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VARIATIONAL INEQUALITIES OF BINGHAM TYPE

IN THREE DIMENSIONS

YOSHIO KATO

Introduction

The flow of Bingham type through a domain Ω in the d-th dimensional space

R (d> 2) during the time (0, T) is a flow of an incompressible visco-plastic

fluid governed by the equations for a velocity vector u— (u , . . . ,u ) and a stress

tensor σ= (σo.)^ =1:

% f
(0.1) oτ in Ω x (0, T)

V-u = 0

and by the constituent law:

σD =\η(\D\)+ jjγτ} D when D Φ 0
(0.2)

I σ I < g when D = 0

which is equivalent to

when \ σ \ <* g

where σ = σ + πld is the deviation of σ (i.e., π = — tr(σ) /rf is the pressure),

the yield limit, D = Z)(w) a tensor of strain velocity with components:

Dif(u) = \Wμ + Vju) with Vt = 9/3^ ,

I σ I the length defined by

I / \1/2

I σ = (σ σ) , σ-τ = σί; τ 0 ,

M F = M 1^, (V-σ)i — VjGij and F w = tζw1 = div w, the summation convention con-

cerning repeated indices being used.

Recieved July 22, 1991.
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In the present paper we consider a fluid with viscosity Ύ] (| D |) such that

λrj{λ) is a nondecreasing function in λ > 0 satisfying

q / - 1 < λ η ( λ ) < c2λ
P~\ λ>0

for some positive constants clt c2 and p > 1. The various interesting examples of

τ?Q) may be found in Astarita-Marrucci [1]. Introducing a convex functional of u:

φ(u) = fdx fDiU) (λη(λ) +g)dλ,

we can deduce after Duvaut-Lions [5] the equations (0.1)-(0.2) subject to the

boundary condition u = 0 to the evolution inequality

(0.4) f (u'(t) + B(u(t))' (v - u(t)) dx + φ(v) ~ φ(u(t))

> [f(t)'(v-u(t))dx

for all t ^ (0, T) and all υ such that V' v = 0 in Ω and υ = 0 on the boundary

dΩ of Ω, where u' = du/dt and β(&) = wVu. The inequality (0.4) is called to be

of Bingham type if g > 0.

The problem we consider here is to find a solution u(t) = u{x, f) of inequa-

lity (0.4) of Bingham type satisfying the boundary condition

(0.5) u(x, t) =0 on dΩ x (0, T)

and the initial condition

(0.6) u(x, 0) = uQ(x) in Ω.

The fluid which is obeyed by (0.2) with constant viscosity ϊ] is called a Bing-

ham fluid, whose flow was first studied by Duvaut-Lions [5,6] introducing a

variational inequality such as (0.4). They obtained, among other things, a weak

solution (for the definition see Theorem 1). In Naumann-Wulst [13,14] strong

solutions (for the definition see Corollary 1) were looked for in the case ϊ] (λ) =

λP~2, (\/97 — 1) /4 < p < 3, under the condition that Ω is a smooth and bounded

domain in R . The existence of a strong solution for a Bingham fluid was investi-

gated by Kim [7,8] in the plane as well as in the third dimensional bounded do-

main.

The main result of this paper consists of three theorems. Theorem 1 is

concerned with the existence of weak solutions to the initial-boundary value prob-

lem (0.4)~(0.6) with p > 6/5 where φ is allowed to depend explicitly on t. As a



VARIATIONAL INEQUALITIES OF BINGHAM TYPE 5 5

corollary we obtain strong solutions for p > 11/5 (see Corollary 1). This result is

a slight improvement of a result of Naumann-Wulst [14, Theorem 1.1 (i)]. In

Theorem 2 we derive the energy inequality of strong form, provided that Ω is an

exterior domain and η (λ) = μλP~2 with positive constant μ and p > 9/5. The reg-

ularity of velocity field u of Bingham fluid with variable viscosity and yield limit

will be investigated in Theorem 3. This is nothing but a simple extension of the

result of Kim [8].

The distinctive feature of the present paper is to construct Yosida's

approximation ί£n = nil — ί l H Ln) } of a multivalued operator Ln(v)

= en (v) + B (v) + dφ (υ) which is regularized by adding the term en (v) =

— ξnexp (λH \\Vυ |Γ )Δv where c > 4 and ξn, λn—>0 as n-+°°. In fact, it is

proved in Section 3 that the inverse of an operator [1 + — Ln) exists. The

evolution equation ur

n{t) + !£n(t, un(t)) = fn(t) which approximates (0.4) will be

solved by the method of successive approximation. A weak solution which is

seeked for in Theorem 1 will be found in Section 4 as a limit of a subsequence of

W
The proof of Theorem 2 is achieved in Section 5 by taking a test function of

the form rot{ζλ(Fλ * (ζλrotun))} (λ —• 0) where Fλ denotes a fundamental solu-

tion of operator λ — A and ζ̂  a cut-off function such that ζ̂  (r) = 1 for | x \ > 2 /λ

and = 0 for | x \ > 1 /λ. This device for the proof comes into action thanks to the

plastic term g \ D (u) \. For the Navier-Stokes equation where p — 2 and

g = 0 we refer to Miyakawa-Sohr [11].

Theorem 3 is able to be applied to problems of heat transfer in a Bingham

fluid with viscosity and yield limit depending on the temperature, which will be

investigated elsewhere.

We devote Section 1 to preparations for the present study. Theorems 1 ~ 3

are stated in Section 2, along with three corollaries and four remarks where

Theorems 1~3 are examined in the case that d = 2. Sections 4 ~ 6 are devoted to

the proof of Theorems 1-3, respectively.

§1. Preliminaries

By V we denote the set of υ = (v\ . . . ,υd) e Ĉ ° (Rd)d such that V' v = 0

everywhere and by LP (1 < p < °°) the set of all //-function from R

(d > 2) into R equipped with the usual //-norm || 1̂ . Especially, we simply

write || ||2 = || ||. Further, the following abbreviations are used: || υ \\p = || | v \ \\p,
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II Vυ \\p = || I Vυ \ \\p and || D (v) \\p = \\ \ D (v) \ \\p for vector field v, where Vυ and

D{v) denote tensors with components V{v and Du(υ ) = V{v
J + V}v\ and

I I respective length with respect to the euclidian metric.

We start with stating the two fundamental inequalities.

Korn's inequality. For any p ^ (1. °°) there exists a positive constant Kp

such that

(1.1) \\Vv\\p<Kp\\D(v)l, v<BC;(Rd)d.

Sobolev's inequality. For any p ^ [ 1 , d) there exists a positive constant Sp

such that

(1.2) \\υ\\p*<Sp\\D(υ)\\p, v^C;(Rd)d,

where p =dp/(d — p).

For the proof of (1.1) we refer to Mosolov-Mjasnikov [12] and its bibliogra-

phy. Combining (1.1) and the usual Sobolev inequality (see Berger [2]), we

immediately obtain (1.2) for p, 1 < p < d. The inequality (1.2) with p = 1 has

been proved by Strauss [16].

The following proposition is nothing but a straightforward extension of the

result of Renardy [15].

PROPOSITION 1.1. There exists a sequence of operators T£tλ>u (ε, λ, μ > 0 )

a -> uε,λ,u = T£tλιUu of Lq

σ (1 < q < oo) into V such that

( i ) uεj,u ~~*U ifί L<1>

( ϋ ) Vutxu -* Vu i n L\ if VtU* e l p ( l < ,', j < d) and p > 1,

and

(i i i) D{uεXu) -+D(u) in Lr, if D{j{u) e Lr (1 < i, j < d) for r>\ such

that 1 /r- l/q<2/d,

as β—* 0, >ί —̂  0 αn<i ε —> 0, one after another, where

Lσ

q=

L\ = [u e a1)1*; V u = Oandfudx=θ\.

Proof. For a C"-function ξ(/) on [0, °o) such that f (ί) = 1 for t < 1, = 0

for ί > 2 and 0 < f (/) < 1 we introduce two functions on R :
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(1.3) η(x) = ξ(\x\) and p{x) = η(x)/J η(x) dx,

and a cut-off function:

φ(x) = 1/volCBχ) on Bι and = 0 outside Blt

where and in what follows BR denotes an open ball of radius 7? with center the

origin. For positive numbers λ, μ, ε we set

ηu(x) = ηiμx), pε(x) = ε~dp{x/ε) and φλ(x) — λdφ(λx).

Denoting by G the fundamental solution of the laplacian, we define

Ge§λ= G*(δ-φλ)*pε,

where f*g denotes the convolution of /and g, and δ the Dirac function. The use

of Fourier transformation asserts that Gελ is rapidly decreasing along with its all

derivatives. In the course of the proof we also use the well-known inequality in

the literature:

(1.4) l l / * £ l l < l l / I U k l l g ( 1 < P , q,r<

and the lemma due to Renardy [15]: Suppose that / e Jj (1 < r < °°) and further

assume that \ f(x)dx = 0 in the case r — 1. Then, we have

(1.5) &*/-*0 in Lr as λ-+0.

We now define an operator Tε>λtU of L9

σ (q > 1) into Y:

(1-6) uj

εxu = (Tε>λtUuy = - Vk{ηu(GeJί*rotkju)}9

where τotkju — Vku — V,u . A simple calculation leads to

<;,« = vMδ - φλ) * / o ε * M 0

and

(1-7) F < « ^ = i ? < f { ( δ - 0 i ) * A * Γ / « / }

- {V,η,,(VkGtJί*Vtu') + V.

The assertions (i) and (ii) immediately follow from the above two equalities.

To prove (iii) we derive from (1.7)

D<M,J = Vu{(δ ~ φλ) *pε*Dϋ(u)} + (b{J + bit)/2 + (cw + cit)/2

Btj + Cϋ.
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It is easy to see by (1.5) that Atj-+ Dυ(u) in ZΛ The use of (1.4) and the identity

(1.8) VtVjUk = VjDki(u) + VtDjk(u) - V.D^u)

guarantee us that Bi} ~> 0 in L as μ —* 0.

Our final goal is to show that Ci} —* 0 in L as μ •—• 0. To do so let us first re-

mark that Cj y is represented as a linear combination of terms of the form

U = (VjVrf^iGε^Vu). Let us assume r > q. The inequality (1.4) then leads to

\ \ U \ \ r < C μ 2 \ \ V G ε J p \ \ u l p > \ .

