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§ 1. Introduction

Following eariler work of Kubota and Mennicke, the major work of
Bass, Milnor and Serre [1] constructed characters of congruence subgroups
of the modular subgroups of SL(n) and Sp(2ή) over a totally complex
number field, which are related to the power residue symbol. They do
not obtain the lowest possible level of these Kubota characters, nor does
it appear possible to modify their arguments to extend the characters
to the lowest possible level.

It is important for applications, such as our paper [2], that precise
formulae for the Kubota symbol be available. The formulae are simplest
if the ground field contains the fourth roots of unity, and so we will
work over the field Q(i). We shall give here a construction of the
Kubota symbol for Sp(4) over this field, independent of the work of Bass,
Milnor and Serre, with precise formulae for the symbol, and a proof of
its multiplicativity. We will construct the symbol over a larger congru-
ence subgroup of Sp(4, Z[ί]) than that afforded by the results of Bass
Milnor and Serre. Because of this feature, our results do not follow
from those of Bass, Milnor and Serre.

Since we wrote this paper, we were surprised to discover that it may
actually be possible to extend the symbol to a character of an even
larger congruence subgroup, Γ(2) of Sp(4, Z[ί]). (We have not proved
this, but it appears likely to be true.) The formulas which we give for
the symbol are not valid without modification for that group, but it is
likely that our method can be adapted to extend the symbol to that
larger group. However, our results are adequate for the purposes of [2].

It should be mentioned that Johnson and Millson [3] have recently
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investigated the theta multipliers for Sp(2n, Z). See also Stark [4] and

Styer [5].

To state the main result, let us introduce the following notation.

Let Θ = Z[i], λ-l + ί, and M = (λ3). Let Sp(4, Θ) denote the subgroup

of SL(4, Θ) consisting of matrices g satisfying gJιg = J, where

Let Γ(M) denote the subgroup of Sp(4, Θ) of matrices congruent to the

identity modulo M, and let ΓP(M) be the subgroup of Γ(M) of matrices

having 2 X 2 block form

If r = (Jij) is any square matrix of degree four, let Atj = Ai5(T) denote

the (3, 4) X (i,j) minor r3ίr4jf — THrsj. The AiS are called the invariants (or

Pliicker coordinates) of y.

Observe that if γ, γ' e Γ(M), then AiS(r) = Atj(r;) if and only if

ΓP(M)r = ΓP(M)ϊ\ so that the cosets of ΓP(M)\Γ(M) are parametrized by

these invariants (see Proposition 2.2 below for a more precise statement).

We shall construct a character κ\ Γ(M)->{±1}, which is trivial on

the subgroup ΓP(M). We shall give an explicit formula for κ(T) in terms

of the invariants Au and the quadratic resdue symbol. The main result is

THEOREM 1.1. There exists a unique character K: Γ(M) —> {±1} such

that if y e Γ(M) has invariants Aij9 then assuming that A24 and Au are

coprime, we have

We will also give more complicated formulae for κ(y) in terms of the

invariants which are valid even if A24 and Au are not coprime.

§ 2. Preliminaries

We begin by collecting some facts on the arithmetic of Θ. Recall

that every ideal in Φ which is prime to M has a unique generator which

is congruent to 1 modulo M. Such a generator is called primitive. If p

is a prime ideal other than (X), we shall also use the same letter p to
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denote its unique primitive generator.

Let α, b be coprime elements of Θ such that λ does not divide 6.

Let (a/b) be the usual quadratic symbol. We have the following prop-

erties :

PROPOSITION 2.1. The quadratic symbol satisfies

(a) (a/b) = ± 1 if a and b are coprime, zero otherwise;

(b) If p is prime and if p\a, then (a/p) = 1 or — 1 according as the

congruence x2 = amodp is or is not solvable;

(c) (aa'lb) = (albWIb);

(d) (α/660 = (a/b)(a/V);

(e) If εeΘx, */w?rc (α/ε&) - (α/6);

( f ) If a = af mod 6, */*en (a/b) = (α'/6);

(g) // α ami 6 are primitive, then (a/b) = (b/a);

(h) If a — A + Bί is primitive, where A, B are rational integers so

that A — 1 mod 2, A — 1 = B mod 4,

f—) = ( - lyww*1-!)., and ί—) = (- 1)
V a / V a /

( i ) If b = b; mod a and b ΞΞ bf mod Λ5, ί/ien (a/6) = (a/67).

