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VARIATIONAL INEQUALITIES OF BINGHAM TYPE
IN THREE DIMENSIONS

YOSHIO KATO

Introduction

The flow of Bingham type through a domain £ in the d-th dimensional space
R’ (d > 2) during the time (0, T) is a flow of an incompressible visco-plastic
fluid governed by the equations for a velocity vector # = (ul,. . .,ud) and a stress
tensor 6 = (0,),.;:

% +uVu=f+Vo
(0.1) in 2 x 0, D

V-u=20
and by the constituent law:

D g

o’ =1{n(D)+ D when D # 0
o D { o1}

lo"|<g when D =0

which is equivalent to

1-g/lé’e” when | 6”| > g
n( DD = P
0 when|o | < g
where ¢° = g + 7l, is the deviation of g (i.e., 1 = — tr(o) /d is the pressure), g

the yield limit, D = D(u) a tensor of strain velocity with components:
D,(u) = %(V,u’ + Vu') with V,=d/0x,

| 0| the length defined by

lol = (c:®)"?, o' 7= 0,1,
uV=uV, Vo),= Vio,and V-u = Vu' = div u, the summation convention con-
cerning repeated indices being used.

Recieved July 22, 1991.
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In the present paper we consider a fluid with viscosity 7 (| D|) such that
An(A) is a nondecreasing function in A = 0 satisfying

A< Q) <7, a=0

for some positive constants ¢, ¢, and p > 1. The various interesting examples of
17 (A) may be found in Astarita-Marrucci [1]. Introducing a convex functional of u:

D) |
(0.3) o () :fgdxfo Gn(D) + g) dA,

we can deduce after Duvaut-Lions [5] the equations (0.1)-(0.2) subject to the
boundary condition # = 0 to the evolution inequality

(0.4) fg W® + Bu®) @ — u®) dr + o) — ou®)
> fgf(t)-w— u(®)dx

for all t € (0, T) and all v such that V-v =0 in 2 and v = 0 on the boundary
09 of 2, where #’ = du/dt and B(u) = u-Vu. The inequality (0.4) is called to be
of Bingham type if g > 0.

The problem we consider here is to find a solution #(#) = u(x, #) of inequa-
lity (0.4) of Bingham type satisfying the boundary condition

(0.5) ulx,) =0 on 02X (0,7
and the initial condition
(0.6) u(x, 0) = u,(x) in Q.

The fluid which is obeyed by (0.2) with constant viscosity 7 is called a Bing-
ham fluid, whose flow was first studied by Duvaut-Lions [5,6] introducing a
variational inequality such as (0.4). They obtained, among other things, a weak
solution (for the definition see Theorem 1). In Naumann-Wulst [13,14] strong
solutions (for the definition see Corollary 1) were looked for in the case 5 (1) =
A2, (/97 — 1) /4 < p < 3, under the condition that £ is a smooth and bounded
domain in R’ The existence of a strong solution for a Bingham fluid was investi-
gated by Kim [7,8] in the plane as well as in the third dimensional bounded do-
main.

The main result of this paper consists of three theorems. Theorem 1 is
concerned with the existence of weak solutions to the initial-boundary value prob-
lem (0.4)~(0.6) with p > 6/5 where ¢ is allowed to depend explicitly on £. As a
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corollary we obtain strong solutions for p = 11/5 (see Corollary 1). This result is
a slight improvement of a result of Naumann-Wulst [14, Theorem 1.1 (i)]. In
Theorem 2 we derive the energy inequality of strong form, provided that £ is an
exterior domain and (1) = pA’~* with positive constant x# and p = 9/5. The reg-
ularity of velocity field # of Bingham fluid with variable viscosity and yield limit
will be investigated in Theorem 3. This is nothing but a simple extension of the
result of Kim [8].

The distinctive feature of the present paper is to construct Yosida’'s

-1
approximation f,,:n[l— <1+%Ln> } of a multivalued operator L,(v)

=¢, () + B (v) + 3¢ (v) which is regularized by adding the term e, (v) =
—&,exp (A, IVl )Av where ¢ >4 and £, A,— 0 as n— o0 . In fact, it is

proved in Section 3 that the inverse of an operator <1 +%Ln) exists. The

evolution equation u, () + ¥, (¢, u,()) = f,(¢) which approximates (0.4) will be
solved by the method of successive approximation. A weak solution which is
seeked for in Theorem 1 will be found in Section 4 as a limit of a subsequence of
{u,}.

The proof of Theorem 2 is achieved in Section 5 by taking a test function of
the form rot{{, (F, * ({;rot u,))} (A — 0) where F, denotes a fundamental solu-
tion of operator A — A and {, a cut-off function such that {,(x) =1 for |x| > 2/
and = 0 for | 2| > 1/A. This device for the proof comes into action thanks to the
plastic term g| D (w) | For the Navier-Stokes equation where p = 2 and
£ = 0 we refer to Miyakawa-Sohr [11].

Theorem 3 is able to be applied to problems of heat transfer in a Bingham
fluid with viscosity and yield limit depending on the temperature, which will be
investigated elsewhere.

We devote Section 1 to preparations for the present study. Theorems 1~ 3
are stated in Section 2, along with three corollaries and four remarks where
Theorems 1~ 3 are examined in the case that d = 2. Sections 4~ 6 are devoted to
the proof of Theorems 1-3, respectively.

8§1. Preliminaries

By ¥ we denote the set of v = (v',...,0") € Cy (R*)” such that V-0 =0
everywhere and by L’ (1 <p < ) the set of all L’-function from R’
(d > 2) into R equipped with the usual L’-norm | l,. Especially, we simply
write | + L, = || - [. Further, the following abbreviations are used: v [, = [[[ v ||,
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| Vo ”,, =||vol| Il,, and | D (v) "; =||D@)]| ll,, for vector field v, where Vv and
D(v) denote tensors with components V' and D, (v ) =Vo' + Vo', and
| + | respective length with respect to the euclidian metric.

We start with stating the two fundamental inequalities.

Kom's inequality. For any p € (1. ) there exists a positive constant K,
such that

(1.1) Ivol, < K DW) [, ve Cy®RH"

Sobolev’s inequality. For any p € [1, d) there exists a positive constant S,
such that

(1.2) lols<SID@I, ve ;R
where p* = dp/(d — p).

For the proof of (1.1) we refer to Mosolov-Mjasnikov [12] and its bibliogra-
phy. Combining (1.1) and the usual Sobolev inequality (see Berger [2]), we
immediately obtain (1.2) for p, 1 < p < d. The inequality (1.2) with p = 1 has
been proved by Strauss [16].

The following proposition is nothing but a straightforward extension of the
result of Renardy [15].

ProposITION 1.1.  There exists a sequence of operators Ty,, (e, A, £ >0);
u— g, = T of Ly (1 < g < ) intoV such that

(1) e, — th in L,

(i) Vu,,—Vu nL’, if Vil € A1 <i,j<d) and p>1,
and

(ii1) D(ue,,) = D@W) in L', if D,;(w) €L (A <1,5<d) for r=1 such

that 1 /v —1/q < 2/4d,

as t— 0, 21— 0 and € = 0, one after another, where

L'={ue dYY;Vu=0}forq>1,
L,= {uE @hH? V-u=0(mdfudx=0}.

Proof. For a C”-function £(#) on [0, ) such that £(f) =1 for t <1, =0
for t > 2 and 0 < £(#) < 1 we introduce two functions on R%
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(1.3) n@) =&(x]) and p@ =1k /f n(x) dx,

and a cut-off function:
#(x) = 1/vol(B) on B, and = 0 outside B,

where and in what follows By denotes an open ball of radius R with center the
origin. For positive numbers 4, g, € we set

7,@ = (), 0.(x) = e ‘p(x/e) and ¢,(x) = F’¢(A2).
Denoting by G the fundamental solution of the laplacian, we define
Ge,l = G* (5 - ¢1) * 0,

where f * g denotes the convolution of f and g, and 0 the Dirac function. The use
of Fourier transformation asserts that G, is rapidly decreasing along with its all
derivatives. In the course of the proof we also use the well-known inequality in
the literature;

(14) If*gl, <Ifl,lgl, Q<p, g r<candl/p+1/¢g=1+1/9
and the lemma due to Renardy [15]: Suppose that f€ L (1 <y < ) and further
assume that f f@dx =0 in the case ¥ = 1. Then, we have
(1.5) ¢, %f—0 in L' as 1—0.

We now define an operator 7, of L (g = 1) into ¥:
(1.6) wl,, = (T.,w =—V1n,(G,, *rot, )},
where rot,u = AT Vjuk. A simple calculation leads to

ul,, = 1,00 — @) %o, %u’y — W, (G,,*rot,u)

and

(L) Vg, = 0,46 — 6)) * o, *Var'}
—{Vm, V.G, % V') + V.n,V,G, , *rot,u)}
— (VW) (G, *rot,u) = a; + b, + c,;.

The assertions (i) and (ii) immediately follow from the above two equalities.
To prove (iii) we derive from (1.7)

D, (u,,,) = 1,400 — ¢) *p.*%D;;(w} + (b; + b,,) /2 + (c;; + ¢;;) /2
=A,+ B, +C,.
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It is easy to see by (1.5) that A,;— D, (%) in L. The use of (1.4) and the identity
(1.8) V,Vu" = VD, (w) + V,D,,(w) — V,D,;(u)

guarantee us that B;, — 0 in L" as £ — 0.