Thus, || t/ | | r—• 0 as μ—> 0. If r < q, we use Holder's inequality:

α
\VGti*u\'dx

,x\>2/u '
where l/p + l/q= 1/r. Application of (1.4) with p = 1 implies VGελ *u e L9

and our assumption on q and r yields 2 — d/p i> 0. Consequently, || U\\r-^ 0 as

jM—*0. Q. E. D.

In this section we always assume

Ω an arbitrary domain in R (d > 2),

i/ the closure of "f (Ω) = {υ e f supp t; c β} by norm || t; ||.

and

Yp(Rd) the closure of Y by norm || D(t ) ||̂  (p ^ 1).

It is easy to see that Yp(Rd) is imbedded in I^ 0 C (R r f ) r f . Therefore, we may intro-

duce the Banach spaces which play important parts in the paper:

Vp = Yp(Rd) Π H e q u i p p e d w i t h n o r m || υ \\Vp = || D(v) \\p + \\v\\

and, setting V = V2,

Wp = Vp Π V equipped with norm || v \Wp = \\ v \\Vp + || υ \v.

It is evident that every function in Vp vanishes outside of the closure Ω of Ω.

According to Lions [9, p.6], we can assert that Vp is separable for any p > 1 and

further reflexive if p > 1 and that Vp <z H c Vp, where H is identified with its

dual H\ each space is dense in the following and the injections are one to one and

continuous. These assertions hold true for Wp as well.

There are given two separable Banach spaces X and Fsuch that I c Y c H,

where each space is dense in the following and the injections are one to one and

continuous. Denoting by < , }x the duality between X' and X, it is easily verified
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that </, u)x = </, u}γίoru^X and / ^ Y', So it will be allowed to write it as

</, u) without any confusion. In particular, </, u) means the inner product in H

if w, / e # .

LEMMA 1.1. Suppose that 2 < d < 4.

( i ) For allr>\ we have Vr= {u ^ H £>„(«) 6 l r ( l < i, < d)}.

( l i ) For all q, r& [ 1 , />] such that q < d we have V ^ ί l ^ c L9* Π Vr (q* =

dq/{d-q)).

More precisely, there exists a positive constant Cqr such that

(1.9) || v ζ* + || Vυ I < Cq>r(\\ D(υ) ζ + \\ D(υ) II,), * e Vp Π FL.

( m ) // Ω is smooth and p > d/(d - I ) , then v\Ω^ WQ'P {Ω)d for all υ e

Vp Π Vx where Wo' (Ω) denotes the set of functions belonging to the usual Sobolev

space W ' (Ω) such that -\dΩ = 0 .

Proof The assertion (i) is an easy consequence of Proposition 1.1. The use of

interpolation inequality;

(1.10)

• i n -L Λ / V , \ n t

with β = Λ—χ/ and a + β — 1

and the Young inequality:

(1.11) AaBβ <aA + βB ίorA,B>0

lead to

II D(v) ζ < j ~ II D(v) ζ + | ^ f || D(υ) I, v e CζiR")

for 1 < r < p. Making use of (1.1) and (1.2), and keeping in mind (i) we obtain

(1.9).

To prove (iii) we assume υ ^ Vp Π Vx and p > d/(d — 1 ) . Then, (1.9)

implies υ e W^^CR^)4. Observing that z; = 0 outside of Ω and that Ω is smooth,

we obtain υ \dΩ = 0. Q. E. D.

LEMMA 1.2. ( i ) Suppose p e [2, d + 2) and ίβί ws 5^ q = dp/(d + 2).

Then, we have

p <^ \\ Λ \\p~q II ^ IK .A d / ^ • ' " V Γ Λ

^ II ΦII II 0 ll9*, Φ G C o ( R ) .
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( ii ) Suppose p e (2d/(d + 2 ) , 2) U [d + 2, °°). Then, there exist positive

constants K, A and θ ^ (0,1) such that

(i.i2) || Φ \\p,Bi/i < KλΛl VΦ I + \\φ\\),

O r \1/p

\ \φ\ dx) .
M i

Proof. Observing q > p and applying (1.10) t o / = 0, we readily get (i). To

prove (ii) we first assume p > d + 2. Choose r so that r >p>d>r>l and

set

ηn(x) = η(2ι-nλx), « = 1 , 2 , . . . .

Then, by virtue of (1.10) we have

II VnΦ II £ II r?^ IΓ II 17.0 II"*, β=(p-2)r*/p(r*-2).

Hence, Holder's inequality yields

/nn\ dβ(l/r-l/p)

(1.13) UnΦ\\p^C[γ) \\V{ηnφ)tp

for all φ e C^°(R ) with || 0 || = 1. Choosing again r so close to d that

0 < θ = dβ(l/r- \/p) < 1,

we obtain from (1.13) that

(1.14) || ηnφ \\t < c(^

where Bn = {x | x | < 2n/λ) and Ct(i — 1, 2) are positive constants not

depending on λ and n.

Set

#« — II 0 ll̂ ,β f <5 = Cγλ and M = C2/ί (|| Vφ \\p + 1).

Then, (1.14) becomes an_x < δan + 2n M, and hence

a0 < δnan + 2°Mil - 2θδ)~ι < δnan + 4M

for λ < (4CX) ~ = A By passage to limit we get a0 < AM. This concludes

(1.12), provided K= AC2.
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We now suppose 2d/(d + 2) < p < 2. By virtue of Holder's inequality we

have

\\φ\\PtBι/λ<λ-Θ\\φl θ=d(l/p-l/2).

Our hypothesis implies 0 < θ < 1. Q. E. D.

Given T > 0 and a separable Banach space X equipped with norm || \\x, let

us denote by L r(0, Γ X) (1 < r < °°) the set of all functions u(t) of the inter-

val (0, T) into X such that || u(t) \\r

χ is integrable over (0, T). It then follows from

theorem due to Pettis and Bochner (see Yosida [18]) that there exists a sequence of

finitely valued functions un(t) such that un(t) —• u(i) for a.e. t ^ (0, T) in X and

un-*u in L r (0, Γ ; X). By Z,°° (0, T ; X) we denote the set of all functions

u(t) such that || u(t) \\x is essentially bounded in (0, T). We use the abbreviation:

L ; O C ( 0 , OO ; X) = u L r(0, Γ ^ ) (1 < r < oo),
Γ>0

which is a Frechet space. By C (I \ X) (resp. CW(I \ X)) we denote the set of

continuous functions (resp. weakly continuous functions) of / into X.

It is not difficult to show that the space LP(Q, T Vq) (p, q > 1) is separable

and its dual is equal to LP (0, T; VJ) (Y = °°), and hence it is reflexive if

For a, b such that 0 < a < b we set

(1.15) < 6 = L * ( a , b Vp) Π ύ ( a , b V J . p > l ,

which is Banach space equipped with norm

\vtVtdt) +] \\v\\Vidt.

Here If (a, b X) is defined with (0, T) replaced by {a, b). By < , > Otb we denote

the duality between 3ίζtb and its dual ($P

a>b)'. Then, we can prove

LEMMA 1.3. The space C0°°(0, T ;VP Π V̂ ) is dense inflBjfΓ.

Proo/. Let w ^ ^ > r . Since V̂  and Vγ are separable, we can find a sequence of

finitely valued functions un(t) such that un(t) —* u(t) for a.e. t ^ (0, T) in

V̂  ίΊ V̂  and un-^> u in ^ Γ Based on this fact, we may define the Bochner

integral
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(1.17) uε(t) = pε*u(t) = pε(s)u(t- s) ds, t (Ξ (ε, Γ - ε ) ,

and prove that uε belongs to C°°(ε, T — ε Vp Π V̂ ) and converges to w in 3^δtT^δ

as ε-> 0 for all δ e (0, 7Y2), where pe(f) = ε~d p(t/ε) (for p(f) see (1.3)).

Let ζδ e Co (0, Γ ) be a function such that 0 < ζδ GO < 1 for all t and

ζδ(t) = 1 for t e (<5, Γ— <5). It then easily follows that ζδuε-^ ζδu as ε—»0 and

ζδu—> u as δ—• 0 in ®0>Γ. This concludes the lemma. Q. E. D.

LEMMA 1.4. Let u e ®J>Γ wί/i z/ = du/dt e (SδJ^)', W/M /̂I always means that

(1.18) <«', 0>oτ = - Γ <«, 0r> Λ, 0 G C ( 0 , Γ V, Π VΊ).

If p > 2, we then have, after a possible modification of the value u(t) on a set of

measure zero,

(1.19) || u(t) |f - || u(s) |f = 2<κ', u>s>t for all 0< s <t< T.

If we further suppose u e Cw([0, 71 H), then u e C ([0, 7] //).

Proo/. The space L°°(0, Γ Vp Π F ^ is dense in L2(0, Γ H) and hence so

is 3SP

0T if p>2. Observing the injection $P

0T-+ L,2(0, T H) is one to one and

continuous, we have

0>τ <- L KΌ, 1 , n)

if p > 2, where the injection L2(0, T H) —• (SζfT)' is also one to one and

continuous. The proof of the lemma will be thus achieved by a similar argument as

in Temam [17, p. 260]. Defining uε by (1.17), we have

I <u'e, φ) dt = <u', ρ ε * 0 > o , r ^ C || ρ ε * φ | | 0 , r ^ C\\φ \\OιT

and on the other hand

I (ur

ε, φ} dt = — ί (uε, φr) dt—* (u\ φ}0>τ as ε —• 0

for all φ & C°° (0, T Vp Π V )̂ with supp ^ c (εt T — ε). By virtue of Lemma

1.3, we can conclude that {u'ε} is bounded in (9BliT)' and that

(1.20) uε-u in < Γ _ 5 ,
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(1.21) w —w' weakly* in (&διT_δY

a s ε ^ O , for all δ G [0, 7Y2).

According to (1.20), we have

| |w e ( f )IHI |w(f) | | inL}o c(0, T).

Hence, we can extract a subsequence, again denoted by {uε}, of {uε} so that

(1.22) \\uε(i) 1->||w(f) II as ε - + 0 for all f G ( 0 , 7 ) \ £ ,

where £ is a subset of (0, 7) of measure zero.

Let 5, t G (0, 7) \2? and s < /. Integration of the equality

over (s, β leads to

ιι«βω if - ιι«βω ιr =
Letting ε—>0 here, we easily see (1.19), keeping in mind (1.20)^(1.22). Since the

right-hand side of (1.19) is continuous in s and t, we get (1.19) for all

0 < s < t < T, modifying, if necessary, the value of u(t) on E. The latter half of

the lemma easily follows from the continuity of || u(t) ||. Q. E. D.

