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THE SELBERG TRACE FORMULA FOR

MODULAR CORRESPONDENCES

SHIGEKI AKIYAMA AND YOSHIO TANIGAWA

§ 0. Introduction

In Selberg [11], he introduced the trace formula and applied it to
computations of traces of Hecke operators acting on the space of cusp
forms of weight greater than or equal to two. But for the case of weight
one, the similar method is not effective. It only gives us a certain ex-
pression of the dimension of the space of cusp forms by the residue of the
Selberg type zeta function. Here the Selberg type zeta function appears
in the contribution from the hyperbolic conjugacy classes when we write
the trace formula with a certain kernel function ([3J, [4], [7], [8], [9], [12]).

The starting point of the present work is [2], where we treated the
trace formula of weight one for modular correspondences with the same
kernel function and expressed the trace of the Hecke operator by the
residue of the corresponding Selberg type zeta function. Now we note
that the above Selberg type zeta function does not have a functional
equation. This is because the poles of the Selberg transform hs{r) are
not placed symmetrically.

In this paper, we take up our problem again and consider the trace
formula for modular correspondences with a general kernel function. It
was already done in Hejhal [5] Chapter 5, when Γ has a compact funda-
mental domain. We only assume here that Γ is a Fuchsian group of the
first kind. There may exist, in a double coset of Γ, hyperbolic conjugacy
classes whose fixed points are cusps and parabolic conjugacy classes. The
contributions from these terms are new points of this paper. In § 1, we
introduce the necessary notation for the Selberg trace formula. In § 2-§ 6,
we calculate the contribution from each conjugacy class. In the last
section, we restrict ourselves to the case Γ = ΓQ(p) and calculate the
terms in § 4-§ 6 as explicitly as possible. We also define the Selberg type
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zeta function for a double coset by taking the classical Selberg kernel as

the kernel function and prove the functional equation (cf. [1]).

§ 1. Preliminary

Let Γ be a Fuchsian group of the first kind of G = SL2(R) which does

not contain — 1, and Γ be the commensurator of Γ in G. Take an ele-

ment a from Γ\{— 1} Γ. Let H be the complex upper half plane and 1 be

a unitary representation of degree v of the group generated by Γ and a.

If Γ is not cocompact then we assume that the values of 1 at the stabilizer

of each cusp are the roots of the unit matrix. Let / be a holomorphic

mapping from H to Cv satisfying

( 0 )

( 1 ) / vanishes at each cusp of Γ

where (f\[r]m)(z)=j(r, z)-"f<J z\ j(r, z) = (cz + d) and r = (* J ) e Γ . Denote

by Sm(Γ, 1) the space of these mappings. Hecke operator which acts on

Sm(Γ, 1) is defined by

where ΓaΓ = UμaμΓ (disjoint). The trace of T(ΓaΓ) is calculated by the

Selberg trace formula in various cases and used in the arithmetical

problems.

Let us review our situation. Put G = G X T, f = Γ X T and H = H

X T, where T = R/2πZ. Then G acts transitively on H by

(g, θ).(z, φ) = (g-z, φ + Axg(j(g, z)) - θ).

The algebra of G-invariant differential operators is generated by

A 9 / 9 i 9 \ i 3 d j 9a = y ( + 1 + y , and .
\dx2 dy21 dx dφ dφ

Identify Γ with Γ X {0}, G with G X {0}. Let L\(f\H) be the space of

mappings from H to Cv satisfying three conditions:

( 2 ) F(z, φ) = '(/t, /2, , fv) is a column vector and each ft is a

measurable function on H,

( 3) F(r (z, φ)) = Z(r)F(e, 0) for all r € Γ,
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(4) f Ψ(z, φ)F(z,φ) dzdφ < oo .

The Selberg eigenspace Lχ(m, X) is the subspace of L%(f\H) with two ad-

ditional conditions:

( 5 ) JL-F = - V ^
dφ

(6) ΔF=λF.

The eigenvalues λ are numbered as

M (\m\

For the convenience, we put λ = s(s — 1) = —1/4 — r2. Let ̂ m(Γ, 1) be

the space of holomorphic mappings from H to Cv which satisfy (0) and

(7) f tf(z)f(zjymdz<^.
JΓ\H

If m > 1 then S?JΓ, 1) = Sn(Γ, 50, and if m < 0 then ^ m ( Γ , χ) = {0}. Note

the fact that S?0(Γ, id) is the space of constant functions. The relation

between SPm(Γ, 1) and Lx(m, X) is given by the next lemma.

LEMMA 1. We have

Lχlm + 2, - ^ - ( 1 + - ^ - ) ) = y{m+2)/2 exp(— Λ/ — l(m + 2)φ)S^m+2(Γ, X)
\ 2 \ 2 //

Lχ (m, —ίl + —)) = y-^expί-V^m^^^Γ, X).
\ 2 \ 2 //

For the proof of this lemma, see Hejhal [6] p. 383. The Hecke operator

on L2

χ(f\H) is defined by

T{ΓaΓ)F(z, φ) = Σ^μ)F(^~μ1'(^ Φ))
μ

This definition is compatible with the former one. Denote by tr (T(ΓaΓ); λά)

the trace of T(ΓaΓ) acting on Lχ(m, λj). Put

8 ) k(z, φ, z', φ*) = Φ (l^^Pj exp ( - 4~=Λm ^Arg ( | ^ γ ) + φ- Φ'))

where y = Im(2), y/ = Im(0θ, and Φ is the C4-class function from (0, oo)

to (0, oo) such that
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where τ > max{|m/2|, 1}, £=0,1,2,3,4, and A is a positive constant.

This integral kernel is a point pair invariant, i.e.

