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ANISOTROPIC RANDOM WALKS ON FREE PRODUCTS OF

CYCLIC GROUPS, IRREDUCIBLE REPRESENTATIONS AND

IDEMPOTENTS OF C* e g (G)

GABRIELLA KUHN

Introduction

Let G = Zn+ι * Zw +i * * Zw +i = <0i, a2, . . . ,aq+ι | af+1 = e V;> be the

free product of q 4- 1 copies of ZΛ+i, and let ^ denote its Cayley graph (with

respect to <2; , 1 < j < q + 1). We may think of G as a group acting on the

"homogeneous space" $, This point of view is inspired by the case of SL2(R)

acting on the hyperbolic disk and is developed in [FT-P] [I-P] [FT-S] [S] (but see

also [C]).

Since G is a group we may investigate some classical topics: the full (reduc-

tive) C* algebra, its dual space, the regular Von Neumann algebra and so on. See

[B] [P] [L] [V] and also [H]. These approaches give results pointing up the analogy

between harmonic analysis on these groups and harmonic analysis on more clas-

sical objects.

On the other hand, since G is not type I, its representation theory cannot be

completely analogous to that of SL2(R) and indeed will never be completely under

control. Nevertheless, the probabilistic approach, as in [FT-S] and [S] provides an

important instrument of investigation.

In order to understand this, recall that $ is a connected graph with the prop-

erty that at each vertex V there meet exactly q + 1 polygons ^-(V/) (j: = 1,. . .,

q+ 1) each with n + 1 sides. Identify the vertices of $ with the elements of G.

Then, if V corresponds to g ^ G, the polygon ?Pj(V) is given by the coset

g(Zn+ι)j where (Zn+i)j is the j'th copy of Zn+i in the free product expression

for G.

Q+l

Choose q + l positive numbers pq+ί < pq < < pi with Σ pj—1-

j=ι

Consider the random walk where the transition probability p(Vr —* V) of
moving from a vertex V to a vertex V is pj/n if V G ^-(V) and V Φ V. Fix the
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9 6 GABRIELLA KUHN

vertex Vo corresponding to the identity e of G and let μ(x) = p(V0—*x * Vo)

where x- Vo denotes the element of ^ corresponding to x. Consider the (bounded)

operator M from 12(G) to 12(G) given by right convolution with μ. We know that

we can realize the spectral decomposition of M using the Green function associ-

ated to the above random walk.

This technique is carried out in [I-P] (with p\—p2~ ' ' ' — pq+ι — — X T /

and in [S] (with n + 1 = 2 and pq+i < pq < < pi) to obtain a decomposition of

the left regular representation into a direct integral of representations acting on

(generalized) eigenspaces of μ. The decomposition is into irreducibles exactly when

there are no true eigenspaces of μ. We know that the decomposition is into irre-

ducibles in the case n + 1 = 2.

The aim of this paper is to investigate the case n + 1 > 2. In this case the

shape of the spectrum of M depends on the pair (q, ή) as well as on the choice of

the pj. (In contrast with the case n + 1 = 2, the dependence on the pj is quite

complicated). The discrete part of the spectrum corresponds to eigenspaces of μ,

and hence to G-invariant subspaces of 12(G). Such subspaces are always reduci-

ble representations (see [C-FT]).

The continuous part always gives rise to irreducible representations in gener-

alized eigenspaces. We shall see that such a discrete part occurs if and only if

q < n (independently of the pj). We shall also see that, if the pj are close enough,

the continuous spectrum consists only of one interval, but, if the pj are far enough

apart, then the continuous spectrum splits into many pieces. Since every connected

component of the spectrum defines a nontrivial idempotent in C*eg(G), we cannot

get an arbitrary number of pieces. We shall see that it is possible to choose the pj

in such a way that the number of pieces is the largest possible, consistent with the

if-theory.

The resolvent of M has also been considered in [C-S] and [T2]. In particular

the case q + 1 = 2 is completely described in the above two papers.

Here we shall give a complete description of the spectrum of μ in several

cases. Our main reference is [S] and the reader should refer to it in order to verify

the theorems which are not proved here (see Section 4). The final version of this

paper was written while the author was visiting the University of Chicago.

In particular we thank Tim Steger who spent a great amount of time in help-

ful conversations; providing suggestions, examples and references on the subject

of this paper.
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§ 1. Notation

Let G = (ax, a2,. . . ,aq+ι \ a^+1 — e V; >. Each x in G, x Φ e, may be written

uniquely, as a reduced word, a s i = a)l a)l - ' ' a)™ where 1 < h{ < n for each /.

The Cayley graph of G with respect to the generators (a})
q

}Z{ is the graph ^ de-

scribed in the introduction. The Cayley graph, W, of (3, with respect to the gener-

ators {a)})t\ ?=i is more closely adapted to this problem.

One obtain W from 5? by connecting two vertices whenever they belong to a

common polygon. The group G acts on § (or on Ψ) by left multiplication. The dis-

tance between any two vertices Vι and V2 of $, is defined as the minimum number

of polygons you must cross in order to go from V\ to V2. The corresponding length

on G is the block length, given by | x \ — m when a)l a)l * cήZ is the reduced

word for x. Then dist(.r, y) — \y~ιx\. Observe that this distance on $ is ordin-

ary path length on W. For each j (j — 1 , . . . ,q + 1) consider the probability mea-

sure βj which is equidistributed on the set (Zw+i) ; \ M . Let μ be a convex linear

combination of μ, , so that

μ(x) = Σ pjβjix) = Σ Σ „ δaϊ
; = 1 ; = 1 fc = l n

where (5X denotes the Kronecker delta at x. Arrange the p} so that 0 < pq+ί < pq

< < pi. The transition matrix {R(x, y)} of the random walk described in the

introduction is defined by the law R(x, y) — prob(x—> y) — μ(x~ιy). Let M :

12(G) —*12(G) be the operator of right convolution with μ. Since μ commutes with

left convolution, we knowr that the spectral decomposition of M leads to a decom-

position of the left regular representation of G. Let us denote by sp(μ) (respec-

tively res(μ)) the spectrum (respectively the resolvent) of the operator M. The

functional calculus says that

(1.1) δe(x) = γπι fc (r -

where C is a smooth curve containing sp(μ) inside and, letting C shrink around

the spectrum of μ.

