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§ 1. Introduction

The aim of this note is to study birational transformations of three-
folds with nef canonical classes. One would like to write any such map
as a composite of certain simple and basic transformations.

A special case was first considered by Kulikov [Ku] and later exten-
sively studied by several authors. The next main conceptual step was
Reid's study [R2] of small resolutions of terminal threefold singularities.
He obtained the elementary birational transformations as follows: find a
copy of such a small resolution inside the threefold and then replace it
with another resolution. This approach was extended by Kawamata [K3]
to canonical singularities.

If g:X—*X' is a birational transformation between threefolds with
nef canonical classes then using the above results one can start factoring
g into the composite of such elementary transformations. I will call
them flops. It is however not clear that the process will ever stop. The
main contribution of this note is a simple proof of this fact. Besides
extending the scope of applications it allows one to simplify considerably
the proof of the existence of flops given in [K3].

Section two contains a proof of the existence of flops in the terminal
case. This quick proof is based on an idea of Mori. I am grateful to
him for allowing me to present it here. Section three is devoted to a
special case of the termination of flops. In the next section this is used
to solve the above mentioned factorisation problem of birational maps.
Finally in sections five and six a simple proof of the main theorem of
[K3] is given. The arguments show that going from terminal to canonical
singularities is rather easy in all dimensions.

Most of the proofs work for algebraic and analytic threefolds as well.
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16 JANOS KOLLAR

We will work simultaneously in both categories, unless projectivity is
explicitly assumed. This is done in Sections 3.6 and 5.6.

S. Mori, H. Pinkham and M. Reid suggested several corrections and
improvements. I am grateful for their attention. My research was
supported by NSF Grant # DMS-8610730.

§2. Existence of flops; terminal case

The existence of flops for cDV points was established by Reid [R2,
2.12]. Here I present a different approach which was pointed out to
me by Mori. This has the advantage of giving very precise geometric
information.

DEFINITION 2.1. (i) Let /: Z—• Y be a proper surjective birational
map with exceptional set E c Z. Assume that / is small (i.e. dim E <
dimZ — 2). Let D be a divisor on Z such that D is /-ample.

Assume that / is indecomposable (i.e., if /: Z-»Z7->Y and U is
normal then Z = U or Y ~ U). Finally, assume that Kz = f*Kγ. A
proper, surjective small map /+ : Z+ -> Y is called the D-flop of /if D+,
the proper transform of D on Z+, is /+ ample. It is easy to see that
the D-flop of / is unique if it exists. Given Z and D there can be several
maps fi: Z^Ύt such that the above conditions are satisfied. Any of
the ft: Zt -* Yi will be called a D-flop.

(ii) Given Z and D we say that D-flops exist if they exist for every
possible choice of / that satisfies the above conditions. Any resulting
birational may Z- + Z* will be called a D-flop.

(iii) Given Z and D a sequence of varieties and maps (Z\ Dι) and
gt: Zt- +Z**1 is called a sequence of D-flops if (Z°, D°) = (Z, D), each gt

is a D -̂flop and Dί+1 is the proper transform of Dί under gt.
(iv) All the above definitions make sense if D is a Q-Cartier Q-

di visor.

PROPOSITION 2.2. Let f: Z-+Y, D and E be as in 2.1 (i). Let Y' be a

small (formal or analytic) neighborhood of f(E) c Y. Assume that there is
a map t: (f(E), Y')-+(f(E), Yf) such that t induces - id on Pic(Y' - /(£)).
Then the D-flop f+: Z+ -+Y exists and f'1(Yr) = (/^"'(Y7). (The isomor-
phism is not the expected one.)

Proof We construct Z by attaching f~\Yr) and (Y - f(E)) via
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f-\Y') -E^Yf - f(E) - U T - f(E) aY- f(E).

/+ is given as tof on f~\Y') and as / on Y - f(E).

By assumption t~\D\ Y; - f(E)) is linearly equivalent to -D\ Yf - f(E)

thus it extends to a Cartier divisor on f~\Y'). Therefore t~\D) on f'\Yί)

and ΰ on Y — E glue together to a Cartier divisor ΰ + on Z + . By con-

struction D+ is f+ ample. This completes the construction of the JD-flop

and it also shows that / + is protective.

EXAMPLE 2.3. Let Y be a hypersurface singularity of multplicity

two. In suitable coordinates its equation is of the form x\ + /(#2> , xn)

= 0. Let t(x19 x2, , *n) = ( - * „ x2, , * n ) . Then Y/f = (Cn-\ 0). If

g: Y'—>Y/£ is the quotient map then for any Weil divisor D we have

D + ί(D) = g*g*(D) which is Cartier. Thus for any ί-invariant F a Y, t

induces —id on Pic(Y — F).

THEOREM 2.4. Let Z be an algebraic or analytic threefold with terminal

singularities and let D a Z be a Cartier divisor. Then D-flops exist.

Moreover Z and Z+ have the same analytic singularities.

Proof. Let f:Z-+Ybe as in 2.1 (i). From the definition it is clear

that Y has terminal singularities as well and so by [Rl, 0.6] Y is locally

the cyclic quotient of a hypersurface double point X c C4.

By [K3, 3.2] this already implies that Z)-flops exist. We will however

need more precise information.

By [R4, 6.9] we can assume that the coordinates on C4 D X are eigen-

functions of the cyclic group action G and that (x, X) is given by an

equation of the form x2 + f(y> z, u) = 0 or xy + f(z, ύ) = 0.