Hg<z, φ), g-(z', Φf)) = Hz, Φ, z', Φf)

for all geG. The eigenvalue of the integral operator

F(z, φ) — > -λ- f k(z, φ, z', φ')F(z\ φf)dzfdφ'

is independent of the choice of elements in Lχ(m, X). (For the consistency

with the notation of the work of Hejhal [6], the constant factor l/2π is

multiplied.) The above integral vanishes when F e Lx(m\ X) and m Φ m'.

We denote this eigenvalue by A(s(s — 1)) = h(r). Then the correspondence

between Φ and A is given by the following equations (9)~(14) (See [6],

p. 386).

(9) A(s(s - 1)) exp (- V^ϊmφ)

-ϊ, φ, z\ φf)y's exp(-S-lmφ')dz'dφ'.
2π J

(10) Q(W) = Γ Φ(w

_ r ex.
x + 4 + ί2 + v - l ί /

where Q' is the derivative of Q and

(12) g(u) = Q(e« + e - - 2)

(13) Λ(β(8 - 1)) = h(r) = Γ g(it)exp W~-ϊru)du.
J - o o

So g(u) is represented by Λ(r):

(14) g{u) = — ί°° h(r) e x p ί - V ^ r a ^ r .

Now we describe the Selberg trace formula for modular correspondences

in the cocompact case. Let F(z, φ) be an element of Lx(m, X), then

A(s(s - l))F(z, φ) = -A- f
2π J
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Thus

h(r)T(ΓaΓ)F(z, Φ)=±-\ Σ X(aμ)k(a~μ\z, φ\ z\ φ')F(z', φ')dz'dφf

= - i- f K(z, φ, z>, φ>)F(z\ φ')dz'dφ'
2π Jr\β

where K(z, φ9 z\ φ) = ΣgeraΓ 1{g)Wz> Φ, g&, Φ%
Taking traces of both sides, we see that

Σ Λ(V-l/4- λj) tr (T(ΓaΓ); λ3) = - L f tr K(z, φ, z, φ)dzdφ

= ^- Σ tr Kg) ί *(«, ̂ ? g(z, φ))dzdφ

where [ ] is the conjugacy class of ΓaΓ with respect to Γ, and /Xg) is
the centralizer of g in Γ. In the case that Γ is raoί cocompact, the integral
of the right hand side diverges by the effect of continuous spectra. Hence
we must subtract this effect. For this purpose, we define the Eisenstein
series for each cusp of Γ\H. Let κl9 κ2, , κω be the complete represen-
tatives of P-inequivalent cusps of Γ\H. We denote Γt the stabilizer of
κi9 and Γ°i = Γt Π ker X. Take σt e G such that σt oo = Λi, satisfying the
following condition.

IIf /̂  is regular then Γ^ = a^Γ^t is generated by (^ ^ J,

If κt is irregular then Γ'«, = a^Γ^t is generated by ί A __-«j •

Define the Eisenstein series for /̂  (i = 1, , ω) by

Kσfr, z)))X'ι(σ)Pi

= Σ -i ^-JΪΓ-
 e x P ( - 'wv^I^ + Arg (c

σeΓoA°ϊιr \cz + dfs

where a = (a λ. P^ is defined by

V (_. l)fcχ(^fc) if m is odd and tct is irregular,

χ(g) otherwise,
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where ri = [Γt: Γ^] and η e Γi is chosen so that η mod (Γ?)2 should be a
generator of JΠJ^S) 2 (c.f. Ishikawa [9]). Each Eisenstein series is mero-
morphically continued to the whole s-plane and satisfies a certain func-
tional equation. Put

H(z, φ, z', φ') = -L Σ Σ X{aμ) Γ h(r)Ela-\z, φ), s)%(z', φ', s)dr,
4π i=1 μ J -°°

where the sum over aμ is taken over all representatives of conjugacy
classes of ΓaΓ which fix cusps of Γ, and s = 1/2 + V^Λr.

LEMMA 2. The function K(z, φ, z\ φ;) — H(z, φ, z\ φ') is bounded in
(z,φ,z',φ')eΓ\HχΓ\H.

Proof. We must consider when both z and z' approach to a /^-equiv-
alent cusp of Γ\H. For simplicity, we assume that κx = oo is the regular
cusp of Γ, and z, z' are in the neighborhood of κγ. Using Maass-Selberg
relation, we have

H(z, φ, z', φ') = Σ %£λ Γ Mr) (Σ EMΆz, φ); sYEj

= exp (-m^ϊ(φ1 - f)) Σ ^~ Γ

X {yldn Ψ, + y\-~° l9ds)})dr + 0(1)

= exp(- m*f=l(φι - φ'))Σ
4π

Λoo

x "Pi Γ Hr)((yily2)^r + (y^Y^dr + 0(1)
J -oo

= exp(- mS^lfa - f))ΣX(«,)^3^^(logyi - logy^Pj + 0(1),

where α;1,? = ^ + Λ / 1 1 ! ^ , f = φ + argj(a;\ z\ zf = x2 + V^Tίy2, 0(1) is
the Landau large 0-symbol with respect to yu y2-> oo5 and ^f/s) appears
in the constant term of the Fourier-Bessel expansion of the Eisenstein
series which will be defined and calculated in § 6, Lemma 6. About
K(z, φ, z\ φf), we get

K(z, φ, z\ φ>)

= Σ r {g)k(z9 φ9 g(z\ 00)
gSΓaΓ

= Σ x(af) Σ 1 * ((n ί)) Σ k(a;\z, φ), z' + k + nt, φ>) + 0(1).
μ & = 0 \ \ U LJ / tβZ
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Using Euler-Maclaurin summation formula, we have

Σ Ka-\z, φ), zf + k + rtt, φ*)
tez

= i- Γ k{(S=lyu φx), t + V^ϊy2, Φ')dt + 0(1)

= 1 Γ

= — Λ/3^Γ exp(- mf^Λ(φι - φf))gQogyλ - \ogy2) + 0(1).