(1.2) δe(x) =1 f lmgσ(x)dσ+ΣPj(x)

where

Imgσ(x) = lim {(σ + is — μ)~ι(x) — (σ — iε — μ)~1(x)}

and pj(x) are mutually orthogonal projections into the I2 eigenspaces of μ (corres-
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ponding to the poles of the analytic function (7 — μ)~ι(x)). We shall denote by

dm{σ) the positive measure obtained by letting x — £ in 1.2. Hence

1 N

dm(σ) = — —Imgσ(e)dσ + Σ {Res (γ — μ)~ι{e)}δT}.
π ; = i r=r,

We shall see in Section 4 that, for almost all σ, —-_lmgσ(x) is a positive

definite two sided eίgenfunction of μ. Hence we may use the Gelfand-Raikov con-

struction to decompose 12(G) into generalized eigenspaces of μ.

The next section is devoted to the computation of (7 — μ)~ι.

§ 2. Computation of (7 — μ) \

Our goal is to describe (7 — μ)~ι{x) — gr(x) in terms of q + 2 complex

functions of 7. It is well known (see [A-K],'[C-S], [M-L], [S], [W], [V]) that gr(x)

may be written as a scalar multiple of function hγ(x) satisfying

(2.1) hr(e) = 1

hr(xy) = hr(x), hr(y) whenever | .rz/1 = | .r | + I 2/1

As pointed out in [S], the above description depends, basically, on the following

property of the graph CS\ any path, in 3?, from e to a)\ cήl a)% must pass

through a)\. Let us recall the method. An m-path P from x to y is a sequence

of (m + 1) elements of G, P = (xm, xm-i, . . . ,̂ 0) e G m + 1 , such that x0 = e

and xm = y. An m-path stops at z/ iί Xj Φ y for 0 < < m — 1 and xm = y.

We denote by πm(y, x) the set of all m paths from x to y and by ττm(z/, J:, {y})

the subset of κm{y, x) consisting of all m-paths which stop at y. Define the

evaluation of a function / along a path P= (xm . . . x0) to be E(P,f) =

YifJQ

ιf{xfιxj+ι). Set also

Em(y,x,μ)= Σ E(P,μ)
P(=πm(y,x)

where the above sum is extended to all possible m-paths P from x to y. It is well

known that

(γ- μ) ι(x) = 7 1 Σ £mCr, e, ̂ 7 ) .
L m = 0 J

(2.2)

Suppose now that x = a)\ a)l * * * cήt, so that the first syllable of x is a){. If P =

Czw,. . . ,x0) is any m-path from e to x, then tfj1/ occurs at least once in the sequ-

ence xm. . . Xo. We may therefore think of P as a "product" of two paths, say Pi

and P2, where Pi stops at a)l and P2 starts at a)\. Since Pi stops at a)\ this de-

composition is unique. We recall that our random walk is invariant with respect
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to the G action on 2?, namely we have:

Repeated applications of the above argument allow us to conclude that

-i _ 1 _ 1
(2.3) (γ~ μ)~ (x) - 2w(γ,μ)'hr(x) ~~2whΛx)

where ^— = (γ ~ μ)~ι(e), hγ(x) satisfies 2.1 and

(2.4) hr(a}) = EOKaf, e; {af}; μ/γ)

where the right hand side of 2.4 means the evaluation of μ/γ along all paths from

e to a) which stops at a). We obseve that the probability of reaching a point V =

cή{ a^ ' ' ' (fix starting from V^—e depends only on the polygons you cross and

not on the particular point you choose in every polygon, hence μ*m(a)lahjl

a)ζ) does not depend on the choice of the Λ^-ple (hi,. . . ,hN) (this fact can also be

easily proved by induction). Observe that, for large values of γ, say γ > 1, one has

hy(a)) — (2w)' (γ — μ)~ι(atί) — Σ — ^ Γ ^

By analytic continuation, we can see that the quantities hΎ(af) (k — 1, . . . ,n) do

not depend on k. Let us denote by ξj = ξj(γ), their common value. Recalling that

gr * (ϊ ~ μ) — (ϊ ~ μ) * gr ~ δe we can get the relations between γ, w and the

( 2 . 5 ) i) γ = 2w+Σ pjξj
1 = 1

S) P,(ξ, ~ Wι) = l1^1) P,

* \ F- V A t 1 CΛ L.

lii) ς ; = ^ T where z ; = ZM; — p}

Again, by analytic continuation, we may think that 2.3 and 2.5 hold for every γ in

C\sp(μ) that satisfy the condition gr(e) Φ 0. We want to investigate now the

case gγ(e) — 0. We first need to estimate the I2 norm of gΎ(x). The estimation is

essentially given in [S].

LEMMA 2.1. Let h:G-*C satisiy 2.1. Suppose also that h(a)) = h(aj) is

independent of k (1 < k < ή). Then h belongs to lp(G) if and only if
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φ n\h{a,)\p ,
(2.6) L

;=i 1 + w /z(α,)
Moreover, one has

( 2 7 )

Proof. The proof is based on the fact that the same statements are true when

n = 1 (see [S]). For 1 < k < n, let h(af) = hj and let h (x) be the function

defined on Z2 * Z2 * * * * * Z2 = (Au A2,... ,Ag+i \ Aj = e V; > by the condition

h(AtιAi2'' Άi}) = hhhi2- - Άu , h(e) = 1.