In the first case the involution t(x,y, z,ύ) = (—x,y, z,u) commutes

with G hence it gives an involution on Y. Thus by 2.2 and 2.3, Z and

Z+ have the same analytic singularities.

In the other case let Zx = ZχγX. Then fx\ Zx ->X is a small partial

resolution. By Mori's classification [Mol] the group G acts on the

coordinates with weights (1, — 1, a, 0) for some a. (u = 0) defines a DuVal

singularity with equation xy + zn = 0 and with a group action (1, — 1, a).

The minimal resolution is obtained by repeatedly blowing up the origin,

thus the group action on the minimal resolution is readily computable.

One sees at once that if a partial resolution B is dominated by the

minimal one then the following hold:
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(i) The cyclic group action lifts to an action on B.
(ii) If z e B is fixed by some non-identity element then it is fixed

by the whole group and in suitable analytic coordinates B is given by
pq + rk = 0 with group action (1, — 1, 6).

We apply this for B = (fx\u) = 0). Since fx\u) in invariant, this
implies that at any fixed point Zx is given by an equation pq + g(r, s)
= ϋ with group action (1, — 1, 6, 0).

Now take t(x, y, z, u) = (y, x, z, ύ). Then t acts as —id on Pic(X — 0).
t acts only rationally on Zx but tGt~ι acts regularly since it leaves the
/y-ample divisor tD invariant. One can easily see that Z + = ZxjtGt~ι is
the D-flop. The tGt'1 action on Zx is easy to compute. It has the same
fixed points as the G-action and using the same local coordinates it acts
with weights (—1, 1, 6, 0). Interchanging p and q shows that

(pq + g(r, s) = 0)/G s (pq + g(r, s) = O^tGί'1.

Thus Z and Z+ have the same analytic singularities. This completes
the proof.

§ 3. Terminal flops: simple case

DEFINITION 3.1. (i) Let X be a normal variety and EaX a prime
divisor. E defines a discrete rank one valuation, denoted by v(E). We
call a valuation algebraic if there is a proper birational map Xr -> X and
a prime divisor £ ' c X ' such that v(E') = v'. We say that z/ has small
center on X if its center has codimension at least two.

(ii) If Kx + Σ a<iFi = &χ + F i s a Q-Cartier Q-divisor on X, and
if /: Y->X is a birational map, then one can write Kγ = f*(Kx + F) +
2] ^(i^ Ei)Eu where the Et are different prime divisors on Y. a(F, Et)
will be called the F-discrepancy of Et. If v(Ei) — υi9 then a(F, υt) = a(F, Et)
is the F-discrepancy of vt. This is independent of the choice of Et and Y.

(iii) If JF is effective, then (X, F) is said to be terminal (resp.
canonical, resp. log-terminal) if a(F9 v) > 0 (resp. > 0, resp. > — 1) for
every v which has small center on X and a(F, Ft) > 0 (resp. > 0, resp.
> — 1) for every ί. In particular, if (X, F) is terminal or canonical then
F= 0.

(iv) Now assume that X is smooth and that Σ-^ί ^s a divisor with
simple normal crossings. Let Z c X be an irreducible and reduced sub-
variety. Let Y = BZX and E the exceptional divisor dominating Z.
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Straightforward computation using adjunction formula for blow ups shows
that

a(F, E) = codim(Z, X) - 1 - ΣF^Z α,.

Taking into account that a(F, Ft) = — ai9 this becomes the nicer formula

(*) 1 + a(F, E) = ΣF^Z [1 + a(F, Ft)] + [codim(Z, X) - #{F, ID Z}].

COROLLARY 3.2. Assume that X is smooth and J^FZ is a normal

crossing divisor. Then

( i ) If 1 > c > — 1 αrcd α(F, Ft) > c for every ί, then a(F, v)>c for

every v which has small center on X and is algebraic.

(ii) If furthermore 0 > c > — 1/2 then there are only finitely many

discrete rank one valuations vό such that a(F, Vj) < 1 + c and Vj has small

center on X.

(iii) Assume furthermore that a{F, Ft) + a(F9 Fό) > 0 if Ft and Fs

intersect. Then any algebraic valuation v with small center on X such that

a(F9 v) < 1 is obtained as in 3.1 (iv) by blowing up a Z c X such that

codim(Z, X) = 2, exactly one of the F/s contains Z and a{F, Fj) < 0 for

Z c Fj.

Proof. L e t Z c X b e a subvariety and let Y= BZX, f: Y->X the
natural projection. If Z is not smooth then Y can have very bad singu-
larities. The simplest way to remedy this is to discard SingZ from X

Let E = Σ - a(F, E^Et. Then Kγ + E = f*(Kz + F). Therefore if a
statement involves the pull back of Kx + F in a tower of blow ups then
we are allowed to prove this for one blow up only.

In order to prove (i) we blow up the center of v on X. (*) implies
the statement for one blow up. Now one can conclude by evoking a
result of Zariski: by repeated blow ups the center of v eventually be-
comes a divisor (see e.g. [A2, 5.2]).

To prove (ii) we blow up Ft Π F3 such that a(F, Ft) + a(F, Fj) is
minimal. (*) easily implies that doing this repeatedly we reach a situa-
tion g: X"'->X such that f*(Kx + F) = Kx,, + F" and F" satisfies the
condition of (iii). Therefore (iii) implies (ii).

