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WHITE NOISE DELTA FUNCTIONS AND

CONTINUOUS VERSION THEOREM

NOBUAKI OBATA

Introduction

The recently developed Hida calculus of white noise [5] is an infinite dimen-

sional analogue of Schwartz' distribution theory besed on the Gelfand triple

(E) c (L ) = L (E , μ) c (E) , where (E , μ) is Gaussian space and (L ) is

(a realization of) Fock space. It has been so far discussed aiming at an application

to quantum physics, for instance [1], [3], and infinite dimensional harmonic analy-

sis [7], [8], [13], [14], [15]. During the development an important milestone was

Kubo-Yokoi's continuous version theorem [11] which asserts that every test white

noise functional φ G (E) admits a unique continuous version and, therefore, the

test functionals constitute a space of continuous functions on E . This theorem is

very fundamental and indispensable for many arguments. For example, it allows

us to introduce a delta function on Gaussian space, which is one of the most

important generalized functions. Furthermore, the continuous version theorem is

effectively applied to description of positive generalized white noise functionals

[19].

The motivation of this paper is to give an alternative proof of the continuous

version theorem by means of a direct use of defining Hilbertian seminorms of E .

In fact, this approach yields a sharp estimate of white noise delta functions δx ^

(E) , x e E , from which the continuous version theorem follows. Moreover,

with this method we may prove the continuity of x •-• δx ^ (E) , x e E , which

guarantees that the w-fold (topological) tensor product (E) ® ® (E) is again

a space of continuous functions on the product of the Gaussian space E X X

E (n times).

Here we remark some closely related works. In [12] Lee proved that each test

functional φ ^ (E) admits an analytic version on each Hubert space E_p, where

E = indlimp^ooE_p. However, since the inductive system {E_p}p>0 is not strict,

our continuous version theorem does not follow from his result. In [9] Kondrat'ev
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and Samoylenko studied smoothness of test functionals on R°° equipped with the

product Gaussian measure. Although based on a different framework, their discus-

sion can be translated into our language. However, it turns out that their results

have little in common with ours but some with Lee's. Finally, within the

framework of Malliavin calculus the unique existence of quasi-continuous version

has been discussed in many contexts, see e.g., [17] and references cited therein.

The paper is organized as follows. In Section 1 we recapitulate a well known

construction of Gelfand triples under the name of standard construction. Section 2

is devoted to a brief review of test and generalized white noise functionals. In Sec-

tion 3 we formulate the main results. In Section 4 we introduce a set of defining

Hilbertian seminorms of E and in Section 5 we prove the main results. Section 6

contains some results on a tensor product of white noise test functionals.

NOTATION. If 36 is a real vector space, we denote by 3£c the complexification.

For two vector spaces 26 and 2) we denote by 3£ (8)alg 2) their algebraic tensor pro-

duct. If ϊ = H and 2) = K are Hubert spaces, we denote by H ® K the Hubert

space tensor product. For nuclear spaces 3£ and 2), we denote simply by 3E (£) 2) the

completion of £ ® a i g ? ) with respect to the π-topology, i.e., the strongest locally

convex topology on ϊ Θ a i g ί 9 s u c n t n a t t n e canonical map 3£ X 2) ~~* £ ® aig §) * s

continuous. Although the τr-tensor product of Hubert spaces is different from the

£ nHubert space tensor product, there will be no confusion. We denote by 3£

3£ n the closed subspace of symmetric tensor products. We also use (X ) s y m for

the same meaning in case oί the strong dual spaces.

1. Standard construction of Gelfand triples

Motivated by the works of Berezansky-Kondrat'ev [2] and Gelfand-Vilenkin

[4], we reformulate a useful method of constructing a nuclear Frechet space or

equivalently a Gelfand triple.

