
H. P. Fujita
Nagoya Math. J.
Vol. 124 (1991), 145-155

MANSFIELD AND SOLOVAY TYPE RESULTS

ON COVERING PLANE SETS BY LINES

HIROSHI P. FUJITA

F. van Engelen, K. Kunen, and A. W. Miller proved, in [EKM], that
for every analytic (Σ\) set A on the plane, either A can be covered by a
countable family of lines or else there is a perfect subset P of A such
that no three points of P are coUinear. In this paper, we present some
generalizations of their result. In particular, a question which was raised
by van Engelen et al. in the last paragraph of [EKM] is answered (see
Section 3).

We first consider generalizations to /c-Suslin sets and Σ\ sets on the
plane (Section 1). A lightface refinement of the result of van Engelen
et al. is also examined (Section 2).

§ 1. Covering a Suslin set

In this section, we prove the following theorem, which is a direct
generalization of the theorem of van Engelen et al.

THEOREM 1, Let A c: R2 be a tc-Suslin set and let T° be the tree as-

sociated to a le-sernίscale on A. Then either A can be covered by an L[Γ0]-

definable family of lines with size at most /c, or else there is a perfect

subset of A with no three coUinear points.

See Chapter 2 of [Mo] for definitions of "λ -Suslin", "£-semiscale," etc.

We may view Baire's space ωω of irrationals as a subset of the plane R2

since ωω is homeomorphic to the set of points in R2 with irrational co-

ordinates. So, R2 — ωω is the union of an arithmetically definable family

of countably many lines.

For a given /c-Suslin set A, let TQ be the tree on ω X tc associated to

a ic-semiscale on A. We may suppose, without loss of generality, that

A cr ω

ω and A is the projection of T° where the projection p[T] of a tree
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T is defined, as in [Mo], by the following formula.

p[Γ] = {*|(3/)(Vn)[<*r»,/r»> e T}}.

For a tree T on ω X A:, we define the derivative T' of T as

Tf = {(u, v} e T\p[T(u, v)] is not contained in a line}.

Here, T(u, v) is a set of sequences (u\ ι/> in T which are comparable

with (u,v). Given T° we define the transfinite sequence (Ta\ae Ord> of

trees on ω X K inductively as follows:

Ta+1 = (Tβ)';

2* = (~)a<λ T\ if ^ is a limit ordinal.

The method of our proof of Theorem 1 is a mixture of the method

used by van Engelen et al. and some effective considerations as in

Mansfield's perfect set theorem (8G.2 and 8G.13 of [Mo]).

LEMMA 1. Let T be a tree on ω X tc. If p[T(u, v)] is contained in a

line, then there is an L[T]-definable line which covers p[T(u,v)].

Proof. If iρ[T(uy v)] is empty or a singleton, it follows that the set is

in L[T] and so there surely exists such an L[r]-definable line containing

it. On the other hand, if p[T(u, v)] has at least two elements, then there

exists a unique line I which contains it. Hence

xel<=$(ay,z)[y,zep[T(u,υ)] & yφz & xeyz]

(V y, z)[y, z e p[T(u, v)] & y Φ z = > xeyz].

Here, xy denotes the line passing through points x and y. Since the set

p[7Xw, v)] is Σ1 -definable over L[T], the above equivalences give a 4-

definition of / over L[T], •

LEMMA 2. The transfinite sequence <jΓα |a:e0rd> is L[TQ]-definable.

In particular, we have Ta eL[T°] for all a.

Proof. Since L[T°] is an inner model of set theory, it suffices to show

that the derivation T +-+T1 of trees is an absolute operation for inner

models. To see this, note that

(μ, v} e T' <—> p [T(u, v)] is not contained in a line

No L[!r]-definable line can contain p[T(u, v)]

L[T] t= "p[T(u, v)] is not contained in a line/'
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These equivalences follow from the fact that collinearity is an absolute

notion. •

LEMMA 3. Let T be a tree on ω X tc. Suppose that for each (u, u> e T,

p [T(u, v)] is not contained in a line. Then p [T] contains a perfect set with

no three collίnear points.

To simplify notations, let A(u, v) denote the set iρ[T(u, v)]. We say

y e ωκ witnesses that xe A(u, v) if

u c x, v dy ,

and

(Vn)[(x\n,y\nyeT\.

The lemma is proved via the following two claims.

CLAIM 1. Suppose that no line meets more than two of the

A(u0, v0), A(uu v,), -,A(un, vn).

Then there are two extensions (u%, vf) (p = 0,1) of (u0, v0} and extensions

(fii% ΰi) of (uiy v{} (i = 1, ., ή) respectively such that no line meets more

than two of the

A(ul ϋ°), A(u]9 υj), A(ul9 S,), , A(un9 vn).

