G. Mason Nagoya Math. J. Vol. 118 (1990), 177-193

ON A SYSTEM OF ELLIPTIC MODULAR FORMS ATTACHED TO THE LARGE MATHIEU GROUP

GEOFFREY MASON

§ 1. Introduction and statement of results

This paper is a continuation of two previous papers of the author. In the first [4] we discussed a Thompson series associated with the group M_{24} in which each of the modular forms $\eta_g(\tau)$ attached to elements $g \in M_{24}$ are primitive cusp-forms. In the second [5] we showed how, given a rational G-module *V* for an arbitrary finite group G, it is possible to attach to each pair of commuting elements (g, h) in G a certain g -expansion $f(g, h; \tau) = \sum_{n \geq 1} a_n(g, h) q^{n/D}$ (for $q = \exp(2\pi i \tau)$, τ in the upper halfplane ί), and *D* an integer depending only on *(g, h))* such that the follow ing hold:

(1.1)
$$
f(g, h; \tau) = f(g^x, h^x; \tau), \quad x \in G
$$

(1.2) For each $\gamma \in \Gamma = SL_2(\mathbb{Z})$ we have

$$
f(g, h; \tau)|_{k} \gamma = (\text{constant}) f((g, h)\gamma; \tau)
$$

where $k = \frac{1}{2} \dim C_v(\langle g, h \rangle)$. Here the left-side is the usual slash operator on modular forms of weight *k* and on the right we have

$$
(g, h)\gamma = (g^a h^c, g^b h^d) \quad \text{for } \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}
$$

(1.3) For each $g \in G$ and $n \in N$ the map

$$
h\longmapsto a_{\scriptscriptstyle n}(g,\,h)
$$

h i *> aⁿ*

 W_0 call on escienment (*g*, *b* We call an assignment (g, h) \rightarrow $f(g, h)$, t *f* satisfying (Let) (1.5) an empty *system* for G, and the purpose of this paper is to study in detail the

Received March 20, 1989.

^{*} Research supported by the National Science Foundation and the S.E.R.C. of Great Britain.

elliptic system for M_{24} corresponding to its usual permutation representation tion on 24 letters. We will see that this system has remarkable multi plicative properties.

The definition of $f(g, h; \tau)$ in [6] is quite complicated and will not be repeated here, but in certain cases it can be written as a "Frame shape." For this purpose we make the following definition:

(1.4) The commuting pair *(g, h)* is called *rational* if *h* acts rationally on each of the g-eigenspaces of $V \otimes_{Q} C$.

If (g, h) is a rational pair and g has order r then on the $\exp\left(2\pi i/r\right)$ eigenspace of g on $V \otimes_{\mathfrak{g}} C$, h has a Frame shape, say

$$
\prod_{m \mid s}^{n} m_j^{e(m_j)}
$$

where $s =$ order of h . Then we have

(1.5)
$$
f(g, h; \tau) = \prod_{j|r} \prod_{d|j} \prod_{m_j|s} \eta(m_j \tau/d)^{e(mj)\mu(\tau/d)}
$$

where μ is the Möbius function.

If $g = 1$ then (1.5) reduces to $f(1, h; \tau) = \prod_{i} \eta(m_i \tau)^{e(m_i)}$ and is precisely the form $\eta_h(\tau)$ discussed in [4]. Thus (1.5) represents the generalization of "Frame shape" to rational pairs.

We use the term "primitive" cusp-form as in [3]. The main result of that paper is that the primitive cusp-forms of the type

(1.6)
$$
p(\tau) = \prod_{i=1}^{s} \eta(k_i \tau)^{e_i}, \qquad 1 \leq k_1 < k_2 < \cdots, e_i > 0
$$

are precisely those for which the corresponding partition $(k_1^{e_1}, \dots, k_s^{e_s})$ is a "balanced" partition of 24. In other words, we have

(1.7) (i)
$$
\sum k_i e_i = 24
$$

\n(ii) $k_1 | k_i$, $i \ge 1$
\n(iii) If $N = k_i k_s$, then $N = k_i k_{s+1-i}$, $i \ge 1$,
\n(iv) $e_i = e_{s+1-i}$, $i \ge 1$.

We call the integer *N* in (iίi) the *balancing number* of the partition.