For every x in G, with .r = αf/ βf2
2 a%, let x be the element of Z2 * Z2 * *

Z2 defined by letting^ = AixAi2' ΛW. Then

Σ \h(x) \p = nk Σ I A(f) I'
\x\=k \x\=k

where the length of x in the right hand side of the above equality is the block

length i n Z 2 * Z 2 * * Z 2 .

Hence the /)-norm of h can be regarded as the /)-norm of the function (\[n)lxl

h(x) defined on Z2 * Z 2 * * Z 2 and the theorem follows since the same formu-

las are true for n — 1.

Remark. Formula 2.7 also appears in [T2], Since our proof is very short we

decided to include it, for the reader's convenience.

Suppose now that gro(e) = 0. Then the function w(γ) has a pole at γ = γ0.

Because of 2.5 i) at least one of the ζj(γ) must have pole too. Since, for complex

γ, g7 belongs to /2(G), one can see that exactly one of the ξj, say ξk, has a pole at

γ = 7Ό Suppose that k Φ 1. Then

(2.8) lim I ξkξx I = lim

J7^
Let x = αl1 ajc1 a{2 at * tff <̂ ίts with | x | = 2s. Then 2.8 implies that, for every

element x of this form, Σ?=i Σιϊ ι= 2 s I gj(£) | 2 — + °° in a neighbourhood of y —

7o, which is a contradiction. So that the only possibility is that ξι has a pole at γ0.

But gr*ir ~ μ) (ai) = 0 implies

<2« r
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Again since gr belongs to 12(G) for complex 7, we see that, letting γ—• 70, the

quantity | ξiξ ; | (j Φ 1) must be bounded. Since | ξi | —» + °° 2.9 implies that

n — 1
γo = pi. A limit argument also shows that, if gr{e) — 0 for some γ in

res(μ), then

- j ' Π ( ^ ) if x - αf1 (α*1 at) (aϊ? at)

with U | = 2S 4-1
-0 otherwise.

Since, for such f, we have

Hi \—̂-"̂  I
/ -

we see that γ ^ res(μ) and g^ie) = 0, implies

Pϊ>qΣpl

On the other hand, a quick check shows that, when pi > Σfίl^f, the function

defined by 2.10 satisfies the equation [pi ( 1 — μ) * # - = δ g so that 7 =

^ — 1\
— - — ) belongs to res(^) . We may summarize with the following

LEMMA 2.2. Let γ be a complex number in res(μ). //gr(e) Φ 0 then there exists

a choice of signs in the equation 2.5 iii) such that gr{x) has the form given in 2.3

with hr satisfying 2.1 and 2.4, γ and ξ} as in 2.5.

Ifgr(e) = 0 then γ = P^71^) and pi > T/jllpl

Moreover, if pi > Yj\t\p] then γ = p^y- j belongs to ves(μ) and gr(e) = 0.

In order to give a general description of sp(μ) we recall a fundamental rela-

tion beween the I2 norm of gr and the functions γ(w) described in 2.5 i).

Suppose that j and γf are large and real and let ξj — ζj(y'), ζj ~ ζj(ϊ),

gr(e) — w, gγ'(e) — w\ Then, arguing as in [Sj, we get

(2 11) λJ^ZLL = 1 _ ψ _ nξ,ξi
1 ' 2w'-w y t l l + M^ξ;

and, letting wr —> w, we hav
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12)
- 1 2 )

In particular, if 7 e R\|sp(μ) U j ^ ί JjJ, there exists a choice of signs in

2.5 iii) such that 7 can be expressed as a function of w according with 2.5 i).

Moreover, since for such a 7 gr(e) is real, we have

I r f Z L 1 * 1 & I2 II H
v ; 2 dw x ,ίί 1 +

We may summarize with the following

THEOREM 2.1. Let γ0

 e R \ lsp(μ) U \pι ί )JJ . Then there exists a

choice of signs for the functions ζj in 2.5 iii) such that 7 can be expressed as a function

1 dr
of gr(e) = 75— according with 2.5 i). Moreover we have -τ~ > 0 where 2U)Q —

ΔW uW wQ

/ v . Conversely, suppose there exists a choice of signs in 2.5 iii) and a WQ ^ R\{0}

such that the function 7 = y(w) of 2.5 i) has positive derivative at w — Wo, then

To = r(wo) belongs to res(^) .

If pi > Σ A2 ί/î n 7 = ^i( ) belongs to res(μ).
2 \ ft /

q+1 In — 1 \ //? ~ 1\
If pi ^ Σ Λ2 ί/ι̂ n, /or 7 = ^i( ), gr{e) cannot be zero, so that pΛ )

2 . \ ft I \ ft I

belongs to res(μ) iff there exists a choice of signs in 2.5 iii) such that the correspon-

ding τ(w) has positive derivative at W\, with 7(^1) — pA ).

We conclude this section with the description of the discrete part of sp(μ).

The isolated points of sp(μ) correspond to the poles of gr(e), that is, to the zeros

of w — w(7). Since the case q—1 has been completely described in [C-S] (see

also [T2]) we shall confine our attention to q > 1. Suppose that w = 0. Since for

complex values of 7 = τ(w) gr(%) belongs to 12(G) we must have

(2.14) 1 - Σ
n ζ,(or

Now I ξ> (0) I — 1 or — according with the choice " + " or " —" in 2.5 iii).

Suppose that r of the ζ\ have been chosen with the sign + and (q + 1 — r) with

In
the sign —. Since , , > 1 in our case, we can see that no more than 1 sign
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" + " is allowed for the ξj. On the other hand, for r — 1, we have 1 — -^~χ—

~~ n ϊ. i — 0 again, since we are dealing with the case q > 1 this is impossible.

