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§ 1. Introduction

The white noise calculus was initiated by Τ. Hida in 1970 in his
Princeton University Mathematical Notes [3]. Recent development of the
theory shows that the Laplacian plays an essential role in the analysis
in question. Indeed, several kinds of Laplacians should be introduced de-
pending on the choice of the class of white noise functionals to be ana-
lysed, as can be seen in [4], [13], [18] and so forth. Among others, we
should like to emphasize the importance of the infinite dimensional
Laplace-Beltrami operator, Volterra's Laplacian and Levy's Laplacian (See
[13], [18] and [20]).

In this paper, we shall discuss characteristic properties of Levy's
Laplacian JL and some of related topics as well as its applications, in
particular, to form explicit solutions of a Schrodinger equation, where
the Laplacian naturally appears.

Following [6] and [15], we shall first introduce, in Section 2, the
space (Ε)* of generalized white noise functionals and the usual tools of
the analysis like the S-transform, the [/-functional, and the ^"-transform
on (Ε)*. It is noted that AL acts effectively on a certain subspace of (Ε)*
and it does annihilate ordinary white noise functionals. We then come
to the calculus of (£)*-functionals in terms of the white noise B(t), teT,
(Τ is an interval) which is now thought of as a member of the variables
of white noise functionals.

We establish eigenfunctionals of JL and deal with the heat equation
satisfied by the expectation functional of the delta functional in Section
3. Levy's group and an algebra generated by infinitesimal generators
of the infinite dimensional rotation group are dealt with to some extent
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in Section 4. With these backgrounds characteristic properties of Levy's

Laplacian will be given there.

There are many applications of the Levy's Laplacian. The most

interesting one seems to be the Feynman path integral to find the

Schrodinger equation satisfied by the propagator. These topics will be

discussed in Section 5, however we now pause to show an explicit form

of the Schrodinger equation:

, t) + is-'VTft] o Φ&, t),± (jL + jv)0(b, t) +
ι dt 2m Η

where Δν is Volterra's Laplacian, S is the S-transform ([15]) and ο denotes

the Wick product ([23]).

The last section is devoted to the investigation of Ito's formula for

generalized white noise functionals, where Levy's Laplacian appears in

the drift term:

άΦ(Β.(ί)) = f dt-tMB.(t)) ο dBx{t)dx + 1 aL0(B.{t))dt,
JT 2

where dt-fX is the W(t —, ^-differentiation (See Sections 4 and 6).

We have a hope, as is mentioned in the concluding remark, that more

general Ito's formula can be found in line with this approach.

§2. Generalized white noise functionals

In this section, we introduce the space of generalized white noise

functionals, following [6], [15] and [23] (See also, [4], [5], [16], etc). Let

Τ be an interval in R* (d > 1) and let D(Tn) be the Hubert space of

real square-integrable functions on Τη with inner product ( , )Λ Start

with a Gel'fand triple

Ε(Τη) c L\Tn) c Ε*(Τη),

associated with a countable system of consistent Hilbertian norms || ||η,ρ

= V(-, )η,Ρ9 ρεΖ- We can assume without loss of generality that there

exists a positive number ρ less than 1 such that

Ρ\\ξ\\η,ρ+ι > HflLp for any ξβΕ(Τ*), peZ, (See [15]).

The measure μ on Ε*(Τ) of Gaussian white noise is given by the

characteristic functional
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C(£) = ί exp {i(x, OW(x) = exp {- 1||ξ\ή , ξ e Ε(Τ),

|| ||: the L2(T)-norm.

Set (L2) = L\E*(T), μ) and define the S-transform by

8φ{ξ) = C(f) f exp {<*, f >}^(x)d^(x), ? e (L2).

The Hubert space (27) admits the well-known Wiener-Ito decomposi-

tion:

(L2) = ®Ηη,

where Ηη is the space of multiple Wiener integrals φ of order η.