Now each *h e M^u* has a balanced Frame shape, so that each *η^h (τ)* is a primitive cusp-form of the preceding type. Moreover, of the 28 cusp forms in [3] which satisfy (1.6) and (1.7), 22 appear as $\eta_h(\tau)$ for $h \in M_{24}$. One of the main results of the present paper is to extend these observa

tions to the contex of our elliptic system, and to explain how *every* form satisfying (1.6) and (1.7) appears. To state these results we need some notation.

$$
N_g = \text{balancing number of } g \in M_{24}.
$$

For a pair *(g, h)* of commuting elements we set

$$
N_{(g,h)}=N_gN_h,
$$

and for an abelian subgroup $A \leq M_{24}$ with at most 2 generators we set

$$
N_{\scriptscriptstyle{A}} = \min\left\{N_{\scriptscriptstyle(g, h)}|\left\langle g, h\right\rangle = A\right\}.
$$

Finally, let $m(g, h; \tau) = f(g, h; N_g \tau)$, We will establish the following:

I. To each $A \leq M_{24}$ is attached a primitive cusp-form $p_A(\tau) = p(\tau)$ satisfying (1.6) and (1.7) and the following:

(a) If $\langle g, h \rangle = A$ then $m(g, h, \tau) = p(\tau)$, if and only if, $N_{(g, h)} = N_A$.

(b) $p(\tau)$ is a primitive cusp-form of level N_A and integral weight $k_A = \frac{1}{2}$ dim $C_r(A)$ for some Dirichlet character ε_A (mod N_A) which is trivial if, and only if, k_A is even.

(c) If $\langle g, h \rangle = A$ then $m(g, h; \tau)$ can be derived from $p(\tau)$ by applying a succession of operators of the form $\vert_k T_{q^{-1}}$ and $\vert_k W_{N}$ where $T_{q^{-1}} =$ $\begin{pmatrix} 1 & Q^{-1}\ 0 & 1\end{pmatrix}\hspace{-0.5mm}, \,\, W_{\scriptscriptstyle N} = \begin{pmatrix} 0 & -1\ N & 0\end{pmatrix}$

(d) If $p(\tau) = \sum_{n=1}^{\infty} a_n q^n$ then there is a root of unity λ su $(h; \tau) = \sum_{n=1}^{\infty} b_n q^n$ where either $b_n = 0$ or $b_n = \lambda^{n-1} a_n$.

(e) The majority of the forms $m(g, h; t)$ have multip ents, in particular this is true of each rational pair (g, h) .

II. Because of (1.3) the forms $m(g, h; \tau)$ for fixed g form a Thompson series for $C_{M_{24}}(g)$ which we may write either as $\sum_{n\geq 1} \chi_n^g q^n$ for $\chi_n^g \in RC(g)$, $\chi_{n}^{\mathbf{g}}$ being the coefficient of q^{n} in $m(g, h; \tau)$, or as a formal Dirichlet series

$$
L(C(g), s) = \sum_{n=1}^{\infty} \frac{\chi_n^g}{n^s}.
$$

(a) If we take $g = 1$ the series $L(M_{2i}, s)$ has an Euler product which is exactly that discussed in [4].

(b) Similarly, several other of the L-series *L(C(g), s)* also have Euler products (e.g., if g is an involution, because of $I(e)$). They exhibit a "ramified" behavior at the primes dividing the order of *g.* For example, if *g* is of type 2A (Frame shape 1⁸²⁸) then $C = C(g) \cong 2^{1+8}$. L₃(2) and we have

180 GEOFFREY MASON

$$
L(C,s)=\prod_{p \text{ odd}} \Big(1-\frac{\chi_p^s}{p^s}+\frac{\psi_p^s}{p^{2s}}\Big)^{-1}\Big(1+\frac{S}{2^s}\Big)^{-1}\Big(1+\frac{S-T}{2^s}\Big)\,.
$$

Here, $T = -\chi_{2}^{g}$ is the character of *C* of degree 8 realized on the (-1) eigenspace of g on V and S is the permutation character of C on the 8 order orbits of g of length 2. Moreover, on the $(+1)$ -eigenspace of g on *V* the action of $C/\langle g \rangle = \overline{C}$ induces an embedding $\overline{C} \leq SO(15, R)$ and then ψ_p is determined via $p\psi_p^{\mathsf{g}} = \beta_p^{\text{or}}$ where β_p^{or} is the oriented Bott cannibalistic class of SO(16, R) of degree p^s , restricted to \overline{C} and lifted to C. (See [5] for a (general) discussion of this particular virtual character in the present context.)

