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ABELIAN VARIETIES ATTACHED TO CYCLES
OF INTERMEDIATE DIMENSION

HIROSHI SAITO

0. Introduction

The group of cycles of codimension one algebraically equivalent to
zero of a nonsingular projective variety modulo rational equivalence forms
an abelian variety, i.e., the Picard variety. To the group of cycles of
dimension zero and of degree zero, there corresponds an abelian variety,
the Albanese variety. Similarly, Weil, Lieberman and Griffiths have at-
tached complex tori to the cycles of intermediate dimension in the clas-
sical case. The aim of this article is to give a purely algebraic construc-
tion of such "intermediate Jacobian varieties."

We denote the group of cycles of codimension p of a nonsingular
projective variety X modulo rational equivalence by CHP(X)9 the subgroup
of CHP(X) consisting of cycles algebraically equivalent to zero by AP(X).
Then CH(X) = Θp > 0 CHP(X) has a ring structure, the Chow ring of X
[19]. Lieberman has introduced an "axiom of intermediate Jacobian" [13]:
For each nonsingular projective variety X and for each integer p (1 <p
< dim X), there exist

( i ) a subgroup KP(X) of AP(X) and
(ii) an abelian variety JP(X).

These should satisfy the following conditions:

(iii) JP(X) is the Albanese variety of X if p = dim X.
(iv) There is an isomorphism AP(X)IKP(X) ^ JP{X) of groups,
(v) Functoriality: for arbitrary varieties X and Y, and an element

z of CHp+q(X X Y), there exists an abelian variety homomorphism

[z]:Jm~«(X) >JP(Y)

(m = dimX) such that the diagram
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z(f)

Am~q(X) ^ — > AP(Y)

Jm~«(X)—^—>JP{Y)

is commutative, where the vertical maps are defined via the isomorphism
(iv) and the upper horizontal map is given by x •-» πγ(x X Y z), πγ: X X Y
-* Y being the projection. Then JP(X) is said to be a theory of inter-
mediate Jacobian. It follows from the axiom that J\X) is the Picard
variety of X. Using the Griffiths (or Weil) intermediate Jacobian, he has
shown that over the field of -complex numbers, there exists a theory of
intermediate Jabocian J£(X). The Picard variety and the Albanese variety
are dual; it is therefore natural to ask whether JP(X) and Jm~p+ί(X)
(rn = dimX) are dual or not. He has shown using J%(X), by an argu-
ment based on an idea of Grothendieck, that there exists a theory of
intermediate Jacobian for which the duality holds up to isogeny; he has
also shown that, over an arbitrary fields, one can construct an isogeny
class of abelian varieties which in the classical case, contains the latter
intermediate Jacobian [10,13].

In 1, we give the definition of regular homomorphisms and that of a
class of regular homomorphisms in which we work. In 2, we consider
some equivalent conditions one of which says the existence of an abelian
variety and a regular homomorphism with some universal property. In
3, we give the definition of Picard homomorphisms essentially due to
Kleiman. For the class of Picard homomorphisms, a condition in 2 is
satisfied and there exists a theory of intermediate Jacobian Picp X. As a
consequence, the group of cycles algebraically equivalent to zero modulo
incidence equivalence has a structure of abelian variety Picp X In 4, we
show that any abelian variety homomorphism Pic^X—• Picp Y is essentially
induced by a cycle via (v) above. In 5, we give a remark about the
relation between J$(X) and Picp X. Our remark is incomplete because it
relies upon an announcement of Griffiths whose proof does not seem to
appear. In 6, we give an example that for an abelian variety A over an
uncountable field of characteristic zero, the kernel of the map AP(A)—>
Picp (A) is not finite if 1 < p < dim A, partially generalizing (and using)
a result of Bloch [4].

We suppose that the ground field k is algebraically closed and of
arbitrary characteristic unless the contrary is explicitly stated. We under-
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stand by a variety a nonsingular projective variety defined over k. By

abuse of language, we will often refer to elements of CH(X) as cycles.

For cycles u e CH(X X Y) and i; e CH(Y X Z), we define

v°u = πχ

where τrYxZ9πxxγ, and πxxZ are projections from X X Y X Z. If

ueCHp(XχY) , υeCH«(YχZ) and dimY=ra,

then ϋ o w e CHp+Q-n(X X Z). For a € Cif(X X Y), * e Cίί(X), we put u(x)

= πF(x X Y M). If x e CHm~q(X) and u e CHp+q(X X Y) then w(x) € CH\Y)
(m = dimX). For w e C # ( X χ Y ) , veCH(YχZ), xeCH(X)9 we have

(u © u)(x) = u(w(x)). For morphisms f: X' -> X and g: Y/ -> Y and for a cycle

zeCH(Xχ Y),

(/ X g)*(z) = TgozoΓf in C/f^ X F)

where Γ, e CiϊίX7 X X) and Γ g € CH(Y' X Y) are graphs of / and g respec-
tively. For xeCH(X), Tf(x) = /*(*), and for x7 e CH(X'\ Γf(x!) - /^(Λ/)

[12]. We will often write CHq(X) = CHm~%X) and A,(Z) = ATO^(Z) and

so on if m = dim X When we talk about points of a variety, we consider

only closed points. If p is a point of a variety, we denote the point

regarded a cycle by (p).

1.

DEFINITION (1.1). A group homomorphism

h:Ap(X)->A

from the subgroup AP(X) of the Chow group CHP(X) into an abelian

variety A is said to be regular if the following condition is satisfied: for

any variety T, for any z e CHP(T X X) and for any tQ e T, the map

defined by t ^> h(z((t) — (t0))) is a morphism of varieties.

Remarks (1.1.1). In the above definition, since

, z; t0) =

for £j e T, the condition that F(h, z, t0) be a morphism is independent of

to e Γ. We say a map of the form
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T B t H-> z((t)) e CHP(X) , where z e CHP(T X X) ,

an algebraic family of cycles. Since z((t) — (t0)) = (z — T X z((to)))(t), we

can say that h: AP(X) —> A is regular if for any algebraic family /: Γ->

AP{X), the composite

is a morphism.

(1.1.2) Suppose that h is regular, that T is an abelian variety and

that t0 is the origin of T. Then F(h, z, t0) is an abelian variety homomor-

phism since it is a morphism and sends the origin of T to that of A.

(1.1.3) Let p = 1, let P be the Picard variety of a variety X, and

φ e CH\P X X) be a Poineare divisor. The map φ: P-+A\X) such that

11-* *β((ί) — (0)) is a group isomorphism. Let 0(1): A*(X) -> P be its inverse.