So that all the signs in 2.5 iii) must be " — ". Again, we see that 2.14 is possible

only if q < n. In particular, when q > n, gr(x) has no poles. Suppose now q < n.

Let N consist of all complex valued functions / defined on $, which have zero

average over each polygon. It is easy to verify that M is an eigenspace for the

operator induced on $ by right convolution with μ. I f/ is such a function we have

/ * μ = / Of course we identify functions defined on 2? with functions

defined on G.

Let N2 = M Π / 2(G). Then Aί2 Φ. {0} if and only if q < n. This fact can be

deduced by the behaviour of an isotropic random walk on G and can also be de-

duced by [Ti]. For the reader's convenience we shall give a simple proof.

Suppose that / e J\f2 and / ^ 0. We may always suppose that f(e) Φ 0. We

may take the average of / on each set Ek = {x : | x \ — k) to obtain a new func-

tion φf, which is constant on Ek.

By Swartz inequality ψf belongs to 12(G) (see [M] for a detailed description of

this average operator). Necessarily ψf is given by

Σ(2.15) φf= (δe+ ]

where χk denotes the characteristic function of Ek. The above function ψf cannot

be in I2 unless q < n.

On the other hand, if q < n, then the function ψ-L defined in 2.15 by letting

f(e) = ί l — /i _J_ 1 ) is an idempotent in Cr*d(G)' and λί2 is nothing but the

corresponding subspace. (See [T2] to see that φ-λ. is an idempotent of Cr*d(G) and

Section 4 for a more detailed description of λί2) Using [D-S](X 3.3) we may

conclude that the spectral measure of I 1 is nonzero for q < n, hence gr has a

pole at γ = — —

Finally suppose that q — n. We shall see in Section. 3 that is a branch

point for the analytic function gr(e) and

(2.16) \imhg-uh(e) = 0.
ft-0 Z

Since gΎ{e) has a Puisseux expansion in fractional powers powers of (7 + —) in
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a neighbourhood of , 2.16 also implies that

(2.17) \imiεg-L+i£(e) = 0
ε-0 n

that is, dm(σ) | — —j = 0 and μ has no(nontrivial) eigenspaces.

§ 3. Description of sp(μ)

We shall now investigate sp(μ) in detail. It is clear from the above argu-

ments that the point spectrum depends only on q and n and not the pj. On the

other hand, the continuous spectrum may or may not break up into many pieces

depending on the pj. We shall first state some results which are true in general, no

matter what q, n or p} are. After we shall make more assumptions on q, n> and pj

get the exact number of pieces of the continuous part of sp(μ).

Let us define 7ί+2 = (- ~, A + 1 ( ^ ) ] , h =

[ in — 1\ \
for k = 2, . . . ,q + 1 and h — \pι \ On I ' "*" °°/ ' ^ i n C e ^ ^ =

— (q — 1) we can see that, if at least two terms in the above

summation are negative, γ'(w) will be negative. So that we have to consider first:

2 i . yj

n

Σ (Jzf + 4 ^ - Zj) when w

γq+2 = 2w — -y Σ ( zj + 4^r + Zj) when Iq+2

γk = 2w - \ Σ (Jzf + 4^ + Zj) + \ Σ (y^ + 4^ - z) when

It is clear that, when w ^ Ik (k = 1, q + 2), the corresponding γk is the best

possible choice in order to have γ''(w) positive. So that, whenever γk is negative in

Λ, no other curve can give a resolvent set for w in Ik. On the other hand, when γk

is positive, other curves have to be considered in the corresponding Ik namely we

also check:

zf + 4f - zt) - \ (Jzl + 4f +

for w
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/*> =: ?w — — T I ?2 4- 4 ^ - 4- 2 I 4- — y i / 7 2 4- 4 ^ - — ? I 4-

- | ( / ^ 4- 4 ^ - zΛ) for w e /, and A < /c - 1

\[Jzf + ^ί + zi) for u; e /Λ and / > k

and finally

for te;\ Σ1 (y^2 + 4^ + z) + \ (Jzlr?+2.Λ = 2w \ Σ (y^ + 4 ^ + z) + \

Let spc(μ) denote the continuous part sp(μ). We have the following

THEOREM 3.1. Ji and γq+2 are respectively convex and concave functions of w. j \

has a positive minimum, say pi, and j q + 2 has a maximum, say βq+2, which is certainly

negative when q> n. sp c(μ) is always contained in the interval [βq+2, Pi]. For w G

/i the only curve which can give a resolvent set is jιΛ. When pf > Σ)Z\p) sp c(μ) con-

sists of at least two parts. When p) < Σ;ίi> Pf and Q — n no curve γq+2,k can give a re-

solvent set in Iq+2.

Proof The behaviour of jι is very easy to check: γΐ is positive while linv-^oo

ji(w) — 4- °o, 7i(0) is negative and J\(w) is positive for positive w. Also the be-

haviour of γq+2 is easy to check, being lim«,-±oo γq+i(w) = — °° and Jq+\{w) < 0,

The last thing about γq+2 is the sign of its maximum pq+2. Since γq+2(0) — and

γ'q+2(0) = 2 — 7 r γ we can see that, for q > n, the maximum occurs for a negative

value of w and hence is negative.

When q — n γ'q+2(0) — 0. This means that the curve jq+2 gives the resolvent

set for γ < ~ but not for γ > . In other words, γ is not a good parameter for
Ύl Ύi

the Riemann surface associated to gr(e) in a neighborhood of γ = , so that

is a branch point for gr(e). For q < n the sign of pq+2 is not, a priori, clear.

