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THE HILBERT SERIES OF RINGS OF MATRIX CONCOMITANTS

YASUO TERANISHI

Introduction

Throughout this paper, K will be a field of characteristic zero. Let
K(xu , xmy be the jK*-algebra in m variables xl9 , xm and Jm,n the
Γ-ideal consisting of all polynomial identities satisfied by m n by n
matrices. The ring R(n, m) = K(xu , xm>//m>7l is called the ring of m
generic n by n matrices.

This ring can be described as follows. Let Xu , Xm be m generic
n by n matrices over the field K. That is Xk = (#iJf(&))> 1 < h j < n>
1 < k < m, where the Xij(k) are independent commutative variables over
K. Then R(n, m) is the if-algebra generated by Xu , Xm. We denote
by KlXijζk)], 1 < i, k < n, 1< k < m, the commutative polynomial ring
generated by the entries of generic n by n matrices X1? , Xm. The
subring of Klxt^k)] generated by all the traces of monomials in R(n, m)
is called the ring of invariants of m generic n by n matrices and will be
denoted by C(n, m). The subring of Mw(i£[xiJ(&)] generated by R(n, m)
and C(n, m) is called the trace ring of m generic n by n matrices and
will be denoted by T(n, m).

The functional equation of the Hubert series of the ring T(n, m) is
proved by Le Bruyn [LI] for n = 2 and by Formanek [F2] for m > n2. We
prove the functional equation in a more general situation (4.3. Theorem).

Our method is as follows. The trace ring T(n, m) is a fixed ring of
GL(n, K) and hence the Hubert series has a integral expression by a
classical result of Molien-Weyl. This formula reduce the problem to a
problem of relative invariants for a torus group. By using a theorem of
Stanley [S], we can prove the desired functional equation.

The rest of this paper was motivated by a result of Le Bruyn [L2],
who treats trace ring of 2 by 2 generic matrices and proved, among other
things, that the trace ring 2\2, m) is a Cohen-Macaulay module over its
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center C(n, m). Giving an explicit form of a homogeneous system of

parameters for C(2, m), we show that T(2, m) is a free module of rank

( Λ ]2m over the polynomial ring B(2, m) generated by elements

m — 1 \ m — 1/

of the homogeneous system of parameters for C(2, m) (8.2. Theorem). As

an example we give an explicit description of C(2,4) and T(2, 4) (9.1.

Theorem).

Procesi [P2] gave an explicit presentation of the Hubert series of

T(2, m) and observed a close relation between the Hubert series of T(2, m)

and that of the homogeneous coordinate ring of the Grassmannian Gr (2, m)

(see [L2]). Then 8.2. Theorem together with Procesi's observation above

suggest that there is a canonical free basis of T(2, m) over the polynomial

ring 5(2, m).

§ 1. Matrix invariants and concomitants

Let G be a classical group in GL(n, if). That is one of the groups,

SL(n,K), SO(n,K), Sp(n, K).

Let V(G, m) be the vector space ®m Lie (G), where Lie (G) denotes the

Lie algebra of G. The group G acts rationally on V(G, m) according to

the formula:

ΊfgeG, (Λ,, .. , A J .

then g(Au •• ,AJ = (Ad (g)Au • • •, Ad (g)AJ,

where Ad (g) denotes the adjoint representation of G.

We denote by K[V(G, m)] the ring of polynomial functions on V(G9 m)

and by C(G, m) the ring of polynomial G-invariants of K[V(G, m)]. Let

K[V(G, m)]d be the iί-subspace of K[V(G, m)] consisting of polynomials

of multi-degree d = (du , dm) e Nm. The rings K[V(G, m)] and C(n, m)

are graded rings:

K[V(G, m)] = ί 6© K[V(G, m)]d,

and

C(G, m) = φ ^ C(G, m)d

where

C(G, m) = K[V(G, m)]d Π C(G, m).
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A polynomial map /: V(G, m) -> Lie (G) is called a polynomial con-

comitant if that is compatible with the action of G i.e., f(g-v) = Aά(g)f(v)

for any g e G and υ e V(G, m).