Then Θω is a regular homomorphism because of the universality of φ for

algebraic family [20], and hence 0(1) has the universal property: for any

abelian variety A, the map

Horn (P, A) > {The regular homomorphisms A\X) > A)
Φ CD

f\ >fo θ{1)

is bijective, the inverse being given by h «-> hoφ.

(1.1.4) Let m — dimX = p, let Alb(X) be the Albanese variety of X

and c: X-+Alb(X) the canonical map. Then c induces a regular homo-

morphism θ{m): Am(X) —> Alb (x) which has the universal property: for any

abelian variety A, the map

Horn (Alb (X), A) > {the regular homomorphisms Am(X) > A}
α> Φ
/ I > fo θ'm)

is bijective (cf. [20]). Note that θ(m) is not necessarily bijective while θ{1)

is so. For m = 2, k = C, it is known that if pg > 0, then 0(2) is not iso-

morphic and the kernel is "big" [16], and that if pg — 0 and X is not of

general type, then θ{2) is an isomorphism [5].

PROPOSITION (1.2). Let h: AP(X)-+A be a regular homomorphism.

Then:

( i ) the image of h is an abelian subvariety of A and
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(ii) there exist an abelίan variety B and a cycle ze CHP(B X X) such
that the homomorphism F(h, z,0): B-+A has a finite kernel and that the
image of F(h, z, 0) is that of h.

Proof. Consider the pair of an abelian variety B and a cycle
zeCHp(BχX) such that the kernel of F(h,z,0) is finite; and take a
pair (B, z) with the dimension of the image of F(h, z, 0) maximum. Since
the kernel of F(h, z, 0) is zero and hence finite if B = 0 and z = 0, and
since the dimension of the image does not exceed that of A, such a pair
exists. As Im (F(h, z, 0)) c Im (h), it is sufficient to show that they are
equal; then Imh is an abelian subvariety of A as the image of a morphism
of abelian varieties sending zero to zero, and (JB, Z) has the required
property for (ii). Assume Im F{h, z, 0) Q Im h. Then there exists x e AP(X)
with h(x) € Im F(h, z, 0). Since x e AP(X), there is an abelian variety J,
u e CHP(J X X) and p e J with u((p) - (0)) - *[21]. Let πBfX: BxJxX
—> B X X, πJtX: B X J X X-> J X X be the projections, and put

Zf = 7Γ* ̂ (Z) + *Γ3U(B) 6 C£P(B X J X X)

Denote the inclusions B = B Xθ <=—> BxJ and J = 0 x J c —> B X J by
ij and i2 respectively, then we have

in particular

F(h,z',0)oi2(p) = h(x).

Let N be the connected component of the origin of the kernel of F(h, z, 0).
By Poincare's theorem of complete reducibility, there exists an abelian
subvariety C of B X J with BxJ=C+N and C Π N finite. Put

φ = F(h, (j X idx)*{z'), 0) = F(h9 z', 0)oj:C-+A

where j : C c=—> B X J is the inclusion map. The image of F(h, zf, 0) and
that of φ coincide since BxJ=C + N and F(h, z\ 0)(N) = 0; hence

Im φ = Im F(h, z; 0) 3 Im F(h, z, 0) ,

and

dim Im φ > dim Im F(λ, 2, 0) .
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On the other hand, Ker φ = Ker F(h, zf, 0) Π C is a finite set. The couple
(C, 0 X idr)*2')> therefore, satisfies the same condition as the pair (B, z).
We have

h(x) = JP(Λ, ̂  0) O j2(p) e Im F(h, z'\ 0) = Im φ ,

while Im F(Λ, z, 0) $ /&(#). Since Im F(h9 z, 0) and Im φ are irreducible as
images of abelian varieties, Im φ 2 Im F(Λ, 2:, 0) implies dim Im φ >
dim Im F(/ι, 2:, 0) and this contradicts the choice of (B, z).

(1.3) In the following, we denote by A a class of regular homomor-
phisms satisfying the following conditions (I)-(V):

(I) For every variety X, each abelian variety A and each p > 0, the
zero map AP(X)-+A belongs to A*

Fixing a variety X and a number p > 0, we put

K*(X) = Π Ker (A*(X) -> A)

where /ι runs over all regular homomorphisms belonging to A from AP(X)
to any abelian variety A.

(II) K(X) = Θp K
P(X) defines an adequate equivalence relation [18]

over the set of cycles on X, i.e.,
a) The equivalence relation defined by K{X) is compatible with the

addition.
b) For a cycle z on X and a finite number of subvarieties Y3 (not

necessarily nonsingular), there exists a cycle zf equivalent to z such that
d Yj are defined for all j .

c) Let X and Y be varieties, u a cycle on X equivalent to zero, z
a cycle o n l x Y such that z(u) = πγ(u X X z) is defined. Then the cycle
z(u) on Y is equivalent to zero. We put

GP(X) = A*(X)/i<?(X), and G,(Z) = Gm~q{X) , m = άimX.

(III) C?o(X) and Alb (X) are naturally isomorphic, i.e., the kernel of
the canonical map A(X) -> Alb (X) (1.1.4) is K0(X).

(1ST) If h: AP(X) ~+ A belongs to A and if h is factorized as

where B is an abelian subvariety of A, then k belongs to A.
(V) If h: AP(X) -> A and β: AP(Z) -> B belong to 4, then
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(h,k):Ap(X)-+AxB

also belongs to A-

EXAMPLE (1.3.1). Let A be the class of all regular homomorphisms.

Then A satisfies the conditions (I)-(V).

(1.4) Fix a class A as above. For ueCHp+q(Xx Y) and xeAq(X),

we have u(x)eAp(Y), hence group homomorphism

CHp+q(X X Y) -• Horn (Aq(X), AP(Y)) .

An element of CHp+Q(Xx Y) is called (q, ̂ -trivial if, by the above map,

it is sent to a map whose image is in KP(Y). The (q,p)-trivial elements

form a subgroup of CHp+q(X X Y) and we set

X, Y) = CHp+q(Xx Y)/{the (g, p)-trivial elements} .

The above homomorphism induces an injection

(1.4.1) Cor*'*(X, Y) -> Horn (Gβ(X), G*( Y)) .