It is obvious that res(μ) n> (— °°, pq+2) U (/>i 4- °o) when # > ^ while res(^)
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ί — oo? j (j ί f pq+2\ U (px + oo) when q < n. we shall now analyze

(/Z ^ 1) for w €= / l t It is now convenient to introduce the followingthe curves 7

notation. Let

(31) ί

So that

lzϊ + 4*i--z,
and

Σ

- ZJ + 4U--V n

Since

zl

and

(3.2)

we have

IΛ.ί
n ph

n

Zl

« /»* =

n p h pi n'

Hence, for the values of 7 corresponding to jι,h, we have

If we consider now the subgroup G1(Λ, generated by <2i and ah, it is obvious that

Σ \gr(x) I2 = + °°.

Hence none of the curves 71^ give a resolvent set.

Consider now γίΛ. Observe that

_ ψ . .+ . .+ , . I n - 1 \

So that, for w—> + °°, 714 approaches ^i( — j . A quick calculation shows that,

for large w, γ1Λ is less than pλy—-—j if p) > Σy=2pf while it is greater than

pi ί—-—) if p) < Σqjtlpj. Since 7u(0) is negative, we may conclude that, for

). Since
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7i,i(0) = pi \rL-—Λ—) + (1 — 2/>i), it is clear that, if pi > T>, 71,1 has only one
\ 71 I Δι

minimum.

When pi < w we need some more conditions on the p} to understand the

behaviour of 7i,i. Let us consider now the curves 7<?+2,/c. Suppose first k Φ 1.

Remember that γq+2,k = 2w + Σq

jtl>JΦkpjξi' + pkξk and consider ηj— \ ξϊ ξ^ |.

A quick calculation shows that | ξϊ ξk | is decreasing for 2w < ^ —7—__ i\

In particular, for negative w, we have

(3.3) \ξfξί\ >|?f(0)?* + (0)|=^.

Again, by considering the subgroup generated by #i and ak, we can see that

Jq+2,k(w) cannot give a resolvent set for negative w. For positive of w is no longer

true that γq+2,k does not give a resolvent set (see Theorem 3.3).

Let now γq+2tl = 2w + Σ ^ M Γ + pλ ξΐ = Σ j ί ί M Γ " Pi ?Γ +

We can see that Jq+2,ι tends to ^1 f j for M;—> — °o. A quick computation

shows that ϊq+2,1 is greater than pA—-—) when pf > Σi9

2

+1 pf, while 7̂ +2,1 is less

pi I ) when pi ^ Σl+1 pj. Again, by considering ~τ~\ ζ]~ ζi I we see

that I ξΐ~ ξi I is an increasing function of w for 2w < o n(—— \)

Suppose now pi < Σ ^ 1 pf. Consider the subset A of G consisting of all

words x of the form

than

Zή — nk\ nh\ nk r,h2 . . . nks nhs (\ ~ I — O CΛX — α i Uji d\2 Gj2 (*l Ujs \\ % I — £S) '

Since lim -̂.-oo | ξj~ ξι \ = ~Ύ~, for 2w ^ Ig+2, we have
W p i

(3.4) Σ I g r ( x ) \ 2 = Σ n 2 s [ Σ \ ξ Γ ξ ΐ I2) = + 00

since the ratio of the geometric series on right hand side of 3.4 is greater than 1.

Let now consider any w in Iq+2 and let γ be the corresponding value of 7̂ +2,1 (w).

We have

(3.5) l l£rl l i> Σ \gr(£)\2= + ~
xeA

and 7«7+2,i does not give a resolvent set.

On the other hand, when pi > Σpf, 7*7+2,1 is increasing for w sufficiently

small. Suppose now that for some w0 ^ Iq+2 7?+2,I(M>O) is negative and consider
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W\ > Wo. Let γ0 = Tq+2,i(wo) and 7Ί = yq+2,ι(wι). Observe that | ξf | is increasing,

as well as | ξj~ ξi \, and gn(x) is nothing but the product of τ>—, ?/" and ζΐ. In

computing the I2 norm of gTι(x) we may of course restrict our attention to the

words x which do not end with a power of tfi, let us denote by A\ this subset

of G. We have

(3.6) | |g r ι II! - ( 2 ^ ) 2 {1 + (n I & |2 + l) J ] I gn(χ) I2)

but the right hand side of 3.6 is infinite, since gTo does not belong to 12(G). This

argument proves that, for w in Iq+2, Tq+2,1 can only behave in two ways: either it is

everywhere increasing, or it increases up to a maximum, say Pq+2,1 which is

greater than pA ) and after decreases. To ensure that Pq+2,1 occurs, observe

that γ'Q+2,i(w) is negative w — pg+A ). We may conclude that, when

9 + 1
Pϊ > Σpf , Sp c (μ) C [pq+2 plΛ] U [pq+2ti, (Oil.

In the above theorem we didn't investigate the curves γk (and γ{

k

h) Tkλh)) in h

Their behaviour depends of course on the pj, but the general law seems to be very

complicated. We shall now exibit three "extreme" cases: in the first one they are

all decreasing while in the two others every γk gives a resolvent set.

THEOREM 3.2. Suppose that pi < 2pq+ϊ , q > n, and, if pi Φ p2, suppose that at

least one of the following conditions hold',

2 1 \ i / - ^ μι UJVU ft ^ 4 .

Then sp(μ) = [^+2, p J .

Profl/. We must check the curves 7Ά; in //c first.

We have

(3.6) r'k = - (q - 1) + "Σ , Zl , + Σ , ~ Z ; , <
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β+i (Pk-i - Pi)

< - (q - 1) + Σ ,

Λ + l

+ Σ

Since pk-ι ~ pj ^ pi ~ pj ^ pi for j > k while p, — pk < pf for < k we get

(3.7) y ; < - (g - 1) + (q + 1) = 2 < 0 since ? > n.