Finally, we describe a few statements about functional φ and operator B.

Regarding the properties which are maintained by the functional (0.3), we are

going to introduce a class of functionals on Vp. For each t > 0 we consider a

functional φt(u) — φ(t, u) on Vp, p ^ 1, possessing the properties (A.1)~(A.3):

(A.I) For each t > 0 φt is a proper, convex and lower-semicontinuous function

on Vp such that φt(0) = 0.

(A.2) There exist positive constants μt and g{ (i = 1,2) such that for all t > 0

and all v e Wp

φt(u) > μλ || D(u) ζ + g ι || D(u) \\l9 u e Vp Π Vl9

(1.23)
I <dφt(u), v>\<μ2

where dφt(u) denotes the set of subgradients of φ at w:

^ ( w ) = iw e Pf/; φ^t;) - φ,(w) > <α;, v - ii>, υ
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®(9φ,) the effective domain of dφt:

2)(dφt) = {UΪΞ Wp;dφt(u) Φ φ},

and hence d(pt may be regarded as a mapping of ® (dφt) into the set of

subsets of Wp.

(A.3) There exists a positive constant ε(h) depending on h > 0 such that

ε(h) -> 0 as h -» 0, and for all 5, t > 0 and all v ̂  Vp Π V1

( s , *) - φ(t, υ) \ < ε ( | s - t\)(\\D(v) ζ + | | D ( ι ; ) \\x).

It may be easily shown that 0 e ®(5<p,) c ( ^ ίl ^ and

^ ( « ) < μ21| Z)(«) IU + +g21| Z)(«) ||lf M

For a future convenience we set

(1.24) Φ^ = the set of φt, t > 0, satisfying (A.1)~(A.3).

It is well-known (see Brezis [3]) that φ (t, υ (t)) is measurable function of

t > 0 if v e LP (0, T VJ and a mapping ^—> / φ(t, v (t))dt is convex and
0

lower-semicontinuous.

Finally, we describe two lemmas concerning operator B(u) = wVu.

LEMMA 1.5. Suppose d — 3. For each p > 6/5 ί/î rg £#is£s α positive constant

γp such that

( 1 . 2 5 ) I < M l Vu2, v > \ < ΐ p (II Ml III u2 \\)a/2 (II Vu, III F w 2 II ,Ϋ
/2 II Ft; II,

/or all uίt u2, υ in V, where a + b = 2

b — p— 1, / = ί, ^ ~ (ir^ _ gWA __ -i) ^ g n 6/5 < ft < 11/5,

* = 5 ^ - 6> / = P, Q = P when9/b < p < 3,

ft=l. ^ =

 5p
6t Q, Q = P when 12/5 <p < °o.

= 2, t^β inequality (1.25) is valid for all p > 1, provided that

b=p-l, l = p, q = ^
(p ~ 1)

6 = 1, / = />', Q = P when2<p<°°,



VARIATIONAL INEQUALITIES OF BINGHAM TYPE 6 5

where// = p/(p ~ 1).

Proof. We start with case d = 3.

( i ) Let p ^ (6/5, 11/5). By integration by part we have, using Holder's

inequality,

(1.26) I (u. Vu,, v>\<C\\Ul ||2ϊ, || u2 ||2ί, II Vυ \, q' = q/(q - 1) .

Applying (1.10) with λ = 2, μ = p* = 3/>/(3—p) and v = 2q\ we get, using

(1.2),

II II ^ r^ II \\a/2 \\ r-τ ιιδ/2 -, o

II w, \\2q' ^ C || w, II II VUi \\p , i = 1, 2.

Substituting these into (1.26) leads to (1.25).

( i i ) Let p <Ξ [ 9 / 5 , 3). Take q = p in (1.26). Keeping in mind that 2 < 2//

< p , we obtain analogously as in (i)

where a + β = 1 and β = 3/(5p - 6). Combining this with (1.26) (q = p), we

arrive at (1.25).

(iii) Letp e [12/5, oo). Since 2 < 2pf < r=2p/(p~2) and l / r = 1//

— 1 / 3 , we have

II ut \\2P, < c II ut \r II vut \τ.
Inserting this into (1.26) with q = p leads to (1.25).

Exactly as above we can show (1.25) for the case d — 2. Q. E. D.

The following lemma is an immediate consequence of Proposition 1.1 and the

previous lemma.

LEMMA 1.6. Suppose that d - 3 and u e 3SP

0T Π L°°(0, T H). Then, B(u) =

u Vu is contained in Lr (0, T Vq), where

-6)/6, q = p, p e [9/5, 11/5)).

§2. Results and remarks

THEOREM 1 (Existence of weak solutions). Suppose that Ω is a domain in R ,
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that φt is contained in the set Φp, p > 6/5, which appears in (1.24), and that the

prescribed data u0 and f satisfy

(2.1) uoeH and fe L\OC (0, °° ; / / ) .

There then exists a weak solution, i.e., a vector field u satisfying

(2.2) u e U < Γ (Ί Cw([0, 7] H) ( < Γ = L*(0, T ;VP) Π £'(0, Γ Vx))

wit/i α derivative ur{ί) — du(f) /dt:

(2.3) w' e { U ®o,r n ^ ( 0 , T V,)}' in the sense (1.18),
Γ>0

the initial condition

(2.4) M(0) = u0,

the evolutional inequality

( 2 . 5 ) <z;7, υ- u> dt- ^ ( | | t ( T ) - w ( T ) U — || v ( 0 ) - u0 \\)
JQ Δ

+ f <B (M), V> dt + Γ {p(f, t;) - φ (ί, «)} Λ > Γ </, i; - w> Λ
•/Q JQ JQ

for allT> 0 and a//1; e W^Γ:

(2.6) WO

P

T = {v e SBjfΓ Π l ' ( 0 , Γ 7,) Π Cw([0, 71 fl) ^ e («J fΓ)'}

and ί/ι̂  energy inequality

(2.7) 9 - | | w ( ί ) | | 2 + / φ ( r , «) d τ < -y || w0 f + I <f,u>dτ for all t>0,
Δ JQ Δ JQ

where q — q(p) is the same as in (1.27). In particular,

(2.8) u e LP(Ω X (0, Γ)) for anyT>0 when 2 < p < 5.

COROLLARY 1 (Existence of strong solutions). Suppose p > 2 in Theorem 1

and let u be a weak solution satisfying

(2.9) u e L?oc (0, oo ; Vp) with q = q(p) from (1.27).

Then, it is a strong solution, i.e., a weak solution possessing the further properties:

(2.10) (i) u<Ξ C([0, 71 H), (ii) u'
Γ>0
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rτ rτ

(2.11) <u', v - u>oτ + I <B(u), υ- u> dt+ {φ(t, υ) - φ(t, u)} dt

> </, v - u> dt for allT> 0 and all v ^ SSP

0TJo

and the energy inequality of strong form

(2.12) \ || u(t) |Γ + f φ(τ, u)dτ<\ || u(s) f + f </, w> dτ

for all 0 < s < t, where < , ) 0 Γ denotes the duality between $0T and its dual. Particu-

larly, if p > 11/5, there then exists a strong solution.

Proof. If p > 11/5, then (2.3) implies (ii) of (2.10). Suppose p < 11/5.

Application of (1.25) yields

f || B(u) fv dt < h sup I u(f) IΓ ΓII FM f dt,

from which (ii) of (2.10) follows (see (4.3)). Here, b = 6/(5p - 6) and

p' = p/(p — 1). Then, (i) of (2.10) is an easy consequence of Lemma 1.4.

For any v ^ C ([0, T] Vp Π V^) it follows from Lemma 1.4 that

(2.13) f W, v- u> dt< <u', v- u>oτ

1 112 112

+ -w (II u(T) — υ\T) || — || u0 — v(0) \\),

and hence we have (2.11) for such υ. Let υ ^ SβP

0T. We make an extension of

v(t) so that v(t) — 0 for t < 0 and for t > T, and define a mollifier

(2.14) vε(t) = f pε(s)v(t- s)ds,
J— oo

which belongs to C x ([0, Γ ] V̂  Π V )̂ and converges to υ in 58Q(Γ as ε—* 0. Inser-

ting z; = ?;ε in (2.11) and letting ε—>0, we obtain (2.11) for all v e S ^ r and all

T > 0. In fact, since φt is convex, we have

(2.15) φ ( t , v ε ( t ) ) < f p ε ( s ) φ ( t - s,v(t- s ) ) d s
- ' - o o

+ £ pε(s){φ(t, υ(t-s)) - φ(t- s), υ(t - s))} ds = I,(ί) +11,(0.
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Keeping in mind that φ(t, υ{t)) is integrable on (0, T), we get Iε(t) —*

ψ(t, υ(t)) in L (0, T). An elementary calculation gives us

f \llε(t)\dt< f pε(s) ds f \φ(τ +s,v(τ)) - φ(τ,v(τ))\dτ.

Employing the Lebesgue theorem, we can derive from (A.3) that

lim J I φ(τ + s, v(τ)) — φ(τ, v{τ)) \ dτ = 0,

which proves Πε(t) —• 0 in L (0, T) and hence (2.15) yields

lim sup I φ(t, vε(t)) dτ < / φ(t, υ(t)) dt.

The inequality (2.12) is an easy consequence of (2.11) and Lemma 1.4. Q. E. D.

COROLLARY 2 (Uniqueness of strong solutions). Suppose in Theorem 1 that φt

is written in the form

(2.16) φt(v) = φt(υ) + f μ(t) \ D(v) \2 dx

where φt G Φr, r < 1, and μ ^ C([0, <*>), IT (Ω)) satisfying μ > μ0 for a positive

constantμ0 > 0. T/ιgn, t/ g have:

( i ) φt ^ φp withp = max(2, r).

( ii ) L<?ί M̂  ^^ α w ̂ α^ solution and u be a strong solution satisfying (2.10) and

(2.11), and further assume that u e L2<?/(2<? 3) (0, T Vq) for q= q(p) from (1.27)

and for all T > 0. TTien, w = M * .

ftoo/ (i) If ί ^ 2, t h e n | Z) ( « ) | | D (v) \ < (| D (u) \P'' + l)\D(v)\. If

p < 2, we have , u s i n g (1 .11) ,

I D(u) I P'11 D(t ) I = (I D(u) I I D(t ) I)'" 11 D(υ) \2'P

< (p - 1) I /)(«) I I D(v) \ + (2-p)\ D(v) |.

