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ON A SYSTEM OF ELLIPTIC MODULAR FORMS ATTACHED

TO THE LARGE MATHIEU GROUP

GEOFFREY MASON

§ 1. Introduction and statement of results

This paper is a continuation of two previous papers of the author.

In the first [4] we discussed a Thompson series associated with the group

Λf24 in which each of the modular forms *qg(τ) attached to elements g e M2i

are primitive cusp-forms. In the second [5] we showed how, given a

rational G-module V for an arbitrary finite group G, it is possible to

attach to each pair of commuting elements (g, h) in G a certain g-expan-

sion f(g, h; τ) = Σn>i Q>n{g> h)qn/D (for q = exp(2τriτ), τ in the upper half-

plane ί), and D an integer depending only on (g, h)) such that the follow

ing hold:

(1.1) f(g,h;τ)=f(gx,h*;τ), xeG

(1.2) F o r e a c h TeΓ = SL2(Z) we h a v e

f(g, h;τ)\J = (constant)/^, h)ϊ; τ)

where k = \ dim Cv((g, h)). Here the left-side is the usual slash operator

on modular forms of weight k and on the right we have

(

\c d

(1.3) For each g e G and n e N the map

h i > an(g, h)

is a virtual character of CG(g).

We call an assignment (g, h) »-> f(g9 h; τ) satisfying (Ll)-(1.3) an elliptic

system for G, and the purpose of this paper is to study in detail the

Received March 20, 1989.
* Research supported by the National Science Foundation and the S.E.R.C. of Great

Britain.

177
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elliptic system for Λf24 corresponding to its usual permutation representa-

tion on 24 letters. We will see that this system has remarkable multi-

plicative properties.

The definition of f(g,h;τ) in [6] is quite complicated and will not

be repeated here, but in certain cases it can be written as a "Frame

shape." For this purpose we make the following definition:

(1.4) The commuting pair (g, h) is called rational if h acts rationally on

each of the g-eigenspaces of V®QC.

If (g, h) is a rational pair and g has order r then on the exp (2π ji/r)-

eigenspace of g on V®QC, h has a Frame shape, say

m\s

where s = order of h. Then we have

(1.5) f{g, Λ; r) = Π Π Π ύm,τld) w<»
j\r d\j mj\s

where μ is the Mobius function.

If g = l then (1.5) reduces to /(I, h; τ) = Tlr](m{u)e{-mi) and is precisely

the form ηh(τ) discussed in [4]. Thus (1.5) represents the generalization

of "Frame shape" to rational pairs.

We use the term "primitive" cusp-form as in [3]. The main result

of that paper is that the primitive cusp-forms of the type

(1.6) p(τ) = Π ηik^ , 1 < k, < k2 < , et > 0

are precisely those for which the corresponding partition (k\\ , ke

s

s) is

a "balanced" partition of 24. In other words, we have

(1.7) ( i ) Σ * Λ = 24

(ii) h\ku * > 1

(iii) If N = kxks, then N = kA+i-u i > 1,

(iv) et = ββ+1_€, i > 1.

We call the integer N in (iίi) the balancing number of the partition.

Now each h e Mu has a balanced Frame shape, so that each ηh(τ) is

a primitive cusp-form of the preceding type. Moreover, of the 28 cusp-

forms in [3] which satisfy (1.6) and (1.7), 22 appear as ηh{τ) for h e M2i.

One of the main results of the present paper is to extend these observa-
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tions to the contex of our elliptic system, and to explain how every form

satisfying (1.6) and (1.7) appears. To state these results we need some

notation.

Ng = balancing number of g e Mu.

For a pair (g, h) of commuting elements we set

and for an abelian subgroup A < M2i with at most 2 generators we set

NΛ = min {N{gιh) | <g, h) = A}.

Finally, let m(g, h; τ) = f(g, h; Ngτ), We will establish the following:

I. To each A < M24 is attached a primitive cusp-form pA(τ) = p(τ)

satisfying (1.6) and (1.7) and the following:

(a) If (g, h) == A then m(g, h, τ) = p(τ), if and only if, N{gth) = iV̂ .