Of course none of the curves jih) or 7A,(*> can give a resolvent set, since j[ < 0

everywhere. The last curve we must check is 7 U , It is obvious that this problem

disappears when pi — p2, of course we shall choose ζi — ζi — ζi Recall that

Suppose now that i) holds and consider | ξϊ ξ}

+

We have:

(3.8)
npi

JL.
npi

and, since w is greater than ^i(—^ ).

J + 4&-Z

— zι

Again, since pi — pj < pj, we have

and hence

which implies that 71,1 cannot give a resolvent set.
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Of course condition i) is quite unsatisfactory for large values of n. Suppose

now that n is large enough (at least n > 4) to ensure that condition ii) holds.

One can see that -r~ \ ξΓ £/ I is positive whenever 2w > ( p ) ~ 7 — _ n

Condition ii) ensures that, for every j and for every w in Ii \ ζf ξ/ | is increasing.

Suppose now that γ[,i(w2) > Ό for some w2 > pi f—^—J . At w = w2 we

must have

Σ ( Σ n21 ξr(w2) ξ;(w2) \2Y < + oo

and hence

(3.9) n2Σ

in — 1
but 3.9 implies that, for W\ — pλ—^—

n2Σ — ί
; = 2 W

1 /^

Again, since (pi — pj) ^ ^ ; . we have | ζ*(u)i) \ ^ —, hence < Σ ; ί 2 /ί |

< 1 which is a contradiction iί q > n.

Remark. In general we cannot ensure that TΊ.I does not give a resolvent set,
1

even if pi < Y?jt\p). Consider in fact G — Z3 * Z3* Z3. Set p3 — p2 =

and pi = ^- . Then ^,i ί y ( 4 / ) ^s Positive even if γ[Λ < 0 for

-r Z

4(1
a n d a l s°

THEOREM 3.2. F ύ ^ and choose pi,... ,/)ί+i 50 that

(3.10) A ^ ( / + DΛ+i / ^ ; = l , . . . , ί .

Suppose now that n is bigger than qy and is also large enough to ensure that

p q + ι (» -
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Then sp c(μ) consists of exactly q + 1 pieces.

Proof Observe first that, since q < n, — — belongs to sp(μ) and corres-

ponds to an eigenspace of μ, or to a subrepresentation, say 7Γ_i, of the left regular

representation of G. We shall see in Section 4 that the orthogonal projection onto

this subspace is given by right convolution with a function φ, whose value at the

identity is — T T T We can think of φ as representing an element of the if-theory
Ύl I x

of Cr*g(G), and we can also see that the continuous dimension of 7Γ_i is , ?

(see [KS] for the definition of the continuous dimension and [L] for more informa-

tions on the K-theory of C r* g(G)). We also know from [L] that any other subrep-

resentation of the regular representation which corresponds to a projection in

C?eg(G) has continuous dimension equal to an integral multiple of • , -. .

Suppose we know that spc(μ) breaks up into at least q + 1 pieces. In corres-

pondence to any of these pieces we have a subrepresentation of the regular which

also corresponds to a projection in C r* g(G). The continuous dimension of τr_i is

— T Γ ? - and the regular representation itself has continuous dimension 1 so we

may conclude that spc(μ) consists of exactly q + 1 pieces.

Hence all we have to prove is that sp c(μ) consists of at least q + 1 pieces.

Define, for 2 < k < q + 1.

k-l \Pj Pk)\ „ I

(3.11) Λ = - ( < ? - ! ) + Σ , , . / +

+ Σ

= τ'k \pk\2fΓ)) = ™ \pk\2n~l)

and check the sign of A*. Since pj > (/ + l)^ ;+i and pk ~ pj ^ (j ~~ l)pj for

j > k + 1, one has:
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( in- 1

Ak > -(a - 1) + Σ ,

*+i /Py \ T )

> -(g- l) + Σ , v n~ +
/ / 1 \2 Λ?

k+l Λ

v 1—

+

( » - 1 ) 2 v +i/ v ( » - 1 ) 2

hence

and, under our hypothesis, the above quantity is positive.

Observe that, for each k, 2 < / c < # + l , jk gives rise to a piece of the resol-

vent set which is contained in [pq+2, pi]. Since two different 7* cannot give rise to

overlapping pieces of the resolvent set, we may conclude that sp c(μ) breaks up

into at least q + 1 (hence exactly q + 1) pieces.

The next question is: suppose that q > n. Since no information on the dimension

of 7Γ_i is available, what is the largest possible number for the connected compo-

nents of sp(μ)? First of all, according with the K-theory of G. we cannot get more

than (n + 1) components. If we look at the quantities Ak, it is not hard to show

that Ah is negative until k is bigger or equal to 1 + — ^ — . Nevertheless it is

still possible to obtain exactly {n + 1) pieces for sp(μ) by letting the pj be far

enough from each other.

We thank Tim Steger for suggesting us the following
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THEOREM 3.3. Suppose that q > n. Then there exists a choice of the p/s in such

a way that sp(μ) = sp c(μ) consists of exactly n + 1 intervals.

Proof Suppose that pq+ι < ^ < * < pn+ι are given, we shall construct

pn, . . .,Pι In this construction we shall drop the hypothesis Σ ? + 1 p} — 1 which is

really not needed in order to check the sign of the derivative of jk At the end we

shall get curves jk k — n + 1,.. . ,2, which have positive derivative at some point

of Ik — \pk (—o ) , Pk-ι (—o ) and we shall renormalize the pj to get the

right probabilities.