Proof Since A(u0, v0) is not contained in any line, it has more than

one elements. Let x°0 and x\ be two distinct elements of A(uOy vQ) and let

y°0 and y\ witness that x°oeA(u0, v0) and x]eA(uo,uo) respectively. Pick

xi e A(ui9 Vi) — x°Qxl and let yt witness that xt e A(uu vt) for ί = 1, , n.

Then by the assumption on A(uί9 uj (i = 0, , ή), no line can contain

three of the x°0, x], xu , xn. It follows that there are open neighbourhoods

U°o, U], Ul9 - , Un of x% x\9 xu - - -, xn respectively such that no line meets

more than two of them. Choose pairs of sequences

<z4 ϋj>, <u\, uj>, (βuo, , <an, vny

to be initial segments of

« yiy, (χl, yiy, (χi, JΊ>, , (χn, yny

respectively, which are long enough to make it sure that

l)d C7J,
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and

A(ύu ΰt) c U» , A(un, vn) c Un .

The conclusion of the claim follows immediately. Π

CLAIM 2. Suppose that no line meets more than two of the

Q9 υ0), A(uu ΪΛ), , A(un9 vn).

Then, for each (uiy v^, there are two extensions (u\, vf) and (u\, v]} such

that no line meets more than two of the

A(u°0, u°), A(ul υl), ., A(ul <), A(ul, v\).

Proof. Use Claim 1 repeatedly. G

Proof of Lemma 3. Using Claim 2, we can assign for each finite

sequence σ 6 <a>2 of zeros and ones, a pair of sequences (u(σ), u(σ)> in T

such that whenever σ0, σx and σ2 are incomparable no line meets all of

the A(u(σi), υ(σt)) (i = 0,1, 2).

For each teω2, define

F(t) = \Ju(t\n).

Then F is a continuous function on ω2 into ωω, and for each t e ω2, we

have F(t)eA as witnessed by \JnQωv(t \ n). Moreover, if r, s, ί e ω 2 are

distinct then F(r), F(s), and F(ί) are not collinear.

Hence, the image of F is a perfect subset of A with no three collinear

points. •

We are now ready to give a proof of Theorem 1.

Proof of Theorem 1. Let A and (T^lαe Ord> be as above. Since

T° ^ T1 5 =5 Ta 3 .

and since 3Γ0 has size at most A:, there must be an ordinal δ < κ+ such that

HΠδ rpδ + ί __ r~^\ ΓPa /""^ 'T'α

Od

We should consider two possible cases:

Case 1: Γδ == 0.

In this case, A can be covered by a family {l(u, v) \ (u, v) e T0} of lines

defined as follows:



COVERING PLANE SETS BY LINES 149

l(u, υ) == the unique line containing p |T α O, v)]

where a is the unique ordinal such that <u, u> e Ta — Ta+1. To see this,

let y witness that xe A = ip[T°] and let a be a unique ordinal less than

δ such that <tf,y> e [Ta] - [Ta+1]. Here, the set [T], the body of the tree

T, is defined to be the set of all infinite paths through T. It follows that

(x\n,y\ri)eTa- Ta+1

for some n e ω. So we have x e l(x \ n, y [ n). The lines l(u, v) are L[In-

definable uniformly in (11, v} since Ta are. Hence, in this case, A can be

covered by an L[T°]-definable family of lines indexed by T° and we are

done.

Case 2: Tδ Φ 0.

In this case, by Lemma 3, p[Tδ] and hence A contain a perfect subset

with no three collinear points. Arguing in L[Γ°], we can find such a

perfect set with a code in L[T0]. This completes the proof of the theorem.

D

COROLLARY (of Theorem 1). If y^fM is countable for all real numbers

x, then every Σ\ set on the plane which cannot be covered by a countable

family of lines contains a perfect set with no three collinear points.

Proof. Since every Σ\{x) set is ^-Suslin via a tree on ω X ωx which

lies in L[x], it can be covered by L[x]-definable lines if it does not

contain a perfect set without collinear points. While y f̂̂ 1 is countable,

there are only countably many L[x]-definable lines. •

The converse of this corollary is also true as they noted in [EKM].

We also note here that, assuming y f̂ is countable, the union of all in-

definable lines is the largest Σ\ set which does not contain any perfect

subset without collinear points. As we will see in the next section, such

a largest set among Σ\ sets does not exist.

§ 2. Effective contents of the theorem of van Engelen, Kunen,
and Miller

A well-known theorem on (lightface) Σ\ set of reals says that, for

each Σ\ set A c: R, either A is contained in the class of Δ\ reals or else

there is a perfect subset of A (see 4F.1 of [Mo]). For the theorem of van

Engelen et al., the situation is quite similar. In fact, we have the following
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effective refinement of their result.