(b) p(τ) is a primitive cusp-form of level NA and integral weight

^ = i dim CF(A) for some Dirichlet character ε̂  (mod NA) which is trivial

if, and only if, kA is even.

(c) If (g, K) = A then /n(^, Λ; τ) can be derived from p(τ) by applying

a succession of operators of the form \kTQ-x and \kWN where TQ~X =

(1 O"^ /0 —1\

Λ i )» ^v = I Λ7 A ) ^ n d Q, iV are suitably chosen integers.

(d) If p(τ) = Σw=i α«^w then there is a root of unity λ such that

m(g, h; τ) = 2Γ=i bnq
n where either bn = 0 or 6n = /iw"1α,ι.

(e) The majority of the forms m(g, h; t) have multiplicative coeffici-

ents, in particular this is true of each rational pair (g, h).

II. Because of (1.3) the forms m(g, h; τ) for fixed g form a Thompson

series for CM2i(g) which we may write either as J^n>ι ls

nq
n for ls

n e RC(g),

If, being the coefficient of qn in m(g, h; τ), or as a formal Dirichlet series

UC(g)98)= Σ-J.

(a) If we take g = 1 the series L(M2i, s) has an Euler product which

is exactly that discussed in [4].

(b) Similarly, several other of the L-series L(C(g), s) also have

Euler products (e.g., if g is an involution, because of I{e)). They exhibit

a "ramified" behavior at the primes dividing the order of g. For example,

if g is of type 2A (Frame shape 1828) then C - C(g) ^ 21+8. L3(2) and we

have
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UC.) - π (1 - 4 + 4)"(i +
poάd \ ps p2s / \ 2

Here, T — — Xξ is the character of C of degree 8 realized on the (—1)-

eigenspace of g on V and S is the permutation character of C on the 8

order orbits of g of length 2. Moreover, on the (+l)-eigenspace of g on

V the action of C/{g} = C induces an embedding C < SO(15, R) and then

fp is determined via pψs

p = β°p where β°p is the oriented Bott cannibalistic

class of SO(lβ, R) of degree p\ restricted to C and lifted to C. (See [5]

for a (general) discussion of this particular virtual character in the

present context.)

(c) In general, g acts on the virtual module affording Xg

p as a scalar.

Thus we may think of Xξ, as affording a projectίve character of C=CI(g},

which we write as Xξ. Then in every case the projectivized Dirichlet

series has an Euler product, i.e.,

^ _ ys / ys

L(C,s) = Σ Λ = Π (1 - ^-

where again ψg

p is of Bott type arising from the induced embedding C <

SO(Cv(g)).

(d) After (c) we may combine the Euler products together to obtain

a bundle version. For the Xs

n and ψ^ for fixed n> p and g ranging over

G = Mu define a virtual projective G-bundle over G, where by a projective

G-bundle over G we mean that for each g e G we have a projective space

Pg and conjugation by x induces a linear isometry l(x): Pg-+Pxgx-i

satisfying l(x) = id. on Px and l(xy) = l{x) ° l{y). If we write Cn, Bp for

the virtual projective bundles corresponding to {Xξ], {ψ g

p} respectively then

we have

) " 1 ,
2s Ip 2 s p2

an Euler product with coefficients in the Grothendieck ring KPG(G) of

such bundles. As in [4], this latter equality may be formulated in terms

of the existence of a certain formal group with coefficients in KPG{G).

III. All but 2 of the 28 forms satisfying (1.6) and (1.7) appear as

PA{^) fc>r some A. Moreover the remaining 2 appear in the elliptic system

attached to O, or even to its maximal 2-local 21Z M24.

The paper is arranged as follows: in section 2 we describe all 2-

generator abelian subgroups of Mu and study their action on the 24 letters.
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In section 3 we list the forms m(g,h;τ) and study their g-expansions,

and in particular give the proofs of the preceding assertions.

Thanks are due to A.O.L. Atkin for providing some numerical data

and thereby influencing my ideas about the forms m(g,h;τ), to S. P.

Norton for correspondence which convinced me of the usefulness of

introducing protective characters (though its utility is admittedly not quite

evident in the foregoing), and to P. Landweber for supplying a list of

errata in an earlier version.