(c) In general, g acts on the virtual module affording χ_p^g as a scalar. Thus we may think of χ_n^g as affording a *projective* character of $\overline{C}=C/\langle g \rangle$, which we write as *Xξ.* Then in *every case* the projectivized Dirichlet series has an Euler product, i.e.,

$$
\hat{L}(\overline{C}, s) = \sum_{n \geq 1} \frac{\hat{\chi}_n^g}{n^s} = \prod_p \left(1 - \frac{\hat{\chi}_p^g}{p} + \frac{\hat{\psi}_p^g}{p^{2s}}\right)^{-1}
$$

where again $\hat{\psi}_p^{\text{g}}$ is of Bott type arising from the induced embedding $\overline{C} \leq$ *SO(C^v (g)).*

(d) After (c) we may combine the Euler products together to obtain a bundle version. For the $\hat{\chi}_{n}^{\mathbf{g}}$ and $\tilde{\psi}_{p}^{\mathbf{g}}$ for fixed *n*, *p* and *g* ranging over $G = M_{24}$ define a *virtual projective G-bundle over G*, where by a projective G-bundle over G we mean that for each $g \in G$ we have a projective space P_g and conjugation by *x* induces a linear isometry $l(x)$: $P_g \rightarrow P_{xgx^{-1}}$ satisfying $l(x) = id$, on P_x and $l(xy) = l(x) \circ l(y)$. If we write C_x , B_y for the virtual projective bundles corresponding to $\{\hat{\ell}_n^g\}$, $\{\hat{\psi}_p^g\}$ respectively then we have

$$
\textstyle \sum\limits_{n\geq 1}\frac{C_n}{n^s}=\textstyle \prod\limits_{p}\left(1-\frac{C_p}{p^{2s}}+\frac{B_p}{p^{2s}}\right)^{-1},
$$

an Euler product with coefficients in the Grothendieck ring $KP_\sigma(G)$ of such bundles. As in [4], this latter equality may be formulated in terms of the existence of a certain formal group with coefficients in $KP_G(G)$.

III. All but 2 of the 28 forms satisfying (1.6) and (1.7) appear as $p_A(\tau)$ for some A. Moreover the remaining 2 appear in the elliptic system attached to O, or even to its maximal 2-local $2^{12} \cdot M_{24}$.

The paper is arranged as follows: in section 2 we describe all 2 generator abelian subgroups of $M_{\scriptscriptstyle 24}$ and study their action on the 24 letters.

In section 3 we list the forms $m(g, h; \tau)$ and study their q-expansions, and in particular give the proofs of the preceding assertions.

Thanks are due to A.O.L. Atkin for providing some numerical data and thereby influencing my ideas about the forms $m(g, h; \tau)$, to S.P. Norton for correspondence which convinced me of the usefulness of introducing projective characters (though its utility is admittedly not quite evident in the foregoing), and to P. Landweber for supplying a list of errata in an earlier version.

§2. Hypothesis "Even"

Let *G* be a finite group with ρ an even-dimensional representation of *G* by real unimodular matrices

$$
\rho\colon G\longrightarrow SL(2d,\,R)\,.
$$

In the following we shall frequently abuse notation by omitting *p* and thereby identifying $\rho(g)$ with g. We let V be the RG-module affording the representation ρ , and for a subgroup $H \leq G$ we set $V_H = \{v \in V \mid h.v\}$ $= v$ for all $h \in H$.

LEMMA 2.1. If H is either cyclic or abelian of odd order then V_H has *even dimension.*

Proof. As *V* affords a real representation of G, the non-real irre ducible constituents of the action of *H* on $\overline{V} = V \otimes_R C$ occur in conjugate pairs. Thus if \overline{U} is the sum of such constituents and \overline{W} the sum of the real constituents then $\overline{V} = \overline{U} \oplus \overline{W}$ and each of \overline{U} , \overline{W} is of even dimension.