Let H be a real separable Hubert space with norm | | 0 and inner product

<*,->. Assume we are given a pair ({^ }°°=0, U ; }°°=o) of a complete orthonormal

basis of H and a sequence of positive numbers with ΣJlo Λ' ^ °° ^ o r s o m e

r > 0. We then put

/ o^ \ 1/2

(1)

though I ξ \p = oo Can happen. For p > 0 let Ep denote the subspace oί ξ ^ H

with I ξ\p < oo. Obviously, Ep becomes a Hubert space with norm | 1̂ . Again for
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p > 0 let E_p denote the completion of H with respect to the Hilbertian norm

I \_p on H. We have thus obtained a chain of Hubert spaces:

• c Eq c c Ep c c Eo = H c c £_, c c £_9 c ,

where every canonical injection Eq^> Ep, q^p, is continuous and has dense

image. As is easily seen, the inner product (*,*) of H is naturally extended to the

canonical bilinear form on E_p X Ep, p > 0, through which E_p is identified with

the strong dual of Ep.

THEOREM 1.1. Equipped with the Hilbertian norms | \p, p > 0, E = Π ̂ o Ep

becomes a nuclear Frechet space, which is isomorphic to the projective limit

proj lim^oo Ep. Moreover, the strong dual E is isomorphic to the inductive limit

ind l im^^ E_p and is identified with U p>0 E_p as vector space.

The proof is straightforward, see [4: Chap. I ] and [16: Chap. IV]. We have

thus obtained a Gelfand triple E c: H a E from the pair ({ ;̂}°°=0, {/ί;}̂ °=0). This

construction will be called standard.

While, it is sometimes more convenient to start with a densely defined oper-

ator on H instead of a pair ({#_,-}°l0, {λj}J=0). A linear operator A with dense

domain DomC4) c: H is called standard if there is a complete orthonormal basis

{£; }JLo for //contained in DomC4) such that

(51) Aβj = λjβj with λj > 0;

(52) Σ λ~2r < oo for some r > 0.
; = 0

The relation between a standard operator A and a pair ({£; }JL0> W^Γ=o) is de-

scribed as

Aξ=Σλ,<ξ,e,>e,, ξeDomW).

Given a standard operator A, we construct a Gelfand triple in the standard

manner.

LEMMA 1.2. If A is a standard operator on H, so is A for any s > 0 and ίfog

resultant Gelfand triples are isomorphic.
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The proof is straightforward. By virtue of Lemma 1.2 we may assume without

loss of generality that r ~ 1 in (S2), when we discuss standard construction of

Gelfand triples.

Let Ω be a topological space equipped with a Borel measure v. If A is a stan-

dard operator on H—L (β , y R), the Gelfand triple constructed from A is

explicitly written as

JSA(Ω) C L2(Ω, v R) c j&*(Ω).

By construction each element of s&A (Ω) is a function on Ω which is determined up

to v-null functions. For many practical reasons it is desired that JSA (Ω) can be

identified with a space of continuous functions on Ω. In this connection we prop-

ose the following hypothesis:

(HI) For each function ξ G j£A(Ω) there exists a unique continuous function ξ on

Ω such that ξ(ω) = ξ(ώ) for y-a.e. ω e Ω.

Once this condition is satisfied, we always regard sSA(Ω) as a space of continuous

functions on Ω and we do not use the symbol ζ. Under (HI) we consider two more

hypotheses:

(H2) For each ω ^ Ω the evaluation map δω : £ ^ ξ (ω ), ξ ^ JSA(Ω), is a

continuous linear functional, i.e., δω €= j ^ C β ) .

(H3) The map ω *-> δω & ώA(Ω), ω ^ Ω, is continuous with respect to the strong

dual topology of J£A(Ω).

The above hypotheses are motivated by the work of Kubo and Takenaka [10].

While, in [4: Chap. I ] the evaluation map δω is discussed without topological

structure of Ω. A sufficient condition for (H1)-(H3) is presented in Appendix.

2. Generalized white noise functionals

We keep to the same notation as in §1. Let A be a standard operator on a real

Hubert space H satisfying

(Al) Aβj = λjβj with λj e R;

(A2) Σ ^ 2 < o o ;
; = 0

(A3) 1 <λo<λ1 < >oo.

The last condition is indispensable to our white noise calculus setup. Let

E c H c E be the Gelfand triple constructed from A in the standard manner.

The Gaussian measure μ on E is defined by
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(2) e x p ( - - L f 4 = f ei<x ξ> μ(dx),
JE*

We consider the Hubert space L (E , μ R) and its complexification (L ). Their

norms are denoted by || ||0.