Thus the lemma is proved.

Now we can write down the Selberg trace formula

(15) Σ λ(V-l/4-;i,) tr (T(ΓaΓ) ^)
j

= A - ί tr (ΛΓ(̂ , ̂ , z, φ) - H(z, φ, z, φ))dzdφ.

So far, the validity of (15) is restricted by the condition on Φ. But we

can relax the corresponding condition on h(r) as:

( i ) h(r) is analytic in the region |Im(r)| < max((|m| — l)/2, 1/2))

(ii) Λ(r) = Λ(-r)

(iii) h(r) < A(l + |r |)-2- ε

where A is some positive constant and ε is an arbitrary positive number.

This is because that T(ΓaΓ) is a bounded operator by the commensura-

bility of Γ and aΓa~x and hence the eigenvalues of T(ΓaΓ) on Lχ(m, X)

are uniformly bounded with respect to λ.

The right hand side of (15) is evaluated by the method of the trun-

cated fundamental domain (see Kubota [10]). We shall give the brief

sketch of this classical method. Let Vt be the neighborhood of κt such

that σ^Vt = {zeH\ϊm(z) > Y}, H* = H - U, ΌβeΓσVi9 and H* = H* X

T. First we study two integrals

(16) -A-f tτK(z,φ,zyφ)dzdφ
2π J r\&*

= -A- Σ tr X(g) f k(z9 φ, g(z, φ))dzdφ

and

(17) - L f tr H(z, φ, z, φ)dzdφ.
2π J r\6*
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Cancelling log Y term and letting Y—• oo, we can get the right hand side

of (15). To evaluate (16), we classify the conjugacy classes of ΓaΓ in

five types:

( I ) Identity

(II) Elliptic conjugacy classes

(III) Hyperbolic conjugacy classes which fix hyperbolic points of Γ

(IV) Hyperbolic conjugacy classes which fix cusps of Γ

(V) Parabolic conjugacy classes

The explicit evaluations of these classes will be given in § 2-§ 6.

§2. Contributions from identity and elliptic conjugacy classes

These parts were calculated by Hejhal in the case of trace formula

for a = 1. See Hejhal [6], p. 389-p. 397. There is no change when we

treat our case.

( I ) Identity

The contribution from the identity exists only when aeΓ and is given

by

(18) J(id) = i,vol(Γ\/J)Φ(0)

= _ vvol(Γ\H) f- g'(u)exy(-mul2) d u

2π J — exp (u/2) - exp ( - u/2)

__ vvol(Γ\H)C~ , / i Λ sinh(2τrr)-Γ rh(r)
J —oo4π J-~ cosh (2πr) + cos (πm)

-dr

Σ

4π i -oda L \ 2

(II) Elliptic conjugacy classes

Let R be a representative of an elliptic conjugacy class of ΓaΓ.

Then

τ> /cos θ — sin θ\K ~ ( 1
\sin ̂  cos ΘJ

where — is the conjugation in SL2(i?). In the case that Γ contains — 1,

we may assume that 0 < θ < π. But in our case, we can't assume this.

First of all, we treat the case that 0 < θ < π. Then the contribution is

(19) ^ Ί ( m - 1)0)
4#Γ(.β) sin θ

X Γ g(u)
cosh u- cos 2Θ
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Using (14) to write this integral in terms of Λ(r), we get; if m = 2N + 2
then

- trX(R) /f°° w v cosh2r(τr - Θ) + cosh2r0 ,
- 4%Γ(R)sθ\) { ) f+7h~2 * Γ +

g 2Λ/^Ί exp (V^ϊ(m - 1 - 2ΐ)θ)h | V =g
if m = 2AΓ + 1 then

= trZQR) /Γ00

 ft(r) cosh 2r(ττ - g) - cosh 2r6> dγ

4#Γ(i?) sin6> U - - c o s h 2 τ r r - l

^ exp(2vΓ=:ΐ(ΛΓ -Σ

We can remove the assumption of the range of θ, because the point pair
invariant function

Arg (|=M=p) + Φ-(Φ'

changes its sign when we replace R with R'1 in (8).

§ 3. Contribution from hyperbolic conjugacy classes which fix
hyperbolic points of Γ

Let T be a hyperbolic element of ΓaΓ which fix hyperbolic points of
Γ, such that

T ~ ( * r l ) and μ | > l .

Let TO be the generator of Γ(T) and 0̂ is the eigenvalue of To such that
|^o|> 1. Then the contribution of the hyperbolic conjugacy class repre-
sented by T is

= f Φ 0z ~ fz?) </=ϊm exp (--/3I m Arg (a - f

Substituting x by (U|y/(^2 - ΐ))x and letting ω = (λ* - Vflλ\ we get

log λi Γ Φ(x2 + ».) IV^+! + W = ϊ r J A L d x
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4
Λ i.

§ 4. Contributions from hyperbolic conjugacy classes which fix
cusps of Γ

Let T be a representative of a hyperbolic conjugacy class of ΓocΓ

which fixes a cusp of Γ. If one of the fixed points of T is a cusp of Γ,

then the other one is also a cusp of Γ. In this case, we can see that

Γ(T) = {1}

For simplicity, we assume that cusps, say κx and ΛΓ2, are the fixed

points of T. Let φ be an element of G such that φ(ιc^ = oo, φ(fc2) = 0 and

where \λ\ > 1. Then the contribution is

Φ /(Λ2-D2Λ ,χ2\\ 1(1-

where H* is defined in § 1. We can neglect the integral over

(i Φ 1, 2), because it converges to zero when Y approaches to infinity. So

we can change the domain of integral φ(H*) with Ht = H — (A U B),

where A (resp. B) is the neighborhood of oo (resp. 0). We may choose φ

so that the above properties hold and

A = φ V, = {z e if | Im(z) > Y},

J5 = ^ V2 = τ{2; e i/| Im (̂ ) > Y},

(1 *\
n ), r 6 G, and τ(oo) = 0, because we can replace φ by

α -i )p, where αei?.