Let us denote by φj the derivative of pjξf namely

Φι= Zi

zf + S-; n

so that

ΣTk = - (q - 1) + Σ φj + Σ -ψj.
j=k

Let us construct pn from pn+ι. Choose ε in such a way that

Ή — 1
Since lim^+oo ψn+i = 1 there ex i s t s/> —?> s u c n t n a t

Φn+l(pn+lf) > 1 - β.

Also, for k > n + 1 and w in In+u we have φk(w) > φn+i(w) hence

(3.13) ψk(pn+if)>l-ε ίork>n + l.

On the other hand one has

(3.14) lim ( - « W G W ) = Km
Pn \ ) ~ 2pn+lf

so that it is also possible to choose pn in such a way that

φn(pn+if) >

Km ,, , X2 A4%2 = f+Ύ
Apn\~ϊΓ) ~ 2 p n + l f ) n

Again, since — φj(w) > — φn(w) for j < n and w > pn+Λ—^ ), we get
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n — 1
(3.15) - φ,(pn+if) > „ _μ 1 ~ ε for every < n.

So that, starting from pn+i, it is possible to choose pn large enough in such a way

that j/)w +i/< ^w and 3.15 holds. Hence, for w — pn+ιf ^ In+i one has:

q+l n

j=n+l ;=1

Suppose now that /Vt-i>. . . ,pj are given (/' — ^ + 1) and let us find pj-ι. Choose ε

in such a way that

(3.16)

(observe that 3.16 cannot be satisfied when j > n + 2!). Since lim^+oo φj — 1

we can find fi such that fφj>pj and φjipjfj) > 1 — ε. Also, since
y> 1

l i m ^ - i — o o — φj-i(Pifj) = ι i , pj-\ c a n b e c h o s e n i n s u c h a w a y t h a t ^ ; _ i > pjfj

n — 1
and — φj-iipjfj) ^ — i τ η ε. Again, for w = ^ we have

r Wi) > 2 - ^ ' " ^ - e(ί +1) > o.

If we consider now the probabilities pj which are obtained by normalizing the pj,

we can see that each of the corresponding fk (k = n + 1,. . . ,2) has positive de-

rivative in a suitable point of Ik. Arguing as in the proof of Theorem 3.2 we may

conclude that sp(μ) consists of exactly n + 1 intervals.

4. The irreducible representations

This section is devoted to the description of the measure dm(σ), of the posi-

tive definite functions {φσ(x)} σ and of the unitary irreducible representations.

The construction is essentially the one given in [S]. We shall not give the proof of

the statements which can be deduced arguing exactly as in [S].

In order to produce {^σ(^))σGsp(^) we need to know the following

LEMMA 4.1. Let q > n and σ ^ sp(μ). Then gσ±io{x) ^ °° and gσ±to is a con-

tinuous function of σ. Moreover, if gσ+ιo(e) — gσ-ιo(e) then G is a branch point for the

analytic function gr(e).
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Proof. As noted in Section 2 (2.14) w(γ) cannot be zero unless q < n. So if

gσ±iθ(x) — °° for some x, we must have ξ; ( σ + iO) = °° for same / The same

argument used in Section 2 (2.8) shows that gσ±to(x) has the form given in 2.10.

In particular, gσ±ίo(x) is finite. To see that gσ±to(%) is continuous, fix any point σ0

^ sp(μ). Since gr(x) is analytic in the upper half-plane and gσ+to(x) ^ °°, we

are sure that, at γ = α0, £ r has a Pouisseux expansion without negative powers,

hence gσ+to is a continuous function of σ in a neighborhood of <7o. Keeping these

facts in mind, the arguments used in [S] apply to show the last statement

Let us consider now the case q < n. In Section 2 we saw that the only

possible value of σ for which gσ±to(x) — °° is . On the other hand, when

gσ±to(x) is finite, one can argue as in Lemma 4.1 to get similar results for

gσ±to(x) Hence we have a sort of complementary result for q < n.

LEMMA 2. Let q < n. Then, if a Φ , all the statements of Lemma 1 are true.

If σ — then dm{σ) — —j~^ and the corresponding positive definite function is

the function φ_l given in 2.15 with ψ-λ.(e) — —X~f"

When q = n the point o — is a branch point for gr(e) and g-±±io(e) is

infinite. For all the others values of σ gσ±to(x) is a continuous function of o.

Proof Suppose that q < n. As we said before, we may restrict our attention

to σ = — —. As noted in Theorem 3.1 the function γQ+2(w) gives the (real)

resolvent set in a (real) neighborhood of w = 0. Hence, in a (real) neighborhood

j — , we have gr(e) — 15 j—r. We may now compute dm\ ). In fact
ΐl ΔWq+2\[) \ fl/

one has:

(4.D ( ^

But the above limit can be computed on the real axis, so that we get

,4.2,

As we said in Section 2. when q < n, μ has an eigenspace B which contains the

subspace N2 of I2 functions having zero average over each polygon. The projection
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onto M2 is given by right convolution with the function

< 4 3 > ^

Let us now consider B. The functional calculus says that the orthogonal projection

F onto B is given by

< 4 4 >

where E is the resolution of the identity for M and C is a sufficiently small circle

about ~ ~ Since F belongs to C r* g(G) we have F(f) = h * / for a suitable

positive definite / On the other hand, one has

< F ( « f δe> =f(e) = d

Hence f=φ (and B = JV2).

Let now q—n. Again, by considering γq+2 as in Theorem 3.1, we see that

γ — is a branch point for gr(e). We remark that, since J*+2

dm\— —) is zero.

Let S denote the set of branch points of gr(e). Since gr(e) is an algebraic

function, S is finite. For any σ ^ sp c (μ)\S define

ψσy^J gσ+io(e) -gσ-io(e)

and

dm(σ) = - — (gσ+ιo(e) - gσ-io(e))dσ.