In order to introduce a standard operator on L (E , μ R) we need a variant

of Wiener-Itό decomposition. For x G E and n — 0,1,2,. . . we define :x n : ^

(E w ) s y m inductively as follows:

. ® 1 .__

® « . /o^ <8>(n—1) / ., \ - ^ <8>(«—2) «v̂  r»

where τ ^ {E® E)sym is the ίrαcg uniquely determined by

(3) < τ , f ® ) ? > = <ξ,η>, ξ . η e E .

Let /M ^ Ec

n. Then 0 M ( J : ) = <:x n :, / w ) becomes a continuous function on

0.

c in L sense With

n Then 0 ( J : ) = <:x n :, / w ) becomes a continuous function on £

which satisfies || φn ||0 = n\ \ fn |0. Using this isometry, we may define (:x n :, /n>

for yjj ^ i / c in L -sense. With these notations we have the following

PROPOSITION 2.1. For each φ ^ (L) there exists a unique sequence (fn)ζ=0, fn

Q , such that

(4) φ(x)= Σ<:x®" :,/„>, x^E*,

where the right hand side is an orthogonal direct sum in (L ). In that case it holds

that

n=Q

We now define a second quantized operator Γ(A). Let D o m t Γ C A ) ) be the

space of functions φ of the form (4) such that fn^En and fn = 0 except finitely

many n. For φ e Dom(ΓG4)) put

oo

«=0

Then, Γ(A) becomes a standard operator on L (E , μ R ) , see [15]. Employing

the standard construction, we obtain a new Gelfand triple:

o / Z71 *\ (— T^1 ( XT' i, . "D^ (— # / Z71 \
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of which complexification is denoted by

(£) c (L2) c ( £ ) * .

Elements φ ^ (E) and Φ ^ (E) are called a test (white noise) functional and a

generalized {white noise) functional, respectively. The canonical bilinear form on

( £ ) * X (E) is denoted by «•,•».

It follows from (5), (6) and the definition of norms that

(7) || φ \\l = || ΓiAΫφ ζ = Σnl\ (A V /, IO = Σ n\ I /„ I*.

We then obtain

PROPOSITION 2.2. L<?f 0 ^ (L2) be expressed as in (4). Then, φ e ( £ ) i/ and

onty t//w e £® w far all n = 0,1,2,... ana1 ΣΓ=o«! I fn \\ < °° / ^ allp > 0.

3. Continuous version theorem

In this section we formulate the main assertions. Recall that by construction

each φ ^ (E) is determined only up to μ-null functions.

THEOREM 3.1. For each φ ^ (E) there exists a unique continuous function φ on

E such that φ{x) — φ(x) for μ-a.e. x €= E . Moreover, φ(x) is given by the abso-

lutely convergent series:

φ(x) = Σ <:xβκ :,/„>, x^E*,
n=0

where (fn)ζ=0 corresponds to the given φ as in Proposition 2.1.

The above assertion should be carefully compared with Proposition 2.2 which

asserts that the series converges with respect to the norms || ||̂ , p > 0. By virtue

of Theorem 3.1 we always understand (E) to be the space of continuous functions

φ on E of the form:

= Σ<:x0n:,fn>,
n=0

where
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( i i ) Σ n l \ f n \ l < o o f o r a l l / ) > 0 ;
« = 0

(iii) the series is absolutely convergent at every x ^ E .

For x ^ E a linear function δx on (£") is defined by

This is called a w/wte noise delta function.

THEOREM 3.2. δ^ e {E)* for all x e £ * . Moreover,

r 1/2 , 1 / 1

whenever τ _p -r x\_p < 1.

THEOREM 3.3 77ιe mαf .r ^ δ^ G (£)* , J: G £ * , ^ continuous.

In short, Theorems 3.1-3.3 say that the space of test functionals CE) satisfies

the hypotheses (H1)-(H3) introduced in §1, The proof of Theorem 3.1 being some-

how long, it is devided into three steps (Propositions 3.4-3.6) and will be com-

pleted in §5. The estimate (8) in Theorem 3.2 will be sharpened in (33) in §5.

PROPOSITION 3.4. Let φ be a continuous function on E . // φ{x) = 0 for μ-a.e.

x e E*t then φ(x) = 0 for all x e E*.