Our final goal is to show that C;;— 0 in L” as £ — 0. To do so let us first re-
mark that Cj; is represented as a linear combination of terms of the form
U= (V,V;n,) (G, ,*Vu). Let us assume # = ¢. The inequality (1.4) then leads to

lul, <’ IvG.,l, lul, »>1.

Thus, | U, 0 as ¢ — 0. If » < ¢, we use Holder’s inequality:

lul, < e ([

lzl=>2/u

1/q
VG, %u I"dx) ,

where 1/p + 1/q = 1/r. Application of (1.4) with p = 1 implies VG, , *u € L’
and our assumption on ¢ and # yields 2 — d/p = 0. Consequently, || U], — 0 as
u—0. Q. E. D.

In this section we always assume
2 an arbitrary domain in R® (d > 2),
H the closure of ¥ (2) = {v € ¥ ; supp v € 2} by norm [ v .
and

Yp(Rd) the closure of ¥ by norm || D() [, (p = 1).

It is easy to see that Y, (R”) is imbedded in L. (R")”. Therefore, we may intro-

duce the Banach spaces which play important parts in the paper:

V,= Yp(Rd) N H equipped with norm | » “v, =|Dw |, + vl
and, setting V=1V,

W, =V, N V equipped with norm [ vlly, = o ly, + [ 2.

It is evident that every function in V, vanishes outside of the closure 2 of £.
According to Lions [9, p.6], we can assert that V, is separable for any p = 1 and
further reflexive if p > 1 and that V, C H C V,, where H is identified with its
dual H’, each space is dense in the following and the injections are one to one and
continuous. These assertions hold true for W, as well.

There are given two separable Banach spaces X and Y such that X © Y C H,
where each space is dense in the following and the injections are one to one and
continuous. Denoting by <, >y the duality between X’ and X, it is easily verified
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that {f, w>y = {f, u>y for u € X and f € Y’. So it will be allowed to write it as
{f, wy without any confusion. In particular, {f, #> means the inner product in H

ifu, f€ H.

LEmMA 1.1.  Suppose that 2 < d < 4.

(i) Forallr 21 we have V,={u € H; D;(u) € L' 1 <4, < d)}.

(ii) For all q, r € [1, p] such that ¢ < d we have V, N V, € L 0 V, (¢" =
dq/(d — @).

More precisely, there exists a positive constant C,, such that
(1.9) Lol + 1ol < CADW I +1DW ), veV, NV,

(iil) If Q is smooth and p = d/(d— 1), then v, € W," ()% for all v €
V, NV, where Wol'p () denotes the set of functions belonging to the usual Sobolev
space W' (Q) such that +|,5 = 0.

Proof. The assertion (i) is an easy consequence of Proposition 1.1. The use of
interpolation inequality;

(1.10) LAL<IFIENAE Q<a<y<p<oo)
. 1—A/
with B=T’j72 and a+B8=1
and the Young inequality:
(1.11) A°B* < @A+ BB forA, B>0

lead to
IDw < S0+ 51 1Dw], ve CT®Y

for 1 < » < p. Making use of (1.1) and (1.2), and keeping in mind (i) we obtain
(1.9).

To prove (iii) we assume v € V, NV, and p =d/(d —1). Then, (1.9)
implies v € W' (R%)”. Observing that v = 0 outside of £ and that £ is smooth,
we obtain v |,, = 0. Q. E. D.

LEMMA 1.2. (1) Suppose p € [2, d + 2) and let us set ¢ = dp/(d + 2).
Then, we have

lolo <l gl o< CTRY.
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(i1) Suppose p € 2d/(d+ 2),2) U [d+ 2, ). Then, there exist positive
constants K, A and 68 € (0,1) such that

(1.12) 11,5, < KAVl + 16D, ¢<CT®RY

1/p
forall 2 € (0, A), where | ¢ |, = (Ll ¢l dx)

Proof. Observing q* 2 p and applying (1.10) to f = ¢, we readily get (i). To
prove (ii) we first assume p = d + 2. Choose 7 so that re > p>d>r>1 and
set

@ =@ "), n=1.2,....
Then, by virtue of (1.10) we have

1,00, < U0 151 n.0 s, B= =207 /pGr™ — 2).

Hence, Holder’s inequality yields

v,

)dﬂ(l/r 1/p)

(1.13) In.1, < c(%

for all ¢ € C, (R%) with | @1l = 1. Choosing again # so close to d that
0<60=dBA/r—1/p) <1,

we obtain from (1.13) that
114 ngl, < C( v, + 1

CA 19w, + C(Z) AT, + 1,

where B, = {r;|x|<2"/2} and C,(i=1,2) are positive constants not
depending on A and #.
Set

@, = ¢l,s, 6=CA and M=CA(IVel, +1).
Then, (1.14) becomes a,_; < da, + 2"M, and hence
a, < 0%, + 2°MQ — 2°6)7 < 8%a, + AM

for A < (4C1)U(0_D = A. By passage to limit we get @, < 4M. This concludes
(1.12), provided K = 4C,.
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We now suppose 2d/(d + 2) < p < 2. By virtue of Hélder’s inequality we
have

lgl,5,<2°lel, 6=da/p—1/2).
Our hypothesis implies 0 < 6 < 1. Q. E. D.

Given T > 0 and a separable Banach space X equipped with norm || . ||X let
us denote by L(0, T ; X) (1 < r < o) the set of all functions #(f) of the inter-
val (0, T) into X such that || #(®) | is integrable over (0, T). It then follows from
theorem due to Pettis and Bochner (see Yosida [18]) that there exists a sequence of
finitely valued functions u,(f) such that u,(f) — u(®) for ae. t € (0, T) in X and
u,—u in L' (0, T; X). By L” (0, T; X) we denote the set of all functions
u( such that || u(t) |; is essentially bounded in (0, 7). We use the abbreviation:

L0, 0; X) = TUOL'(O, T;X) (QAZLr< o),
>
which is a Fréchet space. By C (I ; X) (resp. C, (I ; X)) we denote the set of
continuous functions (resp. weakly continuous functions) of [ into X.

It is not difficult to show that the space L’ (0, T ; V) (p, ¢ = 1) is separable

and its dual is equal to Lp/(O, T;V)) (1" =o0), and hence it is reflexive if

p,q>1
For a, b such that 0 < a < b we set

(1.15) B,=1"@a, b;V) 0 La,b; V). p>1,

which is Banach space equipped with norm

(116) Foloo= ([ 1ok, @) + [ ol ar

Here L (a, b; X) is defined with (0, T) replaced by (a, b). By {,>,, we denote
the duality between %%, and its dual (8,,)". Then, we can prove

LemMa 1.3, The space Cy (0, T ;V, N V) is dense in éBﬁ,T.

Proof. Let u € B, . Since V, and V, are separable, we can find a sequence of
finitely valued functions u,(#) such that u,(t) = u(f) for ae. t€ (0, T) in
V, NV, and u,— u in 993,. Based on this fact, we may define the Bochner
integral



62 YOSHIO KATO

(1.17) u,(t) = p.ku() = j;r 0. Sult—s)ds, t€ (e, T—e),

and prove that u, belongs to C” (¢, T —¢; V, N V) and converges to # in 53;1_5
as e — 0 for all § € (0, T/2), where p,() = ¢ * p(t/¢) (for p(t) see (1.3)).

Let {; € C, (0, T) be a function such that 0 < {; (¢) <1 for all ¢ and
;) = 1for t € (0, T— 0). It then easily follows that {;u, — {;# as e — 0 and
{su— u as 60— 0 in Bh ;. This concludes the lemma. Q.E. D.

Lemva 1.4, Letu € By, withw' = du/dt € (B, ), which always means that
T
(1.18) b, $or = — f {u, ¢ dt, ¢ € C; 0, T;V, N V).
0

If p = 2, we then have, after a possible modification of the value u(t) on a set of
measure zevo,

(1.19) la® P =l u@s) P = 2¢u’, w>y, foral 0<s<t<T,
If we further suppose u € C,([0, T1; H), thenu € C ([0, T ; H).
Proof. The space L”(0, T; V, N V}) is dense in L?(0, T ; H) and hence so

is %ﬁ_, if p = 2. Observing the injection Bh,— L*(0, T ; H) is one to one and
continuous, we have

B C L0, T; H) < (B,),

if p=2 where the injection L*(0, T ; H) — (®,,) is also one to one and
continuous. The proof of the lemma will be thus achieved by a similar argument as
in Temam [17, p. 260]. Defining %, by (1.17), we have

T
[" i at= w, 04900 % Cloolor < Clols
and on the other hand
T T
f ul, ¢ dt = — f {ug, ¢ dt— </, ¢ ase—0
0 0

for all ¢ € C*(0, T;V, N V,) with supp ¢ < (¢, T — ¢). By virtue of Lemma
1.3, we can conclude that {#.} is bounded in (8} ,)" and that

(1.20) u.—u in By
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(1.21) w,—u  weakly™ in (B ,_,)

as e— 0, for all 6 € [0, T/2).
According to (1.20), we have

lu.® = lu®| in L0, D.
Hence, we can extract a subsequence, again denoted by {u.}, of {#,} so that
(1.22) lu,®) = lu®| as e—0 forall t€ (0, D\E,
where E is a subset of (0, 7) of measure zero.
Let s, t € (0, T) \ E and s < t. Integration of the equality

% lu, (@ F = 2 (D), u (D))

over (s, b leads to
oo P = Il () IF = 2<usl, s,

Letting € — 0 here, we easily see (1.19), keeping in mind (1.20)~(1.22). Since the
right-hand side of (1.19) is continuous in s and £ we get (1.19) for all
0 < s <t < T, modifying, if necessary, the value of #(¢) on E. The latter half of
the lemma easily follows from the continuity of || % (%) |. Q. E. D.