Let B be the circle which passes 0 and is tangent to the real axis.

Denote by c(τ) the (2, 1) element of τ, which depends only on κx and £2.

The radius of B is l/(2c(τ)2Y), which we denote by p. According to these

notations, the contribution is

^ l sgnr f Φ
f

where o is the Landau symbol when Y—> oo. From now on in this sec-

tion, we neglect o(l). Changing variables, we get
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fπ ΛF/sin<? / / 5 2 1\2 \

sgn H Φ( , (1 + cot2<9))
J 0 J 2p sin θ \ )C /

χ

- Λ2) cot Θ + Q. + λ^-f^l \m rdrdθ

{(1 - X)<xΛΘ + (1 + r2 s in 20

Γ

Let ω = (1 - ^)2/A2, and replace ί by (U|/(^2 - l))ί. Then

= sgn λm (2 log Y\c(τ)\ - log ω) ^ Γ Φ(ω + f)li/a> + 4 +

+ ^Sgnr Γ
P - 1 J

+ 4 + ί/^

+ 4 + ίV^

^ - Γ log(co + i2)Φ(α> +
Wω + 4

For the last integral, we need more calculation.

Γ log (a) + fWαi 4- f)

= Γ log (u)Φ(u) Re

dt

+ ̂ =

o) -\- 4: — V u — o)v —'.

log(u-ξ2) n , , Λ

u — ω

Vu-f2

X
•Vu + 4 + ξ J LWω + 4 — Vw ~ ξ2 — ωV —'
1 Γ°°

= — ±. j Q ;(w + ω)J(u)du
π Jo

= Re f"/2 log (a) + u cos2

where

Then

where 7 is the value which satisfies

+ ω + 4 + Vu cos (?

J(«) = Re Γ log (« + if cos2 0
coshϊ
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V U

Let CΊ be the semicircular path from — V — 1 to V —ϊ which encircles the

origin anticlockwisely. C2, C4, Cβ, C8 is the line segment from — V — 1 to

— (α + e)V^Ϊ, — (α — ε ) ^ ^ ! to — eV — 1 , ε \ ^ Ί to (σ — ejV^l, and

(α + ε)V^=:ΐ to V ^ Ί , where α = Vω/w + 1 — Vα)/w, and ε is a sufficiently

small positive number. C3 (resp. C7) is the anticlockwise semicircular path

from — (a + ε ) - / ^ to — (a — β)</^-Ί (resp. (α — e)V^l to (α + ε)Vr=3)

whose center is — αV — 1 (resp. αV —1). C5 is the anticlockwise semicir-

cular path from — εV^Λ to εV — 1. We see that

Λ = Ί β r -sinh ΐ + V^ϊ cos 0
coshr + sin# Λ 1 7 ! ^ +

Thus

J(H) = Rej^log[a> + i*(i dz

z\ J^

The integrals of the same function over C3, CΊ tend to 0, when ε -» 0.

Hence by Cauchy's theorem, we get

Llog[ω+ui z + dz
— 1 er + zJ V—

= f + f + f + f + f +o(l)
, /» + «-»\η |V^ΐe r - zlm dz

where o(l) is the Landau symbol when ε->0. In the above formula, the

branch of the logarithm in the region enclosed by d (i = 1, 2, , 8) is

taken so that the value on Cx is real. Considering real parts of both

sides, we see
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1 -\z

On the path C55 we have

[ J 1 o

y

7=T7
as ε —> 0. Thus we can deduce that

C~ε ϊ er — '
J(u) = π Re -

J - α L {? —p '

+ Re log L
Jc5 L

From the estimation

log ω + wί-

we get

= log M - log 4 - 2 log ε - 2<vr=:l0 + o(ε2) ,

J(«) = - « Re
y

- , Re Γ
y

+ π (log M — log 4 — 2 log a).

By the straight forward calculation, we get

π\/ω + 4(20) J'(u) =
Λ/ u + ω + 4Λ/U + ωWu + ω + Vω

The contribution from this conjugacy class is given by,

s g n ^ /.YIcWA
- 1 & V λ2 - 1 π(λ2 - 1)

Γ Q
Jo ^ v +

We will see that the log Y terms cancel out with those of (17) in § 6.

Using (20), we have the result.

THEOREM 1. Let T be a hyperbolic element of ΓaΓ which fixes cusps

of Γ, and λ, λ~x be its eίgen values where \λ\ > 1. Then the contribution
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from the conjugacy class of T is given by

j

- Γ g(u)\(e^\λ\-™ + e~™<*\λp - 2) 2 7,,
eu/2 — μ|

where c(τ) is defined as above.

§ 5. Contribution from parabolic conjugacy classes

Put Bt = {geΓaΓlgfCi = Λ<, | t r ^ | = 2}, then

B7 = U ^^^i (finite disjoint union).

Each element g eBt can be written in the form

where s(g) — ± 1, υ(g) e Λ. We may assume that v(aμ) e [0,1). We con-

sider the sum

(21) -A- Σ ' trZte) f (̂̂ > #, (̂̂ >

where 2] ' is the summation which avoids g = 1. Put

X(v)s(vr~\ "
\

where η is a generator of Γt. Then

(21) = Σ lim f Γ f Σ ' exp(2π/^ϊ (nζ, + βjμ))

So we study the next integral
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£ ϋ) = Γ Σ /exp(2τrV^ :Ίnζ)Φ^ e
Jo nez \ y2 } y2

Λ(w + t>)/

= Σ'

As ζ can be written in the form ί/r4 (ί = 0, 1, , r4 — 1), we replace τι

by nr, + A (^ = 0, 1, , r t). Then

hf \ r(nn + 1c + v)/r

Γj / n e z J (7irj + fc + v)coj — 7 2 , ^ — / ^ — V

where 2 * runs over all ne Z except n = k = v = 0. We put

irt + d

ζ(u) = Φ(u2)e' ^ w A r s ( 2 + ^ϊ«ί .