Proof Note first that μ(E_p) = 1 for p > 1. In fact, this follows from (A2)

and a general result (e.g., [18: Chap. 3]). We prove the assertion by contradiction.

Suppose that φ(x0) > 0 for some point x0 ^ E . Take p > 1 such that .r0 ^ £_£

and consider the restriction of φ to E_p which is denoted by the same symbol.

Obviously, φ is a continuous function on E_p with 0Cro) > 0. It then follows from

the assumption that there exists a non-empty open subset U c £_^ such that

μ(U) = 0. We now take a countable subset ί£JΓ=i c H such that

£ _ , = U (U + ξk).

But since the Gaussian measure μ is quasi-invariant under translations by H, we

have μ(U + ξk) = 0 and therefore μ(E_p) = 0. This is contradiction. Q.E.D.

We now introduce two basic constant numbers in white noise calculus:
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( oo \ 1/2

y r2) n — II A"1 II — " 1

j=Q /

where ||Λ ||HS and \\A \\ stand for the Hilbert-Schmidt norm and the operator

norm of A~ , respectively. These are frequently used together with the obvious

inequalities:

(9) , p<δ,

which follow from (A3).

Again by | |̂  we denote the norm of the Hubert space Ep

 n, p e R. Then, in

view of (1) we obtain

(10)

= (. Σ #-£<ω,

Note also that

(11) O) ^ βn I ω L+1, ω

Ί > ) » ω € C

-p , R,

and therefore

(12)

PROPOSITION 3.5. For n = 0 , 1 , 2 , . . . let Ec
n and assume Σζ=0 n\ \ fn \p < °°

for all p ^ 0. Then the series

<: x :, /„>

converges absolutely at each x e E

Proof. By definition (3) we have τ = ΣJLo ej ® ej

o ̂ 7 # ^ °° whenever ^ > 1 /2. We next note the inequality:

Hi,

(13) : x
^ - /—r /I

\x

which follows from the well-known identity:

(14)
<8>« .

: ,r • =
(~ D*w!

=o (n-2k)lk\2
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and an obvious inequality:

k]2* "" (2ft) ! ' V - Λ -

Now let x e £ * be fixed. It follows from (13) that

\n\
L2J

(15) p I ^ K l/>< Σ : x :-p\fn

< Σ v^T(! r IL̂ 2 +
Λ = O

k 1/2

fn

/ oo

(Σ

In view of (12) we choose p > 1/2 such that | τ\_p + \ x\_p < 1. Then (15) be-

comes

(16) Σ |

as desired.

/ 00 \

I V ^ I r | 2 \

N*i —Π /

Q.E.D.

We now go back to the proof of Theorem 3.1. According to Proposition 2.2 a

given φ €= (i?) admits an expression:

φ(x) = Σ < : χ 0 w : , /„>, x G £ * ,
W = 0

where /w e £ ® w for n = 0,1,2, . . . and Σ Γ = 0 » ! I Λ lί < °° ίor all /> > 0. The

series converges in L -sense. On the other hand, it follows from Proposition 3.5

that

(17) φ(x)= Σ <:x®n:,fn>

converges at every point x ^ E . Therefore, φ (x) — φ (x) for μ-a.e. x ^ E .

Since the uniqueness of a continuous version follows from Proposition 3.4, the

proof of Theorem 3.1 is completed by the following

PROPOSITION 3.6. For n — 0,1,2, . . . let fn& Ec

n and assume Σ n\ \ fn

< °° for all p > 0. Then, φ defined in (17) is a continuous function on JE1*.

It is much simpler to show that the restriction of φ to E_p is continuous with

respect to the norm H * . However, this is not enough to assert the continuity of φ
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with respect to the strong dual topology of E , because the inductive system

{E_p}p>0 is not strict.

Proposition 3.6 will be shown in Proposition 5.4 together with a precise

estimate of | φ(x) ~ φ(y) |. While, the proof of Theorem 3.2 has been already

established during the proof of Proposition 3.5. The estimate (8) follows im-

mediately from (16).

4. Defining- seminorms for the strong- dual E

Following [18: Chap. 3] we introduce a set of defining Hilbertian seminorms

of E . Let % be the set of sequences C = (Cp)p*=0 such that Co > Cx > * > 0.