With T(G, m) we will denote the set of polynomial concomitants.

Then T(G, m) is a C(G, m)-module. Let P(G, m) denote the set of polyno-

mial maps from V(G, m) to Lie (G) and define the action of G on P(G, m)

by

(g f)(v) = Ad {g)f{g-ιυ), ifgeG.fe P(G, m).

Then T(G, m) is the fixed space of P(G, m) under the action of G.

Let Xu , Xm be generic matrices in Lie (G). Then, for each ί, Xt

is identified with the i-coordinate map

{Au ., Am) >Aif (A» - ,AJe V(G, m).

The following theorem is a direct consequence from some result of

Procesi [PI].

1.1. THEOREM. The ring C(G, m) is generated by factors of polynomials

of the form Ύγ(XiχXH< -Xt), where Xtl -XtJ runs over all possible (non-

commutative) monomials in m generic matrices Xu — -,Xm in Lie(G).

§2. Molien-Weyl formula

Let G be a semi-simple linear algebraic group over the complex

number field C and V a G-module. We denote by K[V] the polynomial

ring on V. The action of G on the vector space V can be extended on

K[V] by a canonical way. Let K[V]G be the subring of K[V] consisting

of G-invariant polynomials. Then K[V]G is a graded ring:

K[V]G = 0 K[v]S
deN

where K[v\G is the K-vector space of G-invariant polynomials of degree d.

The Hubert series for the graded ring iffV]6' is the formal power

series defined by

X(K[V]°, ί) = Σ dim K[V}2P .
dβN

The Molien-Weyl formula gives an integral expression for the Hubert

series X(K[V]G, t).

2.1. PROPOSITION. Let T be a maximal torus of a maximal compact

subgroup K of G. If \t\ < 1, then
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--(\-<*»(§)) d g

— tg)

where W is the Weyl group of G and al9 , aN is the set of roots of G

with respect to T and dg is the normalized Haar-measure on T.

Let Vu , Vm be G-modules and set V = 0™ i V*. Then by defining

degtiy 1 < i < m, is to be (0, , 1, , 0), where i~th coordinate is 1, K[V]

is an Nm-graded ring

Corresponding to this decomposition of K[V], we have

κ[vγ - e κ[vγd, κ[vγd = κ[vγ n κ[V]d.

The multi-valued Hilbert series in m variables t = (tu , tm) is defined

by

where if d = (du , dm) e Nm, td = Π ^'..

The Molien-Weyl formula in this case is only a slight modification

of 2.1. Proposition.

2.2. PROPOSITION. Notations being as avobe, if \tx\ < 1, , \tm\ < 1,

|W| J r Πidet ( l - Ug)
2.3. COROLLARY.

where r = rank of G.

§3. Linear diophantine equation

Let au - - , am and b be fixed column vectors in V, and set

E(A, b) = {x = (xu > ,xje Nm, O Λ + + αmxw = 6},

where A is the r by m matrix defined by

A = [di, , α j .
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Let F(A, b, i) be the formal power series in m variables t = (tu , tm)

defined by

F(A, 6, /) =

where if a — (au , am) then ta = t"1 ft\

R. Stanley proved the following

3.1. THEOREM ([S]). Suppose that the system of linear equations axxx

+ + amxm = b has a rational solution a = (au , <xm) e Qm with — 1

< <*i < 0 /or α// / ατιd 1 6 E(A, 0). Γ/ien F(A, 6, /) is a rational function

in t = (ί1? , O which satisfies the functional equation

F(A, 6, r 0 = ( - 1)* tr - tmF(A, - 6, /) .

w /iβre /-1 = (if1, , C )

The next lemma will be used to prove the functional equation of the

ring of polynomial concomitants.

3.2. LEMMA ([Tl] Lemma 1.1). If \t,\ < 1, , \tm\ < 1,

11 K2- ε ιί)

where the integral is taken over the r-dimensional torus T and, if a —

(au ...,ar)eZr, Ea = Π < ^

§ 4. The functional equation of the Hubert series (T(G, m), /)

We return to the situation in section 1. Let Xu , Xm be generic

matrices of Lie (G). Define deg Xt to be the i-th unit vector (0, ,

1, . . ,0)eJVm.