Finally, we describe a few statements about functional ¢ and operator B.
Regarding the properties which are maintained by the functional (0.3), we are
going to introduce a class of functionals on Vp. For each t > 0 we consider a
functional ¢,(#) = (¢, u) on V,, p = 1, possessing the properties (A.1)~(A.3):

(A.1) For each t = 0 ¢, is a proper, convex and lower-semicontinuous function
on V, such that ¢,(0) = 0.

(A.2) There exist positive constants g#; and g; (¢ = 1,2) such that for all £ =0
and allv € W,

0, > u, | DW [} + g | D@ 1, uweV,nV,

(1.23) o
1 <6<0,(u), v | < .uzj;l D(w) |ﬂ l D) ! dr + g, " D) ”1’ u & @(a(pt)y

where 0¢,(#) denotes the set of subgradients of ¢ at u:

00, (w) = {we W,; o) — o) = <w,v—w, v W,},
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P(0¢,) the effective domain of d¢,:
D0¢) = {u € W,; 0¢p,(w) + ¢},

and hence 0¢, may be regarded as a mapping of @ (dp,) into the set of
subsets of W,.

(A.3) There exists a positive constant &(h) depending on % =0 such that
e(h) >0ash—0,and for alls, t=0and allv € V, N V,
|G, v) — o, )| <e(s—tDADW I} + D@ ).

It may be easily shown that 0 € 9(d¢,) < W, N V| and
0.0 < | D@} + +&,1 DwW |, » <€ D(dp).
For a future convenience we set
(1.24) @, = the set of @, t 2 0, satisfying (A.1)~(A.3).
It is well-known (see Brezis [3]) that ¢ (¢, v (t)) is measurable function of

T
t=>0ifve L’ T: V,) and a mapping v——’f ¢ (t, v(#))dt is convex and
0
lower-semicontinuous.
Finally, we describe two lemmas concerning operator B(#) = u-Vu.

Lemma 1.5. Suppose d = 3. For each p > 6 /5 there exists a positive constant
Tp such that
(1.25) | <oy Vo, 0> | < 7y Loy [ 0ty D2 I Ve, 1, Vi, 12 N W0,

for all y, u,, vin "V, wherea + b = 2 and

— _ _ 6p
6
b=5p_6,l=p, qg=1p when 9/5 < p < 3,
6,
b=1, l=5p—6’ qg=1p when 12/5 < p < o0,

When d = 2, the inequality (1.25) is valid for all p > 1, provided that

b=p—1, I=p, q=—2L— whn1<p<2,
@—D
b=1, I=p, g=p when 2 < p < o0,
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where p’ = p/(p — 1).

Proof. We start with case d = 3.
(i) Let p € (6/5,11/5). By integration by part we have, using Holder’s
inequality,

(1.26) | <uy-Vity, 03 | < Cllgy g 0,y | V0 N,y @ = q/ (@ — D).

Applying (1.10) with A =2, u= p* =3p/(B—p) and v = 2¢’, we get, using
(1.2),

laily < Clu, I 1V, 1%, 0= 1, 2.

Substituting these into (1.26) leads to (1.25).
(i1) Let p € [9/5, 3). Take ¢ = p in (1.26). Keeping in mind that 2 < 2p’
< p*, we obtain analogously as in (i)

” U; "2p' <C " U, lla " Vu, “H’

where ¢ + 8 =1 and 8= 3/(5p — 6). Combining this with (1.26) (g = p), we
arrive at (1.25).

(iii) Let p € [12/5, ). Since 2 < 25’ < r=2p/(p — 2) and 1/7=1/I
— 1/3, we have

Nt Loy < C e 1721 Ve, 1372
Inserting this into (1.26) with ¢ = p leads to (1.25).

Exactly as above we can show (1.25) for the case d = 2. Q. E. D.

The following lemma is an immediate consequence of Proposition 1.1 and the
previous lemma.

LEMMA 1.6. Suppose that d = 3 and u € %g'T N L7, T; H). Then, Bu) =
uVu is contained in L (0, T ; V.), where

6p/{Gp—6)p— 1)}, pe (6/5,11/5)

(1.27) r=p, ¢g=q@) = {p, p € [11/5, =)

(or v’ =p(5p—6)/6, g=p, p<EI[9/5,11/5)).

§2. Results and remarks

TueoreM 1 (Existence of weak solutions). Suppose that £ is a domain in R’
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that @, is contained in the set D,, p > 6/5, which appears in (1.24), and that the
prescribed data u, and f satisfy

(2.1) u, €H and f€ L, (0, ;H.

There then exists a weak solution, i.e., a vector field # satisfying

22) we U #,0C(0, TV B By =L"0,T;V) NLO, T;V)
with a derivative w'(£) = du(f) /dt:

(2.3) u € {Tgo %2,1 neo,rT:; VD)) in the sense (1.18),

the initial condition

(2.4) u(0) = u,,

the evolutional inequality

T 1 2 2
(2.5) fo W, o= wdt =50 o =D 1> = 100 = 1,

T T T
+j0. <B(u),v>dt+jo‘ {w(t,v)—w(t,u)}dt2£ f,v—w dt

forall T> 0 and allv € WO{’T:
26) Wor=WweB, nNL0O T;V)nC(0 T;H ;v € ®B,))

and the energy inequality
1 ! 1 !
@7) 3lu® ||2+f0 o(c, w) dr < 5| u0||2+f0 Cf,wpdr forall ¢ 0,

where ¢ = q(p) is the same as in (1.27). In particular,
(2.8) weL’@Q@x 0, 1) foranyT>0 when2 < p < 5.
CoroLLARY 1 (Existence of strong solutions). Suppose p = 2 in Theorem 1
and let u be a weak solution satisfying
(2.9) u €L (0,0;V,) withq=qQ) from(1.27).
Then, it is a strong solution, i.e., a weak solution possessing the further properties:

(2.10) (i) € CU0, T1; H), (i) w' €(U B},
T>0
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T T

(211) w,v—w,r + f {Bw), v—u> dt + f {ot, v) — o, w} dt

0 0

T
> [ fo—wdt fraiT>0andalv< B,
1]

and the energy inequality of strong form

t t
2120 gludF+ [ oG, wdr <Ll I+ [ <, de

for all 0 < s < t, where <, Yo denotes the duality between B, » and its dual. Particu-
larly, if p = 11/5, there then exists a strong solution.

Proof. If p = 11/5, then (2.3) implies (ii) of (2.10). Suppose p < 11/5.
Application of (1.25) yields

fOT | B |

from which (i) of (2.10) follows (see (4.3)). Here, b=6/(5p — 6) and
p = p/(p — 1). Then, (i) of (2.10) is an easy consequence of Lemma 1.4.
For any v € C([0, T]; V, N V) it follows from Lemma 1.4 that

f,p dt <7y, sup [u(® |

0<t<T

T
vl at,
0

T
(2.13) j(; Wyv—w dt <, v—w,,
+ 2 (u@ = oD I = luy = 2@ P,

and hence we have (2.11) for such v. Let v € 9331. We make an extension of
v(8) so that v(t) = 0 for < 0 and for £ > T, and define a mollifier

(2.14) 0.0 = [ 0.0t — ) ds,

which belongs to C*([0, T]; V, N V}) and converges to v in BBS‘T as € — 0. Inser-
ting v = v, in (2.11) and letting ¢ — 0, we obtain (2.11) for all v € %g‘r and all
T > 0. In fact, since ¢, is convex, we have

(2.15) o, v.(H)) < f_m 0.t — s, vt —s)) ds

+ [ 0.l st —9) — ¢ ¢t — 9, vt — 9} ds = LK) + LB
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Keeping in mind that ¢(¢, v(#)) is integrable on (0, T'), we get I.(H)—
¢o(t, v(®) in L'(0, T). An elementary calculation gives us

T oo T
fo | 1L(6) |dt£[m 0.(5) ds_[s lo(r + s, 9(D) — o(r, v(D) | dr.

Employing the Lebesgue theorem, we can derive from (A.3) that
T
limf | o+ s, v(D) — oz, v(D) | dr =0,
§—0 ¥ -5

which proves II,(£) = 0 in L' (0, T) and hence (2.15) yields
timsup [ ¢, 0,0 dr< [ o, o) dt
1msup0 o(t, v, T=< A o(t, v .

-0

The inequality (2.12) is an easy consequence of (2.11) and Lemma 1.4. Q. E. D.

CoroLLARY 2 (Uniqueness of strong solutions). Suppose in Theorem 1 that ¢,
1is written in the form

(2.16) 0, (v) = ¢,(v) + fn/z(t) | D) |* dx

where &, € @,, r < 1, and p € C([0, o), L™ (2)) satisfying u = p, for a positive
constant tty > 0. Then, we have:

(1) ¢, € O, with p = max(2, 7).