Consequently, ( i ) follows from (1.23).

( i i ) It is evident that p > 2 leads to 2q/(2q — 3) > p. Therefore, we have

u^ LP (0, T Vq) and hence it follows from ( i i ) of (2.10) that u is in W0

P

T for

T > 0. We choose v — u as a test function in the variational inequality (2.5) with

w and T replaced by u* and t, and get
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(2.17) f {<«', u - u*> + <B(u*), M> + φ(τ, u) - φ(τ, u*)} dτ

>h\u(f) - u*(t) f + f {<2μD(uJ, D(u - u*)> + < / , « - w*>} dr .

Inserting z; = u* into (2.11) and adding this to (2.17), we obtain

(2.18) || w(t) f + 2μ0 f || Vw f dτ < 2 Γ CB(M ) , u> dτ,w = u- u*,
^ 0 Λ)

from which we are going to derive w(β = w(0 — u*(t) — 0 for every t. To do so,

we use (1.2), (1.10) (2 < 2q' < 6) and (1.11) to get the following:

(2.19) LHS of (2.18) < 2 Γ || Vu \\q || w f2q, dτ

^ r% C II Γ T II II l | 2 α | | ||2i3 , ^ o / Γ* ii i|2 , \ / - j S / α Γ | | *-, | | l / α 11 ι ι 2 \ , \

^ 2 J | | F M | | J | W | | lkll6 dτ<2\τ)J | |«;| |6drj [η j \\Vu\\q | |u ; | | jdr j
II I|2 i i r» —β/a I II ΓT | | l / # || ||2 τ

|| w ||6 dr + 2aη I \\ Vu |L || w \\ dτ
Jo

< 2μ0 f || Vw f dτ + 2^" f i / f f / ' || Vu fa \\ w f dτ,

where d = 1 — 3/2#, β = 1 — a and 17 = μo/βS2. From this it follows that

II /Λ l|2 / Γ I II r-τ | | l/α II ||2 ,
II w(t) II < C I II VuL II w\\ dτ.Jo

Keeping in mind that || Vu\\q

 a Ξ L (0, T), we conclude that u (t) = u* (t) for

all t. Q. E. D.

COROLLARY 3 (Energy decay). Let u be a weak solution which is obtained in

Theorem 1. Then, the following statements hold.

( i ) // e L\θ, 00 ; H) and if u satisfies (2.12), then || w(f) | H 0 as ί"^ °°.

( i i ) // / satisfies || /(*) ||3 < ft / S x /or a// ί > 0, then || M (ί) || < || M0 || for all

t > 0, w/i£r£ Sx anrf ft ar^ constants appearing in (1.2) and (1.23), respec-

tively.

(iii) Assume that u is a strong solution satisfying (2.9) and u' ^ L (0, °°

Vp Π U (Ω)) for some r > pf. If f satisfies | | / ( ί ) ||3 <g1/S1 for all

t > To, then there exists Tx > To such that u(t) = 0 for all t > 7\.

Proof. ( i ) From (2.12) with 5 — 0 it follows by using GronwalΓs lemma that



7 0 YOSHIO KATO

(2.20) 1 u(t) |f + 2 Γ φ(τ, u) dτ < const, for all t > 0,

which implies w e #J>0O Π L°° (0, °°;H). Hence, w W e ^ ί l ^ for a.e. ί > 0.

Applying (1.9) with υ = u(f) and ^ = 6/5, we obtain u ^ L 5(0, °° H) since #

= 2. Therefore, the proof of (i) will be achieved by carrying out the same

device as in Miyakawa-Sohr [11].

(ii) Using (1.2) and (1.23), we can derive from (2.7)

\ || u(f) f + f {μx || Vu ζ + (gl - S, || /||3) II D(u) U dτ<h\ u0 f,

which implies (ii).

(iii) After a simple calculation we obtain from (2.11) that

(2.21) φ(t, u(t)) < <f(t) - u\t), uit)> for a.e. t > 0.

On the other hand it easily follows from the assumption that there exists 7\ > To

such that || ufiTλ) ||3 + WfiT,) ||3 < gί/S1 and (2.21) is valid for t = Γ :. Inserting

f = Γx into (2.21), we readily obtain φ(Tl9 uiTx)) < gx \\DiuiTJ) \\h and hence

uiTx) = 0. It is easy to see that u is a weak solution for t > Tγ with initial data

«(7\) = 0. Thus, part (ii) guarantees that κ(f) = 0 for all t > Tv Q. E. D.

THEOREM 2 (Case of exterior domain). Suppose that the complement of Ω is

compact and that φiu) = μ || Diu) \\P

p + g || Diu) \γ with p > 9/5 and positive

constants μ, g. Then, for any data (2.1) there exists a weak solution u satisfying the

energy inequality of strong form

(2.22) τHI u(t) |f + jf' {pμ \\ D(u) ζ + g\\ D(u) U dτ

for 5 = 0, a.e. s > 0 and all t> s.

In the last theorem we consider a Bingham fluid with variable viscosity μ and

yield limit g, which is occupied in a bounded and smooth domain Ω in R . We

recall that Vp(p>3/2) is identified with the closure of Y(Ω) by norm || Vv\\p

(see Lemma 1.1 (iii)). Set

(2.23) φ(t, u) = f iμ(t) \ D(u) |2 + g(t) \ D(u) |} dx for u e V.
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For prescribed data u0 and /:

(2.24) u0 G V and / G fl^ίO, °o H)

we consider the problem: To find a strong solution satisfying the evolutional

inequality

(2.25) (u'(f) + B(u(t)), v - u(t)> + φ(t, υ) - φ (ί, w(0) > </(0, v - u(f)>,

for v ^ V and for a.e. t > 0, and t/te initial condition

(2.26) M(0) = u0 inΩ.

Before stating the theorem we introduce two function spaces M and ^ in

which μ and g are contained, respectively. To do so, for b > 6 we define a and α

as follows:

(2.27) - + \ = \ and - + i = - + iτa o I a 6 a 2

It is obvious that 2 < α < 3, 1 /α + 1 /δ = 1 /3 and hence 3 < α < 6. Then, we

define

M = {μ e C([0, oo) ^ 1 > β ( β ) ) // e ^ o c ( 0 , oo ; Lb{Ω))},

9= W^(0, ™;L2(Ω)).

Denoting by γ0, yx and c0 positive constants such that

(2.28) | < β ( « ) , ι;> | ^ - ^ | Γ« f l l i ; ||3, \\v ζ < c01| υ f || Vυ f

and

(2.29) I <B(u) ,v)\<\(η\\Vu f + 4 r i r?" 3 1 u f) | Γw ||, J? > 0

for all u, v <= F, and setting for all Γ > 0

Aτ = (|| M0 f + fj || /|| Λ) exp (fj || /|| dί),

Mτ = Cμιμ~\ sup || v(t) Vμ(t) fa + 1) Γ | υ ^ |β Λ,
0<ίSΓ ^
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IT = III /(0) - X IΓ + fΓ I /' II dt + ( max || /(/) ||2 + A

2 ) Mτ + Gτ]

/Γ = Mτ exp ( jΓΓ || /' || dt + nμ, + Mτ)

and

K m a x
0<t<T

with v = 1/μ, λ = 3/α — 1/2, positive constants μf (i = 0, 1) and some

positive constant C depending only on a and Ω, we can state the last theorem.

THEOREM 3. Let Ω be a bounded and smooth domain in R and let μif

gj {i — 0, 1) be positive constants. Suppose that μ ^M^g^^^μ^^μ^μγ and

g0 < g < gv and that u0 and f satisfy (2.24) and

(2.30) χ - B(u0) e dφ(0, u0) for some χ e H.

If one of the following conditions

(2.31) ( i ) μl/jo > CQATET with γx — 0 and ( i i ) μo> T1 Eτ

is fulfilled, then we can find a strong solution u satisfying (2.25), (2.26) and

μ01| Vu(t) ||2 < Eτ,
(2.32) .. rτ

II u'(t) IΓ + ίf / II Vu' |Γ dt<Iτ+ Jτ (μ0Eτ + μo~
2 4 ^Γ>

/or α// t < T. Moreover, the u is unique in the sense that every weak solution is equal

to u. In particular, if f is inL™oc(0, °° L (Ω) ) , the following

sup || Vu(t) \\q (2 < q < 6) and

(2.33)

are bounded from above by positive continuous functions of the arguments

llxlUo,/Wi, Γ (\\f\\ + \\f'\\)dt,

sup || vVu(t) I, fT II vμ' \\l dt, f || ft g' f dt.
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Remark 1. Suppose d = 2. Reviewing Lemma 1.5 and the procedure carried

out in Section 3, we obtain a new version of Theorem 1: Let p > 1. For any data

(2.1) ί/iβrβ βmίs a weak solution u(t) satisfying (2.2) ~ (2.7) for all T > 0 and a//

t; <Ξ WO

P

T, where q = p/(p - IΫ if l< p < 2 and q = p if p > 2. Accordingly, it

follows from Corollaries 1 and 2, by taking q — p and applying the inequality

|| w \2P, < const. || w ψP || Vw ψP in the place of (2.19), that there exists exactly one

strong solution if p > 2 and φt is written in the form (2.16).

Remark 2. The conclusion of Theorem 2 remains valid even if φ(u) is

replaced by

N

Σ μj || D(u) \\γ with max(^ ) > 9/5 and min(^ ) = 1.

Remark 3. Let φ be a functional not depending on t and satisfying (A.I) —

(A.2) for p > 6/5, provided Wp is replaced by Vp Π V9/5. Then, it is easily shown

that for any / ^ H there exists a solution u ^ Vp Γϊ V1 to the stationary problem:

(2.34) <J3(w), *;> + φ(v) - φ(u) > </, υ - u>, υ e V9 Π Vlf

where ? = 3p/(5p - 6 ) for /> e (6/5, 9 / 5 ) and tf = /> for /> > 9/5. In fact,

observing (1.26) with 2qf =p*(6/5 <p< 9/5) and (1. 9) (q = 6/5) , we can

find uξ e ®(9φ) c l ^ ί l Vg/g satisfying / e jB(wξ) + ^(w f) + dφ(uξ) as in

Proposition 3.1, where £ξ(z;) = — ξF( | Vυ ~ Vυ) and ξ is a positive constant. A

desired solution u is given as a limit of w6 (cf. Lemma 1.5).