(j ) If b~bf mod a and X \ a, then (a/b) = (a/6r).

Also, let us collect some facts concerning the invariants AiS. For

any T e Sp(4, Φ), the invariants satisfy

\Δ.Δ) J±12A.Si A.1ΆA24 A.u = U ,

and

(2.3) gcd(A12,A13,A24,A34) = 1.

Indeed, (2.1) holds since T is symplectic. Also (2.2) follows from (2.1)

and the "Pliicker relation" AnAu — AuA2i + AUA23 = 0, which is valid

for the invariants of any matrix, symplectic or not. To prove (2.3), note

that since T is an integral unimodular matrix, so is the six by six matrix

A2Ϊ of T in the exterior square representation, and so the bottom row of

this matrix is unimodular, i.e. gcd (An, An, Au, Au, Au, A23) = 1. However

by (2.1) and (2.2) any divisor of (2.3) would also divide Au and A23. Thus

we have (2.3).

If r € Γ(M), then in addition
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(2.4) A12, A13, A14, A23, Au = 0 mod M, 4 3 4 ~ 1 mod M.

Conversely, we have

PROPOSITION 2.2. Suppose AtJeΘ satisfy (2.1), (2.2), (2.3) and (2.4).

77ιerc ίΛere existe a unique coset in ΓP(M)\Γ(M) with these invariants.

One can give an explicit formula for a coset representative. For

this, and the details of the proof, see [2].

§3 The Kubota symbol

First we give a formula for κ(ϊ) which is valid even without the as-

sumption that gcd(A24, A34) = 1.

PROPOSITION 3.1. Let ϊ e Γ(M) have invariants Atj satisfying (2.2), (2.3)

and (2.4). Let b be the primitive generator of the ideal gcd (A34, A13, A24).

Choose a factorization b = b'b" with b', b/; primitive such that br \ A24 and

bπ I A13. Let b = vβ\ bf = v'β'\ b" = ι/'/3"2 such that υ, ι/, vtf are squarefree

and primitive. Factor v = υjυ" = v{v2 where υl9 v", v[ and v2 are primitive,

Vi\A24> g c d ^ , A24) = 1, u2|A13, gcά(v[, A13) = 1. Then v2\v;/ and v[\v\ so let

v" = V[%\ vf = v[v'2. Let A13 - &"A'U, A24 = b'AU, A34 = bA'L A u = vβA'u,

so that

(3.1) AvAZ-AίAU^vAίl.

Then

(3.2) gcd (vϊ, A12) = gcd (ι;lf A® == gcd (ϋί\

^ , A(3) =

Thus

(3.3)

is defined. Moreover, the expression (3.3) is independent of the factoriza-

tion b = ί/6".

Proof To show that gcd (ι>ί7, A12) = 1, observe that any prime common

divisor of u^, A12 would divide A12, A13, A24, A34, contradicting (2.3). To

show that gcd(Ui, A34) = 1, observe that a common divisor would divide

A[zAu = A12A34 — vAϊl yet A34, A[zA24t are coprime. In fact, this proves the

stronger relation
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(3.4)

To prove that gcd (vu A'13) = 1, note that a common divisor would divide

A12A"4 — A'lzA2i + vAίl, and so by (3.4) would divide An. Thus a common

factor of vl9 A[z would divide Λ12, Au, A24, A34, contradicting (2.3). The re-

maining two assertions of (3.2) are obvious.