If $|H|$ is odd then \overline{W} is a trivial H-module, so $\overline{W} = \overline{V}_H$ and we are done in this case. If *H* is cyclic then a generator *h* of *H* has only the eigenvalues ± 1 on \overline{W} and $\overline{W} = \overline{V} \oplus \overline{V}_{-1}$ where V_{-1} is the -1 eigenspace of *h* on *V*. Since det $h = 1$ we have dim V_{-1} even, so also dim V_H is even as required.

LEMMA 2.2. Suppose that codim $V_{\langle x \rangle} \equiv 0 \pmod{4}$ for each involution $x \in G$. Then dim V_H is even for each $H \cong Z_2 \times Z_2$.

Proof. If x_i and the involutions of H , $1 \leq i \leq 3$, we have the fixedpoint formula

$$
\dim V = \dim V_H + \sum_{i=1}^3 \dim (V_{\langle x_i \rangle}/V_H).
$$

The result follows from this.

The following situation is relevant.

HYPOTHESIS EVEN. ρ is as in (2.1) and we have (2.2) dim V_H is even for each 2-generator abelian subgroup $H \leq G$.

LEMMA 2.3. *Hypothesis Even is equivalent to the following condition:* $(C(2.3)$ $C_{\mathcal{G}}(h) \subseteq \mathrm{SL}(V_{\langle h \rangle})$ for each 2-element h. This means that $C_{\mathcal{G}}(h)$ acts on $V_{\langle h \rangle}$ as a group of unimodular matrices.

Proof. Suppose that (2.3) holds. If $H = \langle h, k \rangle$ is abelian with h a 2-element then dim $V_{\langle x \rangle}$ is even by Lemma 2.1 and $H \subseteq SL(V_{\langle x \rangle})$ by hypothesis. Now apply Lemma 2.1 to the action *k* on $V_{\langle x \rangle}$ to see that $(V_{\langle x \rangle})_{\langle k \rangle} = V_H$ has even dimension.

This shows that (2.2) holds at least for abelian 2-groups with at most 2 generators. For an arbitrary such abelian group *H* we may write *H =* $T \times K$ where *T* is a 2-Sylow of *H*. Then V_T is even-dimensional and affords a real representation of K , whence $V_H = (V_{\scriptscriptstyle T})_{\scriptscriptstyle K}$ is even dimensional by the argument of Lemma 2.1.

The proof that (2.2) implies (2.3) is left to the reader.

We turn now to the application of these ideas to M_{24} . *.* Specifically we take

$$
\rho\colon M_{24} \longrightarrow SL(24,\,R)
$$

to be the usual permutation representation of M_{24} on 24 letters.

PROPOSITION 2.4. If ρ is as in (2.4) then Hypothesis Even is satisfied.

Proof. We will need a few properties of M_{24} which can be found in [1] or [2], for example. First, the involutions are of shape $1^{\circ}2^{\circ}$ or $2^{\circ}2^{\circ}$. They therefore satisfy the hypothesis of Lemma 2.2, so that result tells us that dim V_H is even for $H \cong Z_2 \times Z_2$.

Now these involutions have centralizers of shape $2^{1+6} \cdot L_3(2)$ and $2^6 \cdot \Sigma_5$, respectively, so in each case if *x* is an involution with centralizer *C* then *C* is generated by its involutions. Also, by the first paragraph we see that involutions of C lie in $SL(V_{\langle x \rangle})$, so in fact $C \subseteq SO(V_{\langle x \rangle})$.

Let now *h* be any 2-element with centralizer *C*. If $x \in C$ is an involution then $h \in C(x)$, so $\langle x, h \rangle \subseteq SL(V_{\langle x \rangle})$ by the last paragraph, so $V_{\langle x, h \rangle}$ has even dimension by Lemma 2.1, so $x \in SL(V_{\langle x \rangle})$. Now as in the last

paragraph we get $C_1 \subseteq SL(V_{\langle x \rangle})$ where C_1 is generated by $\langle h \rangle$ together with the involutions of C.

If *h* has order 8 then $C(h) \cong Z_{\scriptscriptstyle 2} \times Z_{\scriptscriptstyle 8}$ so that $C_{\scriptscriptstyle 1} = C \subseteq SL(V_{\scriptscriptstyle \langle x\rangle}).$ If *h* has order 4 then h is conjugate to one of $4A \sim 2^4 4^4$, $4B \sim 1^4 \cdot 2^2 \cdot 4^4$ or $4C \sim 4^{\circ}$. The first and third of these satisfy $C(h) \cong (Z_4 * D_8 * D_8) \cdot \Sigma_3$ resp. $Z_4 \times \overline{Z}_4$ and hence $C_1 = C$ in these cases.