Remark 4. Suppose d = 2. For any ί) > 2 we define α and abyl/a + l/b

= 1/2 and α = a > 2. Then, Theorem 3 remains valid without condition (2.31).

More precisely, under the same hypotheses as in Theorem 3 we can prove that if

u0 and / satisfy (2.30), then there exists one and only one solution of

(2.25)-(2.26) in t < T satisfying

u €= r ° ( 0 , T Vq) for any q > 2, and u' e L2(0, Γ V) Π ZΓ(O, Γ fl).

§3. Regularized problem

For positive numbers λ and ξ we define an operator eλΛ oί V = V2 into its

dual V by

(eλιξ(u), υ) = ξ <exp (/ί || Vu \f) Vu, Vυ) for all υ e 1/ with c > 4.
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It is easy to see that eλΛ is monotone and B(un) = un-Vun-^ wVu weakly in Vr

if un-+ u weakly in V. Accordingly, A = eλΛ + B : u—> eλΛ{u) + B{u) is a

pseudo-monotone operator of Kinto V, i.e., if || u \v < 1, then ||-A(w) \v, is bound-

ed, and if wy—• u weakly in V as j — • oo and lim sup Ol(w. ), w, — w> < 0, then

liminf (A(u)y uh — v) > <A(w), u — v) for all # ^ V. It is readily seen that the

A may be regarded as a pseudo-monotone operator of Wp = Vp Γ\ Vinto Wp.

PROPOSITION 3.1. Let φ ^ Φp, p > 6/5, which does not depend on t, let Lλξ be

a mapping from % (dφ) = {υ e Wp 9φ(^) ^ 0} c Ŵ  Π VΊ into the set of subsets

LλΛ(υ) = eλΛ(v) +B(v) + dφ(υ)

and let

Yξ,n = ( r " 4 nξY4 with χ = γ2 from (1.25).

Then, the following statements hold.

(i) For any u ^ Wp there exists v ^ ®(9φ) such that

(3.1) u(

(ii) L^ί fj (z = 1,2) 5g solutions o/(3.1) with u = u{ G i/.

(3.2) | | ^ , | | < r ^ αnrf || δv f + 11 | Vδv f < 2 \\ δu ||2,

ifu{ ^ ,̂f,w — iu || w || < Mλξn}, where δv — v2 — υv δu = u2 — uλ and

Proof ( i ) T h e ex i s tence of v follows from T h e o r e m 8.5 of Lions [9, Ch. 2].

In fact, (1 .23) impl ies cλ || Vv fp < φ (v) and b y def init ion we h a v e (eλΛ(υ) ,υ)

Wp:

ξ\\ Vu || , and hence, it follows that the operator ( l H LλΛ) is coercive over

iυ + n A(v), υ) + n φ(v))
II v | |«

(ii) The relation (3.1) yields
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(3.3) || vf + ~ {(eλtξ(v), υ> + φ(v)} < \\ u f,

and hence (eλtξ(v), υ > < n\\u f / 2 . If u ^ Hλξn, then

|| Vυ |f exp U || Fz; ID < jξ \\u f < Yξ\ exp U Yl

So that

(3.4) || Vυ || < Yξ>n = (r~\^)l/\

Keeping in mind the following three inequalities:

(3.5) <B(vJ - B(υ2), vx - υ2) = - <B(υι - v2), υx>
^ II 111/2 II W-, / \ ||3/2 || *-, \\

(dcpivj — dφ(v2), υλ — v2} > 0,

we can deduce from the relation u{ e ί 1 + -~LλMυ) that

II c. ||2 I 1 (p. II π ? ||2 || « | | l/2 II Γ7 II Mr-rs ||3/2ϊ ^ / « « \

II δv\\ + —- \ξ II Vδv II — γ \\ δυ \\ \\ Vvx \\ \\Vδv \\ } < \δu, δv).

Applying (1.11) and then (3.4) with v = vv we obtain after a simple calculation

(3.6) \\\δυ\f + -^\\Vδvϊ<(δu,δυ>,
from which (3.2) follows by using Schwarz' inequality. Q. E. D.

There are given u0 e H and / e L^oc (0, oo ; / / ) . Let an <E H and /Λ G

C([0, °°) # ) , and assume that

(3.7) an-*uoinH and / w - > / i n L'o c(0, °° K>.

We then choose /I so that Mλ>ξ>n = Anexp(2nT), that is,

(3.8) λ = 2(γ-4nξ3Vc/4{2nT + \og{2~ι/2

 Tn
ι/A ξ~5/* An)},

where

It is evident that || an || < MλΛtn. Substitution of ξ — ξn = n~a and T — Ύn — n
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into (3.8) yields λn. If we set Mn = Mλn>ξn>n and Yn = Yξntn, and choose a and β as

0 < a < TΓ ( l - - ) and 0 < β < j-(l - 3a),
ό \ c) 4

it then easily follows that

ξn-*0, Tn-+ oo and λn~>0 as^->oo

PROPOSITION 3.2. Let φt e Φpi p > 6/5, uo<ΞHandf<Ξ L2

loc(0f oo H)>

that an ^ H and fn ^ C([0, °°) H) satisfy (3.7). Then, there exist

sequences ξn > 0, Tn > 0, λn > 0, Fw > 0, and Mn > 0, satisfying (3.9), SMC/I that

the foHoming statements hold:

( i ) For any u belonging to

Hn = {u e // || u || < MJ

corresponds exactly one v ^ Φ (dφt) such that u & \1 + — Ln(t, ' )) (v) and

<|| || < w,

(3.10) ^(ί, ! ;) = en{υ) + B{v) + dφ(t, υ) with en = ^ e ι | .

(ii) Let!£n(t, ) 6β Yosida's approximation of Ln\

Xn(t, • ) =

exists exactly one function un(t) in C ([0, ΓJ i/w) satisfying

< + %«(t, Un(0) =fn(t) in (0, Tn),

Proof. Choose ξn, Tn, λn, Yn and Mn as above. The proof of (i) is an immedi-

ate consequence of Proposition 3.1. So we devote our attention to part (ii). Setting

v = ( l H Ln(t, )) (u) e ®(9<p(), we immediately obtain

n(u - v) = <en(t, u) e LB(/, »)
(3.12) 9

l U f + f { < e n ( v ) , v > + φ ( t , v ) } <\\uf.

Let bn — Mn — || α w ||. W e se t Un= {u ^ H ;\\u — an\\ < bn} , w h i c h is a

subset of i/w, and define
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&Jt> «) =fn(t) ~ 2H(t, u) for (t, u) e [0, TJ x [/„.

We are going to prove that 3"n is a continuous function of [0, Tn] X £/n into H.

With each f, e [0, Γ J and w, e C/M (i = 1, 2) we associate v{ e Wp Π Vλ in a

manner that ut e ^ + —Ln(tif v{). Then, we have || Ft;, || < Yn and (3.12) with

u = u{ and υ = v{. Therefore, we have

(3.13) || ?n(t2, u2) - 2?n(tv Ul) || < || fn(t2) ~ fM II + »(ll δu || + II δυ ||),

where δv = v2 — vx and δu= u2 — uv

From (3.10) and (3.12) it follows that

(3.14) <n(κ, - ^t ) ~ ^(t;,) - S ( ^ ) , ̂  - v{> < φ(ti9 υ,) ~ φ(tif v,)

for (ί, y) = (1,2) and = (2, 1). Adding these, we obtain

<nδ(v -u) + δen(v) + δB(υ), δv}

< φ(t2, vx) - φ(tv υj - φ(t2, υ2) + φ(tιt υ2)

and hence, writing the RHS of the above inequality as Φ(tlf t2),

n || δv |f + ξn || Vδv |f + <δv Vvlf δv> < n <δu, δv> + Φ(tv t2).

Employing Holder's inequality and the inequality || Vvx \\ < Yn in the term

(δvVvlt δv), we get analogously as in (3.6)

(3.15) 3 || δv If + - ^ || Vδv If < 4 < δu, δv> + 4Φ(tv t2).

So that || δv\\ < 2 || δu || + 4Φ. Hence, combining this with (3.13) concludes the

continuity of 2Fn. In fact, (A.2) and (A.3) implies Φ(tv t2) —̂  0 as t2—>tv since

Ψ(tit v{) < II«,. II2 < (bn + II an II)2.
It is not difficult to see that

|| &n(t, u) II < an + βn || u - an || with an = 2/*4, and ^ = 2n,

l l ^ w α , « x) - ^ M α , w2) II ^ 3w II « ! - « 2 II, «, e f/M o - = 1 , 2 ) .

These permit us to apply the method of successive approximation to obtain one

and only one un ^ C ([0, Tn] Hn) satisfying (3.11), because Mn =

Anexp(2nTn) implies

This completes the proof of part (ii). Q. E. D.
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Remembering that un(t) e Hn, we define vn(f) e $}(dφt) by

(3.16) vn{t) = (l+~Ln(t, •)) ' («„(*)).

It then follows from (3.15) that υn e C([0, °°) V). Furthermore, we have

LEMMA 3.1. For each n it follows that

(P.I) n(un(f) - »„(/)) = <eH(t, un(t)) e £„(/, «„«)), 0 < ί < Tn,

(p.2) ιι ̂ ω ιr + 1 « e > κ ω ) , «nω> + φ(t, vn(t))) < ll«,,ω If, o < t < τn,

(P.3) 1 1 un{t) |Γ + f' {<eH(υJ, υn} + φ{τ, υn)} dτ + \ f' \\£n(τ, un) f dτ

< \\\ un(s) f + Jf' </„, un> dτ, 0<s<t< Tn

and

(P.4) || un{t) |Γ + Γ { ^ ( O , vM> + φ(t, υn)} dt

+ \f\\£n{t,un)fdt<K2

T,n J0

for t, 0 ^ t < T < Tw, tf/iere i ί Γ is α positive constant independent of t.

Proof Properties (P.I) and (P.2) easily follow from (3.12). Keeping in mind

(3.17) wn(f) = <eH(t, un) - B(vn) - en{υn) e dφ{t, υn), uniff) = aH,

we can derive

φ(t, vn(f)) - φ(s, υn(s))

< <wn(t), υn{t) - vn(s)> + φ(t, vn(s)) - φ(s, vn(s)).