To prove that the expression (3.3) is independent of the factorization

b = b'b"', suppose b = c'c", c', c" primitive, c' | A24, c"1A13, and let w" be

the primitive squarefree part of c". Let M/' = wί'u", A13 = c"B'1Zί A24 =

C'JB^. We must show that

A13

There exist primitive μ, v where v \ gcd (A'M, B'13, c", b'), μ \ gcd (A'n, B'u, c', b")

such that b' = vμ'V, b" = μυ-ιc", B'13 = μv-'Aί,, B'u = vμ-λA'u, and v{'

equals μvw" times a square, so the left side of (3.5) equals the right side,

times a factor which equals

μu \ _ (AnAZ
μV )\Ί#)\ V, A A'/t ) \ μv

where we have invoked quadratic reciprocity. Every prime factor which

divides μv divides A[ZA'U, so (3.1) implies (3.5).

PROPOSITION 3.2. In the notation of Proposition 3.1,

(3.6) gcd ( t i Au) = gcd (u2, AίO = gcd (ι;lf Aβ == gcd (v2i A'^

Moreover the value of

is independent of the factorization b = b'b", and equals κ(T).

Proof The proofs of (3.6), and the independence of (3.7) of the fac-

torization b = b'b" are exactly similar to the corresponding assertions in

Proposition 3.1. We will verify that (3.7) equals κ(ϊ).

By using (3.1), th& ratio of (3.3) to (3.7) may be expressed as
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(3 8)

Observe that υ^vΊv" and vxv[vivi are squares and

gcd (i/2'9 υ[) = gcd (υl9 J//) = gcd (v39 v[) = 1,

so that the set S of primes dividing any one of υ[\ v'2, υl9 u2, υ[, υ" may be

partitioned into Sx U S2 U S3 U S4 U S5 U S6 U S7 (disjoint) where

P\υ»

PK
P\υ»

P\v»

P\vίt

P\υ»

PWI'..

v,, vi,

vi, vi', v'2,

vi,

vi',

vi', v'/, υ'2,

,vί,

pJfVu

P\vi,

P\v*
P\v2,

P\vlt

P\v1}

pyVl!

vi',

v",

vi'
v'L
vi,

vi
v2,

vi
vi'

vi', vi

vi', vί

vi, vi'

if

if

if

if

if

if

if

P

P

P

P

P

P

P

e
e

6

€

e
e
e

SΊ

S 2 ;

S3;

S4;

S 5 ;

S β ;

S7.

We may evaluate (3.8) by computing separately the contributions from

p e Su ί = 1, , 7. Thus (3.8) equals

[ Π / ^12^34 V ^13^24 \1 Γ FT i l

pells, \j~)\y~)\ L *U J'j ) \

If p e S i or S2, p | u and so the first product is one by (3.1). This com-

pletes the proof of Proposition 3.2.

PROPOSITION 3.3. Let ϊ e Γ(M) have invariants AiS satisfying (2.2), (2.3)

and (2.4). Let c be a generator of the ideal gcd (AS4, A12A34). Factor

c = ύc" where c" \ A12, and cr \ AM is primitive. Let c = uδ\ d = υ!in

9

c" — u"δm

9 where u9 u\ u" are squarefree and uf is primitive. Factor u =

u{u!£ = uίw2 where ^i |A 3 4 is primitive, {u"9 AM) = 1, u 2 |A 1 2, (wί, A12) = 1.

Then u"\u", u[\u', so let u" = u^u^, u' = wίwj.

(3.9) gcd {u[\ A13) = gcd (Wl, A£) = gcd ( ^ , A 4̂)

= gcd (Ul, Aί2) = gcd (A 4̂, AH)

Proof, It is clear that Λ ẑ/i, ẑ , Ws Since u^u[uίu" is a square, it fol-

lows that λJ(u". The proof of (3.9) is similar to the proof of (3.2). An
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argument similar to the proof of (3.5) shows that the right-hand side of