§2. Hypothesis "Even"

Let G be a finite group with p an even-dimensional representation of

G by real unimodular matrices

(2.1) P: G >SL(2d,R).

In the following we shall frequently abuse notation by omitting p and

thereby identifying p(g) with g. We let V be the 2?G-module affording

the representation p, and for a subgroup H< G we set VH = {ve V\h.v

= υ for all h e H}.

LEMMA 2.1. If H is either cyclic or abelian of odd order then VH has

even dimension.

Proof. As V affords a real representation of G, the non-real irre-

ducible constituents of the action of H on V = V®RC occur in conjugate

pairs. Thus if U is the sum of such constituents and W the sum of the

real constituents then V — U Θ W and each of U, W is of even dimension.

If IHI is odd then W is a trivial if-module, so W = VH and we are

done in this case. If H is cyclic then a generator h of H has only the

eigenvalues ± 1 on W and W = V φ V_! where V.λ is the —1 eigenspace

of h on V. Since det h = 1 we have dim F_x even, so also dim VH is

even as required.

LEMMA 2.2. Suppose that codim V<x> = 0 (mod 4) for each involution

xeG. Then dim VH is even for each H — Z2 X Z2.

Proof. If %i and the involutions of H, 1 < i < 3, we have the fixed-

point formula

dim V = dim VH + £ dim (V<XJ VH).
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The result follows from this.

The following situation is relevant.

HYPOTHESIS EVEN, p is as in (2.1) and we have

(2.2) dim VH is even for each ^-generator abelian subgroup H < G.

LEMMA 2.3. Hypothesis Even is equivalent to the following condition:

(2.3) CG(h) c= SL(V<h>) for each 2-element h. This means that CG(h) acts

on V<h> as a group of unimodular matrices.

Proof. Suppose that (2.3) holds. If H = (h, k) is abelian with h a

2-element then dim V<x> is even by Lemma 2.1 and H c= SL(V<X>) by

hypothesis. Now apply Lemma 2.1 to the action k on V<x> to see that

(V<x>)<]c> = VH has even dimension.

This shows that (2.2) holds at least for abelian 2-groups with at most

2 generators. For an arbitrary such abelian group H we may write H =

T X K where T is a 2-Sylow of H. Then Vτ is even-dimensional and

affords a real representation of K, whence VH = (V τ)κ is even dimensional

by the argument of Lemma 2.1.

The proof that (2.2) implies (2.3) is left to the reader.

We turn now to the application of these ideas to Mu. Specifically

we take

(2.4) p: Mu > SL(24, R)

to be the usual permutation representation of M24 on 24 letters.

PROPOSITION 2.4. If p is as in (2.4) then Hypothesis Even is satisfied.

Proof We will need a few properties of Λf24 which can be found in

[1] or [2], for example. First, the involutions are of shape 1828 or 212.

They therefore satisfy the hypothesis of Lemma 2.2, so that result tells

us that dim VH is even for H = Z2 X Z2.

Now these involutions have centralizers of shape 21+6 L3(2) and2 6 2τ

5,

respectively, so in each case if x is an involution with centralizer C then

C is generated by its involutions. Also, by the first paragraph we see

that involutions of C lie in SL(V<X>), so in fact C c: SO(V<X>).

Let now h be any 2-element with centralizer C. If x e C is an invo-

lution then he C(x), so <x, K) c: SL(V<X>) by the last paragraph, so V<af>ft>

has even dimension by Lemma 2.1, so xeSL(V<x>). Now as in the last
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paragraph we get Q <= SL(V<X>) where Q is generated by </ι> together

with the involutions of C.

If h has order 8 then C(h) ^ Z2 X Z8 so that d = C c SL( F<a;>). If Λ

has order 4 then /ι is conjugate to one of 4A ~ 2444, 4 J B ~ 1 4 2 2 4 4 or

4 C ~ 46. The first and third of these satisfy C(h) = ( Z 4 * D 8 * A ) ^ 3 resp.

Z4 X 2\ and hence CΊ == C in these cases.

From these reductions together with Lemma 2.3 we see that if the

proposition is false, with dim VH odd for a suitable if, then in fact H ^

Z4 X Z4 and H contains only elements of order 4 which are of type 4B.