From these reductions together with Lemma 2.3 we see that if the proposition is false, with dim V_H odd for a suitable H , then in fact $H \cong$ $Z_4 \times Z_4$ and H contains only elements of order 4 which are of type $4B$. But here we compute directly that

$$
\dim V_{\scriptscriptstyle H} = 1/16(24 + 3.8 + 12.4) = 6.
$$

(Here we used dim $V_{\scriptscriptstyle H} = \langle \chi | H , 1_{\scriptscriptstyle H} \rangle_{\scriptscriptstyle H}$ where χ is the character afforded by ρ and satisfying $X(g) = \sharp$ of letter s fixed by g.) The proposition is proved.

We wish now to give all 2-generator abelain subgroups of M_{ν} —not up to conjugacy necessarily, but by listing the number of elements of each cycle shape that they contain. Table 1 names the elements (cycle shapes) following [2]; table 2 names the non-cyclic 2-generator abelian subgroups together with the elements they contain.

Table 1

Table 2 I. $Z_2 \times Z_2$

II. $Z_2 \times Z_4$

III. $Z_* \times Z_*$

IV. $Z_{\scriptscriptstyle 2} \times Z_{\scriptscriptstyle 8}$

 $V. Z_{2} \times Z_{6}$

$$
\text{VI.}\quad Z_{\scriptscriptstyle 2} \times Z_{\scriptscriptstyle 10}
$$

VII. $Z_{3} \times Z_{3}$

As to the correctness of the tables, IV-VIII are readily deduced from the relevant information in [2], so that only I—III need be considered further. Let us therefore take $H \leq M_{24}$ with $H \cong Z_{2a} \times Z_{2b}$, $1 \leq a \leq b \leq 2$, and first show that *H* is necessarily one of the types in I—III. The con dition imposed by Proposition 2.4 is sufficient to show that only one possibility not listed might occur, namely $a = b = 2$ with *H* containing 2 2A, 1 2B, 2 4A, 6 4B and 4 4C.

To eliminate this, take $x \in M_{24}$ of type 4C with $F = C(x)$. Then $F \cong Z_4 \times \Sigma_4$, so that certainly there is only one type of $Z_4 \times Z_4$ contain ing *x.* We assert that *F* is transitive on the 24 letters. If not then *F* has two orbits, each of length 12, and if *X* is one of them then a point stabilizer in F is $D \cong D$ ₈. Let $D_0 = D \cap O_2(F) \cong Z_2 \times Z_2$. Clearly each involution of D_0 is of type 2A, and if they are the only such involutions in $O_2(F)$ then $D_0 \le F$ and D_0 fixes each letter in X. This being impossible, $O_2(F)$ must contain 6 involutions of type 2A and 1 of type 2B. As all elements of order 4 in $O_2(F)$ have square equal to x^2 they are of type 4^6 . Now we see that $O_2(F)$ has $1/16(24 + 6.8) = 4\frac{1}{2}$ orbits, an absurdity. So indeed *F* is transitive.

Let $F_{\scriptscriptstyle{0}}$ be a point stabilizer in $F_{\scriptscriptstyle{y}}$ a group of order 4. We must show $\text{that } F_{\scriptscriptstyle{0}} \cong Z_{\scriptscriptstyle{2}} \times Z_{\scriptscriptstyle{2}}.$ Indeed if $Z_{\scriptscriptstyle{3}} \cong R \leq F$ then $N = N(R) \cong \varSigma_{\scriptscriptstyle{3}} \times L_{\scriptscriptstyle{2}}$ (7) and $x \in O^{\infty}(N)$. Then an involution $t \in O_{\infty}(N)$ lies in $F\setminus O_{\scriptscriptstyle 2}(F)$ and is of type 2A as it centralizes an element of order 7 in *N.* Thus we may take $t \in F_{\scriptscriptstyle{0}} \backslash F, \text{ whence } F_{\scriptscriptstyle{0}} \cong Z_{\scriptscriptstyle{2}} \times Z_{\scriptscriptstyle{2}} \text{ as required.}$

As explained above, it is now sufficient to show that each of the types listed in I–III above actually occur in M_{24} . First, type $Z_{\scriptscriptstyle 4}\times$

exists by the foregoing argument. Also, the stabilizer of 3 points in *M2i* is $M_{21} \cong L_3(4)$ and contains a $Z_4 \times Z_4$ necessarily of type C.