To prove (iii) we again proceed one blow up at a time. Let υ be the
valuation obtained by blowing up Z c X If Z £ U Ft then a(F, v) > 1. If
Z is contained in at least two of the JYs then a(F, v) > #{Fί? Ft D Z} — 1
+ ΈiF^z a(F, Fι). The last sum is non-negative by assumption, hence
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a(F, v) > 1. If Fj is the only one that contains Z then a(F, v) > a(F, Fj) +

codim(Z, X) - 1. Thus a(F, v) > 1 + c and a(F, v)<l only if codim(Z, X)

= 2. Since c > — 1/2, the hypotheses of (iii) are satisfied by BZX and we

can use induction to complete the proof.

This result will be used in the following situation.

LEMMA 3.3. Let Y be a normal variety with terminal singularities

and let D = Σ α Λ be an effective Q-Cartier Q-divisor. Let a = max{α*}.

Let f: X-+ Y be a resolution of singularities such that the proper transform

of D and the exceptional divisors cross normally and the proper transforms

of the Z)/s are disjoint For ε > 0 let

Kx = f*(Kr + εD) + Σ a(eD9 F^F,.

If ε is sufficiently small, then all the conditions in 3.2 are satisfied by

(X> Σ αfeA FJFj) and a(εD, F3) > 0 if F3 is f-exceptional. Thus for valua-

tions with small centers on X we have the following two claims:

(i) There are only finitely many v such that a{εD, v) < 1 — εα, and

(ii) if a(εD, v) < 1, then either v is obtained by blowing up a codi-

mension two subvariety B in Y such that D and Y are generically smooth

along B, or v is one of finitely many other valuations.

Finally we have to recall the following result of Shokurov.

PROPOSITION 3.4 [S, 2.13; K-M-M, 5-1-11]. Let (Z, D) be a variety

with log-terminal singularities and let f:Z-+Ybe a small contraction of

a Kx + D — extremal ray. Assume that the log-flip f+: Z+ -> Y and D+

exists. If v is an algebraic valuation, then a(D+, v) > a(D, v) and strict

inequality holds if the center of v on Z is contained in the f-exceptional

locus.

Now we are ready to formulate the main result of this chapter.

THEOREM 3.5. Let X be a proper threefold with terminal singularities

and let D c X be an effective Q-Cartier Q-divisor. Then any sequence of

D-flops is finite.

The proof is a modification of an argument of Shokurov [S, 2.13].

It is especially simple in the case when D = Σ Diy where the Dt are

distinct prime divisors. The general case is postponed until chapter five.

Proof (special case). Let D = 2 A For ε small 3.3 implies that there
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are only finitely many v with a(εD, v) < 1 — ε. Now let (X + , D+) be a

Z)-flop of (X, D). Let E+ a X+ be the exceptional set. X+ is generically

smooth along E+ by 2.4. Let B + have generic multiplicity m along i?+.

If i; is one of the prime divisor obtained by blowing up E+, then a(eD, v)

< a(εD+, v) = 1 — mε. This implies that if we set

A(Z, eD) = 2]Γ #{u I α(« A v) < 1 — yε and ι> has a small center on Z)

then A(Z+, εD+) < A(Z, εD) and strict inequality holds if m > 0.

Since A(Z, εZ)) is a nonnegative integer, it cannot decrease inde-

finitely. Thus if (X, D) = (X°, D°), (X\ Dι), is an infinite sequence of

Z)-flops, then for large ί A(Xl, εD1) is constant and m = 0.

If E c X is the exceptional set, then EDKO by definition; hence

Ed D. If m = 0, then E+ (£ D+. Thus the normalization of Z>+ is ob-

tained from the normalization of Z) by contracting the preimage of E.

Applying this to the sequence (X\ D1), we see that for large i the

normalization of Dί+i is obtained from the normalization of Όι by con-

tracting at least one curve of E. This procedure again must stop.

Therefore the sequence of D-flops is finite.

An easy application is the following (cf. [Mo2]) 0.3.14.1).

PROPOSITION 3.6. Let X be a projectίve threefold with Q-factorίal

terminal singularities such that Kx is nef. Let G C Bir X be a finite

subgroup. Then there is an X birational to X with terminal singularities

such that KΣ is nef and G C Aut X (in the natural way). In general X

is not Q-factorίal.

Proof. Let H be ample on X and let D = ΣgeGg[H]. By 3.5 after

finitely many D-flops, we get an (X\ Dι) such that nKχx + Dι is nef.

Therefore some multiple of it gives a regular birational map X1 —> X such

that nKx + D is ample. The birational G-action on X maps the ample

divisor nKΣ + D into itself; therefore the action is regular (this is quite

easy, see e.g. [Ma-Mu]).

§ 4. Birational maps with K nef

As an application of the previous results we will study birational

maps between threefolds with nef canonical classes. This generalises

earlier results that were mostly restricted to the case of trivial canonical

class (see e.g. Kulikov [Ku], Persson-Pinkham [P-P], Shepherd-Barron
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[S-B], Reid [R2], Kawamata [K3]).

REDUCTION 4.1. If Xf is a threefold with canonical singularities and

Kx is nef then by Reid [Rl, R2] there is a projective and birational map

/: X->X' such that X has Q-factorial terminal singularities and Kx is

still nef. Therefore we will restrict ourselves to threefolds with Q-factorial

and terminal singularities. One should note that an algebraic variety

with Q-factorial singularities can well have singularities that are ana-

lytically not Q-factorial.