The Hubert series X(T(G, ml t) for the iVm-graded module T(G, m) is

defined by

X(T(G, m), t) = Σm dim Γ(G, m)dt
d.

Let Xm+1 be a new generic matrix in Lie (G). Since the trace Tr (X, Y)y

X, Ye Lie (G), is a nondegenerate bilinear form on Lie (G) X Lie (G), it

follows that T r ( I I m + 1 ) , XeT(G,m) defines an injection from T(G,m)

onto the subspace of C{G, m + 1) consisting of invariants of degree one

in Xm+i. Then by 2.3. Corollary we have
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4.1. PROPOSITION. With notations as 2.3. Corollary, the Hilbert series

X(T(G, m), t) has the following expression

x(T(G, ml,) = i π <i - « - ί ^

By the theorem of Hochster-Roverts [H-R], C(G, m) is a Cohen-

Macaulay domain which is Gorenstein. It follows from a theorem of

Stanley [S] that the Hilbert series satisfies a functional equation of the

form

X(C(G, m), r 1 ) = ± (tu , tmyi(C(G, m), t),

for some a e Z. Here r 1 = (if1, , ί"1)-

In our case, we can determine the integer α.

4.2. THEOREM ([T]). If m>2, the Hilbert series for the ring C(G, m)

satisfies the functional equation

X(C(G, m), r 1 ) = ( - ΐ)*(tu .,tmyi(C(G, m\ t),

where d = (m — 1) dim G and a = dim G.

We prove the same functional equation for T(G, m).

4.3. THEOREM. With notations as before, if m > 3 then the Hilbert

series for T(G, m) satisfies the functional equation

X(T(G, m), r 1 ) = ( - i m , , tmYX(T(G, m), t),

where d = (m — 1) dim G and a = dim G.

Proof. The maximal torus of G is isomorphic to the group

| e < | = 1, r = rank of

and every root aό of G with respect to T can be written as a5 — εaj for

some aj = (aH, , aJr) e Z r, where εα '̂ = ε?^ ε^.

By 4.1. Theorem, the Hilbert series X(T(G, m), t) has the integral ex-

pression. We write the numerator
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in the integral as a linear combination of terms of the form ε~b, where
— b is a vector in Zr of the form

— b = ajx + + α i t + aj (j1 <j2< • < jk).

Then the integral is a linear combination of terms of the form

dεx- - dεr

t V c c
F(b, t) = (2π*f^ϊ-r) ί ^

JT (l-tea')(l-

By 3.2. Lemma, F(b, t) is a Hubert series associated with a system
of linear diophantine equations. If m > 3, this system of linear equations
satisfies the condition of Stenley's theorem (3.1. Theorem) because the
vector & is a linear combination of roots α., with nonnegative integer
coefficients c such that 0 < c < 2 for all j . Therefore we obtain the
desired result because a is a root if and only if — α is a root.

§ 5. The functional equation of trace rings

Let Xu - - -, Xm be m generic n by n matrices. According to the de-
composition of each matrix variable

n

where 1° is a an n by n generic matrix in Lie (SL(n, K)), we have

Γ(n, m) = T(SL(n, K\ m)[Tr (X,), . . ., Tr (XJ] © C(SL(n, k), m).

This remark, due to Procesi [Pi], enables us translate the structure of
the trace ring T(n, m) into that of T(SL(n, K), m).

5.1. THEOREM. // n > 3, m > 2 or n = 2, m > 3, ί/ie Hilbert series
of the trace ring of m generic n by n matrices satisfies the functional
equation

X(T(n, m\ r 1 ) = ( - lY(tu , tJn*X(T(n, m), t),

where d = (m — ί)ήz + 1.