Let Ερ(Τη) be the completion of Ε(Τη) with respect to the inner

product ( , -)ntP. Then for any positive integer ρ, Ε_ρ(Τη) is the dual

space of Ερ(Τη). Define

HO* = {φ I φ is in # η with kernel in £ρ(Τη)},

^ p (T w ) = {feEp(Tn)\f is symmetric}

for /? > 0, and construct the space

Let (Ε_ρ) be the dual space of (Ερ) for ρ > 0. Denote the projective

limit space and the inductive limit space of the (Ερ), peZ, by (Ε) and

(Ζ?)*, respectively. Then (Ε) is a nuclear space and (Ε)* is nothing but the

dual space of (Ε). The space (£)* is said to be the space of generalized

(white noise) functionate.

Since exp < , ξ> e (£), the S-transform is extended to an operator U

defined on (Ε)*:

υΦ(ξ) = C(f)«Φ, exp < , £>» , ξ e

where « , •)) is the canonical pairing of (Ε) and (£?)*. We call £/Φ the

U-functional of Φ. Moreover, we have

UHirν) = {<F, ξ®η> IF 6 £- ρ (Γ»)}.

Using the t/-functional, the ^-transform is defined on (£?)* by

), ξβΕ(Τ).
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§3. Levy's Laplacian

As there have been many equivalent definitions for the Levy's Lap-

lacian, we adopt one of them as follows. In order to make the present

note be self-contained, we begin with definitions of Laplacian operators

of Levy and Volterra. Let U be a function defined on Ε = Ε(Τ). The

function U is said to be functional differentiable at ξ e Ε if there

exists a generalized function ϋ'(ξ; )βΕ* such that the first varia-

tion δϋ(ξ;η) = (dldX)U($ + λη)1Βθ is expressed in the form δϋ(ξ;η) =

ί ϋ'(ξ;ήη(ήάί for every ηβΕ. We call ϋ'(ξ;£) functional derivative of
τ

U at ξβΕ, and denote it by (δϋ(ξ))Ιδξ(ί). The second variation, if exists,

is expressed in the form

ti

ί
J

where TJ" is the second functional derivative.

DEFINITION. (I) A C2-function U on Ε (See [17].) is called LV-

functional if the second functional derivative U" is the sum of U" and

U'r' such that

/"(f), V ® ζ> = f TO; Οη{ί)ζ{ί)άί,
J Τ

?(ξ), ν ® Ο = f
J

ΤχΤ

U'r'($; , •): trace class kernel.

The functional U'/ and t/^ are called the singular part and the regular

part of £7", respectively.

(II) For the LV-functional U,

and

LU= f U'.'ti;t)dt,

VU=\ U'r'fct,
JT

are defined which acting on the space of functional of ξ.

We are now ready to define Levy's Laplacian AL and Volterra's

Laplacian Δν. Let Φ be a generalized white noise functional whose

[/-functional is an LV-functional. As [ϋφ]"(ξ; •) is integrable and

[ϋΦΥτ'(ξ; , •) is of trace class, JL and Δν are defined by
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and

DEFINITION. The operators AL and Δν are called Levy's Laplacian

and Volterra's Laplacian, respectively.

The domains of the above Laplacians AL and Δν are both rich enough

in the space (J5J)* of generalized white noise functionals as illustrated by

the following fact. We introduce the following classes 31 and si of

functionals on Ε:

The class 31 is the collection of (finite) linear combinations of

f f(tu , O f ( 0 P l * &tnY*dU ' " d t n ; f e D(T*),

pl9 ---,pneN U {0}, η = 0,1,2,

and the class si is the collection of (finite) linear combinations of

; feD(T), ρ = 0,1, 2 .

A member of 3ΐ is called a normal functional.

Remark. The kernel / in the element of 31 is not symmetric in

general.

The characterization of (S)* due to Streit and Potthoff [23] proves

that both 31 and si are subspaces of £/-functionals. Furthermore, it is

proved that all the members of 31 and s/ are L V-functionals and that

they are in the domain of JL. We therefore see that U~l3l and U~lsf

are in the domain of AL.