If L is a line bundle on a complex space then we will say that L is

nef if it has non negative degree on every compact curve contained in

that space. Note that there might not be any compact curves.

The following lemma will be useful

LEMMA 4.2. Let (x, X) cCn be a three dimensional terminal singu-

larity and let S be a small sphere around x. Then (x, X) is analytically

Q-factorial iff H^XΠ S, Q) - 0 for 0 < i < 5 = dimZΠ S.

Proof, The fundamental group of XΠS is finite cyclic by [R2, 0.6;

G, X 3.4] hence H, = 0. By Flenner [F, 6.1] H2(Xf] S, Z) = Pic(Z - x)

thus (x,X) is Q-factorial iff H\X Π S, Q) = 0. The rest follows from

Poincare duality.

LEMMA 4.3 (Hanamura [Ha, 3.4]). Let X and X' be compact n-folds

with terminal singularities such that Kx and Kx> are both nef. Let g: X~ +

X1 be a bίmeromorphίc map. Then g is an isomorphism in codimensίon

one.

Proof, het Y be a desingularisation of the graph of g and let p: Y

->X and q: Y—>X' be the projections. By Et (resp. Ft resp. Gt) we mean

some non negative linear combination of divisors on Y that are both p

and g-exceptional (resp. p but not g-exceptional, resp. q but not p-

exceptional). Then

Kr = p*Kx + Eί + F1 and Kγ - q*Kx, + E2 + G2.

Since p*{q*Kx, + G2) = Kx we can write

p*Kx = q*Kx, + G2 + (p-exceptional components).

I claim that the p-exceptional component is effective. It is sufficient to

prove this after some further blow ups, thus we may assume that p is
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protective. Now the question is local on X and by repeated hyperplane

section we reduce the problem to the following:

Let /: Z7—• V be a resolution of a surface singularity. Let D be a

Cartier divisor on V and assume that f*D — Όr + G + (/-exceptional

components) where D' is /-nef and G is effective containing no /-exceptional

curves. Then the /-exceptional part is effective. This can be proved

easily; see e.g. [K-S-B, 3.5].

Thus q*Kx, + G2 = p*Kx - E3 - F3; hence Ex + Fx = E2 - Ez - F3.

In particular Ft = Fz = 0. Since X has terminal singularities this implies

that any p-exceptional divisor is ^-exceptional as well. If E C Y is the

union of all p-exceptional divisors then p(E) and q(E) have codimension at

least two and g defines an isomorphism between X — p(E) and X' — q(E).

This was to be proved.

LEMMA 4.4 (Notation as in 4.3). Assume in addition that d i m X = 3

and X and Xf are Q-factorίal. Let D be a divisor on X and let Ώf be

its proper transform on X'. If both D and D' are nef then they are both

numerically trivial along the exceptional loci (i.e. subsets where g (resp. g'1)

is not regular).

Proof. Since D — p*q*D' the previous considerations show that

q*D' = p*D — (effective exceptional divisor). Reversing the roles gives

that p*D = q*D'. If C C q(E) is any curve then we can find a C c Y

such that q(C) = mC for some m > 0 and p(C) = point. Thus mCΌr —

Cq*D' = Cp*D = p(C)D = 0.

COROLLARY 4.5. With the above notation both Kx and Kx, are numer-

ically trivial along the g exceptional loci.

PROPOSITION 4.6. Notation as in 4.4. Then the exceptional loci are

unions of rational curves.

Proof. Let C" C Xf be a component of the exceptional locus and let

E C Y be a divisor such that q(E) = C" and p(E) = C is a curve too.

Let D be a small two dimensional disc intersecting C transversally at

a general point. Then p~\D) Π E is a union of p~\D)-+D exceptional

curves and all these are rational. Since the above intersection dominates

C", it is rational as well.

Remark 4.7. If is likely that the exceptional loci are covered by
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rational curves for dimX arbitrary.

EXAMPLE 4.8. Let S be a surface and embed it into a threefold X

such that its normal bundle is NS]X ~ Ks. (We might not be able to do

this for a compact X. If S is a Del Pezzo surface then one can choose

X to be even projective and of general type.) Let E = {E%) and F = {Fj}

be two sets of —1 curves in S such that within one set the curves do

not intersect. These curves have Θ( — ϊ) + 0( —1) normal bundle in X

and therefore they can be flopped (cf. [Ku]). By flopping all the curves

in the set E one obtains a threefold XE. The proper transform of S is

a surface SE which is obtained from S by contracting all the curves in

E. For each ί there is a curve Ef

t = CP1 contained in XE which intersects

SE in the point corresponding to Et. Similarly one can get XF etc.

The exceptional locus of the natural map XE ~->XF is {2?Q- U {the images

of F5 in SE}. Now let us see some concrete examples.

(i) Let S be CP2 blown up in three general points. Let E be the

set of three exceptional curves and let F be the set of proper transforms

of the three lines connecting our three points. Then SE = CP2 and the

three lines in it are part of the exceptional locus. These lines can move

in CP2 thus the exceptional locus can not be contracted to a point.

(ii) Pick a line and a conic in CP2. Blow up two points on the

line and five on the conic to get S. Let E be the proper transform of

the line and F be the proper transform of the conic. The image of F in

SE will be a nodal or cuspidal rational curve. Thus the components of

the exceptional locus need not be smooth.

In both of the above examples X can be chosen to be projective

and Kx nef.