Consider next the centralizer $B = C(f)$ of an element of type 4A. We have $B \cong (Z_4 * D_8 * D_8) \cdot \Sigma_3$, and the 8 fixed letters of f^2 and their complement are the 2 orbits of *B.* So a point-stabilizer of the longer orbit (in B) is isomorphic to $\Sigma₄$ and hence contains an element g of type 4B. So $\langle f, g \rangle$ must be of type $Z_4 \times Z_4B$.

As for $Z_i \times Z_i$ subgroups, type C and D can be found in a $Z_i \times Z_i A$, type E in $Z_i \times Z_i$ C, and type A in $Z_i \times Z_i$ B. A $Z_i \times Z_i$ F lies in $Z_i \times Z_s$ A, so only $Z_{\scriptscriptstyle 2} \times Z_{\scriptscriptstyle 4} B$ remains to be accounted for. But from the structure of $B = C(f)$ in the last paragraph we see that if y is an involution in $B\diagdown O_2(B)$ then $Z_2\times Z_4\cong \langle f,\, y\rangle$ and is *not* contained in *a* $Z_4\times Z_4$ or $Z_2\times Z_8$ subgroup. Thus from the preceding $\langle f, y \rangle$ must be of type $Z_i \times Z_i B$ as required. We leave verification of table 21 to the reader.

Finally we remark that because of Proposition 2.4, each of the forms $f(g, h; \tau)$ (or $m(g, h; \tau)$) attached to M_{24} has integral weight $1/2$ $\dim C_{\scriptscriptstyle V}(\langle g,h\rangle).$

§ 3. **The** associated forms

We begin by listing the forms $m(g, h; \tau) = f(g, h; N_g \tau)$ as discussed in section 1. To make the computations one uses tables 1 and 2 of sec tion 2 in order to compute the characteristic polynomial of *h* on each g-eigenspace. If *(g, h)* is a rational pair then (1.5) yields *f(g,h;τ),* and in any case one can use the original definition [6, equation (3.7)]. One can also make use of Lemmas 3.1 and 3.2 below. We remark that in [6, equation (3.7)] the form $f(g, h; \tau)$ is seen to have the shape $q^d \sum_{n>0} a_n q^n$ for a certain rational number *d* [6, equation (3.3)], but one readily verifies that $d = 1/N_g$ in the present situation, so that $m(g, h; \tau) = q + \tau$

One caveat to the foregoing is that only for those pairs *(g, h)* which are rational do we explicitly record $m(g, h; \tau)$, as a Frame shape. Moreover we do not repeat $m(1, h; \tau)$, which is given in Table 1 of section 2; and of the pairs *(g, h), (h, g)* we often list only one (cf. Lemma 3.1).