(1.5) Let f:X'^X be a morphism, * e C J P + β ( X X Y) be a (g,p)-

trivial element. Since (/ X idγ)*(z)(x!) = zff*(xT)) for a' e A,(X'), (/ X Wr)*«

is also (<?, p)-trivial. The homomorphism (f X idγ)*: CHp+q(X X Y)->

CHp+q(X/ X Y), therefore, induces a group homomorphism

/*: C o r M (X, Y) -> Cor^^X7, Y) ,

and

X»COΊ*>*(X, Y)

defines a contravariant functor. Regarding Horn (Gς(X), GP(Y)) a functor

in X, the map (1.4.1) is a natural transformation of functors.

(1.6) Let h: AP(Y) -> A belong to A. By definition of Gp(Y), h: AP(Y)

-* A is decomposed into AP(Y)-^ GP(Y)-^ A, where Ap(Y)-> GP(Y) is the

projection. The uniquely determined map GP(Y)->A is denoted by ah.

We put

Corp (X, Y) = Cor0'* (X, Y) .

Using the map Cor* (X, Y) -* Horn (G0(Z), G»(Y)) of (1.4.1), the map ah: GP(Y)

-> A and (1.3, III) and noting that h is regular, we get a group homomor-

phism
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(1.6.1) β: Cor* (X, Y) -* Horn (Alb X, A)

where the second member is the set of abelian variety homomorphisms.

The group homomorphism is a natural transformation of functors if we

regard both of the members of (1.6.1) functors in X. We say that β is

induced by h.

(1.7) Suppose X and T varieties, A an abelian variety and

z e CHP(A X X). Let /: Alb T -» A be an abelian variety homomorphism

and i : T - > A l b T be "σ" canonical map. We will show that th§ map

from G0(T) into GP(X) induced by (foiχidz)*zeCH*(Tχ X) is inde-
pendent of choice of the map L Let i'\T-> Alb T be another canonical

map. Then there exists a e Alb T with i' = Ta o i, where Ta is the trans-

lation by α. For teT, we have

{(/o ? X id*)**}© = *(Λ ?(*)) = z(/o i© + /(α))

Hence, in order to verify that (f°iX idχ)*z and (foί* x id*)** induce the

same map GQ(T) -» GP(X), it suffices to show

z(x + f(a)) - z(f(a)) = z((x) - (0)) in G»{X)

for any x in A, a fortiori to show 2((Λ; + y) — (x) — (j>) + (0)) = 0 in GP(X)

for any x and y in A. Note that Ax A-+ CHP(X), (x, y) <-> z((x + y) —

(x) — (y) + (0)) is an algebraic family of cycles. Therefore for any regular

homomorphism h: AP(X) -> B, the map h': A X A -> β, (JC, y) ι-> Λ(2:((Λ: + y)

— (*) — (y) + (0))) is a morphism with h'(x, 0) = Λ7(0, y) = 0. A morphism

of abelian varieties with this property is a zero map, i.e. h(z((x + y) —

(x) - (y) + (0))) = 0. This shows z((x + y) - (x) - (y) + (0)) - 0 in GP(X)

for any x and y in A. Thus * induces a well-defined map /»-> (/© £ x id*)**,

7: Horn (Alb Γ, A) -• Cor* (Γ, X) .

It is easy to see that f is a group homomorphism and that when both

members are viewed as functors in T, it is a natural transformation.

2.

(2.1) Fix a class A as in (1.3). Fixing a variety X and a natural

number p > 0 we consider the following conditions.

(A) There exist an abelian variety P and a cycle Sβ e CHP(P X X)

such that
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φ: P -* GP(X) , φ(x) = *($(*) - (0)))

is a group isomorphism, where π: AP(X) —> GP(X) is the surjection.

(A7) There exist a variety Y and a cycle ψe CHP(Y X X) such that

the map G0(Y) -• GP(X) induced by Sβ is surjective.

(B) There exist an abelian variety P, a cycle 5β e CHP(P X X) and

a homomorphism θ: AP(X) -+ P in the class, 4 , such that βop = id and

γo β = id, where

j8: Cor* (T, X) -> Horn (Alb T, P) is induced by θ as in (1.6)

and

γ: Horn (Alb T, P) -* Cor23 (T, X) is induced by 5β as in (1.7) ,

and these are regarded a natural transformation of functors (in T).

(BO The same condition as (B) except that the conditions β © γ = id

and poβ = id are replaced by the conditions βoγ = r id, ?Όβ=zr id for

some positive integer r.

(C) There exists a number M > 0 such that, for any homomorphism

Λ: AP(X) -> A of the class A, it holds that dimlm (h) < M.

(D) There exist an abelian variety P and a homomorphism θ: AP(X)

—> P in the class 4 with the following property: for any homomorphism

h: AP(X) —• A in the class A, there exists one and only one abelian variety

homomorphism f:P-+A such that h = foθ.

THEOREM (2.2). The condition (B) implies the condition (A). The con-

verse is true if the characteristic of k is zero.

(ii) The conditions (A7), (B7), (C) and (D) are equivalent

(iii) The condition (A) implies the conditions of (ii).

Proof. We show the following implications

(A) = » (A0 = > (C)

i> fr ^
(B) (D) φ = (BO

(A) => (A0: For any abelian variety P, PBX^(X) - (0)e G0(X) is an

isomorphism.

(A0 => (C): The map G0(Y) - ^ ^ GP(Z) is surjective. For any homomor-

phism h:Ap(X)->A in the class A, the map ah o Sβ(?): G0(Y) -• G^(X)

> A is, if we identify G0(Y) with Alb Y naturally, an abelian variety
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homomorphism. Since Im h = Im ah = Im (ah © $(?)), we have dim Im h =

Take a pair (P, 0) of an abelian variety P and a surjective
homomorphism 0: AP(X)->P in the class A such that for any surjective
homomorphism h:Ap(X)->A in the class, dim A < dim P: the existence
of such a pair (P, Θ) is guaranteed by the condition (C). Consider the
homomorphism