THEOREM 4.9. Let X and Xf be projective (resp. compact analytic)

threefolds with Q-factorial terminal singularities. Assume that Kx and

Kx, are both nef. Let g: X—+X' be a bimeromorphίc map. Then g can

be written as the composite of algebraic (resp. analytic) flops.

Proof. Let {CJ resp. {C } be the components of the exceptional loci

on X resp. X;. If X; is projective then let Ώr be an ample divisor on

Xr. Otherwise let Όf — UD* where D[ is a small two dimensional disc

intersecting C\ at a general point. Let D c l b e the proper transform

of Df. By 4.4 DCj < 0 for some j .

In the projective case one can use the cone theorem (cf. [K-M-M, 4.2])
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for Kx + εD (ε sufficiently small) to contract some Kx + εZ)-extremal

curves. Since D is ample on X — U Ct the contracted extremal curves

are among the C/s. By 2.4 Z)-flops exist and repeated application gives

an X" and D" such that D" is nef. Since D" is the proper transform

of D on X" we can use 4.4 to conclude that D is numerically trivial

along the X~*X" exceptional locus. D is ample on X therefore the

exceptional locus must be empty and X and X" are isomorphic.

In the analytic case let Er — U-E* be another union of two dimen-

sional discs with the same properties as Df but disjoint from D\ Clearly

Df and E' are numerically equivalent along U C't thus so are their proper

transforms D and E. Therefore there is a j such that DCS = ECj < 0.

By construction D Π E c U Ct thus Cj is a component of DΓ\E. We will

shortly see that Cj is analytically contractible. Assuming this for a

moment one can flop Ct and conclude the proof of the theorem as in the

protective case. The contractibility is given by

LEMMA 4.10. Let X be an analytic threefold and let D and E be

Cartier divisors. Let C c X be a compact irreducible curve. Assume that

C is a component of DOE and that DC < 0, EC < 0. Then C is analyt-

ically contractible.

Proof. Let Ic be the biggest ideal sheaf on X that agrees with

(Θ(-D), Θ(-E))dΘx generically along C. It is easy to check that Ic

and the map Spec ΘX\IC —• Spec C satisfy the contractibility criterion of

Artin [Al.6.2] (see [Bi, 6.1] for the analytic case).

Here are some nice corollaries of 4.9.

COROLLARY 4.11. Notation as in 4.9. Then X and X' have the same

analytic singularities.

Proof. By 2.5 the singularities are unchanged under a flop.

COROLLARY 4.12. Notation as in 4.9. Then g induces an isomorphism

between the intersection homology groups IH^X, Q) and IH^X', Q). If X

and Xf are projectίve then this map (tensored with C) is an isomorphism

of the corresponding pure Hodge structures as well.

Proof. We refer to [G-M] for the necessary definitions. Let f: X-^Z

be a small map between threefolds with terminal singularities. Let h: Y

—> X be a small map such that Y has only analytically Q-factorial terminal
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singularities. By 4.2 Y is a rational homology manifold hence h and fh
are rational homologically small [G-M, 6.2]. Thus by [G-M, 6.2, Theorem]
RhJC'AQ) = IC'AQ) and R(fh)*ICm

r(Q) = IC'Z(Q). Therefore Rf*ICx{Q)
= ίCi(Q) and this yields that IH^Y, Q) = IfliCZ, Q).

Each flop gives a pair of maps X->Z<- X+ and so a pair of natural
isomorphisms IEr,(X, Q) = IH,(Z, Q) = I#*(X+, Q). If X and X' are pro-
jective then each of these steps gives an isomorphism of the natural
Hodge structures [Sa, Corollaire 3]. By 4.9 this completes the proof.

Remark 4.13. (i) The above isomorphism is for unpolarised Hodge
structures only. However in the most important case of Iff3, if hx{X, Θx)
= 0 then the polarisation is given by Poincare duality thus the isomor-
phism preserves polarisation.

(ii) If X" is any smooth projective variety birationally equivalent
to the above X then IH^X, C) is a direct summand of H^X", C), Hodge
structures included. Therefore IHt{X, C) can be viewed as the invariant
part of the Hodge structure on Hi(X/;, C) as X" varies in its birational
equivalence class.

Remark 4.14. Example 4.8 shows that exceptional loci of birational
maps can be quite complicated even when K is nef. It turns out however
that the exceptional locus of a single flop is quite simple. Since these
are the same as exceptional loci of small partial resolutions of terminal
threefold singularities we study the latter instead.

Let /: X-> Y be a small map between threefolds with terminal sin-
gularities. Let E = Ef be the exceptional curves. Rιf*Θγ = 0 implies
that Hι(E, GE) = 0 thus all the Et are smooth and they intersect trans-
versally. Next we will describe the possible configurations of the excep-
tional curves and the indices of the singularities along E. For more
detailed study of a special case see [M].

First we recall results of Reid [R2, 1.14] about the case when X has
index one.

Case 1. X has index one. Let i ί c l be a hyperplane section of
X which has a Du Val singularity at the origin. Then f~\H) C Y is
normal and is dominated by the minimal resolution of H. Thus the
configuration of curves is one of the Dynkin diagrams and every point
of Y has index one. All possible Dynkin diagrams do occur.
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Case 2. X has index larger than one. Let g: Xf -+X be the index
one cyclic cover of X and let /': Yf —> X' be the pull back of / to X'.
Mori [Mol] gave a complete list of the possible covers g: Xf ->X and his
results show that there is always an W C Xr such that W = g~\H) for
some Weil divisor HdX and if7 has a Du Val singularity at the origin.
Thus f~\H) is normal and is dominated by a suitable quotient of the
minimal resolution of H\ This quotient can be readily identified using
Mori's explicit equations.