Proof. If m > 3, this is a direct consequence from 4.3. Theorem. If
m = 2, n > 3, it is easy to see that the proof of 4.3. Theorem holds good,
and we obtain the desired result.
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§6. Homogeneous coordinate rings of the Grassmannian Gr(2, m)

First we recall the definition of the homogeneous coordinate ring of

the Grassmannian. Recall that if Ω denotes the set of all one dimensional

linear subspaces in the m — 1 dimensional complex projective space Pm~\

we have an explicit embedding β —• P' v, where N = ί1^) — 1. β is called

the Grassmannian and denoted by Gr (2, m). It is well known that dimen-

sion and degree of Gr (2, m), m > 2, as a projective variety are 2m — 4

and - J L _ ( 2 m - 4) respectively.
m — \\m — 21

Let C[Pij], 1 < i < j < m, be the polynomial ring in the yϊ\ variables

Pij, ^which coordinatize PN. Let / be the ideal of C[ptj] generated by all

the polynomials of the form

The quotient ring C[pij]II is called the homogeneous coordinate ring of

Gr(2, m) and will be denoted by C[Gr(2, m)]. It is convenient to define

degree of ptj is to be 2. Let R2d (d e N) denote the vector space of

C[Gr(2, m)] generated by all homogeneous polynomials of degree 2d:

C[Gr(2,m)] = 0 R2d.
dβN

The Hilbert series for the graded ring C[Gr(2, m)] is calculated by

Hilbert [H]:

%(C[Gr (2, ro)], t) = Σ {d + 1 ) ( f + m -J>. Tf (d + I)2?*.
dN (m — 1)! (m — 2)! i=2

Set, for k = 3, 4, , 2m — 1, θk = J]i+j=TcPij- Then it is well known and

can be easily proved that 03, -,θ2m-i is a homogeneous system of para-

meters of C[Gr(2, TO)]. Since C[Gr(2, m)] is a Cohen-Macaulay ring and
1 /2ττι 4\

degree of Gr (2, m) is 1 ), we have
m — 1 \m — 2/

6.1. LEMMA. The homogeneous coordinate ring C[Gr(2, m)] is a free

module of rank ( m ~ ) over the polynomial ring C[θz, , Θ2m-Λ-
m — lΛra — 2/

We give an integral expression for the Hilbert series of C[Gr(2, TO)].

6.2. LEMMA. The Hilbert series for the ring C[Gr (2, m)] has the fol-
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lowing integral expression

X(C[Gr (2, m)l t) = - * f -JL=jMjze3_dL

Proof. L e t us consider t h e polynomial r i n g C[xu '-',xm,yu ' ', ym]

in 2m independent variables xu > -,xm, yu - • -, ym. The group act ion of

t h e special l inear group SL(2, C) on t h e polynomial r ing is defined by

) g ( \ geSL(2,C\ l<i<

Let R be the ring of invariant polynomials under the action of

SL(2, C). Then R is generated by all invariant polynomials of the form

a = άet(Xi y

and the map θi5 ~> ais defines a degree preserving ring isomorphism

Then, by the Molien-Weyl formula, we have

1(Ώ ή- _i_ ί (1 - ε')(l - ε-2) de

l(Un, t) - -^^= j ε i = i ( i _ ^ ) m ( i _ ^H)m ^

which proves t h e lemma.

§ 7. Rings of invariants of generic 2 by 2 matrices

Let Xl9 -'-,Xm be m generic 2 by 2 matr ices . Let p3, •• ,p 2 ? n _ 1 be

elements of C(2, m) defined by
Pic = Σ T r (-X* X/), 3 < k < 2m - 1 .

ί + j = k

We denote by JB(2, m) the subring of C(2, m) generated by invariants:

7.1. THEOREM. Lβί C(2, m) be the ring of invariants of m generic 2

by 2 matrices. If m > 2 then C(2, jn) is α /reβ module of rank

— 2
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over the ring 5(2, iri).

Proof. Let (Au , Am) be a tuple of 2 by 2 matrices such that any

invariant in Tr̂ XV), Tr(XΊ), p3, ' >Pim-u 1 < i < m vanishes at (Au - , Am).