β: Cor* (Γ, X) -> Horn (Alb Γ, P)

induced by θ. We will show that this homomorphism is injective for any
variety T. Suppose that for some variety T9 there exists u e Corp (T, X)
with u Φ 0 and j8(α) = 0. Since u Φ 0, the map M(?): GO(Γ) -* GP(X) is not
zero, hence there is t e GQ(T) with u(t) Φ 0 in GP(X). This implies the
existence of a homomorphism fe:Ap(Z)->A in the class A such that
«k(u(t))Φ0. The map (0, Jfe): AP(X) -> P X A belongs to A; and denoting
B = Im (0, A), we see that (0, &) is factorized into (0, β): AP(X) -> B c P X A,
where the map h: AP(X)-+ B is in the class A. Let π: B d P X A->A
be the projection and we get π © /ι = k, therefore ah(u(t)) Φ 0. On the
other hand if we denote the projection B C P x A -* P by p, we have
βz=poh. Since <9 is surjective, so is p:B-+P. Consider / AlbT7-*!?
induced by ah o M(?) : G0(Γ) -> S and g: Alb ϊ7 -> P induced by aθ o w(?): G0(Γ)
—>P. We have p°f = g. The assumption β(w) = 0 implies g = 0 and we
obtain Im(/) c Ker (p). Since h is surjective, by the choice of P and by
the fact that P is surjective, p is an isogeny; in particular Ker(p) is
finite and so is Im(/). On the other hand, Im(/) is irreducible as the
image of an abelian variety, hence Im (/) = 0. If t' e Alb T is a point
corresponding to t e G0(T) we have f(tf) = ah(u(t)) Φ 0, the required con-
tradiction; hence β is injective.

LEMMA (2.3). For any surjective regular homomorphism h:Ap(X)->A
consider the map β: Cor* (Γ, X) -» Horn (Alb T, A) induced by h. If T = A
2/ιe image of β contains an element of the form r iάA, where r is a positive
integer.

By (1.2), for the surjective regular map h: AP(X)->A, there exist an
abelian variety A! and a cycle ze CHP(A', X) such that F(h, z, 0) = ψ: A!
—>A is an isogeny. Then, there is an isogeny ψ: A—> A! such that ψoψ
= r id ,̂ r being a positive integer. Putting u = (ψ X idx)*ze CHP(A X X),
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we have

F(h, u, 0) = F(h, z9 0)o ψ = r id ,

for u((x)) = z(φ*((x))) for x e A (Cf. 0). Therefore if the map

γ: Horn (Alb T, A) -> Cor* (Γ, X)

is induced by u (1.7), F(Λ, w, 0) = r id^ implies /3of(idJ =

By the proof of the lemma, ^©^(idp) = r idP for some integer r>

where γ is induced by some φ e CHP(P X X). Since ]8 o γ: Horn (Alb T, P) -*

Horn (Alb JP, P) is a natural transformation of functors in T, β o ^(idP) =

r-idp implies βoγ = r id. Then ^o^O i8 = r idoβ = ^(r id), and since β is

injective, we get γoβ = r id.

ίD): Let h:Ap(X)—>A be a surjective homomorphism in the class

A and π:A->P be an abelian variety homomorphism with πoh = Θ. We

shall show that π is an isogeny and that degπ < deg(r idP). If

βf: Cor*3 (Γ, X) -> Horn (Alb T, A)

is induced by h(1.6), we obtain π*o β' = β where

π* = Horn (id, π): Horn (Alb T, A) -> Horn (Alb T, P) .

For Γ = A, by (2.3), there exists w e C o r ^ A , ^ ) such that β\u) = s id^

s an integer. Then β' oγo^^(s id^) = ^ o p ^ o ^ ( ^ = βf oγoβ(u) = rs id^.

The natural transformation /3/or: Horn (Alb T, P) -> Horn (Alb Γ, A) is

determined by p = β' o γ(iάP): P -> A, and the equality above means

P*°π*(s-iάJ = r(s id^), hence rop = r-idA. The equality βo^ = r i d im-

plies F(θ, $β, 0) = r idp, hence # is surjective. TΓ is also surjective since

7r o h = θ. By p o π = r iάA we see that Ker (7r) is finite and hence π is an

isogeny; therefore

deg (r idp) = deg (p°π) = deg /o deg π > deg π .

Take a pair (&, π) of a surjective homomorphism /ι: AP(X)->A and π: A

-> P with πoh — θ such that degπ(< degr idP) is maximum, and call it

(0*, TΓ), TΓ: P * -> P. Then we show that (P*, 0*) satisfies the condition (D).

Suppose given a homomorphism h: AP(X) -> A of the class A. By (1.3, V)>

( ί * , f t ) : A p ( X ) - > P * χ A belongs to A and putting B = Im(0*,Λ), we

obtain a factorization

(0*, Λ): A*(X) -A> B - - > P* x A ,
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where k belongs to A by (1.3. IV). We set ; r ' : £ - - > P * χ A >P*;
then π'©k = θ* and πoπ'<>k = πoθ* = θ. Since k is surjective, πoπ' is an
isogeny and

deg (π o πf) = deg TΓ deg π' > deg π .

The maximality of deg π implies deg πf — 1 and π' is an isomorphism. Put

/: P* ^—> BaP*χA • A ,

then f θ* = h* = h. Since θ* is surjective, such an / is unique.

(D) => (A'): The implication will be clear if we note that G0(A) ~ A for

an abelian variety A and the Lemma (2.3) and if we show the following

lemma.

LEMMA (2.4). Let (P, θ) be as in the condition (D). The homomorphism
aθ: GP(X)->P induced by θ is an isomorphism.

We will show that θ is surjective. The image Q of θ is an abelian

subvariety of P and if we define ff by θ: AP(X) > Q c=—> P, θf belongs

to 4 . Therefore there exist uniquely a homomorphism φ:P-^Q with

ff — ψod — φoθ — ψoioff. Since & is surjective, φoi = idQ and hence P

= Q X N, where i V ^ k e r ^ ; therefore N is irreducible (and reduced).

Then θ can be identified with (0', 0): AP(X) -+ Q X N, and θ = (iάQ X id^) o θ

= (idρ X 0^) ° θ. By the uniqueness, idQ X id^ = id^ X 0^ and id^ = 0^,

i.e., N = 0; θ is surjective, hence so is aθ. To see aθ injective it is suf-

ficient to show KP(X) = Ker θ. By definition Ker θ 3 Z ^ Z ) . We have

only to show that h(x) = 0 for any x e Ker 0 and any homomorphism

h: AP(X) -* A in the class A. By the hypothesis, there exists a homomor-

phism φ: P-> A such that h = φoθ; whence Λ(x) = φ(θ(x)) = φ(0) = 0.

(B) =MA): By ^ o r = id, j9(KidP)) = idP. Clearly, (B) φ (BO and (D) holds;

and by (2.4), aθ:Gp(X)^P. Therefore iάP = F(θ, φ, 0): P -> GP(X) ^ P,

where Sβ 6 CHP(P X X) is a representative of r(idp) € Corp (P, X) implies (A).