Next we list all possible configurations. A line segment represents
an irreducible component of E, intersecting segments correspond to inter-
secting components. A represents a singularity of index larger than
one, we write the index under the . We use Mori's convention [Mol]
for the equations and for the group actions.

( i ) xy + f(z, W)lZn(l, - l ,0,o)

example: xy + znU + unlc; E h.Άs\k — 1 components,

(ii) *2 + f + f(z, u2)/Z4(l, 3, 2, 1)

example: xz + y2 + (z + 2M2)(04* + uiH); E has k components,

(iii) x2 + f + f(z, u)lZt(l, 0,1, 1)

example: x* + y* + 2" + w2fc E has k — 1 components,
(iv) u2 + fz + zn + xg(x, y, z, «)/Z,(l, 1, 0, 1)
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example: u2 + y2z + zk + x2k E has k components.

(v) u2 + x* + / + 2£(x, y, z, M)/Z,(l, 2, 2, 0)

The above are the configurations with the maximal number of curves

for the given class of singularities. Of course we can contract any

subset of these configurations. In cases (iii)-(vi) this yields further pos-

sibilities. I do not have examples for most of these cases.

§ 5. Terminal flops, general case

The proof of 3.5 in the general case relies on the same ideas as the

proof of the special case. However, it requires a little more careful

bookkeeping. We start with a few simple observations.

Remark 5.1. ( i ) Let (x, X) be an isolated cDV point. Then X — x

is simply connected by [G, X. 3.4], and hence every Q-Cartier divisor is

C artier.

(ii) Let Ybe a threefold with terminal singularities and D = ΣjajDj

an effective Q-Cartier Q-divisor. Let Nt be the l.c.m. of indices of the

singularities of Y. Assume furthermore that Nza5 is an integer for every

j . Let N == N^. Then by (i) N- D is a Cartier divisor.

(iii) With the above notation, if ( F + , D+) is a ίλflop of (7, Z>), then

ND+ is Cartier again. This follows from 2.4.

DEFINITION 5.2. Let φ: (Y, D) .»•> (7 + , D+) be a ZMϊop and let Ed Y

be the exceptional set. We define

a(D, φ) = min {a(D, υ) \ center of υ is contained in E].

If N is chosen as in 5.1 (ii), then Na(D, v) is an integer where

α(D, v) is as in 3.1. Hence the above minimum is achived by some v if

a(D, v) is bounded from below (c.f. 3.2 (ii)).
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LEMMA 5.3. Let φ: (Y, D)—> (Y+.D+) be a D-flop. Let E c Y and

E + c Y+ be the exceptional sets. Let ? denote the normalization of ?.

Then

( i ) If C c Dj is a curve and if v is the valuation given by the divisor

that we obtain from blowing up C, then a(D, v) < 1 — at If C is not

contained in D, then a(D, v) = 1.

(ii) a(D9φ)<l.

(iii) If 1 — as < a(D, ψ), then E ς£ D3 and E+ qLD], Hence D3 and

Dj are isomorphic.

(iv) If 1 - a5 = a(D,φ) and EdDp then E+ ςtD+. Hence Dj is

obtained from Dj by contracting the components of E.

Proof, (i) is an easy computation. To see (ii) let v be obtained

from blowing up E\ Then a(D, φ) < a(D, v) < a{D\ v) < 1. (iii) and (iv)

follow from (i) and 8.4.

5.4. Proof of 3.5. Let ft: I ; - > I be a resolution of singularities of

X such that h*D is a divisor with simple normal crossings. For our

purpose we can always replace D by εD where ε is a small positive

rational number. Thus we may and will assume that X' and F = h*D

satisfy the conditions of 3.2 (ii).

Let (X,D) = (X°,D°) and let φt: (X\ D<) ~*(X1+ι, D*+1) be an infinite

sequence of D-flops. I want to see that this cannot exist. If we define

N as in 5.1 (ii), then min {a(D\ ψ,)} — k/N for some k. We prove the

non-existence by descending induction on k.

By 5.3 (ii) necessarily k < N. Let Fι be the union of those com-

ponents D) of Dι such that 1 — α ; = k/N.

We consider those valuations υ such that a(D, v) = k/N. By 3.2 (iii)

these come from curves C C F° along which D° is generically smooth,

(we denote these by vc) and finitely many others vί9 , vm.

By 3.2 (iii) if a(D\ v) = k/N for some ί and v, then either v = vG or

v = Vj for some C or j . Furthermore, if the center of υ is contained in

Es C 7% then αφ*, u) > k/N for i > s (3.4). Thus there can be only

finitely many flops ψt such that Et contains the center of some of the

v/s. We can assume that this will not happen if i > ΐ0.

If there is an ίt such that for ί > ίx we have a(D\ <pt) > k/N, then by

induction the sequence (Xu, Diχ), is finite and we are dqne. Otherwise

let us look at the surfaces Fι for i > ί0. If a(D\ <pt) > k/N, then F ' and
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Fί+1 are isomorphic by 5.3 (iii). If a(D\ φi) = k/N then a(D\ vc) = k/N
for some C c J ^ c F * by 5.3 (i). Hence by (5.3) (iv) Fί+ί is obtained
from Fι by contracting Et. We cannot contract infinitely many times.
Thus a(D\ φi) > k/N for i > ix and this completes the proof.