But here we compute directly that

dim VH = 1/16(24 + 3.8 + 12.4) = 6 .

(Here we used dim VH = (X\H, 1H}H where X is the character afforded by p

and satisfying X(g) = # of letter s fixed by g.) The proposition is proved.

We wish now to give all 2-generator abelain subgroups of Mu—not

up to conjugacy necessarily, but by listing the number of elements of

each cycle shape that they contain. Table 1 names the elements (cycle

shapes) following [2]; table 2 names the non-cyclic 2-generator abelian

subgroups together with the elements they contain.

Table 1

Elt.

1A

2A

2B

3A

3B

4A

4B

4C

5A

6A

6B

Shape

I24

Γ 28

212

Γ 36

33

24 44

Γ 22 44

46

Γ 54

Γ 22 32 62

64

Elt.

7A

8A

10A

11A

12A

12B

14A

15A

21A

23A

Shape

Γ 73

12 2 4 8Z

22 102

12 112

2 4 6 12

122

1 2 7 14

1 3 5 15

3-21

1-23
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Table 2 I. X Z2

II. x

III. Z4 x Z4

IV. Z 2 χ Z 8

Name

A

B

C

D

#Elts

2A

3

0

2

1

2B

0

3

1

2

A

B

C

D

E

F

2A

3

2

1

1

3

1

2B

0

1

2

2

0

2

4A

4

2

4

0

0

0

4B

0

2

0

0

4

4

4C

0

0

0

4

0

0

A

B

C

2A

1

3

3

2B

2

0

0

4A

4

8

0

4B

0

4

12

4C

8

0

0

A

2A

1

2B

2

4A

0

4B

4

4C

0

8A

8

V. Z2χZe

A

B

2A

3

0

2B

0

3

3A

2

0

3B

0

2

6A

6

0

6B

0

6
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VI. Z2χZί0

185

A

2A

0

2B

3

5A

4

10A

12

VII. ZsχZ3

A

B

3A

8

2

3B

0

6

As to the correctness of the tables, IV-VIII are readily deduced

from the relevant information in [2], so that only I—III need be considered

further. Let us therefore take H<MU with H ^ Z2a X Z2δ, 1 < a < b < 2,

and first show that H is necessarily one of the types in I—III. The con-

dition imposed by Proposition 2.4 is sufficient to show that only one

possibility not listed might occur, namely a = b = 2 with H containing

2 2A, 1 2B, 2 4A, 6 4B and 4 4C.

To eliminate this, take x e Mu of type 4C with F = C(x). Then

F = Z4 X ΣA, so that certainly there is only one type of Z4 X Z4 contain-

ing x. We assert that F is transitive on the 24 letters. If not then F

has two orbits, each of length 12, and if X is one of them then a point-

stabilizer in F is D ^ D9. Let Do = D Π O2(F) ^ Z2 X Z2. Clearly each

involution of Do is of type 2A, and if they are the only such involutions

in O2(F) then Do <\ F and Do fixes each letter in X This being impossible,

O2(F) must contain 6 involutions of type 2A and 1 of type 2B. As all

elements of order 4 in O2(F) have square equal to x2 they are of type 46.

Now we see that O2(F) has 1/16(24 + 6.8) = 4 | orbits, an absurdity. So

indeed F is transitive.

Let Fo be a point stabilizer in F, a group of order 4. We must show

that Fo ^ Z2 X Z2. Indeed if Z3 ^ R < F then iV = N(R) ^ΣZX L2(7) and

x e O"(ΛΓ). Then an involution t e O^N) lies in F\O2(F) and is of type

2A as it centralizes an element of order 7 in N. Thus we may take

t e F0\F, whence Fo = Z2 X Z2 as required.

As explained above, it is now sufficient to show that each of the

types listed in I—III above actually occur in Mu. First, type Z4 X
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exists by the foregoing argument. Also, the stabilizer of 3 points in M2i

is Mu = I/3(4) and contains a Z4 X Z4 necessarily of type C.

Consider next the centralizer B — C(f) of an element of type 4A.