(11) Let uy be a weak solution and u be a strong solution satisfying (2.10) and
(2.11), and further assume that u € L*'*¥ (0, T ; V,) for ¢ = q(p) from (1.27)
and for all T > 0. Then, u = u,.

Proof. () If p=2, then |[D@)||D@)|< (D@ +1)|DWw)| 1t
p < 2, we have, using (1.11),

|D@) || D) | = ( Dw) || D@) )’ | D) |**
<@G-1DIDW!||DW|+@2—p|DW)].

Consequently, (1) follows from (1.23).

(1) It is evident that p = 2 leads to 2¢/(2q — 3) = p. Therefore, we have
wel’, T; V,) and hence it follows from (ii) of (2.10) that # is in WO{’T for
T > 0. We choose v = u as a test function in the variational inequality (2.5) with
# and T replaced by #, and £, and get
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2.17) f (K, u— g + By, w + ple, w) — ¢, ) dr

> L) = uyOF + [ (€D, Dlw = ) + <, u = up} dr.
Inserting v = u, into (2.11) and adding this to (2.17), we obtain
2.18) [w® I* + 24, j: | Vwl| dr < 2 fot (Bw), wp dv, w=u— u",

from which we are going to derive w(f) = u(f) — u,(¢t) = 0 for every t. To do so,
we use (1.2), (1.10) (2 < 2¢’ < 6) and (1.11) to get the following:

o dT
<2 [ 1vullwl ¥ ar <2(n [ Twka) (o7 [ 17l |wl) o)’

< ! 2 -B/a ! Va 2
<280 [ Nwkdr + 200 [ 1vuly*|wlf dr

t
(2.19) LHS of (2.18) < 2f | Vol Nl
0

t t
< 2u, [ 17wl de+ 200 [ vl |0l dr,
whered =1—3/2¢,B=1—aand n = g, /,BS;. From this it follows that

t
lw [F< ¢ [ 17ullwF dr.
Keeping in mind that || Vu ";/a € L' (0, T), we conclude that u (#) = uy (¢) for
all t. Q. E. D.

CoroLLARY 3 (Energy decay). Let u be a weak solution which is obtained in
Theorem 1. Then, the following statements hold.

(i) If€ LY0, o0 ; H) and if u satisfies (2.12), then || u(®) | = 0 as t — oo.

(ii) I f satisfies | f(t) ”3 < g/, for all t 2 0, then lu@® || <| u, | for all
t 2 0, where S, and g, are constants appearing n (1.2) and (1.23), respec-
tively.

(iii) Assume that u is a strong solution satisfying (2.9) and w’ € L' (0, o ;
v, N L} (Q)) for some » = p'. If f satisfies | f(t) |, < g,/S, for all
t = T, then there exists Ty = T, such that u(f) =0 forall t = T,.

Proof. (1) From (2.12) with s = 0 it follows by using Gronwall’s lemma that
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t
(2.20) lu(® P + 2]0' o(r, w) dr < const. for all £ > 0,

which implies # € SBP,OO N L” (0, % ; H). Hence, (t) € V, N V, for ae. t> 0.
Applying (1.9) with v = #(f) and ¢ = 6/5, we obtain # € L*°(0, % ; H) since ¢*
= 2. Therefore, the proof of (i) will be achieved by carrying out the same
device as in Miyakawa-Sohr [11].

(11) Using (1.2) and (1.23), we can derive from (2.7)

Flu@ P+ [l vul + @ = S 1) 1060 1) de < 5w,

which implies (ii).
(111) After a simple calculation we obtain from (2.11) that

(2.21) o, u®) < fFB — @), ul@®> for ae. t=0.

On the other hand it easily follows from the assumption that there exists T; = T,
such that [« (T) Il; + | f(TD I < g,/S, and (2.21) is valid for ¢ = T). Inserting
t= T, into (2.21), we readily obtain ¢ (T, u(T})) < g, | D (T)) |,, and hence
u(T,) = 0. It is easy to see that # is a weak solution for ¢ = 7, with initial data
u(T)) = 0. Thus, part (ii) guarantees that #(f) = 0 for all t = T,. Q. E. D.

TaeOREM 2 (Case of exterior domain). Suppose that the complement of 2 is
compact and that @(u) = p| D(u) ”ﬁ + gD |, with p =9/5 and positive
constants (, g. Then, for any data (2.1) there exists a weak solution u satisfying the
energy nequality of strong form

t
@22) S1u® P+ [ el DI + gl DG |} dr
1 2 f
£~2—ﬂu(t)" + | {f,wdr
N

fors =0,aes>0andallt > s.

In the last theorem we consider a Bingham fluid with variable viscosity ¢ and
yield limit g, which is occupied in a bounded and smooth domain £ in R’ We
recall that V, (p = 3/2) is identified with the closure of ¥'(£2) by norm [vol,

(see Lemma 1.1 (111)). Set

2.23) ot w = fg (w® | D@ P+ g@®) | D@ |} dx for uc V.
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For prescribed data #, and f:
(2.24) #, €V and f€E Wl (0, o« ; H)

we consider the problem: To find a strong solution satisfying the evolutional
mequality

(2.25) < +Bu@®), v—u®> + o, v) — @ &, u®) =B, v—ul®>,
forv € Vand fora.e. t > 0, and the initial condition
(2.26) u(0) = u, nf.

Before stating the theorem we introduce two function spaces A and 9 in
which ¢ and g are contained, respectively. To do so, for b > 6 we define a and «
as follows:

(2.27)

Q|

1_1 1. 1_1.,1
+b_2 and a+3_a+2’

It isobvious that 2 < ¢ < 3,1/a+ 1/b=1/3 and hence 3 < a < 6. Then, we
define

M= {u € C0, ) ; W Q) ; 1 € L3(0, o ; L'(Q)},

9 = WiA0, o ; IX(Q).

Denoting by 7,, 71 and ¢, positive constants such that

229) 1B, 1< BIvuflol, Toli<cloF vl
and
229 | Bw, v | <5 @I7ul + 45 luP 170l 7> 0

for all #, v € V, and setting for all T > 0

Vol + [ 10 dt) exo ([ 151 ae),

T
Cgts"Csup v V) [+ D) [ o [ a,

0<t<T

Ar

Il

6= [ WgFa,
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L={17©@ = x P+ [ 15 1at+ (max 15 F + gD My + G

0<t<T

<exp ([ 15 N+ i+ My),
T
Jo=Mpexo ([ 17 1dt+ v + M,)

and

E,= 184 2 AT ) + 18p,A ), + (184, (max | F® |F + I}

0<t<T

with v =1/, A=3/a — 1/2, positive constants ;i =0, 1) and some
positive constant C depending only on & and 2, we can state the last theorem.

THEOREM 3. Let £ be a bounded and smooth domain in R® and let Ui,
g (1 =0, 1) be positive constants. Suppose that L € M, g E Y, py < u <y, and
8 < g < g, and that u, and f satisfy (2.24) and

(2.30) x — Buy) € 0¢(0, uy) for some x € H.

If one of the following conditions

(2.31) (i) po/78 > cArEr with 7,=0 and (ii) o> T°E,

is fulfilled, then we can find a strong solution u satisfying (2.25), (2.26) and

1o | Vu® |F < Eo,

L P+ [ 10 P at < 1, + JyGuley + 7 45 B

for all t < T. Moveover, the u is unique in the sense that every weak solution is equal
to u. In particular, if fis in L, (0, o ; L*(2)®), the following

sup | Vu®) |, (2<¢g<6) and
(2.33) ost=T

f ||Vu|!”dt(q>6,p %(1—%))

are bounded from above by positive continuous functions of the arguments

T
Il s s 210 Q51417 D,
sup 17l [ e e, [ 145 ¢/ F a.

0<t<T
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Remark 1. Suppose d = 2. Reviewing Lemma 1.5 and the procedure carried
out in Section 3, we obtain a new version of Theorem 1: Let p > 1. For any data
(2.1) there exists a weak solution u (t) satisfying (2.2)~(2.7) for all T > 0 and all
vE Wy, whereq=p/Pp—1)° if 1 <p<2and g=p if p = 2. Accordingly, it
follows from Corollaries 1 and 2, by taking ¢ = p and applying the inequality
|| w Hzpy < const. " w "w' || Vw HW in the place of (2.19), that there exists exactly one
strong solution if p = 2 and @, is written in the form (2.16).

Remark 2. The conclusion of Theorem 2 remains valid even if ¢(u) is
replaced by

N
S| DG [} with max(p) >=9/5 and min(p) = 1.
i=1

Remark 3. Let ¢ be a functional not depending on f and satisfying (A.1) ~
(A.2) for p > 6/5, provided W, is replaced by V, N V,,. Then, it is easily shown
that for any f € H there exists a solution # € V, N V| to the stationary problem:

(2.34) (Bw), w + o) — o) 2<f,v—w, veEV,NV,

where ¢ =3p/(5p —6) for p € (6/5,9/5) and ¢ =p for p = 9/5. In fact,
observing (1.26) with 2¢' = p*(6/5 < p < 9/5) and (1. 9) (g = 6/5), we can
find u, € D(0p) C V, N V,,5 satisfying f € B(ug) + e.(u,) + 0p(uy) as in
Proposition 3.1, where ¢, (v) = — £V (| Vv |7"° ) and & is a positive constant. A
desired solution # is given as a limit of #, (cf. Lemma 1.5).