(A) => (B) (char. A = 0): It is already verified that (A) implies (D). Hence
by (2.4) there exists a homomorphism θ: AP(X)—>P* in the class A with

bijective aβ: GP(X) -> P*. Then P -> GP(Z) > P * is a bijection, hence we

may suppose P = P * because char. & = 0. The subfunctor Corp (T, X) of

Horn (Alb T9 P) induced by via $β (1.6) is, since $β is mapped to iάP for T = P,

Horn (Alb Γ,P) itself.
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Remark (2.5). Let JP(X) be a theory of intermediate Jacobian. We

define a class A of homomorphisms h: AP(X) —• A for various X and p as

follows: a homomorphism Λ: AP(X)-> A belongs to A if (and only if) the

map h is factorized as h: AP(X) > JP(X) > A, where π is the canoni-

cal map (0) and h!: JP(X) —> A is an abelian variety homomorphism. By

0, (V), we see that such a homomorphism h: AP(X) -> A is regular. We

verify easily that the class satisfies A the condition of (1.3). By defini-

tion, for each variety X and each natural number p (1 <p < dimX), the

condition (D) of (2.1) is satisfied, hence the equivalent conditions of the

Theorem (2.2, (ii)) hold. Further has A the following properties:

(2.5.1) For any homomorphism h: AP{Y)^A in the class A and for

any cycle z e CHp+q(X X Y) the homomorphism h(z(?)): Am~q(X)-+ A defined

by Λ H- h(z(x)) belongs to the class A.

(2.5.2) For any homomorphism h: AP(X) -» A in the class A and for

any abelian variety homomorphism /: A -> B, the composite fofι:Ap(X)

—> B is also in the class A.

Conversely given a class A satisfying the conditions (I)-(V) of (1.3),

suppose that the equivalent conditions of the Theorem (2.2, (ii)) and the

condition (2.5.1) hold. We will denote the abelian variety P of (2.1, D)

by JP(X), Θ:AP(X)->P by θ(p\ The kernel θ(p) of is equal to KP(X) by

{2.4). Then JP(X) satisfies the conditions 0, (I)-(V), and hence is a theory

of intermediate Jacobian. It is easily verified that there is a one-to-one

correspondence between the theories of intermediate Jacobians and the

classes of regular homomorphisms satisfying the conditions (2.5.1 and 2).

But the writer does not know whether a theory of intermediate Jacobian

is unique or not.

Remark (2.6). Suppose the condition (2.1, A) holds. If we have a

regular surjective homomorphism h:Ap{X)^Ά in the class A and a

homomorphism ψ: A —> P with ψohoφ = idP, then necessarily ψ is an iso-

morphism.

PROPOSITION (2.7). We denote a theory of intermediate Jacobian by

Jp(X).

( i ) Let E be a vector bundle of rank (r + 1) over a variety X and

P = P(E). Then
jp(P) = 0

0 ί <
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(ii) Let XZ)Y be a variety and its subvariety, Xf be the blowing up of
X with center Y. If Y is of codimension r in X, then

(i) let ξe CH\P) be the class of OP(-1). Denote the projection of
P onto X by g and put

u(x) = te*(x fr-O)o^r e ® A>'ΪX) for xeAp(P) ,
Q<.i<,r

<(ad) = Σ g*(fii)ξι 6 A'(P) , for (α<) e 0 A'

Then w and v are inverse each other [17] and they define isomorphisms
between JP(P) and ©0^,<r J*-*(X) by 0, (V).

(ii) Similar method as (i). Let /: Xf —> X be the canonical map, N
be the normal bundle of Y in X, Yr = f'\Y)yf the restriction of / to Y'
onto Y, and let

0 -+F-+f'*N-» Oγ,(+ΐ) -> 0

be exact. Put Φ, = Ci(F) e C i ^ F ) , ? the class of OF<+1) in CH\Y*).
The maps

defined by u(x>) == /^aO + Σ««r-i/'ί(Φ,-1-i »**'), and

i;: A"(X)φ φ A' " 4( 7) -*

defined by φ , ( y J ) = / * ( x ) - ί * ( Σ ι ^ r - i r f * y λ where /rY'^-^x/ i s

the closed immersion, are inverse to each other and define the required
isomorphisms by 0, (V) [2].

3.

DEFINITION (3.1). Let X be a variety of dimension m and A be an abelian
variety. A group homomorphism h: AP(X) —> A is said to be a Picard homo-
morphism if there exist a variety Y and a cycle 2 6 CHm~p+ί(Xx Y) such
that A is an abelian subvariety of the Picard variety J\Y) of Y and that
the diagram

Ap(X) Z(Ί) >A\Y)

ϊl



ABELIAN VARIETIES 109

is commutative.

(3.2) A Picard homomorphism is regular. It is enough to show that,
for any variety T and a cycle u e CHP(T X X), toeT, φ = F(h, u, to):T-+
AP(X) —• A is a morphism. Since T is reduced, to say φ a morphism is
equivalent to the assertion that, in the notation of (3.1), the map T—> A
->J\Y) is a morphism; we are reduced to the case A = A\Y) == Jι(Y).
Since φ(t) = zo u((ί) - (ί0)) and zoueCH\Tχ Y), the assertion follows
from a property of Picard varieties [20, 8-24].

(3.3) We denote the class of Picard homomorphisms by £. We shall
show that the class E satisfies the condition (1.3, (I)-(V)) and the con-
dition (2.5.1). By definition it is trivial that the condition (2.5.1) and
(1.3, I) hold. To show (II) of (1.3), we must verify the three conditions
a)-c) of (1.3, II):

Now a) and.b) are easily verified. The equivalence relation defined
by K(X) is compatible with graduation by codimension and we may, there-
fore, suppose z, u homogeneous for codimension: u e CHP(X), z e CHq(Xχ Y).
Then z(u) e CHp+qm{Y) where dimZ = m; since u e AP(X), z(u) e Ap+r"m(Y).
It is sufficient to verify h(z(ύ)) = 0 for any Picard homomorphism
h: Ap+9~m( Y) —> A. For this purpose, we can restrict ourselves to the case
where h is of the form

A*+«-"(Y) ^> A\Z) = J\Z) = A ,

with υe CHm+n-p-q+\Y X Z) and dim Y = n. Since h(z(u)) = υ(z(u)) and
voze CHm-p+\Xx Z), and since ueK(X), by definition, voZ(u) = 0 i.e.,
h(z(u)) = 0.