We have B = (Z 4* Z)8* D8)-Σs, and the 8 fixed letters of p and their

complement are the 2 orbits of B. So a point-stabilizer of the longer

orbit (in B) is isomorphic to Σ± and hence contains an element g of type

4B. So </, g) must be of type Z4 X Z,B.

As for Z2 X Z4 subgroups, type C and D can be found in a Z4 X ZAAy

type E in Z4 X Z4C, and type 4 in Z4 X Z4£. A Z2 X Z 4F lies in Z2 X Z8A,

so only Z2 X Z4i3 remains to be accounted for. But from the structure of

B = C(f) in the last paragraph we see that if y is an involution in

B\O2(B) then Z2 X Z4 ^ </, y) and is not contained in a Z4 X Z4 or Z2 X Z8

subgroup. Thus from the preceding </, y} must be of type Z2 X Zβ as

required. We leave verification of table 21 to the reader.

Finally we remark that because of Proposition 2.4, each of the

forms f(g,h;τ) (or m(g,h;τ)) attached to M24 has integral weight 1/2

dim CF«£, Λ».

§ 3. The associated forms

We begin by listing the forms m(g, h; τ) = f(g, h; Ngτ) as discussed

in section 1. To make the computations one uses tables 1 and 2 of sec-

tion 2 in order to compute the characteristic polynomial of h on each

g-eigenspace. If (g, h) is a rational pair then (1.5) yields f(g,h;τ), and

in any case one can use the original definition [6, equation (3.7)]. One

can also make use of Lemmas 3.1 and 3.2 below. We remark that in [6,

equation (3.7)] the form f(g, h τ) is seen to have the shape qd Σln>o^nQn

for a certain rational number d [6, equation (3.3)], but one readily verifies

that d = ljNg in the present situation, so that m{g, h; τ) = q +

One caveat to the foregoing is that only for those pairs (g, h) which

are rational do we explicitly record m(g,h;τ), as a Frame shape. More-

over we do not repeat mil, h; τ), which is given in Table 1 of section 2;

and of the pairs (g, h), (h, g) we often list only one (cf. Lemma 3.1).
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Table 3

187

<g,hy

Zd<ι X Zι<ιA

Zz x Z2B

Δd<l X ί^2 ^

Zτ x ZtD

JU<1 X Zi^A.

£> X Z2B

Z2 X Zfi

Z2 x Z4D

Z2 x Z 4£

Z2 X Z 4F

Z, x ZΛ

(g,h)

(2A, 2A)

(2B, 2B)

(2A, 2A)

(2A, 2B)

(2B, 2A)

(2B, 2A)

(2B, 2B)

(4A, 2A)

(4A, 4A)

(2A, 4B)

(2A, 4A)

(2B, 2B)

(2B, 4A)

(4B, 4B)

(4A, 2B)

(4A, 4A)

(4C, 2A)

(4C, 2B)

(4C, 4C)

(4B, 2A)

(4B, 4B)

(4B, 2B)

(4B, 4B)

(4C, 4A)

(4C, 4C)

m(g, h; τ)

2n

46

14 22 44

2W/1 4

414/84

2444

4'72484

4e

8"/46 166

12 2 4 82

2'8712 4

22874 162

458722 162

irrational

42 82

8742 162

42 82

8742162

irrational

24 44

4'724 84

4 β

4 e

8-16

1678-32

N = NgNh

4

16

4

8

8

8

16

16

64

8

16

16

32

32

32

64

32

64

256

8

16

16

16

128

256

multiplicative

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

no

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes
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Zt X ZtB

Z, X Z<C

Z, X Z8A

Z.2 X Z6A

Z2 x ZeB

Δ<ι X Zi\^Ά.