For C e % we put

(18) D S D c = Σ C2

p\ξ\2

p, ξ*ΞE,
p=0

though possibly 0 ξ D c = °° Then E (C) = {ξ e E Q ξ D c < °°> becomes a

Hubert space with norm Q Q c . We put

(19) | x | c = sup{ |<x, ξ>\; UξUc £ l , f e £ ) , x e £ * .

• | c is a Hilbertian seminorm on E though it is not necessarily a

norm. Note also that for any C ^ #

(20) l<χ, £ 1 < U l c D f Do ^ ^ ^ * , f e £ ,

though D ζ D c = °° c a n happen.

LEMMA 4.1. {| | c )ce^ ^5 α 5^^ of defining Hilbertian seminorms of E .

Proof The strong dual topology of E is defined by the seminorms

where B runs over all bounded subsets of E. It is therefore sufficient to show that

for any bounded subset B c E there is C ^ ίί such that fic{ξG£;[]ξ|]c

^ 1}. But this is easily verified. Q.E.D.

LEMMA 4.2. For C = ( C p j = 0 e # iί /ioW5 ί/iαί

; = 0
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Proof Recall that {ej}J=0 is an orthogonal basis for all Ep, p > 0. In view of

(18) we see that {Q βj Q c £; }JL0 is an orthonormal basis for E (C) and also for

E{C) , where we understand Q ei We ej = 0 if Π £,- Q c = °°. Then the assertion

follows from Fourier expansion x = Σ°L0 (χ> eP ev which converges in E .

Q.E.D.

It is noted that

E®n = Π Efn = proj lim Efn, (2? 0 n )* — \j β^ ^ j n ( j i ί m E®p.
P>O t>-°° p^o ^°°

Therefore the topology of (E ) is defined in a similar way. Namely, for C ̂  %

put

oo

(21) U ω ttc ~ p ^ = o ίPl '" Lpn\
ω\pv.-,Pn> ω < s t >

where

see also (10). Then for F ̂  (E n) we put

| F | c = sup{|<F, ω>\'y\\ω\\c< lyω^E*n).

It is proved in a similar way to Lemma 4.1 that {| Iĉ ce-g1 i s a s e t °f defining Hil-

bertian seminorms of ( £ n) . We next note the following

LEMMA 4.3. Let C = (CPTP=Q e ^. Then

though \ F\_p = °° may happen. Moreover, \ \c is a cross norm, i.e.,

Proof A similar argument as in Lemma 4.1 yields

(23) I F\2

C = Σ < F , e A ® ® ^,M> 2 D e ; i Dc 2 * * • ejn U~c\

It is then obvious that | | c is a cross norm. Since
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C~2λ~2p

UP λJ

for any p > 0, it follows from (23) and (10) that

\F\2

C

as desired.

,-2p /„
Λ \ 2 —
βj / —

Ftt

Q.E.D.

5. Proof of the main results

For any C = (Cp)p*=0 ^ % we put

(24) D 0 D c = Σ C ; | | 0 t 0 e (£),

though D 0 D c = °° may happen.

LEMMA 5.1. Let C = (Cp)^=0 e ^ . Then for any φ e (JE) tί ί/iαί

15 ̂ "iwn as in Proposition 2.1.

(25)

Recall the definition (21) to obtain

D/.Dc= fn \l...,Pn.

In view of (10) and (22) we obtain

r2 r 2 I r 12 < r,2(n-l)

where ^ = maxί^, * ,pn}. We then see that

- i n ) I f |2
\ Jn \p>

2 1 /• 12

Vo

< C2(n-l)

Thereby (25) becomes

D / B Π 2

C = Σ Σ C) • • C2

Pn\ fn\lv...,Pn
p=0 τasχ{plt'",PH}=P
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2 1 f I 2

I Λ I1 - 2 ' -

Finally with an obvious inequality: n\ \ fn\p <\\φ \\p, which follows from (7), we

obtain

C1 \n oo / C2 \n
ΛΛ\ Π /" Π 2 <r / ^ ~ 2 t ° l V z^ 2 II A, II2 — /° ~ 2 Π A, Π 2 f o iWI U /« U c — ^ o \ "̂y 2-. C^ II ̂  11̂, — ϋ 0 u ψ uc \ 2) '

This completes the proof. Q.E.D.