Therefore, (A.3) implies the continuity of φ(t, vn(t)) in t > 0, because υn e

C([0, oo) V) and φ(0, t;n(ί)) is bounded in 0 < t < Tn. On the other hand, from

(3.11) and (P.I) it immediately follows that for all / > 0

<<, un> + <SeΛ(t, un), vn> + \ || ̂ ( ί , un) ||
2 = <fn, un>.

Hence, we have by virtue of (3.17)
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<u'n, un> + <en(vn), vn> + φ(t, υn) + — \\£n(t, un) f < <fn, un>.

Integration over Ω X (s, t) of the above gives (P.3). Application of GronwalΓs

lemma to (P.3) yields (P.4). Q. E. D.

§4. Proof of Theorem 1

For p> 6/5 we define q = q(p) by (1.27). Recalling the fact that Vq Π Vx c

Wp (see Lemma 1.1 (ii)), we deduce from (3.11) and (3.17)

rτ rτ rτ
(4.1) / <«;, v - vn> dt 4- / (eM, υ - vn> dt + I <B(υn), υ> dt

*/Q */Q »/Q

+ fj {φ(t, v)-φ (t, vn)} dt > fj <fn, v - vn> dt, v e Cι([0, T\;VqΓ\ V,)

for all n such that Tn > T. The proof of Theorem 1 will be accomplished by

passage to limit n—•» oo in (4.1) after a suitable choice of a subsequence of iun}.

To do so, using Lemma 3.1, we are going to examine the convergence properties

(C.1)~(C7) of the sequences iun) and {vn}.

LEMMA 4.1. Suppose p > 6/5. Then, for any T > 0 we have

rτ., ι.2
(C.I) lim I \\un- vn\\\ dt= 0,

(C.2) lim jΓ <en(vJ,v>dt=0, υ e C([0, 71 Vq Π Vi).

Moreover there exists a subsequence, still denoted by {n}, of {n} such that

un~^ u weakly in L°°(0, T H)

(C.3) υn —> u weakly inZΓ(0, T H) as n—+ oo

inlfiO, T;VP)

(C.4) liminf I φ(t, υn) dt > \ φ(t, u) dt.
n-*oo Jo Jo

Proof Property (C.I) immediately follows from (P.I), (P.2) and (P.4). The

boundedness of {un} and {vn} in Banach spaces L°°(0, T H) and 1/(0, T Vp) Π

L°°(0, T H), respectively, yields (C.3). Keeping in mind (P.4), we can compute as
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follows:

J <en (vn) ,v>dt<CJ ξn\\Vvn || exp (λn \\ Vυn |f) dt

<Cξn\ f ΛΓ11| Vυn |Γ expQM || Vvn ID dt + f N exp(λn N
c) dt)

< C{K2

τ/N+ξnNTexp(λnN
c)},

which leads to (C.2), where

EnN = U e (0, T) || Vvn(f) || > N} and C = sup || Vv(f) ||.
/e(0,Γ)

The property (C.4) immediately follows from lower-semicontinuity of the mapping

V-+J φ(tyυ)dt. Q. E. D.

Relying on the technique developed by Masuda [10] we can prove

LEMMA 4.2. Suppose p > 6/5. Then, there exists a subsequence in'} of {n}

such that

(C.5) lim <un,(f), φ> = (u(f), φ> uniformly in [0, T\ for all φ e H,

(C.6) lim / || vn, — u \\r

Ω dt = 0 for any positive numbers r and R,
n'—oo Jo R

and

(C.7) lim / (B(vn,) - B(u), v> dt = 0 for all v e C ([0, 71 Vq),

where q = q{p), u is the same as in (C.3) and ΩR = Ω Γ\ BR.

Proof of (C.5). For φ ̂ V(Ω) let us set #„(*) = <MΛ(ί), 0>. It is easy to see

that I J?n(/) I < Kτ\\φ\\ and

I xn(t) - xn(s) I < Cp{\ t-s\θ+ Γ I < e > w ) , 0> I rfτ}

for all 0 < s < t < Tn, where 0 < θ < 1 and Cp is a positive constant. This,

together with (C.3), allows us to apply the Ascoli-Arzela theorem, which implies

(C5).
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Proof of (C.6). For the proof we have only to substitute U = "the restriction

of vn — u onto ΩR" into the Friedrichs type inequality: For any ε > 0 there exists a

positive integer N such that

(4.2) || U\\ΩR <ε\\VU\\PΩR + NΣ\ <φk, U>ΩR |, U e W^(ΩR),

w/ιere {0A} is ίoία/ in Lσ(ΩR). The proof of (4.2) will be achieved, based on the fact

that the injection mapping W ' (ΩR) —• L (42 )̂ is compact if p > 6/5.

Proof of (CΊ). From the definition of β we have

Γ <£(*/„,) - B («), » > dt = - Γ <(vn- u)®vn + u®{υn-u),Vυ> dt,

which is denoted by In(Vυ). Here, u ® t; is a tensor field such that (M ® v)tj —

uvJ. We decompose In(Vv) in the form

where

wλ = (1 - ^ U J : ) ) ^ , ^ = I J U Λ Γ X I - f θ / | Ft; I)} Vυ

and

for small λ, μ > 0. Here £ and r? are cut-off function defined by (1.3).

Using Lemma 1.5 and the Dini theorem concerning a monotone decreasing

sequence of continuous functions, we can prove that for any ε > 0 there exist λ

and μ so small that | In (wλ) \ < ε and | In (wλu) \ < ε. We fix such λ, μ. Since

supp zλu c: B2/λ and | zλu \ < 2/μ, it follows that

I In(zλJ I ̂  \ f j II vΛ - u l2/i (II vn II + II u \\)dt.

Hence, (C.6) implies

lim InXzλ) = 0 and lim sup | In,(Vυ) \ < 2ε.

This asserts (C.7). Q. E. D.

We are now ready to prove Theorem 1. Substituting n — YΪ into (4.1) and

letting n' —* °°, we can conclude (2.5) for υ e C ([0, T\ Vq Π V )̂ with the aid
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of (C.1)~(C7). In fact, the first term of the LHS of (4.1) is calculated as follows:

/ <u'n, v - vn> dt = / {<v\ v - un> + < < - υ\υ- un>
Jo JQ

+ <u'n, un - vn» dt

< Γ <υ\ υ-un)dt-\ {\un(T) - v(T) f ~\\an- υ(Q) f)

and hence we have by (3.7)

lim sup J (u'n,, v — vn,) dt

< f <υ', υ-u> dt-\ (|| u{T) - v(T) f -\\u0- υ(0) f) .

The other terms of (4.1) will be handled without any difficulty by keeping in mind

(C.2), (C.7) and (C.4).

To prove (2.5) for any υ belonging to the space WOtT from (2.6) we extend

v(t) outside the interval [0, 71 as follows: v(t) = υ(— t) for t < 0 and

= v(2T — t) for t > T. Let υε(f) be a mollifier defined by (2.14). It is easily seen

that υε e C 1 ([0, 71 Vq Π V,)f vε->v in < Γ Π Lp(0, T Vq) and υ's-+ υr

weakly in (SfOtT)'. Substituting υ = υε into (2.5) and tending ε—• 0, we have (2.5)

for any υ ^ WO

P

T because Lemma 1.4 implies v ^ C ([0, °°) H) and hence

vε(t) -• t (ί) uniformly in C([0, 71 //).

Our next purpose is to prove (2.3). Taking account of (3.17), we can infer

from (1.23), using (P.2) and (P.4),

I J <wn, v) dt £ C { ( J \\Vv ζ dt) + f || D(υ) IL dt]

for all v ^ S 0 Γ . This guarantees the existence of β such that wn—*β weakly in

(flBj,Γ)'. Thus, it easily follows from (C.7) that

(4.3) - J <u,φ'>dt=J < / - B(u) - β, φ> dt

for all φ ̂  Ĉ ° (0, T Vq Π V^). According to (1.18) and Lemma 1.3, we can

conclude (2.3), observing Lemma 1.6.

The energy inequality (2.7) is an immediate consequence of (P.3) (s = 0) and
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(C.2). The inclusion (2.8) easily follows from Lemmas 1.1 and 1.2.

§5. Proof of Theorem 2

Suppose that Ω is a domain whose complement is compact. We may therefore

assume that there exists a positive constant Ro such that ER = R \ BR is

contained in Ω for all R > Ro. For a measurable set M we set

= ( /
\JM

a n d \\u \\2>M = \\ u

Let φ(u) = μ\\D(u) % + g\\D(u) ||χ with p > 9/5. We assume that un e H is

the vector field constructed in Proposition 3.2, where an — u0 and φ ^ Φ ,̂,

ί > 9/5, for all n, and that vn(t) e ®(9φ f) is defined by (3.16). The main

purpose of this section is to prove

PROPOSITION 5.1. Suppose that p > 9/5 and T > 0. For cmy ε > 0 there exists

R> Ro such that

(5.1) limsup / \\un(t) fEdt< ε.

Temporarily, let us assume (5.1) to hold. Since

(5.2) Γ || un, - u f dt < 2 f (|| un, - u t + || «„, I + II u t) dt,

it follows from (5.1), (C.I) and (C.5) that

limsup LHS of (5.2) < 4ε,

which implies by using (P.4)

Γτ

(5.3) \\un, - u\\rdt-+O asw'^oo

for any r > 0. Therefore, we can extract a subsequence {n") of {nO so that

un,,(s) —+ u(s) in /ί for a.e. 5 > 0. Substituting n = n" into (P.3) and letting

n" ^ oo, we obtain (2.22).

Before proving the proposition we prepare a few lemmas. For 0 < λ < 1

such that 1 /λ > i?0 we introduce a cut-off function:

ζλ(x) = {1 - 7?(;Lr)}2' (see (1.3) for r?Cr))
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and the fundamental solution of λ — Δ:

j? 1 ,

Fλ = -i—I—r exp (—

Like (1.6) we define a mapping v—> vλ:

vx = rot{ζλ(Fχ*(ζλrotv))}, l/λ>R0.