Let m — dimX Because the canonical homomorphism Θ{m): Am(X)-+
Alb X is universal for regular homomorphisms, in order to verify (III) of
(1.3), we have only to show θ(m) a Picard homomorphism. Let P — J\X)
and $β e CH\P X X) be a Poincare divisor. If we denote ψ by the image of
ψ by the isomorphism P X X =̂> X X P, the transposition, then the map
Am{X) -> J\P), x H-> ψ(x) is nothing but θ{m) if we identify J\P) with
Alb(X) [11]. The condition (IV) clearly holds. The condition (V) is
verified using the canonical isomorphism [6]

J\Y) X J\Z) = J\Y X Z) .

PROPOSITION 3.4 (Grothendieck, [10,13]). The class R defined in (3.3)
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satisfies the condition (C) of (2.1)

We denote the Z-adic cohomology by H- (X) (I Φ char, k is prime, or

the singular cohomology if k = C). We note the following: if an algebraic

family T-> CH\X) defined by z e CH\T X X) is zero, then there are cycles

x e CH\T) and y e CH\X) such that z = xxX+Tχy, hence the induced

map *z: H'(X)-+H'(T) is zero. It is sufficient to show that dimA<

Jdimi/2 7 7 1-2^1^) if A is the image of a Picard homomorphism h: AP(X)

->JXY) defined by a cycle ze CHm~p+1(X X Y) and m = dimX Denote B

= J\Y) and a Poineare divisor ψeCH\Bχ Y). By (2.3), there exists

ue CH\A X X) such that F(u, h, 0) is an isogeny rA = r idA(r > 0) of A.

If we denote the inclusion AaB by i, then we have a commutative

diagram:

A
r i . r?)

A-^B —-+AXY)

Consider

w = zo(u -Ax u(0)) - (iorA X idF)*(φ - B x ψ(0))eCHι(A x Y) .

The commutativity implies that the algebraic family defined by w is zero

and by the above remark %w = 0. Since u(0) X A and 3̂(0) X B induce

the zero maps on the cohomology groups, '1*0*2 = r ^ 0 * * 0 ' ^ : H2n~\Y) ->

-> ίΓ(A), where n = dim Y. Since rA is an isogeny, r% is an isomorphism.

'Sβ of H*n~ι(Y) to ίjT ĴS) is bijective [9]. Since ί is an injective abelian

variety homomorphism, by Poincare's theorem of complete reducibility, i*

is surjective, hence ιu: H2m2p+ί(X)-> H\A) is surjective and 2 dim A =

dim W(A) < άimH2m~2p+\X).

(3.5) By (2.2, ii), there exists an abelian variety P and a Picard

homomorphism θ: AP(X)^>P, universal for Picard homomorphisms in the

sense of (2.1, D). We write Picp Xfor P and θip) for θ. For convention we

put Pic* X = 0 if p < 0 or p > dimX Also Picm_p X = Pic27X if m =

dimX

THEOREM (3.6). PicX satisfies the axiom of intermediate Jacobian.

Explicitly, we have the following:
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u e CHP(X); u e AP{X) and for any variety Y and

a cycle zeCHm~p+1(Xχ Y)

(m = dimX), z(u) = 0 in CH\Y) .

Then KP(X) is the set of cycles incidence equivalent to zero [8] and
0iP): A

P(X) -> Picp X induces an isomorphism AP(X)IKP(X) =+ Picp X.
(ii) PicJX is the Pίcard variety of X; Pic0X is the Albanese variety

of X.
(iii) For any cycle ze CHp+q(X X Y) (m = dimX), there exists one

and only one abelίan variety homomorphίsm [z] = [z]p: Pic9X-> Picp Y
such that the diagram

P i c X
[*]i

is commutative.

Since the class of Picard homomorphisms satisfies (1.3, I-V) (2.1, C)
and (2.5.1), the assertion follows from the Remark (2.5).

(3.7) By (3.5, iii), for fixed p and q < 0, the attachments

X and X

define contravariant and covariant functors from the category of varieties
into that of abelian varieties.

Remark (3.8). We define a class £ ' of regular homomorphisms as
follows: A regular homomorphism h: AP(X)-> A belongs to P' if there
exist a Picard homomorphism k: AP(X) —> B and an abelian variety homo-
morphism π: A -> B such that k = π o h and that the kernel of π is finite.
We can verify the conditions (1.3, I-V), (2.1, C) and (2.5.1) for the class
E', and the class defines a theory of intermediate Jacobian JP(X). Clearly
there is a canonical map JP(X) —• Picp X with the finite kernel. As
remarked above, this is bijective if there exists a cycle ψ e CHp(Picp X X X)
such that the induced map [ψ\: Pic0 (Picp X) ~ Picp X -• Picp X is an
identity. While JP(X) may appear more general than Pic^X, the writer
knows no example for which the kernel of the above homomorphism is
different from zero. We note that the results of 4 will hold also for JP(X)
defined in this way.
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4.

(4.1) Consider the natural transformation

β: Cor* (T7, X) -> Horn (Alb Γ, Pic* X)

defined by θip):A(p)(X) -> Pic* X By definition, β is injective (for any T).

The image of β when Γ = Pic* X is a subgroup of End (Pic* X) and the

intersection with Z idP i cpX is of the form Z-kψ Λάj>iQPX (kψ > 0). Let

Sβjp e Cff*(Pic* XX X) be a representative of the element whose image

by $β is kψ'idFiePX. Such ψψ is not necessarily unique. Consider the

natural transformation

γ: Horn (Alb T, Pic* X) -> Cor* (T, X)

defined by the cycle Vβψ: we have then

βoγ = kψΛά and γoβ^kψΛά.

The condition kψ = 1 and that of (2.1, B) are equivalent. Except the

case p = 1, in general, there is few case for which the condition hψ is

known to hold or not, even for p — dim X (while hψ = 1 if X is an abelian

variety and p = dim X).

(4.2) The cycle ψ™-p+» e CHm-p+1(X X Pic m " p + 1 X) (m = dim X) defines

an abelian variety homomorphism

) Aλψ: = [ψjΓ'p+1)]\^p: Pic* X-> Pic1 (Picm~*+1 X) = (Picm~*+1 X)A

where ? indicates the dual abelian variety of ?. While the cycle ψ^~p+1)

is, in general, not uniquely determined, and λψ may appear not to be

unique, it will be shown that λψ obtained as above is unique (4.5). We

choose such a ψ™-p+1> o n c e for a n #

Remark (4.3). λψ is an isomorphism if p = m.