Then we can see that

ri-l / Λoo \

J(ζ, u) = Σ exp(2W —l^ζ) (J(^ + f )+J( — fe—u)+δ(fe=u=0) f(ι/)(ί^J
Λ;=0 \ J(k+υ)/Y /

where

§ =z d(k = v = 0) —
ll otherwise

LEMMA 3. We have

Σ -τ4 f f(u)du

0(1)

as Y—> 00.

To prove this, we use the Euler-Maclaurin summation formula. (See

Kubota [10], p. 103 — 104). Using this lemma, we get

Γ
l ) ) Γf(u)dM + Γξ(u)log(u)du]
^//Jo Jo J

Hence we see

fi-l

C, v) = 2 Re f («) log (u)dw
Γ̂  L Jθ
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Γ \ rt / Γ

Γ \ Γi / Γ i

By the property of digamma function, we have

rt I Γ \ ri

fi + ) + ) +
Γ \ rt I Γ \ ri / k + v

where

cot* (x) == ί c o t ( χ ) for Λ: ̂  0 (mod TΓ)
lθ for x = 0 (mod TΓ) '

LEMMA 4. We have

ψ g(u) exp ("L î „) (-^±-
\ 2 /Vcoshw — 112

LEMMA 5. We have

Re Γφ(zz
Jo

= ( - 2ΐ - log 4)^(0) + Λ(0)/2 - — Γ
π J -

+ I" . g<«)
Jo sinh(w/2)

is ίΛe £Jα/βr constant

For the proof of these lemmas, see Hejhal [6] p. 399 —p. 400, p. 407

p. 411.

Using these facts, we have

«C,,) - Σ'
fco 2

A(0)/2 - 1 Γ

») ^ 2!og J
rΓ \ ' r, / Γ \ r , J k+v

— cot*( π-— M ^(^) exp (HL^l— u
— 1
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As the log Y term will cancel out with that of (16) in § 6, we have

THEOREM 2. The notation being as above, the contribution from para-
bolic conjugacy classes of ΓaΓ is given by

Σ Σ Σ exp(2πΛ^Ί^)I(ζ,, v(aμ)) - (log Yterm)
1 = 1 μ j=l

= Σ Σ Σ exp (2*/=Ίβ l μ)\- {γ + log2 + 1 ( ^ 1 (1 + v(aμ))
ί = l μ j = l LI Δ \ 1

+ £ <ί _ v(aμ)) _

cot* (πv(aμ)) Γ g(«) exp (™^l l „) ( e " ~ 1

J-~ \ 2 /Vcoshu —1

(w/2)

y

Γ \ ri

cot*
rt /J-βo \ 2 / V c o s h w — 1

"•>-G
he inner statement is true

otherwise.

Proo/. Classify the summation according to ζt = 0 or ζt ^ 0. If ζ£

= 0 then we may replace rt with 1 throughout our arguments.

Remark. This result agrees with the parabolic part of Theorem 6.3
of Hejhal [6] p. 412 in the case that aeΓ. To see this, we should notice

Σ cos (2πwk/r) — (k/r) = γ + r log (2 sin (πw/r))
fc-l Γ

and

Σ sin (2πwk/r) — (kjr) = π(w; - r/2) .
fc-i Γ
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§ 6. Contribution from H(z, φ, zf, φf)

Finally, we will calculate the integral (17). To do this, we must know
the constant term of the Fourier-Bessel expansion of Ei(z,φ;s) and
Fι(z, φ s) where

Ft(z, φ;s) = Σ X(aJEt(a;\z, φ); s).

Denote fM(i = σ^/V*. This definition depends only on the regularity of
iCi. Then Ei(σj{z,φ)]s) and F^a^z, φ); s) is invariant under the motion
z -> z + 2ri. (We must consider the case that m is odd and κ% is irregular).
Put

Eifajiz, φ);s) = Etj(z9 φ; s) exp ( -

Ftiojiz, φ);s) = FtJ(z, φ;s)exp(- mV^

Then we can expand

, φ;s) = Σ a.(y, s) exp
nez

Fi}{z, φ; s) = Σ b.(y, β)
nez

LEMMA 6. We have

ao(y, s) = δtJy Pt

where

ω (q\ _ j—ϊm /— Γ(s)Γ(s - 1/2)

where / λ ^, sgncZw

[0* ί] "
Γ(s)Γ(s - 1/2)

x Σ

Now we calculate the contribution

(22) A έ f ί°° Λ(r)Pi(2, Φ, sYEtiz, φ, s)drdzdφ
8π i=iJn* J-»
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Using the Maass-Selberg type relation for this case, we get

(23) -±- f Ffa φ s)Ei(z9φ;s)dzdφ

= lim ± [ n>«Λ«)'W Y*'-1 - ψUsYψ^s) F- 2 ' 1
σ-i/2j=i L 2σ — 1 J

lim
2^ί^ΐr

where s = a + V —lr, and o-symbol is for Y-+ oo.
From the same formula, we can see

(24) i

ψUx) = Σ i

for xeR. The first part of (23) is

lim 5
2σ —

= lim Γ">««(«χyte-i-y-i ) _ («>«(
.-1/2 L 2σ - 1 - 1

"I ω ί5

+ — 2 (Wu(s)δtj -

Thus the contribution from the first part of (23) is

Notice the fact

Λ

J

This integral is considered as Cauchy's principal value. For the second
part of (23), we have
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4π J-» j-i4π J-» j-i L 2V —

where o is for a -»1/2. Combining these results to obtain

(17) = ^ Z j

+ h(0)
4

+ -j- J~ A(r)tr ί Σ j [— (wti(s)δtJ - ^ .(s) e ^))U 1 / 2 ]dr.