THEOREM 2. Let A be a Σ\ set on the plane. If A cannot be covered

by Δ\ lines, then A contains a perfect set with no three collinear points.

We can find such a perfect set with code recursive in Kleene's Θ, the hyper-

jump of the empty set.

Proof. Let A be a Σ\ set on the plane which cannot be covered by

Δ\ lines. We may assume A does not meet any Δ\ line at all.

Let T be a recursive tree on ω X ω which projects onto A. Define,

T* = {(u, u> e T\Qx,y)(yή)[(ur(x f n), ιΓ(y { n)> e T]}.

We claim that for every (u, v) in ϊ7*, p[T*(u, v)] is not contained in a

line. To see this, suppose contrary that there is a line I which contains

p[3Γ*(w, ύ)] for some (μ, v) in Γ*.

The set p[T*(w, u)] is equal to p[jΓ(w, v)], and this is a nonempty Σ\

set without JJ element. It follows that p[jΓ*(w, v)] contains at least two

elements. Thus, we have

xe/φ=> (Vy, z)[y, zep[T(u, ϋ)] & y φz=$xeyz]

3y, z)[y, z e v[T(u, v)] & y Φ z & xeyz].

This gives a Δ\ definition of I. A contradiction follows since we are

assuming A does not meet any Δ\ line. So, our claim is proved.

By Lemma 3 of Section 1, p[T*] contains a perfect set with no three

collinear points. The set of all perfect trees S such that [S] £ A and

that [S] does not meet any line more than two points is a nonempty Σ\

set. So, by the Kleene basis theorem, we can find such a perfect subset

of A which has a code recursive in Θ. •

COROLLARY (of Theorem 2). Among Σ\ sets which do not contain any

perfect set without three collinear points, there is no largest one.

Proof. Clearly, each Δ\ line is a Σ\ set, while the union of all such

lines is not. To see that the union of all Δ\ lines is not a Σ\ set,

consider the proposition stated below. •

PROPOSITION. Let C be a Π\ set on the plane. If C has positive plane

measure, then for some Δ\ real x, the section Cx has positive linear measure.

Thus, every plane Π\ set with positive measure meets a Δ\ line at uncountably

many points.
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Proof. By a theorem of M. Kondό and T. Tugue, the set

E = {x e RI the section Cx has positive measure}

is Π\. By the Fubini theorem, E has positive linear measure if C has

positive plane measure. Being a Π\ set of positive measure, E must con-

tain a Δ\ real by H. Tanaka's measure theoretical basis theorem [Ta]. •

In order to establish complete analogy between effective perfect set

theorems and effective refinements of the result of van Engelen et al., we

have to consider two more examples.

QUESTION. Are there sets with the following properties?

( 1 ) Largest set among Π\ sets which do not contain perfect subsets

with no three collinear points.

( 2 ) Π\ set which does not meet any Δ\ line at all.

§ 3. A result on the Solovay model

Let M be a countable standard model of ZFC, the Zermelo-Fraenkel

set theory with the axiom of choice, and let K be an inaccessible cardinal

in the model M. A condition of the Levy forcing is a function p on the

finite subset of K X ω into K such that whenever {a, ή) e dom(p). we have

p(a, ή) < a. Let P be the set of all conditions of the Levy forcing. If

we let P^ denote the set of conditions p such that dom(p) c: ξ x ω, then

we have P = \Jξ<tF.

In the rest of this paper, G denotes a fixed P-generic filter over M.

And Mι denotes the generic extension M[G] of M by G. The Solovay

model N is defined to be (HOD^Ord))^1. This model is defined by R. M.

Solovay [So]. The following proposition is well-known.

PROPOSITION (See [So] or [Je] for details.).

(al) M1 is a model of ZFC and the continuum hypothesis.

(a2) N is a model of ZF + DC, where DC denotes the principle of

dependent choice.

(bl) In M\ every set of reals definable from a countable sequence of

ordinals is Lebesgue measurable, has the Baίre property, and

either is countable or contains a perfect subset.

(b2) In Ny the same is true for an arbitrary set of reals.

Our goal in this section is to prove the following theorem.
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THEOREM 3.

(cl) In M\ every set of reals definable from a countable sequence of

ordinals either can be covered by a countable family cf lines or

else contains a perfect set with no three collinear points.

(c2) In N, the same is true for an arbitrary set of reals.

This answers a question in [EKM].

Since N is countably closed in M\ (c2) immediately follows from (cl).

For a proof of (cl), the next lemma allows us to concentrate on sets on

the plane which is definable over M, the ground model.

LEMMA 1 ("An important lemma" in [So]). Let s be a countable

sequence of ordinals in M\ Then, in M\ there is a P-generic filter H

over M[s] such that Mι = M[s][H].