Remark 4. Suppose d = 2. For any b > 2 we define @ and ¢ by 1/a + 1/b
=1/2 and @ = a > 2. Then, Theorem 3 remains valid without condition (2.31).
More precisely, under the same hypotheses as in Theorem 3 we can prove that if
#, and f satisfy (2.30), then there exists one and only one solution of
(2.25)-(2.26) in t < T satisfying

u€ L7, T;V,) forany ¢ = 2, and u’ € L0, T; VWNL0,T;H.

§3. Regularized problem

For positive numbers A and § we define an operator ¢;. of V=V, into its
dual V' by

lepew), v) = E<exp (A Vul) Vu, Vo> for all v € V with ¢ > 4.
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It is easy to see that e, is monotone and B(%,) = u,Vu,— u*Vu weakly in V'
if w,—u weakly in V. Accordingly, A=¢,, +B:u—e,(u) + B(u) is a
pseudo-monotone operator of Vinto V', ie., if |u |, < 1, then | A(%) ||, is bound-
ed, and if #;— u weakly in V as j— oo and hmsup CA(u,), u; — u> <0, then
hm mf (A(u) u; — v = {Aw), u — v> for all VE V. Itis readily seen that the
A may be regarded as a pseudo-monotone operator of W, = V, N V into W

ProposiTioN 3.1. Let ¢ € @,, p > 6/5, which does not depend on t, let L, be
a mapping from D(0p) = {v € W,; dpw) # ¢} T W, N V| into the set of subsets
of Wy

L,.(v) =e¢,.(v) + B(v) + dp)
and let

Y., = G ' n&D with x = 7, from (1.25).

Then, the following statements hold.
(i) For any u € W, there exists v € D(0¢) such that

1
3.1) ve(1+1L )0 (=12..).

(ii) Letv; (¢ = 1,2) be solutions of (3.1) with u = u; € H. Then, we have
(3.2) 170, < Y, and N80+ <1750 <2 6ul?

ifu, € Hyep = sl ull < M.}, where v = v, — v,, 6u = u, — u, and

Mo = (275)1/2 Yen exp(% Yecn>

Proof. (1) The existence of v follows from Theorem 8.5 of Lions [9, Ch. 2].
In fact, (1.23) implies ¢, | Vo[, < ¢ () and by definition we have $ee W), v

> £ Vu IIZ and hence, it follows that the operator <1 + %L“) is coercive over
W,:

w+nTAW), » + 1 o)

v WP

— oo if “vuwp—') 0,

(11) The relation (3.1) yields
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(3.3) [0l + 2 (e @, 0> + 0@ <l
and hence ¢, (), v> < nl u /2. Htue H,., then
17 F exp GITol) < 2 ulf < ¥y exp GYL).

So that
(3.4) Ivoll<Y,= (r*ngH".
Keeping in mind the following three inequalities:
<€A,5(1}1) - el,s(vz)y v, — v 2 € ” Vv, — v,) "27
(3.5) {B(v)) — B(w,), v; — v,y = — {B(v, — vy, v
< 7’“ U — 1, ”1/2 ” l7(”1 — ) "3/2 “ Vvl“’
¢ (v) — 0p(v,), v, — vy 20,
. 1
we can deduce from the relation u; € (1 + ZL“) (v,) that
vl + % Elvovl’ — rlov 11 vo, [1Vow IF?} < <ou, dv>.
Applying (1.11) and then (3.4) with v = v,, we obtain after a simple calculation
3 2, & 2
(3.6) glovl + g lvev [ < <ou, ov,

from which (3.2) follows by using Schwarz’ inequality. Q. E. D.

There are given #, € H and f € L?, (0, ©; H). Let a, € H and f, €
C([0, *) ; H), and assume that
(3.7) a,—u,in H and f,— fin L,.(0, o ; H).

We then choose A so that M, ., = A,exp(2nT), that is,

(3.8) A= 2G""nE) 7 2nT + log (@274},
where
A, = 5 {max [ £,® |+ 2n]la, .
0<t<T

It is evident that || @, || < M, ., Substitution of £ =§, = w®and T=T,= n’
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into (3.8) yields A, If we set M, = M, . , and ¥, = Y, ,, and choose & and f8 as

1 4 c
o<a<§(1—?) and 0<B<<(1-3a),

it then easily follows that

§,—0,7T,—»and 4,—0 asn—

(3.9) Y, = (r"*n€)Y*, M,= A, exp@2nT,).

ProposiTiON 3.2. Let ¢, € @,, p > 6/5, uy € Hand f € LTOC(O, o ; H), and
assume that a, € H and f, € C([0, ) ; H) satisfy (3.7). Then, there exist
sequences £, > 0, T, > 0,4, >0, Y, >0, and M, > 0, satisfying (3.9), such that
the following statements hold:

(1) For any u belonging to

H=weH;|u|l<M)}

there corresponds exactly one v € D (0¢,) such that u € (1 + %L,, (t, - )) (v) and
| Vo] < Y,, where

(3.10) L,(t,0) = ¢,() + B(v) + 0¢(t, v) withe, = e, ,

Y

(i1) Let £,(t, - ) be Yosida’s approximation of L,
= _ 1 Ny
g, =naft-(1+10,¢ ) }:H-H

Then, there exists exactly one function u, (1) in C* ([0, T,) ; H,) satisfying

u, + £, u,®) =f£,& inQ, T,

(3.11) 1,(0) = a,.

Proof. Choose &,, T, 4,, Y, and M, as above. The proof of (i) is an immedi-
ate consequence of Proposition 3.1. So we devote our attention to part (ii). Setting

-1
v = (1 + %Ln(t, . )> (w) € D(0¢,), we immediately obtain

nwu—v) =%, w €L, v)
(3.12) 9 ,
lolf + 5 (<e0), 0> + o, )} <[ ulf.

Let b, — M, — | a,|. We set U,={u€ H;|u—a,|<b,), which is a
subset of H,, and define
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F.(t,uw) =10 — £,(t, w) for (¢, uw) € [0, T,] X U,.

We are going to prove that &, is a continuous function of [0, 7,] X U, into H.
With each ¢, € [0, T,] and »;, € U, (i =1, 2) we associate v; € W, N V| in a
manner that #; € v; + ;L,, (t;, v;). Then, we have || Vv, || £ Y, and (3.12) with
u = u; and v = v;. Therefore, we have

(3.13) 1Z,(t,, u) — F, (b, w) | <1 £,(8) — £,) | + n(l du ] + | 60 D,

where v = v, — v, and 0u = u, — u,.
From (3.10) and (3.12) it follows that

(3.14)  Ln(u; — v) — e,(v) — Bw), v; — v < ¢, v) — o(t, v)
for (Z,7) = (1, 2) and = (2, 1). Adding these, we obtain

nd(w — u) + de,(v) + 6B(v), ov>
S ‘P(tz’ Ul) - (p(th Ul) - <P(tz, 1)2) + §0(t1, Uz)

and hence, writing the RHS of the above inequality as ®(¢,, ¢,),

nlovlP+ &, | Vol + <ov- Vv, 60> < n{du, 6v) + O, t,).
Employing Holder’s inequality and the inequality |V, || <Y, in the term
{0v-Vv,, dv>, we get analogously as in (3.6)

(3.15) 3l ovl+ % [Vov|? < 4 {ou, dv> + 40(t, t,).

So that || v ||2 < 2| ou ||2 + 4@. Hence, combining this with (3.13) concludes the
continuity of %,. In fact, (A.2) and (A.3) implies @ (¢, t,) = 0 as ¢,— ¢, since
o, v) <lu, I < &, +a,D”

It is not difficult to see that

17, wl<a,+B,lu—a,l witha,=2nA, and 8, = 2n,
| F,(t, u) — F,(t, u) | < 3n|u,—u,l|, v, € U, (G=1,2).

These permit us to apply the method of successive approximation to obtain one
and only one u,€ c'(o, T,l; H,) satisfying (3.11), because M, =
A, exp(2nT,) implies

a,B;" {expB,T,) — 1} < b,.

This completes the proof of part (ii). Q. E.D.
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Remembering that #,(f) € H,, we define v,() € D(d¢,) by
1 -1
(3.16) 0,0 = (1+2L,,)) 0.
It then follows from (3.15) that v, € C([0, %) ; V). Furthermore, we have

LemMA 3.1.  For each n it follows that
®1) n,® —v,®O) = L,¢ u,) €Lt v,()), 0<t<T,
®.2) lo,®F+ % {Le, (0, (), v, > + ot, v, N} < |u, I, 0<t< T,

(P.3) %ll u,® P+ ft {<e,,), v,y + o(z, v,)} dr + %ft 1€, (z, u,) I dz

t
<Llu &P+ [ <fouyd, 0ss<t<T,
and
9 T
®4) [, O+ [ e, v + o, 0} dt
0
1 (7 2 2
+= | 1L,¢ w) [ dt < Ky,
n Jo
fort, 0 < t < T < T, where K; is a positive constant independent of t.

Proof. Properties (P.1) and (P.2) easily follow from (3.12). Keeping in mind
(317)  w,(0 = £,(t, u,) — B(v,) — ¢,(v,) € 09(t, v,), u,(0) =a,,
we can derive

o, v,®)) — @(s, v,0s))
< Lw, (D, v, — v,(8)> + @t, v,(5)) — @(s, v,(5)).