(3.10) is independent of the choice of factorization c = c'c" (and the other

minor choices involved). To compare (3.10) to (3.3), we may therefore

assume that V — c' is the primitive generator of the ideal gcd (A24, A34),

so u' = υ'. Then Af

u = b"A&, A'24 = c'Άίί. The ratio of (3.10) to (3.3) is

(AΛ (AL\ (Akλ (Ak\ (Ak\ (ΛΛ (AL\(J^L\ (Ak\ (AΆ\
\ υ[' A υt A vr

2

f A υλ A A& A u[' A uλ A A'u A uλ A A2i ) '
Replacing A12, A2i, Af

u and A13 by chΆί2, c'Ά'^, bhΆ"4 and b'fA!lz, and per-

forming obvious simplifications, this equals

__ / AuAn \ / A24A12 \
V ϋji/ί' A i ί^! /

It is easy to see that vxυ!^Uχ is a square and that (u[\ v") = 1. As in the

proof that (3.8) equals one, one shows that (3.11) equals one by case-by-

case consideration of the primes dividing any of vl9 u[\ υ[\ ux. The cases

of concern are

P\vn υ[', p)(u[\ uly

p\υl9 uly pJ(ui', vί',

p\ui\ ul9 pJfvl9 vί'.

We have A[2Ai[ — A[ZA2± = w(A[$ where Aί4 is an integer, and w is the

squarefree part of be". It may be verified that in each of the three cases

above, p\w, so that

p I \ p

so there is no contribution. In the other two cases,

p\υly uϊ , p\vί\ uλ

it is obvious that there is no contribution. This completes the proof of

Proposition 3.3.

PROPOSITION 3.4. Let T} δ e Γ(M) have invariants Aijy Btj respectively,

where Au = BM, A l a = B12, A13 = β 2 4 ) A24 = S13, and Au = Bu. Then κ(T) =
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Proof, This follows by comparing the statements of Propositions 3.1

and 3.2.

We would like to show that the Kubota symbol agrees with (A24/A34)

as in the statement of Theorem 1.1. It is convenient to prove slightly

more.

PROPOSITION 3.5. Let YeΓ(M) have invariants Atj. Let b' be the

primitive generator of the ideal gcd (A24, AS4), and let A24 = b'A24. Assume

that A'24 and Au are coprime. Let b' — v'β'2 where vr is primitive and

squarefree. Then v' and A12 are coprime, and

Proof Suppose p is a prime dividing v' and A12. Then p \ A34, A24, A12

so by (2.3) p |A 1 3 . In the notation of Proposition 3.1, let b" be the

primitive generator of the ideal gcd(A13, A^f/"1). Then p\ι/ and p)(v" so

p I v. Now Aί3A24 = A12A34 mod v which is a contradiction since p \ A12y

ii. Thus (A12, ι/) = 1. Using (3.3), κ(r)(AJι/)(AίJA9i) simplifies to

A12
A'/Λ/A'nA'2Λ = / A12 \
vx A v1 ) \v1vίv/

1

/v2/

since A{3A2i = A12A34 mod vλ. This equals 1 since v1v[v{/v2 is a square.

We trun now to the proof of Theorem 1.1. Let Γ be the subgroup

of Sp{A, Θ) consisting of matrices ί „ jΛ where B = C ΞΞ OmodM and

det (A), det (D) are primitive. Let ΓP be the subgroup where C = 0.

Clearly Γ(M) c Γ and ΓP(M) = Γ(M) Π ΓP.

PROPOSITION 3.6. The natural map ΓP{M)\Γ{M) -> ΓP\Γ is a bijectίon.

Proof Clearly it is an injection. On the other hand, if ϊ e Γ the

invariants of ϊ satisfy the hypotheses of Theorem 2.5 of [2], and so the

coset fpϊ contains a representative in Γ(M). Thus the natural map is

surjective.

We have pointed out that K is actually a function on ΓP(M)\Γ(M).

Thus Proposition 3.7 implies that K may be regarded as a function on Δ

Theorem 1.1 will follow from Proposition 3.5 and the following stronger

THEOREM 3.7. K is a character of Γ.

Let Σ be the set of 7 e Γ whose invariants satisfy gcd (A24, A34) = 1.