We will see profound properties of Levy's Laplacian in what follows.

PROPOSITION 3-1. Let Τ be [0,1]. Then the exponential functional

is positive and is an eigenfunctional of AL with eigenvalues c for any real

number c ψ. — 1.

Proof. It is obvious that <pc is an eigenfunctional with eigenvalue c.
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The positivity of the functional <pc follows from the fact that its

transform

is a positive definite function of ξ e Ε[0,1] (See [29]). (Q.E.D.)

Remark. A generalized functional Φ in (Ε)* is said to be positive if

ζΦ, <ρ} > 0 for all ψ in (Ε) such that its continuous version ψ is positive

on 22*. It is well-known that the positivity of Φ is equivalent to the

fact that its ^-transform ^Φ(ξ) is positive-definite (also, see [29]).

PROPOSITION 3-2 (cf. [20]). Let U be an LV-funetional and ψ be a

C2-function on R. Then it follows that

Proof. By definition, we have

δ

δξ(χ)

and hence

υ(ξ)-±-ϋ(ξ)
δξ(γ)

υ(ξ)
δξ(χ) δξ(γ)

ξ; χ)δ(χ -y)+ U'M; χ, y))

Consequently,

f ; x)dx = ^'(ϋ{ξ))~ΔΙιυ(ξ). (Q.E.D.)

As an easy consequence of Proposition 3-2 we claim the following:

If U is a polynomial in ξ of degree 2 and if ψ is the exponential func-

tion, then ψ(ϋ) is an eigenfunctional of 2L belonging to eigenvalue JLU.

§ 4. Some properties of Levy's Laplacian

In order to define the operator Y8tt following [11] and [13], we prepare

some basic notions. Let Φ be in (2?)*. If, for all t, there exists Φι in (JEJ)*

such that ΙΙΦΧξ) = (δΐ7Φ(ξ))Ιδξ(ί)9 then the Φι is denoted by 3β. In the

case of Streit-Potthoff's space (S)*, the following result has been obtained

in [7].
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PROPOSITION 4-1. The U-functional ϋΦ is functional differentiable for

each Φ in (S)*.

Proof. The proof follows from a characterization of Hida distribu-

tions in [23]. (Q.E.D.)

The adjoint operator df of dt is defined as

«9*φ, ψ)) = «φ, dt9)) , Φ β ( £ ) * , ? € ( £ ) .

It is also known that df + dt is the multiplication operator by the coor-
dinate function x(t) (See [6], [16]). Hence,

ritt = ^(s)9, - x(t)ds

is viewed as an analogue of an infinitesimal generator of two dimen-
sional rotations on the (x(s), x(£))-plane. The operator YSft can be ex-
pressed in the form

r.ft = dfdt - a?3..

The Volterra's Laplacian Δν and the number operator Δ^ have been

characterized by using the operators YStt, s,teT ([11], [13]). In fact, they

are uniquely determined (up to constant) in such a way that J F is a

quadratic form of 9t's which commutes with all the YStt and that JM is a

bilinear form of 3f s and 3/s which also commutes with all the YStt.

Similar, but somewhat weaker characteristic properties of Levy's

Laplacian can be given in terms of the subgroup, called Levy's group, of

an infinite dimensional rotation group. On the other hand, it has been

shown that Levy's Laplacian commutes with Levy's group in [12]. Set

0{Ε) = {g\g is a linear homeomorphism of Ε and

||££|| = ||?| | for every ξ e Ε).

Then, Ο(Ε) forms a group under the usual product, and it is called the

infinite dimensional rotation group. Let {£n}cJS= Ε(Τ) be an orthonor-

mal basis for L\T) and let π be a permutation of {0,1,2, •}. Define

an operator gK on Ε by

&f = Σ «»£.(»> for f = Σ «»f» € Ε.