As an application of the general form of 3.5, we give a short proof
of a recent result of Kawamata-Matsuki [K-M].

DEFINITION 5.5. Let X be a variety with canonical singularities. A
proper birational morphism /: Y-+X is called a crepant partial resolution
if Kγ = f*Kz and Y is normal.

COROLLARY 5.6 [K-M]. Let X be a threefold with canonical singular-

ities. Then X has only finitely many projective crepant partial resolutions.

Proof. Let /: y ~ > I be a crepant partial resolution. Then Y has
canonical singularities as well. By [Rl, 2.11] there is a crepant partial
resolution g:Z-^Y such that Z has only terminal singularities. By
[R2, 8.2] there is a small resolution h: U-+Z such that U has only Q-
factorial terminal singularities.

Let p: U—>X be the composition of the above maps. Let D c U be
an effective divisor such that — D is p-ample. The Cone Theorem [K2,
R3, Ko] for Kv + εD gives that there are only finitely many p-extremal
rays, goh: £/—> Y is obtained by contracting some of these extremal rays.
Thus U dominates only finitely many crepant partial resolutions. Therefore
it is sufficient to prove that the number of crepant partial resolutions
with Q-factorial terminal singularities is finite. Let these be pt: Ut -> X.

Let H& — cD be an effective p-ample divisor on U and let Hi C Ut

be its proper transform on Ut. As in 3.6 we get that U is obtained from
JJi by performing finitely many iJ-flops. Thus doing everything backwards
we see that [7* is obtained from U by performing finitely many Z)-flops.

If there are infinitely many £//s, then there are infinitely many finite
sequences of JD-flops. As we saw above, the number of prextremal rays
is finite. Hence the number of Drflops is finite for any j . Thus by
Kόnig's theorem we would have an infinite sequence of Z)-flops. This
contradicts 3.5, and hence the corollary is proved.

§ 6. Canonical flops

In this chapter we prove the existence and termination of flops for
threefolds with Q-factorial canonical singularities. This gives a gener-
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alisation of a result of Kawamata [K3, § 6].
It is worthwhile to note that the result remains true if X is a

threefold with canonical singularities and D is a Q-Cartier divisor. The
existence of Zλflops in this slightly more general situation is implied by
6.6. The same result can be used to reduce the termination to the Q-
factorial case.

Following Kawamata [K3, § 6] the proof proceeds by induction on
the following measure of non-terminality:

DEFINITION 6.1. If X is a threefold with canonical singularities, then
let e(X) be the number of algebraic valuations v with small center on X
such that α(0, v) = 0 (i.e. is crepant).

THEOREM 6.2. Let X be a threefold with Q-factorial canonical singu-

larities. Let D c X be an effective Q-dίvίsor. Then D-flops exist and any

sequence of them is finite.

The proof will be given in 6.8.

COROLLARY 6.3. With the above assumptions assume that Kx \ D = 0.

Then after finitely many D-flops the proper transform of D is either nef

or some component of it is contractible.

Proof. Any sequence of D-flops must stop. Call this (X+, D+). We

still have Kx+ \D+ = 0 by 4.4. By the Contraction Theorem [K-M-M, 3.2.1]

D+ is either nef or some component of it is contractible.

COROLLARY 6.4. Let X be a threefold with canonical singularities

and let vl9 , vk be the crepant valuations centered on X. Then there is

a sequence of maps ft: X̂  ->.Xί_1 and a g: Xo-+X such that

( i ) X09 , Xk are all Q-factorial;

(ii) g is a small morphίsm;

(iii) fi contracts a divisor corresponding to vt and dimN^XJXt-i) = 1

(iv) All the XL are protective over X.

Proof. Let h: Y—>Xhe a maximal projective crepant partial resolu-
tion [R2, 2.11]. As above we may assume that Y is Q-factorial. Let E dY
be any irreducible exceptional divisor. We apply 6.3 for (Y, E). Since
E is exceptional, it will never become nef; hence it can be contracted
after some ίJ-flops. Continuing in this way, we can contract all excep-
tional divisors and this gives Xo -> X.
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If h0: Yo ->X0 is a maximal crepant Q-factorial resolution, then we

contract the divisors corresponding to v29 , vk. With the divisor corre-

sponding to υί we flop until it becomes contractible. This gives Xx. The

others are obtained similarly.

COROLLARY 6.5. Any three dimensional canonical singularity has a

Q-factorίal small partial resolution.

COROLLARY 6.6 (Kawamata [K3, 6.1]). Let X be a three dimensional

canonical singularity and D c X a Weil divisor. Then there is a small

resolution f: X1 ->X such that the proper transform Dι of D is Q-Cartier

and f-ample.

Proof. Let g: XQ —>X be a Q-factorial resolution; let DQ be the proper

transform of D. After some £)0-flops we get Y+ and D+ and D+ is /+-nef

(no contraction is possible). Some multiple of D+ is base-point free and

maps Y+ onto the required X1.

COROLLARY 6.7 (Resolution of the DuVal locus). Let X be a threefold

with canonical singularities. There exists a p: X-^X such that p has at

most one dimensional fibres and p {Sing X) is finite. (I do not claim that

X has isolated singularities).

Proof. In 6.4 we arrange that vl9 , υt dominate the curves of

Sing X and we take X = Xt.