$\langle g, h \rangle$	(g, h)	$m(g, h; \tau)$	$N = N_{\rm g}N_{\rm h}$	multiplicative
$Z_{\scriptscriptstyle2} \times Z_{\scriptscriptstyle2} A$	(2A, 2A)	2^{12}	4	yes
$Z_{\scriptscriptstyle 2} \times Z_{\scriptscriptstyle 2} B$	(2B, 2B)	4 ⁶	16	yes
$Z_{2}\times Z_{2}C$	(2A, 2A)	$1^4 \cdot 2^2 \cdot 4^4$	$\overline{4}$	yes
	(2A, 2B)	$2^{14}/1^4$	8	yes
	(2B, 2A)	$4^{14}/8^4$	8	yes
$Z_{\scriptscriptstyle 2} \times Z_{\scriptscriptstyle 2} D$	(2B, 2A)	$2^{4}4^{4}$	8	yes
	(2B, 2B)	$4^{16}/2^48^4$	16	yes
$Z_{2}\times Z_{4}A$	(4A, 2A)	4 ⁶	16	yes
	(4A, 4A)	$8^{18}/4^6 \cdot 16^6$	64	yes
$Z_{2}\times Z_{2}B$	(2A, 4B)	$1^2 \cdot 2 \cdot 4 \cdot 8^2$	8	yes
	(2A, 4A)	$2^{7}8^{2}/1^{2}\cdot 4$	16	yes
	(2B, 2B)	$2^{2}8^{7}/4\cdot16^{2}$	16	yes
	(2B, 4A)	$4^{5}8^{5}/2^{2}\cdot 16^{2}$	32	yes
	(4B, 4B)	irrational	32	no
$Z_{2}\times Z_{4}C$	(4A, 2B)	$4^2 \cdot 8^2$	32	yes
	(4A, 4A)	$8^{8}/4^{2}\cdot 16^{2}$	64	yes
$Z_{\scriptscriptstyle 2} \times Z_{\scriptscriptstyle 4} D$	(4C, 2A)	$4^2 \cdot 8^2$	32	yes
	(4C, 2B)	$8^{8}/4^{2}16^{2}$	64	yes
	(4C, 4C)	irrational	256	yes
$Z_{\scriptscriptstyle 2} \times Z_{\scriptscriptstyle 4} E$	(4B, 2A)	$2^4 \cdot 4^4$	8	yes
	(4B, 4B)	$4^{16}/2^4 \cdot 8^4$	16	yes
$Z_i \times Z_i F$	(4B, 2B)	4^6	16	yes
	(4B, 4B)	4 ⁶	16	yes
$Z_{\iota} \times Z_{\iota}A$	(4C, 4A)	8.16	128	yes
	(4C, 4C)	$16^{4}/8.32$	256	yes

Table 3

We interpolate some easy lemmas.

LEMMA 3.1. Let (g, h) be a commuting pair with $N = N_g N_h$ and $W_N =$ $\begin{pmatrix} 0 & -1 \\ N & 0 \end{pmatrix}$ *. Then*

$$
m(g, h; \tau)|_k W_N \sim m(h^{-1}, g; \tau).
$$

Proof. We remark that the notation \sim means that the ratio of the two functions in question is constant. As for the proof, if $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ then

$$
m(g, h; \tau)|_k W_N \sim \tau^{-k} m(g, h; -1/N\tau)
$$

\n
$$
\sim (N_h \tau)^{-k} f(g, h; -1/N_h \tau)
$$

\n
$$
= f(g, h; N_h \tau)|_k S
$$

\n
$$
\sim f(g, h) S^{-1}; N_h \tau)
$$
 (by eqn. (1.2))
\n
$$
= m(h^{-1}, g; \tau)
$$
 as required.

A similar argument yields

LEMMA 3.2. *Let Q be a divisor of N^g . Then*

$$
m(g, h; \tau)|_k\begin{pmatrix} 1 & Q^{-1} \\ 0 & 1 \end{pmatrix} \sim m(g, g^{Ng/Q} \cdot h; \tau).
$$

Concerning the level of these forms, one easily proves using Lemma 3.2 the following:

LEMMA 3.3. Let Q be a divisor of D , set $D' = 1$.c.m. (Q^2, D) , and as*sume that* $m(g, h; \tau)$ *is on* $\Gamma_0(D)$ *. Then*

- (i) $m(g, g^{Ng/q} \cdot h; \tau)$ is on $\Gamma_1(D')$.
- (ii) If Q \24 then $m(g, g^N s'^Q \cdot h, \tau)$ is on

One can use Lemmas 3.1 and 3.2 to establish assertion *I(c)* of sec tion 1. We illustrate this with a diagram corresponding to the group $Z_{\scriptscriptstyle 2} \times Z_{\scriptscriptstyle 4} B$ (cf. Tables 2 and 3):

$$
(2A, 4B) \xleftarrow{W_8} (4B, 2A)
$$

\n $T_{1/2}$
\n
$$
(2A, 4A) \xleftarrow{W_{16}} (4A, 2A)
$$

\n
$$
\uparrow T_{1/4}
$$

\n
$$
(2B, 4A) \xleftarrow{W_{32}} (4A, 2B)
$$

As for $I(d)$, (e) we use the following:

LEMMA 3.4. Suppose that $m(g, h; \tau) = q \Sigma a_n q^{n-1}$, that there is an integer *D* such that $a_n = 0$ unless $n \equiv 1 \pmod{D}$ and that $Q|N_g$. Then the fol*lowing hold:*

- (i) $m(g, g^{Ng/Q} \cdot h; \tau) = q \Sigma b_n q^{n-1}$ where $b_n = \exp(2\pi i (n 1)/Q)$.
- (ii) If $\{a_n\}$ is multiplicative then $\{b_n\}$ is also multiplicative if $D\|Q_n$, *say Q = mD, and either*
	- (a) *m\D, or*

(b) *m* = 2, *D odd.*

Part (i) follows from Lemma 3.2, and (ii) is left to the reader.