Levy's group ^ is defined as follows:

|lim 1|{1 < η < iV; π(η) >Ν}\ =
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Let Τ be a finite interval, and let Ψ be given by

« = 0

This Ψ is regarded as a generalization of the Euclidian metric in a finite

dimensional space.

PROPOSITION 4-2. i) Ψ is a member of (Ε)* and is invariant under

ii) Ψ has a representation of the form

ψ(χ)= ί :x(t)2:dt= ί dpldt,
J τ J τ

iii) The operator AL = hmN^ (1/Ν) Σ^ο 1 (d/dxj with χη = <JC, fη>, is

applied to Ψ and

3LW = ALW

holds.

Proof, i) The S-transform of ΨΝ = Σ - ο 1 : <*, f .>2: is E S ( ? , f J 2

which converges to ||f||2. We can further show that ΨΝ converges in

(Ε)*. The ^-invariance is almost obvious.

ii) The result follows from the fact that the S-transform of

ί :x(tf:dt is ί $(t)*dt.
J τ J τ

iii) is obvious. (Q.E.D.)

It is noted that the functional Ψ satisfies the following trivial relation

rs,tdLw = Jjs,tw.

As for above assertion iii), we can also show that

JL0 = JL0

holds for any normal functional Φ.

§5. Levy's Laplacian in the Schrodinger equation

One of the important applications of Levy's Laplacian can be seen in

the theory of path integrals.

Consider the Feynman path integral intuitively expressed in a formal

form



ITO'S FORMULA AND LEVY'S LAPLACIAN 161

'ff dqiu,x),
,ar) = (O,O)

with a potential V[g](-)> where g stands for a possible trajectory. We
understand this integral as the following "expectation" with respect to
the white noise measure μ on Ε*(Τ) = E*(R X [0,1])

υ(φ, t) = E^.JT exp {±

£ denoting the expectation, where Jf is a normalizing factor and L(g,
is the Lagrangian:

q){u) = -£ Γ ( M ^
2 Jo V du

Getting the expectation can be realized by taking q to be a trajectory

interfered with by the fluctuation denoted by Bx(u) such that (d/dt)Bx(t)

= W(t, χ) is a white noise with parameter set Τ = R X [0, 1].

Take a complete orthonormal system {en; en e 2?[0, 1], η = 0,1, 2, •}

for L2[0,1] and set J3<»>(i) = (W, 1[0} ί ] ® βΏ>, t > 0, η = 0, 1, 2, . . .. Then

{Β(η)(ί)} is an infinite sequence of independent one-dimensional Brownian

motions, where 1 [ Μ ] is the indicator function of [0, t]. The Bx(t) is ex-

panded into the series

ΒΜ = Σ B^(t)en(x), x e [ 0 , l ] , ί > 0 .
w = 0

We are now ready to introduce trajectories q consisting a sure path φ
in Ε[0, 1] plus Gaussian fluctuation:

(5-1) φ, χ) - I

0 < w < ί, 0 < χ < 1 .

Thus the expectation υ(φ, t) is expressed in the form

ϋ(φ, t) = £[:exp ( ^ f^yd* + ! ± 1 Γ ΓΒ
L 1 2 ζ ί J o 2 Jo Jo 2t Jo

As in [28], after the functional
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exp \1±± Π f Bx(u?dxdu - A Γ BM
I 2 Jo Jo 2t Jo

is renormalized, the term (i/2t) Bx(t)2dx is not important in the evalua-
Jo

tion. Thus, the functional ΙΙ(φ, t) can be expressed in the form

(5-2)

ϋ(φ, t) = c(t) exp {J2L f φ(χΥάχ)
I Z\)t Jo JX (^: exp | i -±l £ £ β,(^)2^^ }̂:, exp { - ± £

where c(i) is a constant depending on t and is independent of the poten-

tial V. Since ΙΙ(φ, t) does not exist in the case of the polynomial V of

degree 2, we are led to define a renormalization &υ(φ, t) of ΙΙ(φ, t) as

follows:

We put

X « ρ { 1 ^ ΐ Σ

where ^ η = (̂ , en) and

= -7 Σ ί». + ( i ) Σ

In case of V = 0, we have

As the chain rule

J υΝ(φ^ - φ<χ\ t2 - tx)UN^ - φ«\

- υΝ(φ^ - φ«\ u - tx)

is valid for every particle, we get

A renormalization £%υ(φ, t) of 17(φ, t) is defined by
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This definition is consistent with Kuo's Fourier transform [19]. Thus we

can take

The mean of Feyman's functional I in the present field is now given

by

as a generalization of L. Streit-T. Hida formula. We have the following.

PROPOSITION 5-1. The renormalized mean of Feyman's functional I is

expressible as

9tE(I) = c(t) exp {-gL|| φ ||2} , ||. ||: L2[0, l

The next Proposition is applicable to the calculation of the func-

tional U(<p, t) with potential V = C q( , x)dfx, where C is a constant
Jo

and g is given by (5-1).

PROPOSITION 5-2. The &-transform for

:exp ί 1 + ι Ψ Γ Bw(u)2du\:
I 2 w = 0 JO J

is expressed by

A: exp ( i - t l χ;1 f' B«-'(«)«d«): ](/)
L I 2 7Z = 0 j 0 J J

(5-3) = exp {- 1 Γ Γ/(«, x)2dudx + -L^i Σ 1 f ([f(u, x)en(x)dxfdu\ .
I 2 Jο J ο 2 «=oJo\Jo / J

Proof The functional

: exp {JL±_L χ;1 Γ B{n\ufdu\:
I 2 n=QjO J

is approximated by
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I 2 fcO*«

It is shown that

1 ΐ Λ'-1 -̂  / 1 Ρ I*1 \ 2 1
= exp - i-||f ||* + ±Ζ± Σ Σ (jfr- ««, *K(x)d*du) |Je |

1 2 2 w=o *=ι \ Idk\ Jπ Jo / J
||f || +

2 2

= exp f- 1||ί||2 + λ^-ί Σ t ( J - f Γ i(u, xK

Let Κ tend to οο, we obtain (5-3). (Q.E.D.)

We can see Levy's Laplacian arises in the Schrodinger equation for

THEOREM 5-1. The functional Φ(6, t) with a polynomial potential V of

degree 2 satisfies the equation:

(5-4) i .<Μ£ι± = _ L ( J L + Jv)0(b, t) + l U~>V[b] ο Φ(6, t),
r 3ί 2m ζ

where ΦοΨ, Φ, Ψ e(E)*, means the Wick product, defined by

ϋ[Φ ο Ψ](ξ) = υ[Φ](ξ)υ[Ψ](ξ) (See [23]).

Proof. It is sufficient to prove (5-4) for a case of

V[g](w) = — q(uy xfdx , g: a constant.
2 Jo

The functional UN(<f>91) is expressed in the form

υΝ(φ, t) = cN(t) exp {(!£- - Μ )

:exp f l ± l Σ 1 Γ B<">(u)
I 2 w=oJo

f- J£L χ;1 Γ fs(w)(w) - -B^(
I 2 m ^=ο Jo V ί

χ

The above pairing ((•, •)) is the ^-transform
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- 1<W, KNW}}: exp {- 1 <W, L,

= det (1 + LN(1 + ΚΝ)-ψίβ exp {- |-</, (1 + ΚΝ

where

ίΓ, W(«, χ) = - (1 + 0 W « ) Σ 1 *»(*) f e,(y) W(«, y)dy ,

LNW(u, χ) = ΐω* Γ f ( i - + - ^ + ξ- - r V «) ^ en(x)eB

Jo Jo V 3 2t 2t / «=ο

( ry \1/2 σ / t2

i ) "nd ^ ^ - - ^ ( τ -
The eigenvalue problem for the kernel 1 + LN(1 + ΚΝ)~ι reads

rt / f r 2 7y2 \ Ν~λ Γ1

( τ + ί τ + ^ Γ - ^ ν ^ ΐ Σ en(*)^a, x)dxdu
Jo \ 3 2ί 2t / η=ο Jo

This equation can be solved in a straightforward way. The resulting

eigenvalues and eigenf unctions are:

λ, = 1 - -gt-, ft = 1, 2, ,

and

Σ en(x)Vk(r, x)dx = ( A ) cos (-ί* r ) , h = 1, 2, ,
™=ο J o \ t / \ t /

respectively. Therefore, we have

+ LN(I + K,rri/2 = (π Λ / 2

_ / sin (ωί)

and

im
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Combining the above results, we conclude that

\ 2πΐ§ - sin (ωί) / t 21) tan (ω£) =̂ο J

Consequently,

V ' \2πϊΐ)-sin (cot) / L Ρ 12ή tan (ω<) J o ^ W

So we have

k : Γ 6(x)2dx: ο Φ(6, ί),
sin2 (ω*) Jo W

ί?
2tan(o>0 2i)sin2

ιτκιω
ϊ) t a n ι

and

, ί) = - w ^ f / . : f b(xfdx; ο Φ(έ, t).
2ή tan 2 (cŷ ) J ο

From these calculations, it is easily checked that Φ(έ, t) satisfies the

equation (5-4). (Q.E.D.)

The following examples can be immediately obtained by using Theo-

rem 5-1.

EXAMPLE 1 (Free particle). For V = 0, we have

EXAMPLE 2 (Constant external field). For V = — F\ q(-9 x)dx with
Jo

a constant F, we have

EXAMPLE 3 (Harmonic oscillator). For V = (1/2)# ί q(-, xfdx, g = πιω\
Jo

we have

4Kb, t) = f ^
α>ί)/ L I 2^ tan (ωί) J
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§6. Ito's formula for generalized functionals

In [24], the author discussed Ito's formula for generalized functionals

by using a shift operator ljdx. In this section, without the operator ljdx,

we shall investigate how Levy's Laplacian appears in Ito's formula for

generalized functionals depending on t. It seems that this formula is

useful in constructing a stochastic process whose generator contains

Levy's Laplacian. For instance, consider a generalized functional

Φ(Β.(φ = f f(x){BM}dx, f e C(R),
Jo

in (Ε)*, Ε = <f(W), where [£,(ί)!] = -Bx{tf- + E[B{tf]. Its [/-functional is

given by

[ϋΦ(Ββ))](ξ) = £/(*)((£ξ(u, x)duj + t)dx, ξβΕ.

We can calculate its derivative to have

= 2 ρ / ( χ ) ρ ̂
Jo Jo

and

Therefore, we get

(6-1) άΦ(Β,(ί)) = Γ dt-.M.BJfi) ο dBx(t)dx + -ί aL0{B{t))dt,
Jo 2

where 9,_>;r is the VF(Z —, ̂ -differentiation. These calculations can be

extended to functionals

(6-2) Φ(Β.(ή) = f . (Vte, , χη)[ΒΜ(ί)2] ο ο IBJtYJdx, . dxn ,
Jo Jo

/e C(R").

Thus, we obtain the following

PROPOSITION 6-1. The equation (6-1) holds for every Φ(Β.(ί)) given by

(6-2).
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Concluding Remark. Proposition 6-1 is expected to hold for much

more general functionals which are useful in applications. At least, the

equation (6-1) holds for every (finite) linear combination of functionals

[ . [fix,, , xn)lBx(t)PlJ ο ο IBJW'Jdxt - > d x ,
Jo Jo

/ e C ( R » ) , A , •••,p,eNU{0},

where

lB-m - "Μ m<C-2k)< ••B-m"": for'6 Ν υ (0)

Details of the problem arising from Ito's formula will be discussed in a

forthcoming paper by the author.
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