After a simple calculation we obtain

(5.4) υλ = ζx{(δ - λFx) * (ζxv)} + Rλv,

where

(5.5) Rλv = ζ,{F,*rot(t; x VQ) + Vζλ x {Fλ

+ Vζλ X {Fλ* (v x

Using the inequality (1.4), the identity (1.8) and the estimations with respect

toF:

(5.6) || λFλ I = 1, || λι/2VkFλ I < C and || V{ Vj(Fλ * h) || < C || h ||, A e L2,

we easily see that if v is in H (or Kr, r >: 1), then so is vλ, where and in what fol-

lows C denotes various positive constants not depending on λ. More precisely we

can show quite easily

LEMMA 5.1. For any v ^ C~(R ) we have

(5.7) || Rλυ\\ < Cλ1/2 \\υ ||, || VRλv \\ < Cλ || υ ||,

(5.8) || F7?^ It < Cλί/2 (|| Fί; ||r + || v ||), r > 6/5,

(5.9) ||/)(i?^) Id < CλV21| /)(«;) ||lβ

Proo/. The proof of (5.7) is evident. Without any difficulty we can show that

|| D(Rλv) \\r < Crλ
1/2 (II D(υ) I + λ || υ \\r,BJ

for all r > 1. Consequently, the use of (1.1) and Lemma 1.2 imply (5.8). By

Holder's inequality we have

(5.10) IMLs™ - Cλ~ι\\v\\3/2.

Hence, the proof of (5.9) is achieved with the aid of (1.2). Q. E. D.
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LEMMA 5.2. Suppose thatp > 9/5. Then, we have

(5.11) \<B(υ),vi>\^Cλ1/2\\υΠVυt v^Y,

where a, b and q are positive numbers such that a + b = 3, b ̂  q and q — p for

p < 3 and = 2 for p > 3.

Proof After a simple calculation we obtain from (5.4) that

- WυJV&λ, (δ - λFλ)*(ζλυ
j)> - Wυ\ F,(

and hence, using (1.4), (5.6) and (5.7), we get

(5.12) I <B(v),υλ>\< Cλ1/2\\υ\\\\υt

Assume that 9/5 < p < 3. Then, 2 < 4 < />*. Using (1.10) and (1.2), we obtain

(5.13) || v\\l< C\\υ f~β || Vv ζ with β = 3p/(5p - 6).

Evidently, ^ > 9/5 implies y8 < p. We now suppose p > 3. Instead of (5.13) the

inequality:

(5.14) IMI^ClMH

is adopted. Combining (5.12) with (5.13)-(5.14), we arrive at (5.11). Q. E. D.

Let α > 1 and q ̂  1. Set zλ = ζ^*. Using Holder's inequality, we have for

- F,* (ztt

λh) I < ̂  fjJ^JJe-^χ-"11 2Γ(x) - za

x(y) \ \ h(y) | dy

<Cλf e-Λlχ-vl \h(y)\dy< C / " 3 / 2 ί ' ( / e^1*'"1 \ h(y) \" dy)

Hence,

/r i ι-\ II fl/n . »\ 7̂  § / Λ * \ | | ^ - /-ι •) 1 —3/2?' —1/2? II / II ^ /^-1—l/2\\ | |

(5.15) \\zλ(Fλ*h) — Fλ*(zλh) \\q < Cλ q\\h\\q<Cλ \\h\\r

With the aid of (5.15) we shall prove the last two lemmas.

LEMMA 5.3. Let ψp(v) = || Dip) ||J, p > 9/5.

(5.16) - <dφp(υ), υλ> < Cλ1/2(\\ Vv ζ + \\υ\\ \\ Vυ
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Proof. In view of (5.4) we have

D(υλ) = ζλ{tf ~ Wλ) * (ζλD(v)}

- {ζλ(ΔFλ*(W, ζjiύ) + [D, ζλ](ΔFλ*(ζλv)) - D(Rλv)} = X-Y

and hence,

the LHS of (5.16) = - p < | D(v) \P~2 D(v), X- Y>,

where [D, ζ]u = D(ζu) — ζD(u) and hence

(W9ζ\u)ij={(Vι0uj+(VJ0ui}/2.

Firstly, we have in view of (5.15)

(5.17) -p<\D(v)\P D(v),X>

= -p\\ z\D(v) l+p<\ D(υ) Γ"2 D(υ), z?'2 UFX* (zΓ"2 D(υ) z?'2 UF* (z2

λ

+ p<\ D(υ) Γ 2 D(υ), λFλ * (zf D(υ)) - zf'2 {λFλ * {z\ D{v)}

+ 4 UF,*z" D(ύ)) - λFλ*{zf
— —̂-« 11 γ^/ \ \\p-2 -,1/2 II I Λ / \ II ^ r^ 11/2 II •-» ||/>

< C II Z)(t;) 11̂  /ί || D(υ) \\p < Cλ || Fz; ||̂ .

By the same argument as is employed in the proof of (5.8) we obtain

p < I D(υ) Γ2D(v), Y> < Cλιn I D(v) f~ι (|| Fo II, + || v ||),

which concludes (5.16). Q. E. D.

LEMMA 5.4. Let φ^v) = \\D(v) \\v Then,

(5.18) I < dφSv), vλ> I < Cλ1'2 \\D(v) ||lf i; e ®(a«p).

Proo/. Let w ̂  dψ^v). Then, we have

<», »,> = (w, ζ,{(δ - λFλ)*ζλv)> + <w, Rλυ> =A + B.

Inserting φ = υ — tζχ{(δ — λFλ) * ζλv} (0 < t < 1) into the inequality

(w, φ — υ> < Ψι(φ) — Ψι(v), we have

tA > φ.iv) ~ φSΦ) = II Diυ) I ~

A similar calculation as in (5.17) leads to

D(φ) = (1 - tφDiυ) + tλFλ*ζ2

λD(v)

+ t{ζλ(λFΛ*ζλD(v)) - λFΛ*ζ2

λD(v)} + tζ(ζλ)(ΔFλ*ζλv)

+ tζλ(ΔFλ*D(ζλ)v).
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Making use of (5.15), we get

+ t\\D(ζλ){Fλ*Δ(ζλv)} I + t\\ ζλ{Fλ*Δ(D(i;λ)v)} I

Exactly as in (5.9) we have (5.18). Q. E. D.

Proof of Proposition 5.1. Multiplying (3.17) by unλ and integrating over

Ω X (0, t), we obtain, keeping in mind (3.11), that

(5.19) / ' <«;, uj> dτ = f <fn, unJ> dτ-\( <£n(un), i£n{un))λ) dτ

- jΓ <B(υn) + en(υn) + dφp{vn) + wH, vnJ) dτ,

where wn{t) ^ dcp^Ό^f)). Since

<<> unJ)
 =J-^<^ rot un, Fλ * (ζ, rot un)>,

we have

(5.20) 2 Γ <«;, uHιλ> dτ = (un(t), unJ(t)> - <un, unJ>.

On the other hand we obtain from (5.4), (5.6) and (5.7) that

(5.21) - <«„, uHjt> + || ζλun ||2 = <un -vn + vn, ζλ(λFλ * ( ζ A ) ) > - <un, Rxun>

£ I I « » - »„ III «„ II + c / / 2 II un f + 1 ζ A || || ||

Therefore, we get, using (P.4),

(5.22) || ζλun IP < 2 / ' <«;, «Λi> ds + II ζ A f +

+ KT(\\ un(t) - vn(t) II + II ζλυH(t)*λFλ ||) + CKτλ
ι/2

for all t < T.

For the proof of the proposition it is sufficient to establish

(5.23) limsup f \\ζxuH(t)\\2dt-^O a sΛ-^0.

Applying (1.4) with Y—2,p — 3 / 2 and q = 6 / 5 , we obtain, keeping in mind

CλW2 II M 0 IΓ
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(1.2),

(5.24) || ζ Λ * λFλ || < || vn ||3/2 II λFλ | U < Cλιno II D(vn) t.

Thus, we have only to pay attention to each term of the RHS of (5.19). From (5.7)

it immediately follows that

(5.25) f <fn, un> λ>ds<2 Γ || ζjn || ζλun || ds + Cλ1/2 C || fn || I k II ds
JQ JQ JQ

<2Kτf
T (II fn - f\\ + II ζjII)ds + cκτλ

V2f II /„ II ds,
Jo Jo

(5.26) - i / <^(«n), (ί?w(«β),> ds < Cλuϊ\f \%M \Us < CK2

τλ
u\

fl JQ fl JQ

and

(5.27) - f' ^ ( O , ^ > Js < C/i / Γ eM || υn || || Fz;M || expU w || Vvn \\c) ds.
Jo JQ

Here, we used the positively of δ — λFλ\

<A, ( < 5 - λFλ)*h> > 0, ί ί £ I 2 .

From Lemma 5.2 it follows that

- f <5(ι;β), t;M,> ds < Cλ1/2 Γ || t;, f II Ft;, IC ds < CCτλ
υ2.

Jo Jo

Lemmas 5.3 and 5.4 lead to

r*
(5.29) - <dφ(υn) + wn, vnλ> ds

Jo

< Cλ1/2 fj (|| Vυn ζ + || υn || || Vvn ζ'1 + || D(vn) \\x) ds < CCτλ
ι/\

Thanks to (5.22), we can prove (5.23) by virtue of (5.24)^(5.29).

§6. Proof of Theorem 3

We first observe that functional φt{u) — φ(t, u) defined by (2.23) satisfies

(A.I) — (A.3) with p = 2 if μ e M and g e (§. Applying Proposition 3.2 with

an~ uo^~ a n c * fn ~ / w e c a n frnd sequences Uw}, ίΓM}, {ξw}, {Yn} and {Mn}

satisfying (3.9) and that for any u e Hn= {u ^ H \\u\\ < Mn} and any t > 0
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there ex is t s exact ly one v e V such t h a t » e ( l + --Ln(t, ))(v) and

|| Ft; || < Γw, w h e r e

(6.1) Ln(t, υ) = B(υ) + en(v) + dφu(t, v),

φn(t, υ) = φ(t, υ) - εn \\ D(υ) f with εn = ξnexp(λn \\ Vu0 \\c).

Moreover, setting

Sn(t,u) = n{\ - (l +^LH(t, • ))"1} (u):Hn^H,

we obtain one and only one function un ^ C ([0, Γ J Hn) satisfying

«;ω + #,(*, «nω) =/ω in ί e (o, rM),
(6.2)

Mn(0) = αn.

We then define υn(t) as in (3.16):

(6.3) vn(t) = {l+±ιLn(t, )}~\un(ί».

From (3.15) it immediately follows that υn e C ( [ 0 , Γ J V) for all n. We can

further prove that

(6.4) ^ ( 0 ) = u0 and £n(0, un(0)) = χ.

In fact, observing (2.30) and dφ(t, u0) — en(u0) + dφn(t, uQ), we have

χ €= L Λ ( 0 , u 0 ) a n d h e n c e u n ( 0 ) = u o + ^χ^{l +^Ln(0, ) ) ( « 0 ) .