Define (ω X v) X (ω X v) matrices VF(s), ?Γ(s), W*(s) by

W(s) = ( I I ; ^ ) ) , Ψ(s) = (Ψij(s)), Ψ*(8) = (pf

From the analogous relations to (24), we see

(25) Ψ(χi2 + <fΞlτ)%

(26) y (l/2 -

By Liouville's theorem and (26), we obtain

(27) W(s)y(s) = W*(s),

for all s e C . Let h = σ — 1J2 and,

= A + BΛ + o(h2)

W(s) = C + Dh + o(h2)

y*(8) = C, + AΛ

as h -> 0. Then from (25), (26) and (27), we get

AC=CU AD + BC = A , CfC =

Using these facts, we have

2]

= tr(W(s)-Ψ*Ψ)

'C + CJD)) + o(Λ2).
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Finally we have

(19) = J^-L- Σ Σ g@ log I dμ I) ̂ } γ tr {X(a,
2π i=i μ \dμ\

, Λ(0)

X (r(l/2 + v^r)ίF(l/2W-lr)+^(l/2+ .

Considering the conjugacy classes of ΓaΓ with respect to Γ which fix
cusps of Γ precisely, we see that all log Y terms cancel out in (15).
Especially in the case (IV), there is a certain difference between the
element which fix equivalent cusps and the one which fix inequivalent
cusps.

THEOREM 3. The contribution from H(z, φ, z\ φ') is given by

«tr W(l)φίl)

— L Γ h(r) tr[W(l/2 + V^Ir)r(l/2 + V=ϊr)Ψ(ll2 - <f=ϊr)]dr.
47Γ J-o°

Notice that this contribution appears with the opposite sign in (15).

Remark. The above results are also valid when Γ contains — 1.
Because each step of the computation is almost the same, we don't repeat
it. But in the next section we consider, as an example, the case Γ = Γ0(p)
and write down the terms of §4—§6 as explicitly as possible.

§ 7. The case Γ = ΓQ(p)

We assume that Γ = Γ0(p), p a prime, and consider a double coset

B = rLjL=fl °\\r for D e Z, D > 0 and (D, p) = 1. Let % be a Dirichlet

character modp such that %(— 1) = (— 1)TO. We also assume for simplicity

that X is non-trivial. We put X(g) = X(d) for g = -L=(a b) e B. We take
V D\c d/
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(i) Parabolic conjugacy classes

Parabolic conjugacy classes exist only when D is a square. We put

a = \lD e Z. Then the complete representatives of parabolic conjugacy

classes are

P . U Po,

Γ IΛ hlπ\ Ί

where Poo = {geB\g is parabolic and £00 = 00} = I ± I ' \ \b eZ, (α, b) = l\

and Po = (JoPoô o"1- Hence in the notation of §4, we have μ = 6/α, ζ = 0

and r* = 1. Noting that Γ contains —1, we get the parabolic contribution

as

0<δ<α

where

(28) J(P) = 2X(a)~ί Σ ( - gΦ)(^Φla) + ϊ + log 2) + 1 h(0)
0<b<a I \ Γ / 4

- I Γ A(r)iίίl + S=ϊr)dr + Γ ^( >̂ (1 - cosh(^)W.
2πJ— Γ Jo2sinh(w/2) \ 2 // J

(ii) Hyperbolic conjugacy classes which fix cusps of Γ.

Let H be the set of all hyperbolic elements in B which fix cusps of

Γ. Let g be an element of H and ηl9 η2 be the fixed points of g. By the

assumption, ηx and η2 are cusps of Γ. The following three cases occur:

f}\ ~ "Qi ~ °°, 2yi — ?̂2 — 0, a n d ^ — oo, ^ 2 ^ 0 .

For Λ: = oo or 0, we put iϊ, = {geH\gκ = /c}. First we consider #«,. We

can easily see that the representatives of conjugacy classes HJ~ are

given by 0tx U ̂ 2 where

m = [+J^_(a b\ ad = D, a Φ d, α > 0, (α, b, d) = 1, 6 mod |α - d|Ί
1 I " Vΰ"\0 d/ (a - d)/(b, a - d) φ 0 modp J

and

^ = / + 1 (a b\ \ad = D, a Φ d, α > 0, (α, b, d) = 1, femod|α - d|l/
2 l ~ V^D \0 d/ I (α - d)/(6, α - d) = 0 modp J ^ '

One remark is necessary for 0t2. For each ^ = , (a ) with the above

condition, there exists a unique g = ( J with the same condition
V D \0 α /
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such that g ~ g'. Therefore we identify g and g'.

Let T = -jL=(a b) be an element of 9tx (resp. m2). Then the fixed
V D \0 d)

points of T are ^ = 00 and η2 — b\{d — α) — 0 (resp. 00). In the notation

of §4, we have

φ = (\ -fi and c(r) = ±Vp * " * (resp. ± * " * ) .
\0 1 / (6, α — d) \ (b, a — d) 1

Since a^Γoΰ1 = Γ, the contribution from the classes in Ho is the same

from the classes in Ή«,. Summing up, the contribution from HI ~ is given

by

V B " Σ Wα)-1 + Z(d)-1) ψyΓ,' S(w0) log Y

where

(29) J(H) = VDj^ (Z(α)-1 + τ(d)-i){ψ^μGatd,(m)

with

(30) Ga,d(m) =

+

and

w;0 = log (α/dί).