We first prove by induction on m that any invariant which is not con-

stant vanishes at (Au , Am). If Ax = 0, then our assertion is obvious

by assumption of induction and hence we can assume that Ax is not zero

matrix. Note that Au , Am are nilpotent matrices since Tr (AJ =

Tr (Af) = 0 for £ = 1, 2, , m. Then by a suitable componentwise adjoint

action of the group GL(2, K) on the matrices Al9 , Am, we can assume

that Aj has the form

0 αΛ
j , for some ax — 0.

In general, let J3 = (/ , Ί be a nilpotent 2 by 2 matrix which satis-

fies the equation Tr {AXB) = 0. Then we have

X
and hence b3 = 0. Since J5 is a nilpotent matrix, B has the form

(0 b\
D

" \o o
By using this fact and the equation p3 = =/?2m_1 = 0 successively,

one observe that each matrix A€ has the form

il9
This implies that Tr (Aiι9 , Aik) = 0, for any monomial Ai

and hence any invariant which is not constant vanishes at (Al9 , Am).

Therefore it follows from a fundamental theorem of Hubert [H] that

C(2, m) is integral over the polynomial ring S(2, m). Since Krull dimen-

sion of C(2, m) is Am - 3, it follows that Tr(2Q, Tr (XJ), p3, ,p2m-i is

a homogeneous system of parameters of the ring C(2, m). Then the

Cohen-Macaulay property of the ring C(2, m) implies that C(2, ?n) is a

free module over the polynomial ring B(2, m). Then by [T2], rank of
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C(2, m) over B(2, m) is
m — 1\ m — 2

§ 8. Trace rings of generic 2 by 2 matrices

We now turn to cosideration of trace rings of generic 2 by 2 matrices.

Procesi [P2] proved a one-to-one correspondence between a If-basis of

the ring T(SL(2, K), m) and standard Young tableaux of shape a = 3α2δlc

for all α, b, c e N.

Procesi's theorem in particular gives an explicit presentation of the

Hilbert series of the trace ring T(SL(2, K), m)

(T(SL(2, K), m) = Σ La,,,c t*a+u+c

a,b,ceN

where Lα,6,c is the number of standard Young tableaux of shape 3α2δlc

filled with indices from 1 to m.

From this fact Procesi (see [L2]) observed the following proposition

and gave an elegant combinatrial proof of the functional equation for

the Hilbert series X(T(2, m), t). We give here a simple direct proof of

Procesi's observation.

8.1. PROPOSITION. Let X(T(2, m), t) be the usual Hilbert series in one

variable t for the trace ring T(2, m). Then we have

X(T(2, m\ t) = (1 - t)-^X(C[Gτ (2, m)l t).

Proof. By the Molien-Weyl formula for the trace ring T(2, m) we

have

m) t) = 1 f (2 + ε + e-')(l - e)(l - *-') dε

by 6.1 Lemma.

8.2. COROLLARY.

, m\ t) =
ίfm V (m - 1)! (m - 2)\ « v

The proposition above links the Hilbert series of the trace ring T(2, m)

with that of the homogeneous coordinate ring of the Grassmannian Gr(2, m).

Le Bruyn [L2] proved that T(2, m) is a Cohen-Macaulay module over
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the ring C(2, m). Recall that Tr (X,), Tr(XJ), p8, 5p2 r o. l 5 1< f < m, is
a homogeneous system of parameters of the ring C(2, m). Then the
Cohen-Macaulay property of the trace ring T(2, m) says that T(2, m) is
a free module over the polynomial ring B(2, m). Therefore we obtain

8.3. THEOREM. The trace ring T(2, m) (m > 2) is a free module of

rank ( o ) 2m over the polynomial ring B(2, m).
m — 1\ m — I /

Proof. Note that the map 0* -> p* (3 < i < 2m — 1) defines a degree
preserving isomorphism

, 02W-J • K[pt9 - - ,i?2m.J .

Then the theorem follows from 6.1. Lemma and 8.1. Proposition.

The following proposition gives relations in the ring T(SL(2, K), m)
corresponding to the Plϋcker relations

PiiiiPiiu — PiittPuu + PuuPiiU > 1 < ii < h < h < h < m.

8.4. PROPOSITION. Let Xil9 Xi2, Xlz, Xu be 2 by 2 matrices whose traces
are all zeros. Then the following relation holds.