PROPOSITION (4.4). Let X and Y be varieties of dimension m and n

respectively and ze CHp+q(Xx Y). Then, for

[z] = [z]p: Picw-« X-* Pic* Y

[*z] = Mill: Picw-*+1 Y-> PicQ+1 X ,

u e have

(4.4.1)
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In particular if X = Y, p + q = dim X and z = Δx e CHm(X X X) the

diagonal

(4.4.2) kψλψ = jfe(~-p+«^-p+« .

Using this formula (4.4.1) is also expressed as

(4.4.3) *5T«>[3]Λ o λψ-'+v = / M + 1 ) o [*z\ ,

(4.4.4) Jfe?+1)MΛ o %ψ> = J#-*+1>ί<p-«> o [«*] .

Moreover λψ is an isogeny for any p and any X {the duality).

For the proof we refer to [13].

COROLLARY (4.5). The isomorphism CHP+Q(X X Y)-> CHp+q(Y X X)

induced by the isomorphism X X Y -> Y X X, ί/ie transposition, induces an

isomorphism

Cor«'p (X, Y) ^ C o r ' - 1 * ^ Y, X)

defined by class of z^ class of ιz. In particular, letting q — 0, X =

Pic n " p + 1 Y, and p = m — r + 1, we see that λ^ is independent of choice of

a representative ψ?-r+l) e CHnr+ί (Picn~r+1 Yx Y) and uniquely determined.

It is sufficient to show that the map

CHp+q(X X Y) -> CHp+q(Y χX)-> Corp'^+ί(Y, X)

has, for value, zero on the (g, p)-trivial elements. By (4.4), if

zeCHp+q(Xx Y)

is a (ςr,p)-trivial element, then jfe£-*+1>;#+1> o [*z] = ^ ) [ ^ ] Λ o i ^ ) = 0. Since
^-P+D^+i) i s a n isogeny, we have |>] = 0.

THEOREM (4.6). For any integer p and q>0, consider the homomorphism

β: Cor' 'ίX, Y) -+ Horn (Pic, X, Pic^ Y)

defined by (3.6, iii). T/ien ί/iβre βxisί α natural number r and a homo-

morphism

Γ: Horn (Pic, X, Picp Y) -> Cor«'p (X, Y)

/3oΓ = r id , Γ o ^ = r i d .
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(Γ and a positive integer r are, in general, dependent upon X, Y, p and q).

The cokernel of β is, therefore, finite and β<8>Q is an isomorphism.

The map β is defined by z>-> [z]p

q. Since β is injective, it is sufficient

to show the existence of r and Γ with β o Γ = r id. We suppose the

following, and prove the theorem: if A is an abelian variety, there exist

a cycle π e CHX(A X A) and s > 0 such that s id = [π]: Pic1 (A) -> Alb (A)

= A. By the assumption, there exist a cycle π e CH, (Pic«+1 X X (Picς + 1 Z)Λ)

and s > 0 such that s id = [π]: Pic1 (Pic*+1 X) -> Alb (Pic*+1 XA) = (Pic*+1 X)\

Let m = dxmX. Since &~q): Pic ( m" 9 ) (X) -> (Pic ? + 1 Z) v is an isogeny, so

is S'λ^'q); hence there is an isogeny φ: (Pic 9 + 1 Z) A ->Pic m " Q X such that

^o(s ^ ~ e ) ) = r' idpicm-βx for some rr > 0. Then we define the map

Γ: Horn (Pic, X, Pic* Y) -> Cor*'* (X, Y)

as follows: for a homomorphism /: Pie, X -> Picp Y,

Γ(f) = {(/»P X id r

It is easily verified that Γ{f) defines an element of Cor?>p(X, Y) and that

the element is independent of choice of $'s. Put r = r' kψ and we will

show βoΓ = r id. For a homomorphism /: Picς X-> Picp Y, it is sufficient

to show β o Γ(f) = r •/. For x e Pic9 X,

(βoΓ)(f)(x) = [{(/op x idrXW)} oίΓo JβrΊSCx)

= [(/o p x id r

= (r /Xx),

i.e., β°Γ(f) = r-f. We now show the above assertion. Let A be an abelian

variety of dimension α. We identify A with A. Let D be an ample

divisor on A, and let C = Dal e CH^A). Then for xeA, in G0(A) = A,

aC(Dx- D) = (Da)((x) - (0)) where Zλ, is the translation of the divisor

D by xeA, and (£)α) is the intersection number [15]. Hence

A • A\A) -^-> A0(A) • A

is an isogeny, where the first map defined by x »-> Dx — D is an isogeny,

whence

φ: A = ^
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is also an isogeny. Let Δ denote the diagonal of A X A and put C —

( C x i ) J e CHλ(A X A). Then φ = [C]: A = Pic1 (A) -* Pic0 (A) = A. Since

p is an isogeny, there is an isogeny ψ: A —> A with ^ o | = r id^ for some

r > 0. Put 7r (ψ X idJ^C"), and we have r i d = [π]a

a_x: Pic1 (A) -> Pic0 (4),

for τr(?) = C(ψ*(7)).

Remark (4.7). Let X, Y and Z be varieties and π. = dim Y. If w 6

CHp+q(Xχ Y) and I G CHn~p+r(Y X Z) and if w is (q, ̂ -trivial or u is

(n — p, r)-trivial, it is then easy to verify the composite vouis (q, r)-trivial.

Hence by composition we have well-defined bilinear forms

δ: CorM(X, Y) X Cor"-^ r (Y, Z) -> Cor9'r(X, Z) ,

o: Horn (Pic, X, Picp Y) X Horn (Picp Y, Pic r Z) -> Horn (Pic, X, Pic r Z) .

Then the diagram

Cor^(X, Y) X Cor*-^( Y, Z) - ^ > Cor9'r (X, Z)
βxβi [β

Horn (Pic, X, Pic* Y) X Horn (Picp Y, Pic r Z) -^-> Horn (Pic, Z, Pic r Z)

is commutative. In particular, if m = dimX, the set Coτm~p'p(X, X) has

a ring structure whose multiplication is defined by composition, and

β: Covm-p>p(X, X) -> End (Picp X) is a ring homomorphism, and β (g) Q is an

isomorphism of rings by (4.6)

5.