(iii) Eisenstein part

The constant term of the Fourier expansion of Eisenstein series is

determined in [6] Chapter 11, §4 and [12], i.e.

- 1/2) L(2s - 1, X)

inh (u/2) + sinh (wj2)

(1 — cosh((w — wQ)ml2) si

psΓ(s + m/2)Γ(s - m/2) L(2s,

(32) ω = ^ZIϊV^Γ(s)Γ(s-ll2) L(2s - 1, X)
ψOiC° psΓ(s + m/2)Γ(8 - m/2) L(2s, X)
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We can see easily t h a t W^Q = w0)OO = 0 and

wm M = p> Σ φ((a' d)) W^L,
& (α, d) d*-«

We have, by (31), (32) and the functional equation of L and digamma
functions, that

jL
aσ

f

and

- 2/=ϊr, 2) ^ ϊ r , X)} .

Using these facts, we get a contribution from Eisenstein series as

i/D log
;* (β,d)

0(1),

where

(33) J(C) = - -JL f" h(r) Γw (1/2 + Λ / ^ 1 Γ) Re 1 log Pββ0(l/2 + V ^
4τr J - - L 3σ

^ Ί Γ ) Re — log 9o

3(7

= - ^ 5 Γ Λ(r)fΣ ^ ( α '^ ) } X(d)-'(o/d)̂ rl f
2π J-» Lαί-B (α, d) J L

° ^ \ _ Γ^l + rn^ _ ^ ^ \
) Γ \ 2 )

_ 2

Γ \ 2

(1 - 2v c : l r , X) - 2 - ί l (1 + 2*J~=lr, X)]dr .



SELBERG TRACE FORMULA 117

To state the theorem, put

(34) J(E)= Σ I(R)
[Λ]: elliptic

(35) J(h) = Σ KT)
[Γ]

where the last summation is over hyperbolic conjugacy classes which fix

hyperbolic points of Γ.

THEOREM 4. Under the notations of (18), (28), (29), (33), (34), and (35),

the following Selberg trace formula holds for B = Γ (Q r\)Γ:

(36) £ Λ(V-l/4-;g tr (T(B) λ,)

= J(id) + J ( - id) + J(E) + J(h) + J(H) + J(P) - J(C).

In the rest of this paper, we will treat the functional equation of the

Selberg type zeta function for a double coset. Although we can derive it

for general Fuchsian group Γ, we restrict ourselves to the group Γ0(p)

since we can describe the Eisenstein part by the Dirichlet L-function.

For Gaιd(m), we have

LEMMA 7. Let m be an integer. Suppose that there is a constant A > 0

such that g(u) = O(e~Au) for u—>oo. Then we have

1 drGUm) - GUm - 2) = " ^ Γ h(r)(^-)'^

( m 1

ίLfi

Proof. By (30), we have

Ga,d(m) - Gα>ί(m - 2) = Γ g(u)(ew^'w^1-^ -
J wo

r2 + ((m
sgn(m-l) (l-m)/2

J-o

We denote the former integral by gι{m) and the latter one by g2{m). To

express these integrals by h(r), we consider m as a complex variable.

Firstly we assume that Re (ra) > 1. Substituting (14) and interchanging

the integrals, we have

(37) Um) = ~ -f Γ
2π J—
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The function gι(m), defined by (37) for Re (m) > 1, can be continued

meromorphically over the line Re (m) = 1 and for Re (m) < 1,

l(m) = _ 1 Γ h(r)
2π J-~ (1 —

V/ΓΛ-T
(1 — m) 2 — V — l r

g

Similarly we have

(38) &(#*., n , .

(ra —

for Re (m) < 1. When (38) is continued to the region such that Re (m) > 1,

we have

β- v-lrwo
-dr

= _ 1 Γ
27τJ-- — V — l

h
2

Hence we get the lemma.

Now we define the Selberg type zeta function.

DEFINITION. The Selberg type zeta function %B{a) with respect to a

double coset B is defined by

(39)

Here the summation runs over the hyperbolic conjugacy classes of B/{± 1}

which fix hyperbolic points of Γ. If T and To are as in §2, then δ = λ2

and ô = ô

THEOREM 5. Let B = r(-j=( JJΓ, D a positive integer which is

prime to p. Then $B(&) satisfies the following functional equation

(p + ϊ)πa sin (2π«)

6 cos(2ττtf) + (— ϊ)n

X(R) cos (π - 2θ)a

2 CS]

#Γ(i?) sin ^ cos TΓO:

%Γ(R) sin ί sin πα

(i/ m is even)

(if m is odd)

<
(6,
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-2^-(-2a)

- 2α, Z) - - ^ ( 1 + 2cc, X) - ψ{l - 2a, X) - J±- (1 + 2α, X)

ί! - f ( 4 ^ + -) - f ( ^ - «))}

- 2α, X)

where

~~ 10 if D > 1,

= fl if m is odd
£m lO if m is even ,

w0 = log (afd) for each a, b

and, for Re (a) > 0, Gα>d,α(εm) are defined by

Ga,aJΐ) = cosh (wJ2) Γ . f o χ

e " " t

J»o sinh(w/2)

AZso X(VS) a^d £>(V5) should be considered to be zero if VB is m>£

Proof. We select the Selberg kernel for h(r) in the trace formula.

Namely we put

W r ) = 7 Γ ^ - T Γ ^ - ' R e <α>' R e W » °

Its Fourier transform is given by



120 SHIGEKI AKIYAMA AND YOSHIO TANIGAWA

Hence the hyperbolic term which fix hyperbolic points of Γ reduces to

(ll2a)X(D)~ιiB(a). Each term of the right hand side of (36) is easily seen

to be continued analytically to the whole complex plane (with respect to

the variable a). Since the left hand side of (36) is uniformly convergent

on any compact set not containing any ±Vl/4 + λp it is unchanged if we

substitute — a for a.