LEMMA 5.2. For ft = 0,1,2,.. . tί /ιo/ίi5 tfiαt

Σ ( \ ί f ) ! tn< (t+k)ke\ t>0.
n=0

Proo/. We put

. °° ( Λ Λ —j— Jy ) I

As is easily shown, P*(0 is a polynomial of degree ft. Actually, it is related to the

Laguerre polynomial (e.g. [6: Appendix]) as Pk(t) = k\Lk(— t). We thus put Pk(t)

— Σ / = o flλ/£ . Then, by induction we may prove

0 < akι < (f) ft*"', 0 < / < ft,

from which the assertion follows immediately. Q.E.D.

LEMMA 5.3. Put

λ(z, w) - L TΊ .
k=Q fί'

Then the series converges in C X {| ω \ < e~ } and λ (z, w) becomes a holomorphic

function in two variables.

Proof. We only need to apply Cauchy-Hadamard formula. Q.E.D.

Assuming that C — (Cp) J= o ^ % satisfies the condition Co < 1 —p , we put
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Λ c ( z ' w ) = e x p (ί)
Obviously, Λ c(z, w) is holomorphic in C X {| w \ < e~ Co (1 — p )}. With these

notations we have

P R O P O S I T I O N 5.4. For n — 0 , 1 , 2 , . . . let fn^ Ec

n and assume Σ Γ

< 00 far all p > 0. Put
o w ' I fn

«=0

IfC=

(26)

then

(27)

C0

21 τ \c

φ(x) -0(2/)

for allx, y ^ E . In particular, φ is a continuous function on E .

Proof Let x, y ^ E and suppose C = (Cp)^=0 G ^ satisfies (26). Then,

in view of (14), (20) and Lemma 4.3 we observe

(28) \<:x°H:-:y»*:,fH>\

*=o (n-2k)\k\2k

[n/2] ^ J

, Q

<8>(w-2/c) I π r Π

Using an obvious inequality:

1 <8>m <8>m \ ^ \ I /I I ι I I \»ί—1

x - y \c<\χ- y \ c ( \ x \ c + \ y \ c ) ,
and summing up both sides of (28) with n, we obtain

(29) if \ i ^ i i v I r l c ^

- φ(y) \<\χ-y\cΣ
 1~Λf Σ

/ ! 2

+ 2k + 1)!
( • n τ

Applying the Schwarz inequality, we have
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(30) Σ (ntn2+ΐv1)l (l *\c + I y\c)n • fn+2k+. Dc
tt = O

. 1/2

We now estimate the last two series. By Lemma 5.1 we have

(31) Σ (» + 2k + l ) ! D fn+2k+ί Dc ̂  c;2 D Φ ttl Σ

= D 0 U r / Cή \2A

1- p - Co

 x 1 - p '

where we used the assumption Co < 1 — p . On the other hand, application of

Lemma 5.2 yields

( 3 2 ) £ ( » + l ) ! ( » + l ) ! ( | x | c + l ί ' ^

(n + 2k + 2)! ,, . , .
^ ϊwί— (I J?Ic +1

< ί(| x | c + I y\c) + 2k + 2) exp(( |x | c + | y\c) }.

Therefore (30) is estimated by (31) and (32) as

Λ . o (Λ + 1 ) ! vχ\c~tΊV\c> U.

2C n

2 \ft

exp

Consequently, (29) becomes

^ 1 C

O

X τ ~ ^ e χ P
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_2Wφ\\c\χ-y\c

exp ^ 2•(-•

' ( •

(\χ\c + \y\c)
2

This completes the proof of (27). Take C = (CP)^=Q e <g with the properties (26)

(such a C exists certainly). Since z *-+Λc (z, | τ | c ) i s continuous (in fact,

analytic), we conclude from (27) that φ is continuous on E . Q.E.D.

