{ im-}$ plies $d \equiv \varepsilon_j bc \mod rO_k$ and $e \equiv 0(r)$. $m_j \in p^s M_j$ yields $\varepsilon_j \sigma(m_j) = dw_1 + c_j \sigma(m_j) = dw_j$ $ew_{2} \in p^{s}N_{j}$ since $\varepsilon_{j}\sigma(M_{j}) = N_{j}$. Therefore we have $d \not\equiv 0(p^{s})$ and $\varepsilon_{j}^{-1} \equiv$ $f \mod p$ for some $f \in \mathbb{Z}$. Then $f^2 \equiv \varepsilon_i^{-1} \overline{\varepsilon_i^{-1}} \equiv 1 \mod p$ implies $f \equiv \pm 1 \mod p$ and $\pm \varepsilon_j \equiv 1 \mod pO_k$, and from this follows easily $\varepsilon_j = \pm 1$ and $\sigma(M_j) =$ N_j for each $j \ge 1$. Hence we have $\sigma(QM)$ and QN and $\sigma(O_kM) = O_kN$ imply $\sigma(M) = N$. This completes the proof.

THEOREM. Let M, N be positive Z-lattices and σ an isometry from $O_k M$ on $O_k N$. Assume that k is of E-type or rank $M \leq 42$. Then there exist orthogonal decompositions $M = \bigsqcup_{i=1}^{t} M_i$, $N = \bigsqcup_{i=1}^{t} N_i$ and roots of unity ε_i in k such that $\varepsilon_i \sigma(M_i) = N_i$. Especially M, N are isometric.

Proof. Denote by $\widetilde{O_kM} O_kM$ as a Z-module with bilinear form $\operatorname{tr}_{k/Q}(,)$. Then $\widetilde{O_kM}$ is isometric to $\widetilde{O_k} \otimes M$. Since $\widetilde{O_k}$ or M is of E-type, any minimal vector of $\widetilde{O_k} \otimes M$ is of form $\varepsilon \otimes m$ by Lemma 1 in § 1 where ε is a root of unity in k and m is a minimal vector m of M. Hence for a minimal vector m of M we have $\sigma(m) = \varepsilon n$ where ε is a root of unity in k and n is a minimal vector of N, compairing minimal vectors in $\widetilde{O_k} \otimes M$, $\widetilde{O_k} \otimes N$. Putting $\sigma' = \varepsilon^{-1}\sigma$, we get an isometry σ' from O_kM on O_kN such that $\sigma'(m) = n$ and $\sigma'(O_km^{\perp}) = O_kn^{\perp}$. Applying induction on rank M to $\sigma'(O_km^{\perp}) = O_kn^{\perp}$, we complete the proof by virtue of Lemma.

§3. Let k be an algebraic number field and G a finite subgroup in $GL(n, O_k)$. Denote by $L Z^n$ (row vectors); then G operates on $O_k L = O_k^n$ from the left as product of matrices. Then we call G A-type if there is a direct decomposition $L = \bigoplus_{i=1}^{m} L_i$ such that for each $g \in G$, there exist roots of unity $\varepsilon_i(g)$ in k and a permutation $s(g) \in S_m$ satisfying $\varepsilon_i(g)gL_i = L_{s(g)i}$ for $i = 1, 2, \dots, m$.

YOSHIYUKI KITAOKA

LEMMA. Let k be a Galois extension of Q and assume that the complex conjugate induces an element of the center of G(k/Q). For an indecomposable positive Z-lattice L, O_kL is also indecomposable.

Proof. For a positive Z-lattice $M O_k M$ is a positive definite (at every infinite prime) Hermitian lattice and for such lattices the uniqueness of decompositions to indecomposable ones holds as 105:1 in [7]. Hence this lemma is proved quite similarly to Theorem 4 in [4].

THEOREM. Let k be a Galois extension and assume that the complex conjugate induces an element of the center of G(k|Q). Then every G(k|Q)-stable finite subgroup G in $GL(n, O_k)$ is of A-type if k is of E-type or $n \leq 42$.

Proof. Put $A = \sum_{g \in G} {}^{t}g\overline{g}$ where the bar denotes the complex conjugate; then A is a positive definite symmetric matrix with rational entries. Put $L = Z^{n}$ (row vectors) and $(x, y) = {}^{t}xA\overline{y}$ for $x, y \in O_{k}L$. For $g \in G$ we have (gx, gy) = (x, y) and $gO_{k}L = O_{k}L$. Hence $g \in G$ induces an isometry of $O_{k}L$. Since L is a positive Z-lattice by (,), there is the orthogonal decomposition $L = \prod_{i=1}^{m} L_{i}$ where L_{i} is indecomposable. By Lemma $O_{k}L = \prod_{i=1}^{m} O_{k}L_{i}$ is the decomposition to indecomposable lattices. Hence for $g \in G$ there is a permutation $s \in S_{m}$ such that $g(O_{k}L_{i}) = O_{k}L_{s(i)}$, $(i = 1, \dots, m)$. Applying Theorem in § 2, there is a root of unity $\varepsilon_{i} \in O_{k}$ such that $\varepsilon_{i}gL_{i} = L_{s(i)}$. This completes the proof.

Remark. By using this theorem, we can show a lemma corresponding to Lemma 2 in [3] without the assumption that the complex conjugate induces an element of the center of G(k/Q).

References

- H.-J. Bartels, Zur Galoiskohomologie definiter arithmetischer Gruppen, J. reine angew. Math. 298 (1978), 89-97.
- [2] H.-J. Bartels, Definite arithmetische Gruppen, J. reine angew. Math. 301 (1978), 27-29.
- [3] H.-J. Bartels and Y. Kitaoka, Endliche arithmetische Untergruppen der GL_n , to appear.
- [4] Y. Kitaoka, Scalar extension of quadratic lattices, Nagoya Math. J. 66 (1977), 139-149.
- [5] —, Scalar extension of quadratic lattices II, Nagoya Math. J. 67 (1977), 159– 164.

142

ARITHMETIC SUBGROUPS

[6] Y. Kitaoka, Tensor products of positive definite quadratic forms IV, to appear. [7] O. T. O'Meara, Introduction to quadratic forms, Springer-Verlag, Berlin, 1963.

Department of Mathematics Nagoya University