Therefore we have

2a

= e/β(±id) - J_ α (±id) - Ja(E) - J_a{E) + Ja(H) - J,

+ ja(P) - j_a(P) -

We put

fJfit) =

m — 1
α2 - (1/2)2 α2 - (3/2)2

2 + 4

«2 - ((ι» - l)/2)2

m — 1
α2 - ((m -

Identity, elliptic and parabolic terms can be calculated as follows:

- ϊ)π sin (2πa)

if m is even

if m is odd .

JΛ± id) -J-A+ id) = - δ(D)
cos(2πα) + ( -

= — Σ
2 ^ {ΛJ

%(i?)

#Γ(B) sin β COSTΓO:

X(R) sin (^ - 2θ)a

%Γ(R) sin θ sinπα

Ja(P) - J.a(P) = 2XWD)-1 Σ {--

2a \Γ V2 J

m i s oM

(
Γ \2

where εm is defined as above (c.f. Hejhal [6] pp. 430-444). We consider

Ja(H). We ignore the /3-term in h(r) or g(u) for a while. By Lemma 7,

we have

m — 1
o . d V ^ — **)

= -r— Ga,a,a(sm) —

α2 - ((m -

-fjfit).
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Clearly Ga>dta(εm) can be continued to the whole α-plane as a meromorphic
function. Hence we have

Ja(H) - J.a(H) =

a

c o s h ( ^ Σ 2 ^ / v - α ^ d \Ί
(α — d)a δ V ( α _ d ? 5 ) / J

Next we consider Ja{C). We also ignore the β-term in the following

formula. By the residue theorem, we have, for Re (a) > 0,

2ττ ^=i> (α, d)

^ f
1 Γ /ί(r)(^(l-2/^lr, X) + ^

) ( χ ( g ) . t

αd=D (α, a)

X (-^(1 - 2ΛΛ=ΊΓ, χ)

These integrals can be continued meromorphically to the whole α-plane

with a simple pole at a = 0.

Therefore

Σ ^
or αΐ=i> (α, d)

a \L L L L

Σ ^
a ai=D (a, d)

_ 2 «, X)
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+g(

Because

X (E(l + 2a, X) + — (1 - 2α, %))) .

Γ^ίm + 1 , ..\ , Γ' (m
Γ

ίm + 1, \,Γ'(m + l \ Γ'/β + l , \ , Γ'/e + l \ f , Λ

\-2Γ + ") + TITS" - V = T t V - + V ̂ VΎ- - V -fΛ<x)>
we get the Theorem.

Remark. Let m = 1 and consider the space Lx(l, — 1/4). It is iso-
morphic to the space St(Γ, X) by Lemma 1. We also empoly the Selberg

kernel for h(r). After multiplying the trace formula for B = / % = ( )Γ
V-DvO D'

by a, take the residue at a = 0. Then we get

tr T(B, - 1/4) = $ψ- Res
2

R e s 3 β ( α ) + X ( D ) Σ ffi
«=o 4 {Λ} #Γ(JS) s i n ί

The last sum is equal to zero, because R and ( ~~Λ I i ̂ ί ""Λ 1/

the different conjugacy classes. Hence tr T(B9 -1/4) = (X(D)"72) Res 3̂ (0:).
0

REFERENCES

[ 1 ] S. Akiyama, Selberg trace formula for odd weight I, II, Proc. Japan Acad., 64A,
no. 9, 10, 341-344, 387-388.

[ 2 ] S. Akiyama, Y. Tanigawa, T. Hiramatsu, On traces of Hecke operators for the
case of weight one (in Japanese), Automorphic Forms and Related Topics, ed. by
S. Ihara, RIMS kokyuroku, 617 (1987), 49-65.

[ 3 ] U. Christian, Untersuchung Selbergscher Zetafunktionen, SFB Heft, 28 (1988).
[ 4 ] , Zur Berechnung des Ranges der Schar der Elliptischen Spitzenformen, SFB

Heft, 34 (1988).
[ 5 ] D. A. Hejhal, The Selberg trace formula for PSL (2, R) Vol. 1, Lecture Notes in

Math., Springer, no. 548, (1976).
[ 6 ] , The Selberg trace formula for PSL (2, R) Vol. 2, Lecture Notes in Math.,

Springer, no. 1001, (1983).
[ 7 ] T. Hiramatsu, On some dimension formula for automorphic forms of weight one

II, Nagoya Math. J., 105 (1987), 169-186.
[ 8 ] T. Hiramatsu and S. Akiyama, On some dimension formula for automorphic forms

of weight one III, Nagoya Math. J., I l l (1988), 157-163.
[ 9 ] H. Ishikawa, On the trace formula for Hecke operators, J. Fac. Sci. Univ. Tokyo,

Sec. IA, 20, no. 2, (1973), 217-238.
[10] T. Kubota, Elementary theory of Eisenstein series, Kodansha and John Wiley,

Tokyo and New York, 1973.



SELBERG TRACE FORMULA 123

[11] A. Selberg, Harmonic analysis and discontinuous groups on weakly symmetric
Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc, 20
(1956), 47-87.

[12] Y. Tanigawa and H. Ishikawa, The dimension formula of cusp forms of weight one
for Γ0(p), Nagoya Math. J., I l l (1988), 115-129.

S. Akiyama
Department of Mathematical Science
Graduate School of Science and Technology
Niigata University
Niigata, 950-21
Japan

Y. Tanigawa
Department of Mathematics
School of Science
Nagoya University
Chikusa-ku, Nagoya U6U-01
Japan