(5.1) In this section, we suppose k = C. Let TP(X) by the Griffiths

intermediate Jacobian (or Weil's one). By HP(X), we denote the subgroup

of CHP(X) consisting of cycles homologically equivalent to zero; then

homomorphism (called an Abel-Jacobi homomorphism in [8])

Φ:Hp(X)->Tp(X)

is defined and is a regular homomorphism [7, 12] (i.e., for any variety T

and a cycle z e CHP(T x X) such that z{t) e HP(X) for every t e T, the com-

posite T-+Hp(X)-+ TP(X) is a holomorphic map). The image of Φ\AP(X)

is an abelian subvariety JP(X) of ^ ( X ) (even if TP(X) is not an abelian

variety but a complex torus). The restriction of Φ: AP(X) -> Jl(X) is a

regular homomorphism and J%(X) defines a theory of intermediate Jacobian

[12,13]. Since for ze CHp+q(X X Y) and m = dimX, there is a homomor-

phism [*]: J™~q{X)->Jp(X) such that the diagram
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Am-"(X) - ^ A'{Y)

I I
is commutative, we see

(5.1.1) Ker (A%X) -+ Jξ(X)) c K%X)

where KP(X) is defined in (3.6), and obtain a natural surjection

(5.1.2) πT:

PROPOSITION (5.2). If X is an abelian variety, πψ is an isogeny.

cf. [12].

PROPOSITION (5.3). Let X be a variety and Y a hyperplane section of

X. If 2p — 1 < dim X and if π^ is an isogeny, then πψ is also an isogeny.

By a theorem of Lefschetz [1, for example], for 2p — 1 < dim Y

ί*:H2p-\X, Z) -> H2pl(Y, Z) .

induced by the inclusion i: Y<=—> X is injective. Since

H2p-\X, R)βm H2pί(X9 Z)

as real tori, the kernel of i*: TP(X) -> TP(Y) is finite.*} Hence the kernel

of i*: JP(X)-> JP(Y) is also finite. Consider the commutative diagram

Jp{X) - ^

i
PiCp (X) JL.

Since Ker(τr^) is finite, so is Ker (i* o πψ) = Ker (π^ o £*), a fortiori

Ker(τr^) is finite.

COROLLARY (5.4). If X is a variety containing an abelian variety of

dimension das a complete intersection, πψ is then an isogeny for 2p — 1 < d.

COROLLARY (5.5). Fix a positive integer p, if πψ is an isogeny for

every variety X of dimension 2p — 1, then πψ is also an isogeny for every

q <p and every variety X.

*} [added in proof]. Ker(i*) is compact and is a finitely generated abelian group
hence it is finite.
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By iterated use of Prop. (5.3), we see that if 2p — 1 < dim X, πψ is
an isogeny. For an integer r > 0, put P = Xx Pr; then we have a com-
mutative diagram

^> © Pic p i X
0<,i<,r

Taking r large enough, we may suppose 2p — 1 < dim P and p < r, then
TΓ^ is an isogeny, and so πψ (q < p) are isogenies.

Remark (5.6). Griffiths [8] announced the assertion that πψ is an
isogeny for dim X = 2p — 1, and this implies that for every p, π(f is an
isogeny*\ Assuming this, the duality of type (4.4) holds for J£(X).

6.

We know a few examples:

(6.1) Let X be a complete intersection in Pr. Then Picp X = 0 if
2p - 1 Φ dimX. We see that for 2p - 1 < dimX, H^~\X) = 0 and PicpX
= 0. By duality we obtain our assertion.

(6.2) Let X be a cubic threefold. Then A\X) -^-> Pic2 X is a Prym
variety [17]. More generally, let X be a conic bundle, i.e., a connected
complete smooth scheme over k with a morphism X->P2 where fibers are
conies in a projective space. If dim X = 2ra + 1, 0(n+1): An+1(X) -^-> Picn+1 X
is a (generalized) Prym variety [2]. For these example Θ are universal
for the regular homomorphisms.

(6.3) For a unirational threefold X, A\X) is "isogenous" to Pic2X,
i.e. the kernel of the canonical map 0(2): A2(X) —• Pic2 X is a finite set.
Moreover, if k = C and if Q is a quartic threefold, A2(Q) is isogenous to
Pic2(Q) [3].

(6.4) Let X be a general abelian variety defined over C. Then for
any p, 1 <p < dimX, PicpX and X are isogenous [12, 14].

(6.5) Let A be an abelian variety of dimension m over an uncountable
field of characteristic zero. Then for 1 < p < m, the canonical map
β(p). AP(A) _> piC2> A i s n o t an isogeny. We prove a stronger result. Let

GV(A\ KP(A) be as defined in (1.3) for the class (1.3.1). We will show
φ) [added in proof]. A proof of a special case of his announcement can be found

in [22, 6, (c)].
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that the orders of elements of KP(A) are not bounded. This implies, in

particular, for k = C, the kernel of AP(A) -» J%(A) is non-zero. Let D be

an ample divisor on A. For au ,ap in A, we show (Dai — D) (Dα p

— D)e KP(A). For this purpose, it is sufficient to show the image of the

intersection product of AP(A) and Aq(A) are in Kp+q(A). Suppose x e AP(A)

and y e A9(A). Then there exist abelian varieties B,C,be B, ce C and

u e CHP(B X A), υe CHq(C X A) such that x - u((b) - (0)) and 3/ = v((c)

- (0)). Since xy = (pfu'p*v)((b, c) - (6, 0) - (0, c) + (0, 0)) where p x and

p2 are projections of B X C X A onto B X A and C X A respectively, the

argument in (1.7) shows the cycle of this form is mapped to zero by any

regular homomorphism, and we obtain our assertion. By [4], m\(Dai — D)

• (Dam -D) = (Dm)((α1) - (0))* . . . *((αm) - (0)) in CH0(A) where * denotes

the Pontrjagin product. Suppose the orders of elements of KP(A) are

bounded by N.

(Dai - D) (Dap -D)e Kp(A) (al9 •• , α p e A ) implies

N(Dai - D) (Dap - D) = 0 in CHP(A)9 hence

N(Dai - d) (Dam - D) = 0 in C#0(A), i.e.,

N(DmX(ai) - (0))* . . . *((αm) - (0)) = 0 in CH0(A) (al9 •• , α m e A ) ,

Since the ((αθ — (0))* *(αm) — (0)) (au , αm e A) generate /*m where

I = A0(A) and /*m is m-folded Pontrjagin product, and since J* m is

divisible, N(Dm)I*m = 0 implies I * m = 0; this contradicts a proposition

in [4]. Note, however, that if k is the algebraic closure of a finite field

then for a any abelian variety A over k, A0(A) ^ A by use of I* 2 = 0 [4].
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