As was already explained in §3, Proposition 5.4 completes the proof of the

continuous version theorem (Theorem 3.1). Theorem 3.2 was proved at the end of

§3. We now give

Proof of Theorem 3.3. Since (E) is constructed in a similar way to E by

the standard construction, the topology of (E) is defined by the Hilbertian semi-

norms:

where Q φ Q c is defined as in (24) and C runs over (β. While, it follows from

Proposition 5.4 that

lim sup {\«δx - δy, 0 » | D 0 Dc ^ 1> = 0,

for all C = (C/))J=0 e $ satisfying the conditions in (26). It is therefore sufficient

to show that all C ^ % with (26) constitute a set of defining seminorms of E .

Note that \x \c < \x \c, for any x e £ * if C < C, namely, if Cp < Cp for all p =

0,1,2, . . . . Thus it is sufficient to show that for a given C e # there is C r e ^

with (26) such that C < C. Choose tf > 0 such that | τ\_p < e~\l ~ p2). Define

C = ( C ; ) ; . o e ^ by

o<c; = ••• =

Then, by construction, C < C and CQ < 1 — p . Moreover, since | τ \c, <

Cg I T \__q by Lemma 4.3, we have

Γ'2\τ\
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This completes the proof. Q.E.D.

Remark By a similar (but much simpler) computation as in the proof of

Propositon 5.4, we obtain a somehow better estimate of a white noise delta func-

tion δx, x e E . Let φ ^ (E) be given by

φ(x)= Σ <:***:,&, * e £ * ,

as usual. Then, for p > 0 we have
00

I J / \ I ^ V I / ® w r \ I

r 2

and therefore,

(33) \\δx\Lp < exp

The last series converges whenever | τ\_p < e and | # | _ j ^ °° This condition

may be compared with | τ\_p + | x \_p < 1 in Theorem 3.2.

6. Tensor product

The standard construction of a Gelfand triple is well suited to tensor pro-

ducts. We begin with the following

PROPOSITION 6.1. For i = 1,2 let At be a standard operator on Ht and let E{ c

Hi c E{ be the Gelfand triple constructed in the standard manner. Then, Aλ ® A2 is

a standard operator on Hγ® H2 with domain Dom (A± ® A2) — Dom {Ax) ® a l g

Dom(Λ2) and the Gelfand triple obtained from Ax ® A2 is given by Ex® E2 c Hx®

Proof It follows from Theorem 1.1 that E{ = proj l im^^JΪ^, i = 1,2,

where £ ^ is the Hubert space obtained by completing E{ with respect to the norm

I ξ \p = |i4^£ |O, ξ ^ £,-. Then a simple observation implies that

(34) EX®E2 = proj lim Eιp ® E2q = proj lim E1P ® E2P.
p ,Q—*oo p—too

On the other hand, it is easily verified that Aι®A2 is a standard operator on
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Hλ (8) H2. Let F be the nuclear Frechet space constructed from Ax ® A2 in the

standard manner. Then, F = proj l im^^ Fp with Fp being the completion of F

with respect to the norm | ζ \p = | G^ ® J 4 2 ) * ζ |0. Note here that Fp = Eιp ® E2P.

It then follows from (34) that F= £ x 0 £ 2 . Q.E.D.

PROPOSITION 6.2. For ί = 1,2 Zeί β, fr# α topological space with a Borel measure

Vj and let A{ be a standard operator on L (Ωt, v{ R). Then

identification: L2{Ωι x Ω2, vx x v2 R) = L2(ΩV VX R) ® L2(Ω2, V2 R) .

Immediate from Proposition 6.1. Q.E.D.

PROPOSITION 6.3. Let notations and assumptions be the same as in Proposition

6.2. // both ώAι (Ωx ) and ώA<ι (Ω2 ) satisfy the hypotheses (H1)-(H3), so does

Proof For ζ e X ^ (β. x Ω2) = J . (£λ) <g) J . (fl2) we put

Then ζ is a continuous function on Ωλ X i32 because of (H3) and the fact that

is continuous. Take an approximating sequence {ζJΓ=i c &AX ( ^ I ) ®aig ^A2 (^2)

such that

(35) lim I ζ w - ζ\p = 0 f o r a l l / ) > 0 .