6.8. Proof of 6.2. We use induction on e{X). The case of terminal

singularities is e(X) = 0, this is already settled. Assume that 6.2 is

already proved for e(X) = n. This implies 6.4 for e(X) = n + 1. In

particular since X is Q-factorial, XQ = X and /: Xx -* X is the contraction

of a single extremal ray. We denote this map by /: Xr -> X. We will

use / to lift back the flopping problem from X to X/ where we already

solved it by induction. The proof of the existence part is the same as

in [K3, §6].

6.9. Existence of flops. Let p:X-+Z be a small contraction such

that Kx is p-trivial and D is p-negative. Let /: Xf -> X be the map

obtained above. Let E C Xr be the exceptional surface. By induction

on e(X) the /*Z)-flops exist and terminate after finitely many steps with

(X'+, (f*DY).
Assume first that (f*D)+ is nef on X/+/Z. Then it maps onto some
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X + and there is a divisor D+ c X + such that (f*D)+ = / + *(ΰ + ) where

/ + : X/n" —>X + is the natural map. Assume that / + contracts only finitely

many curves. Then C+ (f*D)+ > 0 unless f+(C+) = point and therefore

C f*D > 0 for all but finitely many curves C (Z X7, a contradiction.

Therefore /+ contracts a prime divisor E*,p+:X+-+Z is small, and

(X + , D+) is the D-flop.

Otherwise (f*D) + is not nef and it defines a divisorial contraction

/ + : X/ + ->X + and (/*£>)+ - /+*(D+) + α £ + for some D+ C Z + and a > 0.

Again I claim that (X+, D+) is the D-flop of (X, D). This follows once

we establish that D+ is X+/Z-ample. It cannot be X + IZ trivial because

then p(D)=p+(D+) were Q-Cartier. If D+ is X+/Z negative, then X τ

^ X and so (/*D) + - /+*(D) = /+*(D+), which contradicts the previous

formula. This proves the existence of the D-flops.

6.10. Termination of flops. This is again done by induction on e(X).

Assume to the contrary that there is an infinite sequence (Xu Dτ). Let

fQ: XQ —> Zo be the map given in 6.8. If /4: X^ -> Xf is already constructed,

then using the notation of 6.9 let X*+ί = X ^ and fί+1 — /t

+. Recall that

we had two different constructions for Xf. We shall say that Xi—>Xi+1

is an Λ -̂fiop if (ffDi) is nef on X'^/Zi and a C-flop if it is not nef.

If Xi-' ->Xί+1 is an iV-flop, then (X'i+1, /f+iA +i) i s obtained from

(Xί? /f J5ί) by finitely many flops. Therefore an infinite sequence of iV-flops

induces an infinite sequence of flops of the pair (X'J9 ffDj). This is

impossible by induction.

Thus in the infinite sequence (Xi9 Dt) there must be infinitely many

C-flops. ΊfXt^Xi+1 is a C-flop, then (/?A)+ - ff+ι(Di+ι) + atEi+1. If ? v

denotes the proper transform of a divisor ? on Xf

Q and if j l 9 , j k are

the first k C-flops in the sequence, then

/0*A = ahEl + + a,βl + <ΛWV

Since all the divisors in the above equality are effective, this is possible

only if ajk—>0 as k —> co.

If there is a natural member M such that M Dt is Cartier for every

i then at is a multiple of \\M for every ί, contradicting ajL -> 0. In order

to find M we use the following result

PROPOSITION 6.11 (Kawamata [K3]). Let X be a threefold with canon-

ical singularities. Let r(X) be the index of X Let D be a Q-Cartier Weil
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divisor. Then N- D is Cartier for some N < b(r(X), e(X)).

Remark 6.12. (i) The above proposition is the content of Step 3 of

§ 6 of [K3]. See also 6.15.

(ii) One can choose b(r, e) = r 32e (see 6.15).

6.13. End of proof. If X-+Z<-X+ is a flop, then r(X) = r(Z) =

r(X+). Hence the indices of the X^s are the same. If Do = ΣbjDi is

its expression as the sum of irreducible Weil divisors, then Dt = 2 bjD{.

Then if the K bj are all integers, then by 6.11 M = K> b(r(X0\ e(X0))l

satisfies the requirements. This completes the proof.

Remark 6.14. Shephered-Barron proved [S-B] that if (x, X) is a three

dimensional canonical singualrity, then the algebraic fundamental group

πx{X — x) is finite. Using 6.12 (ii), one can show that its order divides

r(X) (32eι*y..

Remark 6.15. The proof of 6.11 shows a principle which might be

quite useful in other contexts as well.

Let X be an n-dimensional projective variety with log-terminal singu-

larities and let f: X-+Y be a divisorial contraction with exceptional

divisor E. Then [Mi-Mo, Cor. 3] implies that E is covered by rational

curves C satisfying 0 < -(E + KX)C< 2n - 2.

Assume that X is Q-factorial and let D C Y be a Weil divisor, Ώr aX

its proper transform. For some mx and m2 the divisors mγΌ
r and m2E are

Cartier. -E- C < 2n - 2 implies that 0 < -m2EC < m2(2n - 2). The

divisor (m2E'C)mίD^ — (m^' -C)m2E is Cartier and has zero intersection

with C. Therefore it descends to Y and we see that (m2ίJ C)m1£) is

Cartier. This implies the following.

PROPOSITION 6.16. With the above notation assume that for any Weil

divisor F on X mF is Cartier for some 0 <m< M. Then for any Weil

divisor D on Y mD is Cartier for some 0 < m < (2n — 2)M2.
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