Let
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f0 = {γer\κ(γ) = κ{rι) and κ(r'r) = it{fWr) if r ; ef } ,
f 1 = {r e r I Λ:(r) = ^ r 1 ) and Λr(r'r) = *(r')*(r) if r' e Λ rY e

Evidently f0 is a subgroup of Γ and A: is a character of JH0. We have

f0 c Γj c Γ. It is not α priori clear that A is a subgroup of Γ, but in

fact we will eventually prove that Γo = A = Γ.

LEMMA 3.8. The element

- 1

w, =

- 1

of Γ lies in Γo

In fact, this is simply a restatement of Proposition 3.4.

LEMMA 3.9. If teM then

,1

1 t

1

Proof. Suppose f has invariants AiJf and Y'Y has invariants Btj.

Then J3lt = A12, Bu = A24, 5 U = A14, A 3 = A18 + tAιt, Bu = A34 + £A24. To

prove that ycίTΎ) = tc(ϊ') (whence T e f0 since κ(ΐ) = 1), it is convenient to

use Proposition 3.3, to which we refer for notation. We have, by Propo-

sition 3.3

in which Br

u = AJ4 + te

tion 2.1 (i) implies that

Also, clearly (Als/ωί0 =

are equal. Thus T e Γo.

Thus JB 4̂ = mod which by Proposi-

Λ^/ \B'U)'

and so the two symbols κ(f) and «(r'r)
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L E M M A 3.10. If ueM then

,1

Proof. Let V e Γ, T;ϊ e Σ. Then if r', ϊ'ϊ have invariants Atj, Bi} re-

spectively, then Bί2 = Λ12, B13 = A13, J324 = A24, S14 = Au + uAί2 and Bu =

A34 + 2wA14 + zA412. We are assuming B24, Bu to be coprime. Thus

fc(γ'γ) = (Bu/Bu) while /c(rθ is given by Proposition 3.1, to which we refer

for notation. We have

Now

The right side in this congruence equals υ(βA;ύ + uA'uf and so by Proposi-

tion 2.1 (i)

34-̂ *34 — ^ 3 4 ^ 3 4 "I ^UΆ34Λ.U + W u4. 1 2 A 3 4

£Au + u'vAH mod w2A 4̂.

AL \ = (A'2A
AίlBu/ \ v ) '

It follows in particular from the preceding congruence that υ, A'u are

coprime. Observe that υx and υ" divide A249 so υ&ϊ and Bu are coprime.

As V-LV&IVI = vflΊ'vΊ is a square, it follows that

/ 1/ \ = (vK\ = Z , ^ ^ = ( A12\(A12BU\
\ JB34 / \ S34 / U i ^ v VViϋί'A v1vi/ ) '

Now A12B34 = (Au + uA12y mod Au, and since IΊ, t J71A24 it follows that

Now A12A34 = A24A'1S mod 1̂  and so

by Proposition 3.1. Since κ(T) = 1, this proves that T e Γv
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LEMMA 3.11. Let A, B, C, DeΘ, with A and D coprime. Then there

exists peΘ such that A + pB and C + pD are coprime.

Proof. If D = 0 we may take p = 0. Assume then that D Φ 0.

Observe that if μ is a solution to gcd (A + μBD, C + μD2) = 1, then

p = μD is a solution to gcd (A + pB, C + pD) = 1. Thus we may assume

that every prime which divides D also divides B. Let d be the greatest

common divisor of C and D. By Dirichlet's Theorem on Primes in an

Arithmetic Progression, there exist infinitely many p such that C + pD

= pd where p is prime. Since every prime dividing d divides B, and

since gcd (A, d) = 1, we have gcd (A + pB, d) = 1. Thus either A + pB,

C + pD are coprime or p \ A + pB. It is sufficient to show that p \ A + pB

can occur for only finitely many p. If p\ A + pB then (A + pB)j(C + pD)

= σ/d where a e Θ. Solving for p,

Cσ- AD
(3.12) p =

- Dσ + Bd

However, as σ runs through Φ, the right side of (3.12) remains bounded,

hence there are only finitely many possible σ.