Z% X Z 3 A

Z, x Z3B

Z2A

£ 2 £

Z%A

ZtB

ZJL

Zβ

Z<C

(g,h)

(4A, 4B)

(4A, 4A)

(4B, 4B)

(8A, 2B)

(8A, 4J5)

(8A, 8A)

(6A, 2A)

(6A, 6A)

(6B, 2£)

(6B, 6B)

(10A, 2B)

(10A, 20A)

(3A, 3A)

(3B, 3A)

(3B, 3J5)

(2A, 2A)

(2B, 2B)

(3A, 3A)

(3£, 3£)

(4A, 2A)

(4A, 4A)

(2A, 45)

(4B, 2A)

(4B, 4B)

{AC, 2B)

(AC, AC)

m(g, h; τ)

42 82

88/42 162

46

42 82

42 82

82/42 162

23 63

irrational

122

irrational

4-20

irrational

38

32 92

irrational

2S2/Γ 48

4 3 6 /2 1 2 8 1 2

irrational

irrational

4lβ/24 84

irrational

4u/84

214/14

irrational

8»/4β 166

irrational

N=NgNh

32

64

16

32

32

64

12

36

144

1269

80

400

9

27

81

4

16

9

81

16

64

o

8

16

64

256

multiplicative

yes

yes

yes

yes

yes

yes

yes

no

yes

yes

yes

no

yes

yes

yes

yes

yes

no

yes

yes

no

yes

yes

no

yes

yes
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Z,A

ZΛ

Z6B

Z7A

ZΛ

ZUA

ZnA

ZnA

(g,h)

(5A, 5A)

(3A, 2A)

(6A, 2A)

(6A, 3A)

(6A, 6A)

(3S, 2B)

(6B, 2S)

(6B, 3JB)

(6B, 6B)

(7A, 7A)

(8A, 2A)

(2A, 8A)

(8A, 4A)

(8A, 8A)

(5A, 2B)

(10A, 25)

(10A, 5A)

(10A, 10A)

(10A, 10A)

(4A, 3A)

(4A, 6A)

(12A, 2A)

(12A, 4A)

(12A, 3A)

(12A, 6A)

(12A, 12A)

m(g, h; τ)

irrational

12 22 32 62

28 68/l2 32 42 122

irrational

irrational

64

128/64 244

irrational

irrational

irrational

2282/l2 4

22874 162

irrational

irrational

22 102

4β 206/22 82 102 402

irrational

irrational

irrational

2-4-6-12

44 124/2 6 8 24

41272 6 8-24

irrational

irrational

irrational

irrational

N= NgNk

25

12

12

18

36

34

144

324

1296

49

16

16

64

64

20

40

100

400

121

24

48

48

96

72

144

576

multiplicative

no

yes

yes

no

no

yes

yes

yes

yes

no

yes

yes

no

no

yes

yes

no

no

no

yes

yes

yes

no

no

no

no



190 GEOFFREY MASON

<g,h}

ZnB

ZuA

Z1SA

ZnA

Z23A

(g,h)

(AC, 35)

(AC, 65)

(125, 25)

(12B, AC)

(125, 35)

(125, 65)

(125,125)

(7A, 2A)

(14A, 2A)

(14A, ΊA)

{IAA, IAA)

(δA, 3A)

(15A, 3A)

(15A, δA)

(15A, 15A)

(ΊA, 35)

(21A, 35)

(21 A, ΊA)

(21A, 21A)

(23A, 23A)

m(g,h;τ)

122

246/122 482

24β/122 482

irrational

irrational

irrational

irrational

I .2 .7 . I .4

24 144/1 4.7.28

irrational

irrational

1.3.5Ί5

irrational

irrational

irrational

3-21

irrational

irrational

irrational

irrational

N=NgNh

144

576

576

2304

1296

5184

20736

14

28

98

196

15

45

75

225

63

567

441

3969

529

multiplicative

yes

yes

yes

yes

yes

yes

yes

yes

yes

no

no

yes

no

no

no

yes

yes

no

no

no

We interpolate some easy lemmas.

LEMMA 3.1. Let (g, h) be a commuting pair with N — NgNh and WN —

{N V)- Th™
m(g, h; τ)\k WN ~ m{h'\ g; τ ) .

Proof. We remark that the notation — means that the ratio of the

two functions in question is constant. As for the proof, if S = (, ~~̂  )

then
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m{g, h; τ)\kWN ~ τ-«m(g, h; - 1/Nτ)

~ (NΛr)-"f(g, h; - l/JV,r)

= f(g, h; Nhτ)\tS

-f^fyS-^ N.τ) (by eqn. (1.2))

= m(h'\ g; τ) as required .