In short, this lemma says that if M*/M is a Levy extension, so is

MjM[s\. For some proofs of Lemma 1, see [So] or Exercise 25.11 of [Je].

In M\ each P e (ξ < tc) is countable and there are only countably

many PΓdense subsets which lie in M. So, in M\ there are many P^-

generic filters over M.

We say filters Fo, , Fn_x on Ψξ are mutually generic over M if each

Fi (i < n) is PΓgeneric over M[F0, , Ft.l9 Fi+l9 , Fn .J or, equivalently,

if the product Fo X X Fn^ is (P^-generic over M in the sense of the

product forcing. If we let ^ denote the space (in M1) of all P^-generie

filters over M endowed with the canonical topology, then for each n, the

set of n-tuples of mutually generic filters is a comeager subset of (@ξ)
n

in the sense of the product topology. (By "the canonical topology'', we

mean the topology generated by the sets of the form {Fe &ξ\peF} where

pe¥ξ.)

Note that, in M\ &ξ is a perfect Polish space, since there are only

countably many conditions in P e and countably many P-dense sets which

lie in M. So, one can prove the next lemma by an argument similar to

the standard proof of the Baire category theorem together with the "split

and shrink" method which we have already used in the proof of Lemma

3 of Section 1.

LEMMA 2. Argue in M\ For each ξ < Λ;, there is a set ^ ^ ^ with

the following property. IF is homeomorphίc to the Cantor space ω2 and

every distinct three elements of !F are mutually generic over M. Moreover,
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we can find such an 2F as a subset of {Fe @ζ\peF\ where p is a given

condition in P f .

The following lemma is a key to our proof.

LEMMA 3. Fix a ξ < K. Let ά e MPζ be a name of a point on the

plane. And let Fo, Fu and F2 be filters on Pξ which are mutually generic

over M. If interpretations ά[FQ], ά[Fx], and ά[F2] are distinct and collinear,

then the line determined by these points is M-definable.

Proof. Let / be the line passing through ά[F0], άtFJ, and ά[F2].

Without loss of generality, we may assume the origin o of the standard

coordinate is not on I. Let m be the foot of the perpendicular drawn from

o to I. Then, one can compute m from any two of the ά[F0], ά[Fj], and

ά[F2]. So, we have

m e M[F0, Fx] Π M[FU F2] Π M[F2, Fβ] = M.

The equality above follows from the fact that FQ, Fu and F2 are mutually

generic over M. Since m and o are in M and since m determines the

line / uniquely relative to 0, this line / is M-definable. •

We shall now turn to the proof of Theorem 3.

Proof of Theorem 3. We work in Mι. Let A be a set on the plane

which is definable from a countable sequence s of ordinals. Then there

are a formula φ of set theory and a finite array a of parameters from

M[s] such that

A = {x e R21 MM [x] μ φ(x, a)}.

In [Je], a set of reals with such a representation is said to be Solovay

over M[s]. See Lemma 42.10 of [Je] for Solovayness of a set definable

from a countable sequence of oridinals. By Lemma 1, we may assume A

is a set on the plane which is Solovay over the ground model M. So, let

A = {xeR 2 |M[x] μ φ(x,a)}

where aeM.

From now on, suppose that A cannot be covered by any countable

family of lines. Since there are only countably many M-definable lines,

A has an element which is not on any M-definable line. It follows that

there is a ξ < K such that
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M[GΠPe] N "A - U {l\l is an M-definable line} ^ 0" .

Pick a condition p e G fΊ P f and a name x 6 Mψξ of a point on the plane

such that

pll-p* "Af [*] |= ?>(*, ά) & x £ U {'I ϊ is an M-definable line}" .

By Lemma 2, there is a set J^ of filters on Pξ such that the following

are satisfied.

(1) For every F e J% peF.

( 2) Every three distinct elements of 3F are mutually generic over M.

( 3 ) ϊF is homeomorphic to the Cantor space.

For each PΓgeneric filter 3F over M, let

So, Λ is a function on <gξ into R2. This Λ is continuous because the

interpretation x[F] is approximated arbitrarily close by conditions con-

tained in F. Since p forces that x is an element of A, h(F) e A holds

for every Fe^.

Let Fo, FU and F2 be distinct elements of IF and suppose that h(FQ),

Λ(JFI), and Λ(F2) were collinear. Then, by Lemma 3, these three points

would be on an M-definable line. This is impossible because p forces that

x is not on any M-definable line.

It follows that the restriction of h to IF is a continuous injection

mapping every three distinct elements of J^ to points in A which are not

collinear. Thus /ι"(J^) is a perfect subset of A with no three collinear

points. •

The argument invoked in the above proof seems to work for estab-

lishing some homogeneity properties of open/closed partitions of pairs of

reals as was considered by Q. Feng in [Fe].
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