Therefore, (A.3) implies the continuity of ¢(¢, v,(H)) in t =0, because v, €
C(l0, %) ; V) and ¢(0, v,(9) is bounded in 0 < ¢ < T,. On the other hand, from
(3.11) and (P.1) it immediately follows that for all t = 0

Gty 1,3 + <Ly 08 1), 0 + 112,00 u) = <fyy )

Hence, we have by virtue of (3.17)
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p 1
{up, uy + <e,(v,), v,y + o(t, v,) + ;II L.t u) P < <Ly uy.

Integration over £ X (s, t) of the above gives (P.3). Application of Gronwall's
lemma to (P.3) yields (P.4). Q. E. D.

8§4. Proof of Theorem 1

For p > 6/5 we define ¢ = ¢(p) by (1.27). Recalling the fact that V, N V, C
W, (see Lemma 1.1 (ii)), we deduce from (3.11) and (3.17)

T T T
4.1) fo<u,,,v—u,,>dt+f0 <e,,(u,,>,v—v,,>dt+f0 (B(v,), vy dt
T T
+ [ ot = o ) dtz [ (o—vyd, ve 0, T1;V,N V)
0 0

for all # such that 7, = T. The proof of Theorem 1 will be accomplished by
passage to limit #— oo in (4.1) after a suitable choice of a subsequence of {u,).

To do so, using Lemma 3.1, we are going to examine the convergence properties
(C.1)~(C.7) of the sequences {«,} and {v,}.

LemMa 4.1.  Suppose p > 6/5. Then, for any T > 0 we have

T
(C.1) lim f lu, — v, | dt =0,
0

n—oo

T
(C.2) umfo ley), 0> dt=0, ve C0, TI; V,N V.

P
Moreover there exists a subsequence, still denoted by {n}, of {n} such that

u,— u weakly" in L0, T ; H)
(C.3) v, = u weakly in L”0, T; H) asn— oo
v, U weakly in ’o, T; v,

and

T T
4 lim inf t t > .
(C.4) im in j; o(t, v,) d j(: o(t, u) dt

Nn—oo

Proof. Property (C.1) immediately follows from (P.1), (P.2) and (P.4). The
boundedness of {x,} and {v,} in Banach spaces L”(0, T ; H) and L’ (0, T ; V,) N
L”(0, T ; H), respectively, yields (C.3). Keeping in mind (P.4), we can compute as
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follows:
T T
fo e,(v,), v>dt < C fo & Vv, lexp@, | Vv, (") dt

S_ -1 2 V c + c
ce,{ [ NTIVo, I exp(i, | Vo, 1) at j:o 'T)\EnlNNexp(X,,N)dt]

En,N
< C{K}/N + & NTexp(1,N°)},
which leads to (C.2), where

E,n=1t€ 0, D;Vo,®|>N and C= sup |Vo® .

te(0,T)
The property (C.4) immediately follows from lower-semicontinuity of the mapping

T
v—>j(; (¢, v) dt. Q.E. D.

Relying on the technique developed by Masuda [10] we can prove

LEMMA 4.2. Suppose p > 6/5. Then, theve exists a subsequence {n} of {n}
such that

(C.5)  Hm <u, (5), ¢> = <u(®, ¢> uniformly in [0, T] for all $ € H,

n —oo

T
(C.6) lim f v, — u ||;R dt = 0 for any positive numbers v and R,
n —oo Y0
and

T
(C.7)  lim f (B(v,,) — B(w), v> dt=0 forall v € C ([0, T1; V),

n’—oo ~0

where ¢ = q(p), u is the same as in (C.3) and Qp = 2 N Bg.

Proof of (C.5). For ¢ € ¥ () let us set z,(t) = <u,(t), ¢>. It is easy to see
that | z,(t) | < K, | ¢ || and

t
| 2,() — x,(5) | < C,{| t—s|" + f | <e,(v,), ¢ | dr}
S
for all 0 < s <¢t< T, where 0 <6 <1 and C, is a positive constant. This,

together with (C.3), allows us to apply the Ascoli-Arzela theorem, which implies
(C.5).
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Proof of (C.6). For the proof we have only to substitute U = “the restriction
of v, — u onto 23" into the Friedrichs type inequality: For any ¢ > 0 there exists a
positive integer N such that

N
2 Ul <elPULy + N3 1< o], U W2,
k=1

where {¢,} is total in L’ (£2,). The proof of (4.2) will be achieved, based on the fact
that the injection mapping W'*(Q,) — L*(2,) is compact if p > 6 /5.

Proof of (C.7). From the definition of B we have
T T
f (Bv,) — B W), v)dt=— f Cw, — wWQu, + u@ (v, — w), Vv > dt,
0 0
which is denoted by I,(Vv). Here, u @ v is a tensor field such that (# @ v);, =

u'v’. We decompose I,(Vv) in the form

L) = I,w) + I,(w,,) + L,(z,,),
where

w,= 1= nQx)Vv, w,, =nQAD{1 — &u|Vv)} Vv
and
2, = nQx) & (u| Vo) Vo

for small A, ¢ > 0. Here & and 7 are cut-off function defined by (1.3).

Using Lemma 1.5 and the Dini theorem concerning a monotone decreasing
sequence of continuous functions, we can prove that for any & > 0 there exist A
and g so small that | [, (w;) | < ¢ and | I, (w,,) | <e We fix such A, g Since
supp z;, © B, and | 2, | < 2/y, it follows that

2 T
LG | <3 [ 1o, = ula,, QoI+ lubar.

Hence, (C.6) implies

lim 7, (z;,) =0 and limsup|Z,(Vo)| < 2e.

n’ —oo n —oo

This asserts (C.7). Q. E. D.

We are now ready to prove Theorem 1. Substituting # = #” into (4.1) and
letting #' — 0, we can conclude (2.5) for v € c'(o, 1; V, N V)) with the aid
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of (C.1)~(C.7). In fact, the first term of the LHS of (4.1) is calculated as follows:

T T
f {u), v — v, dt=f (', vo—wuy + u,—v,v—uy
Q 0
+ <y, u, — v, 0} dt

< [T wiv—w)at =1 4w, — 0@ F g, — 0@ I
— A ’ n 2 n n
T
1
+f0 oo o Loty dt

and hence we have by (3.7)

T
lim sup {u},, v — v, dt
0

n/—c

r 1 2 2
< [, o—wdt— 3 Qu® = oD F = uy = 00 ).
0

The other terms of (4.1) will be handled without any difficulty by keeping in mind
(C.2), (C.7) and (C.4).

To prove (2.5) for any v belonging to the space WOI,)T from (2.6) we extend
v(d outside the interval [0, 71 as follows: w(f) = wv(— ¢ for t <0 and
=v@T — ) for t > T. Let v.(#) be a mollifier defined by (2.14). It is easily seen
that v, € C'([0,T1;V,N V), v,—~v in By, NLO T;V,) and v.—v
weakly™ in (%ﬁ,T)'. Substituting ¥ = v, into (2.5) and tending ¢ — 0, we have (2.5)
for any v € WO{’T because Lemma 1.4 implies v € C ([0, o) ; H) and hence
v, () = v(® uniformly in C([0, T]; H).

Our next purpose is to prove (2.3). Taking account of (3.17), we can infer
from (1.23), using (P.2) and (P.4),

[ o al<c{({1mka)”+ [(10w1, )

for all v € QBQT‘ This guarantees the existence of 8 such that w, — 8 weakly" in
(B ). Thus, it easily follows from (C.7) that

T T
(4.3) - [ wea=[ <r-Bw - o a
for all ¢ € C, 0, T; V, N V). According to (1.18) and Lemma 1.3, we can

conclude (2.3), observing Lemma 1.6.
The energy inequality (2.7) is an immediate consequence of (P.3) (s = 0) and
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(C.2). The inclusion (2.8) easily follows from Lemmas 1.1 and 1.2.

§5. Proof of Theorem 2

Suppose that £ is a domain whose complement is compact. We may therefore
assume that there exists a positive constant R, such that Ep = R°\ B, is
contained in £ for all R > R,. For a measurable set M we set

1/r
Vel = ([Nl dz)  and Tuly =l

Let ¢ ) =pul| D)) + gl D), with p = 9/5. We assume that u, € H is
the vector field constructed in Proposition 3.2, where @, = u#, and ¢ € O,,
p =9/5, for all n, and that v,(t) € D(0¢p,) is defined by (3.16). The main
purpose of this section is to prove

PROPOSITION 5.1.  Suppose that p = 9/5 and T > 0. For any € > O there exists
R > R, such that

T
(5.1) lim Supf [, () ||§;R dt < e.
0

n—oo

Temporarily, let us assume (5.1) to hold. Since
T 2 T 2 2 2
(5.2) J; lw, —ulf dt < zfo (Mot — ulls, + Ny llg, + Meliz) dt,

it follows from (5.1), (C.1) and (C.5) that

lim sup LHS of (5.2) < 4e,

n —oo

which implies by using (P.4)
T
(5.3) f o, —ul"dt—0 asn —
0

for any 7 > 0. Therefore, we can extract a subsequence {#”} of {#’} so that
#,.(s) = u(s) in H for ae. s> 0. Substituting # = #” into (P.3) and letting
n” — oo, we obtain (2.22).