One starts with the primitive form $p_A(\tau) = p(\tau)$, which has multiplica tive coefficients, and then applies Lemma 3.4 with *D* being the minimal integer which occurs with non-zero exponent in the Frame shape corre sponding to $p(\tau)$. Again, successive applications of this principle together with the action of W_N yields what we need, including the third column of Table 3.

One can also easily write down the Euler p-factors of $q \Sigma b_n q^{n-1}$ from those of $q \sum a_n q^{n-1}$. Specifically, if the p-factor of the latter is

$$
\left(1-\frac{a_p}{p^s}+\frac{c_p}{p^{2s}}\right)^{-1}
$$

then that of the former in case (ii) (a) of Lemma 3.4 is

$$
\left(1 - \frac{\sigma a_p}{p^2} + \frac{\sigma^2 c_p}{p^{2s}}\right)^{-1} \qquad (\sigma = \exp 2\pi i (p-1)/Q) ;
$$

in case (ii) (b) the odd p-factors remain the same while the 2-factor becomes

$$
\Big(1-\frac{2^s}{a_2}\Big)^{-1}\Big(1-\frac{2a_2}{2^s}\Big)
$$

(in this case we always have $c_2 = 0$). Again we illustrate with the group $Z_{\scriptscriptstyle 2} \times Z_{\scriptscriptstyle 4} B$:

(2A, 4B):
$$
\prod_{p} \left(1 - \frac{a_p}{p^s} + \frac{c_p}{p^s}\right)^{-1}
$$

\n(2A, 4A):
$$
\prod_{p} \left(1 - \frac{a_p}{p^s} + \frac{c_p}{p^{2s}}\right)^{-1} \left(1 - \frac{2a_2}{2^s}\right)
$$

\n(2B, 4B):
$$
\prod_{p \text{ odd}} \left(1 - \frac{a_p}{p^s} + \frac{c_p}{p^{2s}}\right)^{-1}
$$

\n(2B, 4A):
$$
\prod_{p=1(4)} \left(1 - \frac{a_p}{p^s} + \frac{c_p}{p^{2s}}\right) \prod_{p=3(4)} \left(1 + \frac{a_p}{p^s} + \frac{c_p}{p^{2s}}\right)^{-1}
$$

\n(4B, 4A):
$$
\sum_{n\geq 1} \frac{\exp(2\pi i(n-1)/4)}{n^s}.
$$

All of the assertions in of section 1 can be deduced in a like man ner from these assertions. Concerning III, the two "missing" primitive

forms not listed in Table 3 but satisfying (1.16) and (1.7) correspond to the Frame shapes 2.22 and 6.18. Now in the maximal 2-local $2^{12} \cdot M_{24}$ of *O* there is an element with Frame shape 2-22 in its action on the Leech lattice. Also we find commuting elements with Frame shape $2^{3} \cdot 6^{3}$ and 3 8 , and a quick calculation yields that the corresponding form *m(g,h;τ)* $= \eta(6\tau)\eta(18\tau).$

REFERENCES

- [1] J. Conway, Three lectures on exceptional groups, in Finite Simple Groups, Powell-Higman, eds., Academic Press, London, 1971.
- [2] J. Conway et al., Atlas of simple groups, C.U.P., 1983.
- [3] M. Koike, On McKay's Conjecture, Nagoya Math. J., 95 (1984), 85-89.
- [4] G. Mason, $M₂₄$ and certain automorphic forms, in Contemp. Math. vol. 45, A.M.S., Providence, R.I. (1985), 223-244.
- [5] G. Mason, Finite groups and Hecke operators, Math. Ann., **283** (1989), 381-409.
- [6] Riliptic system and the eta-function, to appear in Notas d. l. Soc. d. Matematica d. Chile, 1990.

Department of Mathematics U. C. Santa Cruz Santa Cruz, CA 95064 U.S.A.