Let U(M) be the subgroup of Γ of all

,1 u iλ

1 t u\
(3.13) , t,u,veM.

PROPOSITION 3.12. If γef, there exists f e U(M) such that πf e Σ.

Proof. If ΐ has invariants Ai5 and t is the matrix in (3.13), then Π'

has invariants Btj where JB34 = A34 — vAn + tAu + (u2 — tϋ)An + 2uAu,

Bu = A24 — υA12, and S12 = A12. Since gcd (A34, A13, A24, A12, A14) = 1, we

may clearly arrange that Bu and B12 are coprime. We may then further

adjust using v along with t = u = 0 by Lemma 3.11.

LEMMA 3.13. U(M) c fo

Proof. First let us show that U(M) c A The matrix (3.13) may be

factored as

1 t \ I 1 υ

1 j " ^ 1
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where the first four matrices lie in Γo by Lemmas 3.8 and 3.9, and the

fourth is in A by Lemma 3.10. Hence each matrix (3.13) lies in A

Now to prove that U(M) c Γ 0, let γ' e A ΐe U(M). By Proposition

3.12, there exists r" e U(M) such that r'77" e Σ. Since ϊϊ" e A (as we have

just proved), κ(γf) = κ{r'rr"). Now as γ" e A, *(r'77") = *(r'r). It follows

that r 6 f0.

LEMMA 3.14. // e, f,g,heΘ, eh — fg = 1 mod M

Proo/. Observe that by Proposition 3.5, κ(ϊ) = 1. First let us prove

that r e A- Suppose that r7 e A fY e 21. If f, T'ϊ have invariants A{J, B^

respectively, then Bn = A12, J513 = e2A13 — 2egAu — gzA2i, Bu = ft2Λ4 +

2/ΛA14 - /2A13, Bu = (βΛ + /^)AU - β/A13 + ^AA14, B34 = A34. We are as-

suming B24> 3̂4 are coprime. Thus

- (I:)
We will compare this to κ{f) which is given by Proposition 3.1.

2Λ = / B24 \( B24 \( B24 \

ZJ \ υΎ A v',f A Ail /B

Since ux\ A24, A14, ( 5 ^ ^ = (A13M) == (AiJvWIvJ. Also, since u£'| A13, A14,

(B24/O = (AJυΏ = (AtMWK). Now A2'4£24 = v'(hβ'A'n - /A»2 mod A{ί

where A[[ is defined by A14 = i/βfAίί. It is integral because b' \ A\4. Since

gcd (A24JB24, A"4) = 1 this proves that ι/, A34 are coprime and

Thus

AJ)"
l l ί $ J J

Now since v" \ A24, A12A34 = vA™ mod u^ so bearing in mind that υ1v
/

1

/v/ is

a square,a square
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Thus by Proposition 3.1

•

Now
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A'3'tAn\/ Au\_( AZ \( v \( An

) ( ) ( ( ( ( (
ι/2' A υί' / V υ[' A υ? A v? A υ? A v['

since vλv
f

xv^v2 is a square. Thus ATCΓY) = κ(yf), proving that ϊ e Γx.

Now let us prove more precisely that T e ΓQ. If ϊ' e f is no longer

assumed to be such that ϊ'ϊ e Σ, nevertheless by Proposition 3.12 there

exists γ" e U(M) such that fγγ" e 21. Now by Lemma 3.13, κ(r'ϊ) = dj'π")

= κ(r/(π"r-1)r) and since γ e A, this equals xifiTf'T'1)). Now rr'Y"1 e

C7(M), so by Lemma 3.13 again this equals κ(f). This proves that T e ΓQ.