Before proving the proposition we prepare a few lemmas. For 0 < A <1
such that 1/4 > R, we introduce a cut-off function:

C@ = {1 — pAn)}* (see (1.3) for n(x))
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and the fundamental solution of A — 4:

F, =E1Tﬂexp (=valz).
Like (1.6) we define a mapping v — vy
v, = rot {{;(F,* ({;rotv))}, 1/2>R,.

After a simple calculation we obtain

(5.4) v, = ({0 — AF) * ({v)} + R,v,
where
(5.5) Rw = {AF, *rot(v X V{)} + V{, X {F *rot({;»)}

+ V7 X AF %@ x V{)}.
Using the inequality (1.4), the identity (1.8) and the estimations with respect
to F:
66) AF =1, |27 F|,<C and |V,V(F, x| < Clhl, nel

we easily see that if v is in H (or V,, » = 1), then so is v,, where and in what fol-
lows C denotes various positive constants not depending on A. More precisely we
can show quite easily

LemMa 5.1. For any v € Cq (R)’ we have

(5.7) IRwl < CA?|vl, IVRw]< CAlvl,
(5.8) IVRw|, < CA** (| o], + Ivl), »>6/5,
(5.9) IDRw |, < CA”* I DW) ..

Proof. The proof of (5.7) is evident. Without any difficulty we can show that
IDRW I, < CA”*ADW |, + 2l vl,s5,)

for all » = 1. Consequently, the use of (1.1) and Lemma 1.2 imply (5.8). By
Holder’s inequality we have

(5.10) lolls,, < C27M vl

Hence, the proof of (5.9) is achieved with the aid of (1.2). Q. E. D.
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LEMMA 5.2.  Suppose that p = 9/5. Then, we have
(5.11) | <Bw), vy | < CA” o l* Vol vev,
where a, b and q are positive numbers such that a + b =3, b<q and ¢ =p for

p<3and =2 forp = 3.

Proof. After a simple calculation we obtain from (5.4) that

(B(), vy = &'V, AVF, % o) _ o .
- <‘U‘UJV,‘C1, (5 - /{Fg) * (Clvl)> - <U"I)J, V,'(Rgvj)>

and hence, using (1.4), (5.6) and (5.7), we get

(5.12) | <B®), vy | < CA”[vllvl.

Assume that 9/5 < p < 3. Then, 2 <4 < p*. Using (1.10) and (1.2), we obtain
(5.13) loli < ClolF®Ivel with 8=3p/(5p —6).

Evidently, p = 9/5 implies B < p. We now suppose p = 3. Instead of (5.13) the
inequality:

(5.14) lolf < Clol”* | Vol

is adopted. Combining (5.12) with (5.13)-(5.14), we arrive at (5.11). Q. E. D.

Let a=1 and ¢ 2 1. Set 2z, = CXW. Using Holder’s inequality, we have for
hel

£ Fxn) ~ Fx@En | < [ p2yre M E@ — 2@ | 1h) | dy
, 1/q
<Cca f e ) | dy < CATVH ( f e ) |° dy) .
Hence,

(5.15) || z0(F, % h) — Fok (z0h) ||, < CA7>2 7 | n|, < Ca7%| k],

With the aid of (5.15) we shall prove the last two lemmas.

Lemma 5.3. Let ¢,(0) = | D@ [}, p = 9/5. Then,
(5.16) — <ap, ), vy < CA2( Vol + 1ol Voll™, ve Dg).



86 YOSHIO KATO

Proof. In view of (5.4) we have

D(v) = (,{(6 — AF)) * ({,D(v)}
—{GAF* (D, {]v) + [D, {I(AF,*({w)) —DRw)} =X—Y

and hence,
the LHS of (5.16) = — p <| D) I"* D), X — YV,
where [D, {Ju = D({u) — {D(#) and hence
(D, Qu),; = LW« + (VOu')/2.
Firstly, we have in view of (5.15)

(5.17) —p<|DW "D, X>
= —p|Z2DW Il + p | D) " D), 2272 {AF, % (z} D))}
+ p | D) " D), AF,* (2 D)) — 2" 2 {AF, * (2} D(v)}

+ 25 {AF, % z; D(v)} — AF,% (2 D(v))>
<ClIpWw 22 bWw) |, < cA* | v b

By the same argument as is employed in the proof of (5.8) we obtain
p<ID@W D, Y» < CA* D I A vol, + v,

which concludes (5.16). Q. E. D.

Lemva 5.4. Let ¢,(v) = | D) ||,. Then,
(5.18) | <og,(0), vy | < CA* I DW) I, v € D@Bg).

Proof. Let w € d¢,(v). Then, we have
<w, vy = w, (G — AF) *{w}> + <w, Rw> = A+ B.

Inserting ¢ = v — t{{(0 — AF) * (w} (0 <¢t<1) into the inequality
w, p — v> < ¢,(P) — ¢,(v), we have

tA = ¢,() — ¢,(¢) =D [, — | D(g) .
A similar calculation as in (5.17) leads to

D) = QA — t)DW) + AF,* D)
+ HGAF, % (D) — AF, % D)} + t0(C) (AF, % L)
+ t,(AF, % D({)v).



VARIATIONAL INEQUALITIES OF BINGHAM TYPE 87

Making use of (5.15), we get

I D) I, < I D) I, + tC2* | D) |,
+ t| D) {F,* A0} ||, + ¢ CAF,*ADE)0)} |

Exactly as in (5.9) we have (5.18). Q. E. D.

Proof of Proposition 5.1. Multiplying (3.17) by u,, and integrating over
£ X (0, H, we obtain, keeping in mind (3.11), that

619 [ Gy de= [ <udde= L [0, @@, i

n

- (B + ) + 6,(,) + w, v, dr,

where w,(#) € d¢,(v,(#)). Since

{uy, 0 = %% ({,rotu,, F,*({ rotu,),
we have
t
(5.20) 2_[ $up, 0 dv = Su, (), u,,(O> — u,, u,,7.
0
On the other hand we obtain from (5.4), (5.6) and (5.7) that

(521) - <un, un,,z> + " C}un "2 = <un - vn + 1)", CA(XFX * (C/lun))> - <un’ R/lun>
S " un - vn “ " un ” + C/ll/z ” un "2 + " Clvn*/ZFj " " un ”

Therefore, we get, using (P.4),

t
(5.22) Gl <2 [ <oy ) ds + | Gty B+ C27 i I
0
+ K (Ju,(® — 0,0 | + | Lo, * AF, ) + CK 2"
forall t < T

For the proof of the proposition it is sufficient to establish

T
(5.23) limsupf | €, ||°dt—0 as A— 0.
0

Nn—oo

Applying (1.4) with =2, p = 3/2 and ¢ = 6/5, we obtain, keeping in mind
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(1.2),
(5.24) | G, ® AF, | < Nl v, Iy | AF, ls,s < CA | D@, |,

Thus, we have only to pay attention to each term of the RHS of (5.19). From (5.7)
it immediately follows that

t T T
(5.25) j; (S ty, 2> ds < 2 f ¢t G | ds + CA™* fo I £, ke, | ds
T 172 T
<ok, [ A= I+ 18sDds + CEA™[ 17, ] ds,
0 0
t T
(626) =5 [ (€., @) ds < C2 o [ 1, [P ds < CEIA,
and
t T
5.27) - f le(v,), v, ds < CA f & v, |1 Vo, | expQ, | Vo, ) ds.

Here, we used the positively of d — AF;:
<hy 0 — AF)*h) 20, he L’

From Lemma 5.2 it follows that
t T
— [ <Bwp, v, ds < 2 [ No, IV, ds < cCrA™
0 0
Lemmas 5.3 and 5.4 lead to
t
(5.29) - f 0¢(v,) + w,, v,,» ds
0
T
< [ Avw, b+ 1o, 1V, 57 + 1D I ds < CCrA™"
0
Thanks to (5.22), we can prove (5.23) by virtue of (5.24)~(5.29).

§6. Proof of Theorem 3

We first observe that functional ¢,(#) = ¢ (¢, #) defined by (2.23) satisfies
(A1) ~ (A.3) with p=2 if u € M and g € 9. Applying Proposition 3.2 with

a,= u, + 2}({ and f, = f, we can find sequences {4,}, {T,}, {&}, {¥,} and {M,}

satisfying (3.9) and that for any u € H,={u € H; |u|| < M,} and any ¢ >0
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there exists exactly one v €V such that #€ (1 -+ %Ln(t, -)) (v) and
Vol < Y,, where
6.1) L,(t, v) = Bw) + ¢,(v) + d¢,(t, v),

0, v) =t v) —¢,| D@ | withe, = &expQ,, || Vu, ).

Moreover, setting
-1
£, (tu) = n{l — <1 + %Ln(t, . )) } (w): H,— H,

we obtain one and only one function %, € C'([0, T,] ; H,) satisfying

w,®) + &, u,))=fB int€ 0, T),

(6.2) u,(0) = a,.

We then define v,(#) as in (3.16):
-1
(6.3) v, (D) = {1 +1L,6, )} (u,(D).

From (3.15) it immediately follows that v, € C([0, T,]; V) for all . We can
further prove that

(6.4) v,(0) = u, and £,(0, #,(0)) = x.