Analogously as in Theorem 1 we can find a weak solution u of (2.25)-(2.26).

Corollary 1 says that M is a strong solution of (2.25)-(2.26) as well if it

satisfies (2.32). So we have only to establish the regularity properties (2.32) and

(2.33).

We first consider a solution u e V of a stationary problem:

(6.5) <B(u), v ~ u> + φ(t, υ) - φ(t, u) > (h, υ - u>, υ e V

for t > 0 and h ^ L°° (Ω) . It is easily seen from the Hahn-Banach theorem and

Temam [17, p.14] that there exist π ^ L2(Ω)t a constant c — c(Ω) and

m — (Mjj)3ij=ι with m ί7 ^ L°°(Ω) and | m | < gλ such that

(6.6) - V' (2μD(u) + m) + B(u) + Vπ = h,

(6.7) || 7Γ || < *(|| A II + I B(u) \\v, + II μVu \\ + g l ) .
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Moreover, we can establish the regularity of u as in Kim [8], making use of

Cattabriga's result concerning the regularity of solutions of the Stokes equation

(see [4]).

LEMMA 6.1. Let u e V be a solution o/(6.5) and assume that a satisfies (2.27).

Then, there exists a positive constant Co depending only on a and Ω such that

(6.8) || Vu I < Covo (|| vVμ(t) \\a + 1) (|| h\\ + \\u \\a || Vu \\ + g ι + μ01| Vu | | ) ,

where v — 1 /μ(t) and v0 = 1 /μ0.

Proof We begin by rewriting (6.6) as

- Au + V(vπ) = vVμ- (2D(u) - vπld + vm) + V-(vrn) + vh - vB(u),

where Id denotes the identity tensor. The inequality {6.8) is then an easy consequ-

ence of (6.7) and the inequality due to [4] (see also [17, p. 35]):

(6.9) || Vu I + || vπ I < C || vVμ \\a (|| Vu || + \\vπ \\ + \\ vm ||)

+ C(\vm\\a + \\vh\\+v0\\u\\a\\Vu\).

Q. E. D.

LEMMA 6.2. Let N be the largest integer in the set of integers < b/2 and let us

define finite sequences {an}n=0 and {rn}n=0 by

Let q> a, and assume that anQ_x < q < ano (or aN < q) and \/r— l/q + 1/3. Then,

for any solution u of (6.5) the following estimates hold.

(6.11) || Vu I + || vπ I < Cι{Pι{\ Vu \\ + \\ vπ ||) + ^γ^γ Qr},

where I = n0 or N + 1, cι is a positive constant depending only on a, I and Ω, and

P = || vVμ(t) I + vju I, Qr = vo{gι(l + II vVμit) ||α) + || h |p .

Proof Since I/a + l/b = 1/3, it follows that I/a + l/an_x = \/rn for

all n> N. Hence

Lrn{Ω) c W~ι'an{Ω) and || vB(u) ln < vju \\a \\ Vu i ^ .

Like (6.9), we obtain



VARIATIONAL INEQUALITIES OF BINGHAM TYPE 9 1

II Vu ln + || vπ \\an < Cn II vVμ \\a (|| Vu l^ + \\ vπ fl^ + || vm \\aJ
+ Cn (|| vm \\an + || vh \\rn + vo\\u 11| Vu IJ

for all n < N, where Cn is a positive constant depending only on α, n and Ω.

Therefore, we have

II Vu \\an + || vπ \\an < C'n {P (« Vu l^ + II vπ \\aJ + Qr},

from which it follows by induction on n that

II Vu \\an + || vπ \\an < cn [Pn (|| Vu || + || vπ ||) + ̂ r f Q J .

The proof of (6.11) is readily achieved. Q. E. D.

We now return to (6.2) and (6.3).

PROPOSITION 6.1. Let T > 0. Suppose that there exists a positive constant E

satisfying one of the following conditions

/* i o\ i ' \ ί r°5/r°4 > C ^ τ E A i •• N
(6.12) ( l ) and (li)

Ul|7tto | |2<£

and dg/ine(6.13) Γw(£) = sup{Γ*;A/oll^(ί) IΓ < £, 0 < ^ < Γ*

a positive integer n0 such that Tn(E) > 0 and

for all t < Tn(E) and all n > n0, where μn>0 = μ0 — εn, and Aτ, Iτ, Jτ are the same

as in Theorem 3.

Proof From (6.2) and (6.3) it follows that

(6.15) <en(vn(t)) + B(vn(t)), υ - υH(t)> + 2 <μn(t)D(vn(t)), D(v - vn(f))>

+ fg(f)(\D(v) I - \D(vn(f)) \ ) d x > < / ω ~ < ω , v - υ n ( t ) > , υ^V,

w h e r e μ n (t) = μ (t) — εn. I n s e r t i n g v = vn(t+ h ) , w e o b t a i n a f t e r a s i m p l e

c a l c u l a t i o n
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<δhen{υn) + δhB(vn), <5Λ> + 2 <δh(μnD(vn)), D(δhvn)>

< <δΛ(f- < ) , δhvn> - <δhg, D(δhυn)>,

where δh u — {u (t + h) — u (t)} /h. Keeping in mind f—ur

n — £n (t, un) and

δhυn = δhun — — δh£n(t, un) and using Schwarz' inequality, we get

(6.16) ft I δkun f + || 4Wn D(δhvn) f - 2 <B(δh(vn), vn(t)>

< 2 || A ^ δhμ-D(vn) f + 2 <δj, δhuny + || fc δhg f.

We first suppose (i) of (6.12) to hold. Then, (6.16), together with (2.27) and

(2.28), leads to

(6.17) ft || δhun f + \ {2μnΛ - r 01 vn ||3) || Vδhvn ||
2

II + 2II vnδhβ Wl II4K Vvn I +1| 4^n δhg f + II δhf\\ || δhun f,

where υn — 1 /μn.

On the other hand, from (6.15) with v — 0 it immediately follows that

(6.18) jft\\uj2 + φn(t,vn) <<f,un>.

Hence, the use of GronwalΓs lemma implies || un (t) \\ ^ Aτ for all t < T. More-

over, observing (2.28), (6.4) and (6.12), we readily obtain Tn(E) > 0 and

|| vn(t) \\l < c0 II un(t) |f || Vvn(t) f < cArvβ, t < Tn(E)

for all n > % So that 2μn>0 — γ0 \\ vn ||3 > μn>0. Integrating (6.17) over the interval

(0, f), applying GronwalΓs lemma and letting h—> 0, we obtain

(6.i9) K ω i f

< ill /(0) - χ II2 + f {«/' || + 2 II vμ' t II {~μ Vvn fa + || ftg f) dt)

for all t < Tn(E) and all n > n0.

Exactly as in Lemma 6.1 we can derive

(6.20) || Vυn{t) I < CιV\ (|| vVμit) fa + 1) (\\u'n(f) f + \\f(t) f + g\
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Employing again GronwalΓs lemma after substitution of (6.20) into (6.19), we get
m -i A \ II II ^ II \\λ II I|1-~Λ

(6.14), since \v\a < \\v || \\v ||6 .

Secondly, we suppose (ii) of (6.12) to hold. The use of (2.29) in the LHS of

(6.16) implies

υn f(6.17) ft \\δhutt ||
2 + \ (ZμnΛ - η || Vvn ||) || Vδhυn

+ (i + f ) (2II » A P B iivS F,B c + II ̂  flrf ID

Vvn | |) II δ Λ « κ II2,

where η = T and we used the inequality:

(6.2D ιι s Λ ιι2 < 2 ιι δkUn f + f (2 II vBdΛμ II; II V S > . II: + n v / ^ δ ^ ιι2),

which is easily derived from (3.14) by observing that

the RHS of (3.14) < Γ i2μ(t,) \ D(υ) \ + g(t,)} (| /)(»,) I - I D(υt) |) dx.

Therefore, we have

II 14' (A II2 _i_ /W Γ II ./ II2 /̂̂
II w«v^ II ^ 1 I II vn II α r

< (I f(0)-χ IΓ + j f (||/'II + 2 (l + f ) II vμ' tII^ Ft;B||2 + IIM'ID dt)

x exp(jfr||/'li^-f-

for all t < Tn (E) and all n > n0. By the same argument as above we arrive at

(6.14). Q. E. D.

Our next task is to find E such that Tn(E) = T. From (6.18) it easily follows

that

(6.22) Ψn(t, vn(t))2 < 2 ιι un(t) f a fit) ιι2 + ιι κ(t) ID.

Accordingly, if E is chosen so that

(6.23) 9AT( max \\f(t) f + Iτ) + 9AτJτ(μ0E + Aλ

τμ
λ

0'
2E2~λ) < E\

then we can derive from (6.22) and Proposition 6.1 that

μ0 II Vυn{t) |Γ < 4972 φn(t, υn(t)) < E
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for all t < Tn(E) and all n > n0. Hence, it is concluded that Tn(E) = T. In fact,

this contradicts the definition (6.13) if Tn(E) < T. For the sake of simplicity we

write

Set

Then, B = E2

(6.

7 2

23) as

= (2B.

and

Bo

\ 1/λ

,+

+ B1

and

n1r,2

E2

<

f B2E <

= 2B, + ̂

E\/2. It

:E2.

is easily verified that

Eτ = Ex + E2 satisfies (6.23).

The inequality μ0 \\ VuQ \\ < Eτ is then trivial. Making use of the compactness

argument, we thus arrive at (2.32). Evidently, M is a solution of (2.25)-(2.26).

Moreover, with the aid of Lemma 6.2 we can prove that (2.33) are bounded. Let /

be the integer mentioned in Lemma 6.2. Then, (6.11) implies

Vu I < cx (P'(| | Vu || + II vπ ||) + ^ Y Qr],

where P (t) is bounded and Qr (t) is the sum of the bounded function and

| | / ( 0 - u'(t) \\r If 2 < q < 6, then 6/5 < r < 2. We now suppose q > 6. Then,

2 < r < 3. By (1.10) and Sobolev's inequality we have

\\u'\\r< const. U ' lΓΊl ϊV IΓ,

where δ = 3 (1/2 - l/r) and l/r = \/q + 1/3. Therefore, || Vu\\p

q is integr-

able for p = 2/(5, which completes the proof of the fact mentioned above. The un-

iqueness easily follows from (ii) of Corollary 2.
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