A similar argument yields

LEMMA 3.2. Let Q be a divisor of Ng. Then

m(g, h Γ ) \JJ ^ ' ) ~ m(g, g"*'* -h:τ).

Concerning the level of these forms, one easily proves using Lemma

3.2 the following:

LEMMA 3.3. Let Q be a divisor of D, set Π = l.c.m.(ζ)2, D), and as-

sume that m(g,h;τ) is on Γ0(D). Then

(i) mi&gW.h τ) is on Γ,{Π).

(ii) If Q\2A then m{g,gN^ Kτ) is on

One can use Lemmas 3.1 and 3.2 to establish assertion I(c) of sec-

tion 1. We illustrate this with a diagram corresponding to the group

Z2 X Zβ (cf. Tables 2 and 3):

(2A, 4B) <-^-> (4B, 2A)

T
1

(2A, 4A) < Wl* > (4A, 2A)

(2B, 4A) <—^-> (4A, 2B)

As for lid), (e) we use the following:

LEMMA 3.4. Suppose that m(g, h; z) = qΣanq
n~\ that there is an integer

D such that an = 0 unless n = l (modD) and that Q\Ng. Then the fol-

lowing hold:

(i) m(g, g»*'*.h; τ) = qΣbnq
n-1 where bn = exp(2πi(^ - 1)/Q).

(ii) // {an} is multiplicative then {bn} is also multiplicative if D\Q,

say Q = mD, and either

(a) m\D, or
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(b) m = 2, D odd.

Part (i) follows from Lemma 3.2, and (ii) is left to the reader.
One starts with the primitive form pA(τ) = p(τ), which has multiplica-

tive coefficients, and then applies Lemma 3.4 with D being the minimal
integer which occurs with non-zero exponent in the Frame shape corre-
sponding to p(τ). Again, successive applications of this principle together
with the action of WN yields what we need, including the third column
of Table 3.

One can also easily write down the Euler p-f actors of qΣbnq
n~ι from

those of qΣanq
n~\ Specifically, if the p-f actor of the latter is

then that of the former in case (ii) (a) of Lemma 3.4 is

(σ = exp2τri(p —

in case (ii) (b) the odd p-factors remain the same while the 2-factor
becomes

(i - ilVYi -
a

(in this case we always have c2 = 0). Again we illustrate with the group
Z2 X Z<B:

(2A.4B):

(2A, 4A): Π ί1 - —- + -^VY1 - — )

(2B.4B): Π ( l _-?2-+ -
V<ΛΛ \ ps p

(2B, 4A): J J w (l - -%. + -%-) JJ^ (l + -%- + -%-)"X

(4B.4A): Σ'

All of the assertions in of section 1 can be deduced in a like man-
ner from these assertions. Concerning III, the two "missing" primitive
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forms not listed in Table 3 but satisfying (1.16) and (1.7) correspond to

the Frame shapes 2-22 and 6-18. Now in the maximal 2-local 212 M24 of

O there is an element with Frame shape 2-22 in its action on the Leech

lattice. Also we find commuting elements with Frame shape 23 63 and

38, and a quick calculation yields that the corresponding form m(g,h;τ)

REFERENCES

[ 1 ] J. Conway, Three lectures on exceptional groups, in Finite Simple Groups, Powell-
Higman, eds., Academic Press, London, 1971.

[ 2 ] J. Conway et al., Atlas of simple groups, C.U.P., 1983.
[ 3 ] M. Koike, On McKay's Conjecture, Nagoya Math. J., 95 (1984), 85-89.
[ 4 ] G. Mason, M24 and certain automorphic forms, in Contemp. Math. vol. 45, A.M.S.,

Providence, R.I. (1985), 223-244.
[ 5 ] G. Mason, Finite groups and Hecke operators, Math. Ann., 283 (1989), 381-409.
[ 6 ] , Elliptic system and the eta-function, to appear in Notas d. 1. Soc. d. Mate-

matica d. Chile, 1990.

Department of Mathematics
U. C. Santa Cruz
Santa Cruz, CA 95064
U.S.A.