Then

(36) I ζn - ς 0 - j I ζn(<*>!, ω 2 ; - ζ to^ ω 2; | v^dωjvr

r 2

^ΩιxΩ2 o>i a>2> n

^ ^ r i2 Γ 1 ̂  i2 f// ^ Γ 1 ̂  i2

Note that

(37)
1=0
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f λ~2, i = 1,2.
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which is immediate from the identity:

I δ W = Σ <δ eυ>
2 λ~2 = Σ e

; = 0 ; = 0

It then follows from (36) and (37) that

08) i ς - ζ i o < ^ δ 2

2 i ζ w

Hence, we see from (35) and (38) that

—• 0 as n —• ° ° .

Namely, ζiω^ ω2) = ζ(ωu ω2) for vι x v2-a.e. (ωlf ω2) e Ωγ X Ω2. This proves

(HI). The properties (H2) and (H3) are now immediate. Q.E.D.

In view of Theorems 3.1-3.3 and Proposition 6.3 we conclude the following

THEOREM 6.4. Any function in the n-fold tensor product (E) ® ® (E) is

continuous on the product space E X * X E (n times), or more precisely, admits a

unique continuous version with respect to the product measure μ X * * * X μ (n times),

Appendix. A sufficient condition for the hypotheses (H1)-(H3)

We shall give a sufficient condition for (H1)-(H3) from a different viewpoint.

PROPOSITION. Let Ω be a topological space with a Borel measure v and let A be a

standard operator on H = L (Ω, v; R ) with eigenfunctions {e)™=Q and eigenvalues

{λj}°°=0 satisfying (SI) and (S2). Assume the following three conditions:

( i ) v(U) > 0 for any non-empty open subset U ^ Ω

(ii) every βj is a continuous function on Ω

(iii) Ω admits an open covering Ω = U γ Ωγ with the property that for each γ there

exists a(γ) > 0 such that

M7 = sup {λjj a i r ) ;ω*ΞΩr,j = 0,1,2,...} <

Then ώA (Ω) satisfies (H1)-(H3). Moreover, φ is given by the absolutely convergent

series:
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(39) φ(ω) = Σ <φ, *,> e, (ω).
0

By Lemma 1.2 we may assume r — 1 in (S2). We first show that for φ

G ^ (12) the series (39) converges absolutely at any ω ^ Ω. Choosing Ωγ con-

taining ω, we observe

Σ I <φ, ej> e, (ω) | <Ξ M r Σ λ
; = 0 ; = 0

fr)

(

Hence

(40) Σ I <0, ^> ^(ω) I < δM r I 0 |β(r)+1> ω e β r , 0

where δ = (Σ7=o ŷ ) < °°. This proves that the series (39) converges abso-

lutely at each ω ^ Ω.

For the continuity of 0 we need only to prove that 0 is continuous on Ωr. For

ωlf ω2 e β r , a similar argument as above yields

(41)
n / \ 1/2

I £(ω x ) - ^(ω 2 ) U Σ | < 0 , βy> I I e/ω.) - e,(ω2) | + 2M r | 0 |β ( r ) + 1 Σ /i;2) .
;=0 V>« '

Since ^; is continuous and 5 — Σ^l 0 /ί; < °° by assumption, the continuity of φ

on i3 r follows from (41). It is clear that φ(ω) = φ(ω) for y-a.e. ω ^ Ω because

the Fourier expansion 0 = Σ ° l 0 ^0» ^ ^ converges in L -sense. We have thus

proved (HI).

According to our convention, we do use the symbol 0 for 0 hereafter. The

inequality (40) means that the evaluation δω: φ *-* φ (ω) is a continuous linear

function on ώA(Ω). (In fact, | δω |_α ( r )_i ^ δMr for ω ^ Ωγ.) Hence, δω e JSA (Ω)

and (H2) holds.

Finally we consider (H3). For a bounded subset B c: ώA{Ω) put

I B \p = sup {| 0 I, 0 e β}

for simplicity. This is always finite. Note that

(42) sup{|<0, ey> I ; 0 e β } < sup {| φ | o |ey | 0 φ e 5} = | β | 0 < oo.
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In view of (41) and (42), for ωv ω2 G Ωr we have

s u p {\<δωι - δ ω 2 , φ>\;φ£B}

< I 5 1 0 Σ I * M ) - * > 2 ) }+2Mr\B|β(r)+1 ί Σ /i;2) .

Hence the map ω 1 ^ ^ G ^ (Ώ) is continuous on Ωr and therefore on Ω. Q.E.D.
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