In fact, observing (2.30) and O0¢(t, u,) = e,(u,) + 0¢,(t, u,), we have
x € L,(0, u,) and hence %,(0) = u, + %X € (1 + %Ln(O, . ))(uo).
Analogously as in Theorem 1 we can find a weak solution # of (2.25)-(2.26).
Corollary 1 says that # is a strong solution of (2.25)-(2.26) as well if it
satisfies (2.32). So we have only to establish the regularity properties (2.32) and
(2.33).
We first consider a solution # € V of a stationary problem:

(6.5) Bw),v—w + ot,v) —olt,u) 2<h,v—w, vEV

for t >0 and h € L™(Q)> 1t is easily seen from the Hahn-Banach theorem and
Temam [17, p.14] that there exist 7 € L*(£), a constant ¢ = ¢() and
m= (mij)fJ-=1 with m;; € L™(Q) and | m | < g, such that

(6.6) —V-QuD(w) + m) + B(w) +Vr =h,
(6.7) Izl <clnl+1B@l, + |l zVul+ g).
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Moreover, we can establish the regularity of # as in Kim [8], making use of

Cattabriga’s result concerning the regularity of solutions of the Stokes equation
(see [4]).

LEMMA 6.1. Let u € V be a solution of (6.5) and assume that a satisfies (2.27).
Then, there exists a positive constant C, depending only on a@ and Q2 such that

6.8) [Vul, < Covo Iovpe® lo + D AR+ Nule | Vel + g, + o | V2 ),

where v = 1/p(t) and vy, = 1/u,.

Proof. We begin by rewriting (6.6) as
— Au + V(vr) = vWu QD) — vrl, + vm) + V- (vm) + vh — vB(u),

where I, denotes the identity tensor. The inequality (6.8) is then an easy consequ-
ence of (6.7) and the inequality due to [4] (see also [17, p. 35]):

(6.9) 1Vul, + v l, < Cllovul, A Vel + vzl + 1 vm )
+ Clvml, + vl +volul, | Ve lD.
Q. E. D.

LEMMA 6.2. Let N be the largest integer in the set of integers < b/2 and let us
define finite sequences {a,}n-, and {7}y by

1_1_=n 1_1.,1
(6.10) 2, =27 b and —an+3 for < N.
Let ¢ > a, and assume that a, _, < g=<a, (or ay<q) and 1/7r=1/q+1/3. Then,
Jor any solution u of (6.5) the following estimates hold.

I—.
©11) vl + el < P AVal + oz b + 522 0,

where | = ny or N + 1, ¢, is a positive constant depending only on a, | and 9, and

P=1wwu® o+ volule, @ =vle0+1wvu®l) +1rl,).

Proof. Since 1/a+1/b=1/3, it follows that 1/a+ 1/a,_, = 1/7, for
all » =2 N. Hence

LD c W@ and [vB@) |, < vollul,|Vul

ay-1°

Like (6.9), we obtain
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1vul, + lvel, < C, 1vvul, AVul,,, +lvel,,  +lvml,, )
£ ¢, Qomly, + Il + volull I 7l

for all # < N, where C, is a positive constant depending only on «, # and £.
Therefore, we have

Ivul, + vz, < C P AVl  +lvel, )+ @,
from which it follows by induction on # that
" P -1
17ul, +lvrl,, < e, {P" Aval + 1 + 5210,
The proof of (6.11) is readily achieved. Q. E. D.

We now return to (6.2) and (6.3).

ProposiTiION 6.1. Let T > 0. Suppose that there exists a positive constant E
satisfying one of the following conditions

5,4 > E 3 > TI/ZE
(6.12) (i :7"/7" AE (i) [“0 2
ol Vo " < E tto | Vo I < E
and define
(6.13) T,(E) = sup {T"; 1, | Vo, ® F < E,0< ¢t < T* < 7).

Then, there exists a positive integer n, such that T,(E) > 0 and
t
614 u® F + 20 [C170 P dt < I+ T (B + 4 B,

for all t < T,(E) and all n = ny, where tt,o = tto — &,, and Ag, I, J; are the same
as in Theovem 3.
Proof. From (6.2) and (6.3) it follows that
(6.15) <e,(v,(®) + B(w,(®), v — v,(®)> + 2 {u, O D(v, (), D(v — v,(H))>
+ [0 (D@ | = | Dw,0) ) dz= <F) = w0, 0= 0,0, vEV,

where u, (t) = u (t) — ¢, Inserting v = v, (t+ h), we obtain after a simple
calculation



92 YOSHIO KATO

$d,e,(v,) + 0,B(v,), 6,v,> + 2<6,(u,D(,), D(B,v,)>
<Ko, (f—w), 0,v,0 — 0,2, D(6,v,)>,

where 0, u = {u (t + h) — u (¢)} /h. Keeping in mind f— u, = ¥, (¢, u,) and

0,0, = 0,1, — —}’-5,,55’,,(1‘, #,) and using Schwarz' inequality, we get

(6.16) D) 6., + ity DGy IF = 2 <B(G, (0, 0,5
< 2|yvg, 8Dy I + 2 €6,f, dyu,y + |y, 0,8 .
We first suppose (i) of (6.12) to hold. Then, (6.16), together with (2.27) and
(2.28), leads to
d 2, 1 _ 2
(617) dt " 6}:“71 " + 4 (Zﬂn,o TO " Un "3) " Vahvn ”
<ot I+ 20 w8l ey Vo, I + 10, 80 1P+ 116, £ 1) 8, IF,

where v, = 1/4,,.

On the other hand, from (6.15) with v = 0 it immediately follows that

(6.18) %H u, |” + 0, v) < f, u,).

D=

Hence, the use of Gronwall’'s lemma implies | u, () ||Z < A; for all t < T. More-
over, observing (2.28), (6.4) and (6.12), we readily obtain T,(E) > 0 and

o, Iy < ¢ 1w, &) P 170, ® IF < cArv,E, t < T,(E)

for all # = n,. So that 2,0 — 7, | v, |3 = 2,0 Integrating (6.17) over the interval
(0, 9, applying Gronwall's lemma and letting #— 0, we obtain

t
(6.19) g+ #3 [* o P at

<Al f@ —xIF+ f W+ 2o BN Ve vo, IE + 1vog P db

xexp ([ 171t

for all t < T,(E) and all n = n,,
Exactly as in Lemma 6.1 we can derive

6.20) Vo, ® 2 < Cpl(Iove® I+ DAu,dF + 17O P + g
+ 1o | Vo, P+ o, @ B Vo, @) IP).
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Employing again Gronwall’s lemma after substitution of (6.20) into (6.19), we get
(6.14), since v fl, < vl vl

Secondly, we suppose (ii) of (6.12) to hold. The use of (2.29) in the LHS of
(6.16) implies

(6.17) T80, P+ @t = 0170, 10,0,

<o I+ (14 2) @ w00 1 Waty Vo, 12+ 1, B, 1D
+ (Lo + 277" [ Vo, D | Gy, I
where 1}4 = T and we used the inequality:
6.21) 16,0, 1" <210 6,m,I" + % @l v, I 1 Ve, Vo, I + 10, 8,2 1),
which is easily derived from (3.14) by observing that
the RHS of (3.14) < fg ©2ut) | Dw) | + gt)y( D) | — | D) ) dx.

Therefore, we have

t
(f) [P + Haa A
Vo, O IF + 52 follv,,ll

T
<@ =P+ [ (171420 +2) L B1Va va, |+ 1og I db

< exp( [ 17 Nt + )

for all t < T, (E) and all # = n, By the same argument as above we arrive at
(6.14). Q. E. D.

Our next task is to find E such that T,(E) = T. From (6.18) it easily follows
that

(6.22) 0. (t, 0, )" < 2w, @ PA £ O I+ Nupd ).
Accordingly, if E is chosen so that

6.23)  9A,(max | f® I + I) + 94,/ (u,E + Arpy "E*™™) < E?,

0<t<T

then we can derive from (6.22) and Proposition 6.1 that

1| 70, IF <972 ¢,(¢t, v,() <E
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for all ¢+ < T,(E) and all # = n,. Hence, it is concluded that 7,,(E) = T. In fact,
this contradicts the definition (6.13) if 7,,(E) < T. For the sake of simplicity we
write

(6.23) as B,+ B,E + B,E*" < E’.
Set
E, = 2B)"" and E,= 2B, +2B,.

Then, B,EZ™*=E!/2 and B,+ BE, < E./2. 1t is easily verified that
E, = E, + E, satisfies (6.23).

The inequality g, l Vu, ||2 < E; is then trivial. Making use of the compactness
argument, we thus arrive at (2.32). Evidently, # is a solution of (2.25)-(2.26).
Moreover, with the aid of Lemma 6.2 we can prove that (2.33) are bounded. Let /
be the integer mentioned in Lemma 6.2. Then, (6.11) implies

P -1
| vul, < e {PA Tl + 1o b + 5= @),

where P (t) is bounded and @, (¢) is the sum of the bounded function and
[F® —w®), 1f2<g<86, then 6/5 < r < 2. We now suppose ¢ > 6. Then,
2 < 7 < 3. By (1.10) and Sobolev’s inequality we have

I ll, < const. |l I Ve’ I,

where 0 =3(1/2—~1/7) and 1/7r=1/q + 1/3. Therefore, | Vu H:? is integr-
able for p = 2/0, which completes the proof of the fact mentioned above. The un-
iqueness easily follows from (ii) of Corollary 2.
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