Then the functional calculus says that

(4.3) δe(x) = I φσ(x)dm(σ) when q > n
J spin)

(4.4) δe(x) = φ-±(x) + I φσ{x)dm{σ) when q < n.
n J spc(u)

In fact, all the functions φσ involved, are two sided eigenfunctions of μ (with

eigenvalue σ) and the sum in 4.4 is an orthogonal sum. Using the functional

calculus one can argue as in [S] to see that igσ+ioix) ~ gσ-toix)} is positive
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definite for σ ^ sp c(μ), hence φσ{x) is positive definite for σ ^ sp c(μ)\S. Corres-

ponding to any φσ (σ ^ sp c (μ)\S) we may associate a continuous unitary repre-

sentation of G, say τrσ.

When σ — \ r then the corresponding representation in 12(G) and hence

is reducible (see [FTC]).

When σ Φ I J then the corresponding πσ is realized in a standard Hubert

space $ίσ, which can be thought to be the completion of the space of left translates

of φσ. For any finitely supported functions/and g we have:

f>~*fσ=f*φσ, πσ(x)fσ= (<5**/)σ

(/σ, gσ)σ = ( / * ψσ, g)

( ,) denotes the inner production 12(G) and ( , )σ the one in Hσ.

Also, because of 4.3 and 4.4, we have

(/, g) = / (f*ψσ, g)dm(σ) = / (fσ, gσ)σdm(σ) when q > n
J spin) J spc(u)

(/, g) = ( / * Φ - ^ , g) + / (/ά, gσ)σdm(σ) when 0 < w.
n J spΛμ)

and

Let σ e s p ( ^ ) \ [ — —j and let ^ r (x) be equal to (7 — μ) ι{x) at 7 = σ + z'ε, so

that # r(e) = o / x. In [S] it is proved that if limε-.0+ w (γ) Φ limε-,0- w(γ) Φ 0 Φ °°

then the corresponding representation 7Γ0 is irreducible. The same arguments used

in [S] also apply to our case. (Observe that when σ — we have limε-o± w(j)

— 0). Namely, we have the following.

THEOREM 4.1. Suppose that σ^ s p ( μ ) \ i S U I . Then the corresponding

representation 7Γo on Hσ is irreducible.

Sketch of the Proof.

1) Let Q(σ) = {φ ^ Hσ: πσ(μ)φ = σφ). Observe that φσ belongs to Q(σ)

and recall that, if Q(σ) is one dimensional, then 7Γ0 is irreducible.

2) Let Qσ be the orthogonal projection onto Hσ, the functional calculus says
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that

Qσ = lim iε(σ + iε — πσ(μ))~ι.
ε->0+

3) Observe that Qσ can be computed for large values of ε and then take the

analytic continuation. Let of = a + iε and £V = (tx + zε ~ β)~ι> Then for large

values of ε we have

[σ + iε — πσ(μ)]~ι = πσ{(σ 4- iε — μ)~1}

hence

(4.5) (Qσ(δx*φσ),δv*φσ)σ= lim iε(7Γσ{(<7' - μ)"1} [ δ * * <pσ], δv*φσ)σ

ε^0+

= lim taiga* *δx*φσ, δy).
ε->0+

In order to compute the above limit observe that the right hand side of 4.5 is

given by iε ΈZ<=G gσ'(xz)φσ(zy). Since gσ* a multiplicative function of (xz) we can

use this property providing that | z \ > | x \ + 2. Hence we shall estimate

Σ \z\ > \x\ + \y\+3 gσ'

4) Write Sσ+io(x) ~ gσ-io(x) f o r ^ a n d c o m p u t e first

gσ+ιθ\e) gσ-iOKβ)

lim taiga**δx*φσ-,0, δy). Define vectors W(J;) = iuiix),.. .,
ε-»0+

v(x) = iviix),.. . ,^+i(x)) as follows

Uj(x) Σgσ'
t

where the sum is taken over all elements t e G such that | t \ = | x | + 1 and the

first letter of t is not a power of #>.

where the sum is taken over all 5 in G such that | 5 | = | y \ + 1 and the last letter

of s is not a power of a}. Recall that gσ'(x) = T;—τ~ττ * hσ'(x), gσ-toix) —

2w(σ — 0) hσ-to(x) and define, for n — 1,2, . . . (q + 1) by (q + 1) matrices

A(w) by the rule Af!l — Σ|/i=« hσ'it)hσ-ioit) where the sum is taken over all ele-

ments t of length ^ such that the first letter is a power of dj and the last is a pow-

er of elk. Define also a transition matrix T letting

0 i f j = k

nξ'jξ, i ί j Φ k j , k = 1 , . . . , ? + 1
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where ξ,: = ξj(w(σ')) and ξj = ξj(w(σ - iθ)). Since A{n+1) = TA(n\ one can

prove that

(4.6) (gc*dx*ga-i0, δ,) = Σ gσ>(tχ-ι)gσ-tQ(Γιy)
\t\<Z+\x\ + \y\

+

5) In order to compute the limit in 4, observe that the first term in the

above equality remains bounded as ε —»0+, while the second term is nothing but

v(y)(I~ Γ)-1A(1) u(x).
The caracteristic polynomial Pε{θί) of T is given by

ί + 1 ( tf+l 47£'

Pe(α) = (Π (a + nξ;ξj)) [l- Σ * *

Therefore, as ε —* 0+ Pε tends to a polynomial which has 1 as a simple root and

this implies that, as ε —•* 0+, limit 4.6 is a product of the form C(x)' φσ(y).

As for the limit of iε(gσ+tε*δχ*gσ+to, δy) repeat the same reasoning, finding

a matrix T which, as ε —• 0+, converges to a matrix which does not have the eigen-

value one. This implies that lim iε(gσ+te*δx*gσ+i0, δy) = 0.
ε-0+
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