LEMMA 3.15. If t, u, r e M then

,1

I

r =

Proo/. Let Γ7 € Γ have invariants A^. Then fΐ has invariants B^

where Bn = A12 + tAn — rA24 + (w2 — tr)Au + 2uAu, Bn = An — rAu,

Bu — Au + tAMi Bu = Au + uAUj Bu — Au. In Proposition 3.1, the factors

v, υu v", v" and υΎ are unchanged from the AiS to the Bίjf which makes

the comparison of κ{ϊ') and /c(fr) simple. Since υ" \ A13, A24, A34, Au, we

have A12 = B12 mod u^ and so

V i ί7 / \ ^ / '

As ι/2' IA34, gcd (υ", b') = 1, so 5 2 4 = A24 mod v" and so

/ ^ 4 \ = (A'2Λ
\ V2' I \ ι/%' ) *

Let us show that vx \ b\ Since υx is squarefree, it is sufficient to show

that each prime p dividing υx divides b'. If p \ υ\ then clearly p \ b\ On

the other hand, if p\v\ since v1v
/

1

/v/ is a square, p\v". Now p\vl9 v" so
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p\Au, A24, A13 so by (2.3) p)(Au. Also by (3.2), p)(A& As p\υ, A'lzA'u ΞΞE

A^A^modp, so pJ(Aί4. Now p\ A2i,p\A!u, so p\b' in this case also. Thus

vλ I b'. Now B[z = Λjs — rί/A34 and so J3ί3 = A'ld mod u1# Thus

B'13 \ / Aί3 \

Clearly

υx ) \ vλ I ' \ AH I

and so each symbol in (3.3) equals the corresponding symbol in the corre-

sponding formula for κ(fr). Thus κ(r'γ) == κ{f) and so ϊ e f0.

The following lemma contains the heart of the proof.

LEMMA 3.16. If p, q, r, s e 0, (? q^ = (J J) mod M, ps - qr = 1,

ΐ =

Proo/. First let us show that γ e Λ Let r' e Γ, γ'y e Σ. Let r', r7 have

invariants A^, jBίy respectively. We have B24 = pA24 + rA34, J334 = ĝ 424 +

sAu. Our hypothesis that gcd (B24, BS4) = 1 implies that gcd (A24, A34) = 1,

and so 7' e Σ. Now

• 0 1 -

so what we must prove is that

Let d be the primitive generator of the ideal gcd (s, B34). Let s — ds\

B34 = dB34. Note that d, s\ JB34 are all primitive. Since A24 — sB24 — rA34,

d|A24. Let A24 = c?A24. Now

(3.15) B24 = rAu mod A24

(3.16) S^ = sΆu mod i8i4ί4
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(3.17)

Now

Bu J \ B'u Λ BΉ Λ d

Using (3.17) and (3.15) to rewrite the second and third symbols on the

right, this equals

B'M/\ B'uΛdΛ d

Now observe that Λ3|Aa4. Thus by Proposition 2.1 (i) we may use (3.16)

to evaluate the second symbol and obtain

B'u/\ s' /\A5J\d/\ d

where we have used (3.17) again. Now using the quadratic reciprocity

law (Proposition 2.1 (#)) to invert the third and last symbols on the

right, we obtain (3.14). This proves that T e Λ

To deduce from this that T e Γo, let ϊ' e f. We are no longer assum-

ing that Y' e Σ. Now there exists, by Proposition 3.12, a Tx e U(M) such

that rYΓi e Σ. Now we may write Tϊ1 = r2Γ3, where r2 e Γo, T3 e fl9 κ(r2) = 1

and Λr(r3) = κ(j). Indeed, if

let

r« = I . M , r3 =

It follows from Lemmas 3.13 and 3.14 that T2 € Γo, and clearly κ(ϊ2) — 1.

It has just been established that Γ3 € fί9 and by Proposition 2.1 (i) we

have

ar
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Now tc(r'r) = κ(r'Πi) = fc(fr2r3) = /c(r%)κ(ΐd since r%γz e Σ and r3 e Λ This

equals κ{7')ιc(ϊ), where γ e Γo.

The proof of Theorem 3.7 (and hence Theorem 1.1) is now nearly

complete. It is easily checked that the matrices in Lemmas 3.13, 3.14,

3.15 and 3.16 generate Γ. Thus the group Γo equals Γ; since tc is a

character on Γo it is a character on Γ.
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