X^XigXi^Xi^ ir {XίlXί2)XίsXίi + Γr (X^XtjX^X^

- Ύr (XMX^Xu - Tτ(XitXt)XtιXtt + Tr (X^XJX^Xu

+ Tr (Xt,Xi3)XHXu + l-{Tr (XUXH) Tr (XhXt)

- Tr (XM Tr (Zί2X{4) + Tr (XiχXt) Tr (X^XU)} = 0 .

Proof. Recall the multi-linear Caylery-Hamilton theorem for 2 by 2
matrices A and B:

AB + BA- Ίr{A)B - Tr(JS)A + Tr(A)Tr(JB) - Tr(ΛS) = 0.

Applying the multi-linear Cayley-Hamilton theorem, we have

Xi1Xi2 X-h'X-iι ~^~ XίsXίiXίi^ ί2 l r (.XiiXijXiiXit — ±£ \XlzXtjXiiXl%

+ Tr (XM Tr (XM ~ Tr (XHXi2XHXu) = 0 ,

and

ί 3 ί 4 ϊ ί 2

 = X^XiiXizXii + Tr {XHXi^XizXu + Tr (X^X^X^X^

- Tr (XM Tr (XM + Tr (XtiXJ Tr (X
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Hence we have

( * ) 2X<1X«,X<iX<4 - Tr (XίtXi2)XuXu + Tr (X^

- Tτ(XtlXJXt9Xu + ΎriXMX^ + Tr (X^XJ
+ Tr (XM Tr (XM - Tr (XHXU) Tr (Xί2Xu)
+ Tr (X^XJ Tr (Xί2Xί3) - Tr (XtlXivXttXt) = 0 .

We claim that

2 Tr ( X ^ X ^ X J = Tr (X4lX<a) Tr (X<SXJ - Tr (X4ιX<3) Tr (Xi2Xί4)

Since both sides of the equation above are linear with respect to matrices

Xiχ9 - , Xii9 the claim is true if it is true when each Xt is replaced by

one of matrices consisting of a basis of Lie (SL(2, m)). This can be easily

verified. Then the lemma follows from the relation (*) and the claim.

§9. An explicit description of C(2, 4) and J(2, 4)

Explicit description of the rings of invariants and the trace rings of

two and three generic 2 by 2 matrices are given in [F-H-L], [Fl] and

[L-V]. They showed:

(1) C(2, 2) = B(2, 2) and Γ(2, 2) is a free C(2, 2) module with basis

1, Xu X2, XiX29 (see [F-H-L]).

(2) C(2, 3) is a free B(2, 3) module with basis 1, Tr CXiX2X8) (see

[F2]) and Γ(2, 3) is a free 5(2, 3) module with basis 1, Xu X2, X,, XtX2,

XΛ, X2X3, X1X2X3 (see [L-V]).

In this section we will give an explicit description of the ring of

invariants and the trace ring of four generic 2 by 2 matrices.

9.1. THEOREM. (1) C(2, 4) is a free module over the polynomial ring

5(2, 4) with basis 1, Tr (X2X4), Tr ( M ) 2 , Tr (X^)8, Tr (MX 3 ) , Tr (X^XJ,
TrίXΛXi), Tr(X2X3X4).

(2) T(2, 4) is a free module over the ring B(2, 4) with basis 1, Xi9 XiXj9

* X,X2XΛ, TrίXΛ), Trί^XJX,, Tr

, 1 < i < 4, l < i < j < 4 , l < i

Proof. Formanek [F2] calculated the multi-valued Hubert series:

X(T(2, 4), t) =
(1 - ί)4(l -
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It is easy to prove (2) by using 8.3. Theorem, 8.4. Proposition and the

formula above. The trace map T: T(2, 4) —> C(2, 4) is surjective and hence

(1) follows from (2), 7.1. Theorem and the following relation

2 Tr ( M M ) = Tr (XλX2) Tr (X3X4) - Tr (XXXZ) Tr (X2X4)

+ Ύτ(X1X4)Tτ(X2X3),

where Tr (X,) = 0, for 1 < i < 4.
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