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SOME REMARKS TO ONO'S THEOREM ON A GENERALIZATION

OF GAUSS' GENUS THEORY

RYUJI SASAKI

Let K\k be a finite Galois extension of finite algebraic number fields

with Galois group g. We denote by Gm the multiplicative group defined

over the rational number field Q and put

GmtK = Spec(K) X Gm, Gm,* = Spec (A) X Gm .
Spec(Q) Spec(Q)

Let i?g}fc(Gm) denote the kernel of the norm N: RK/k(Gm,κ) -> Gm>k, where

Rκ/k is the Weil functor of restricting the field of definition from K to k;

then we have an exact sequence of tori defined over k and split over K:

1 > R{UGm) > Rx/*(GmtK) > Gm,k > 1 .

In [3] T. Ono defined the class number h(T) of an algebraic torus T

intrinsically and it follows that h(Rκ/k(GmyK)) and h(Gm,k) coincide with

the class numbers of algebraic number fields K and k, respectively. As

a generalization of Gauss' genus theory, he investigated the alternating

product

h(K)

h(k)h(R$k(Gm))

and proved in [7] the following, using the class number formula and the

Tamagawa number of tori established by himself (cf. [3, 4]),

E(Klk) = ^C a r dJ^°fe' J7^) Card (Ker (ff°(8, K*) > H%& Kfi)
[

where K% and Uκ are the idele group of K and its unit subgroup, Qf is

the commutator subgroup of g and iϊo(g, —) is the 0-th cohomology group

modified by Tate.

The purpose of this paper is to give an analogous formula for class
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numbers in the narrow sense. Forgetting the total positivity, the proof
of our formula becomes a simple proof of the Ono's theorem.

After we explain the tools we use in Section 1, we recall the defini-
tion of the class number of algebraic tori following [3] in Section 2. In
the following Section 3, we shall prove our main theorem. Applying our
formula to cyclic extensions, we shall obtain the formula for the number
of ambigous classes in Section 4. In the last section we shall notice that

E{KnjKt) = 1

where Kn and K+ are the n-th cyclotomic field and its maximal real
subfield.

§ 1. Preliminaries

In this section we enumerate tools we use. For a group A, let |A|
be the order of A. We treat abelian groups multiplicatively. If a homo-
morphism / of abelian groups has finite kernel and cokernel, we put

which is due to Tate.

SNAKE LEMMA. Let

1 —

1 —

off)

->A' —

{'•

| Coker/|
|Ker/|

-* A > A"

I' ϊr

-> B > B"

be a commutative diagram of abelian groups whose lines are exact; then
we have an exact sequence:

1 > Ker f • Ker / > Ker /"

> Cokerf • Coker/ > Coker/" > 1 .

LEMMA 1. Let the notation be as in the above lemma. If two of q(f'),
q(f) and q{f") are defined, then the third one is defined and we have

q(f) = q(f')q(f") .

LEMMA 2. Let f: A-> B be a homomorphίsm of finite abelian groups
then we have

= \B\l\A\.
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LEMMA 3. Let f: A —> B and g: B —> C be homomorphίsms of abelian

groups such that both of q(f) and q(g) are defined; then q(g f) is defined

and we have

q(g'f) - q{f)q{g)

§2. Class number of algebraic tori

Following [3], we recall the class number of algebraic tori.

Let T be an algebraic torus defined over a finite algebraic number

field k. For any place υ of k, let kυ be the completion with respect to

v, then the group T(kv) of £υ-valued points of T becomes a locally com-

pact abelian group and if v is finite it contains the unique maximal com-

pact subgroup T(Θυ) where Θυ is the ring of integers in kΌ. The group

T(kA) of the adele ring valued points of T can be identified with

\VT(kυ)

where v runs over the set of places of k and ' is the restricted direct

product with respect to {T(Θυ)}. We define the unit group by

uτ = π W x Π

where p runs over the set of finite places and u runs over the set of

infinite places. We define the class number h(T) of T by

= [T(kA):T(k).Uτ]

where the group T(k) of ^-rational points of T is regarded as a subgroup

of T(kA), and it is known that h(T) is finite (cf. [3], Theorem 3.1.1).

Let K/k be a Galois extension of finite algebraic number fields. Let

Gm%κ and Gmk be multiplicative groups defined over K and k, respectively.

We define the norm torus iϊ^}fc(Gm) by the kernel of the norm homomor-

phism iV: Rκ/k(Gm,κ) -> Gmjfc, where Rκ/k is the Weil functor of restricting

the field of definition (cf. [12]). Let NA: K^-> k$, NΌ\Uκ-> Uk and Nκ/k:

Kx -> kx be the norm maps, where Uκ and Uk are unit groups of K£ and

k%, and Nσ is the restriction of NA. We put KA

1} = Kev NA, E7g> = Ker Nσ

and K{1) — KeτNκ/k. In general, for a commutative ring J?, we denote

by Rx the group of units.

PROPOSITION 1. Notation being as above, we have
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Proof, Using some results proved by Weil (cf. [12], Chapter I), we

have the following commutative diagrams:

Ά Gm,k(kv)

( 2 ) \\ \\ (v: any place)

where V runs over the set of places of K lying over υ and Nυ((xv)v)

11 V)υ -NKv/kυ\
Xv)'

( 3 ) h I1 ($: finite P l a c e )

9} |D IV »

( 4 )

By (1) and (4), we have

and

D(i) (n \(U \ τr<χ)

Moreover by the maximal compactness we have

R(κ/k(Gm)((Pp) = Ker N9 Π Π i

and
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§ 3. Ono invariants E(Kjk) and E+(K/k)

If F is a finite algebraic number field, denote by PFy IF and HF the

group of principal ideals, the group of fractional ideals, and the ideal

class group of F. For a subgroup A of F we denote by A+ the subgroup

of A consisting of totally positive elements. Let K/k be a finite Galois

extension of finite algebraic number fields with Galois group g. We define

relative class numbers h(Klk) and h+(K/k) by

and

Let Jg> be the kernel of Nκ/1ύ: Iκ -> Ik, Pψ = Pκ Γ) !£> and Pg ) + the sub-

group of P{£ consisting of principal ideals generated by totally positive

elements.

PROPOSITION 2. Notation being as above, we have

h(Klk) = l1^' P^m n Nκ/kK-: Nκ/kΘ^]
[UKHNAKZINVUK]

and

ί Π ^ g ^ Γ Π NκlkK-:NκlκΘr]

Proof. We shall prove the second equality only, because a similar

argument without " + " yields the first one. Consider the following com-

mutative diagrams:

κ

\\N \N \N

1 >Uk >kA

and

I"*,. ί. \
Applying the snake lemma to these diagrams, we have two exact sequences:
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and

where I m ^ = Uk Π NK^NUK, ϊm£2 = 0£+ Π NKX+/NΘ%+ and these are

finite abelian groups. Therefore we have a commutative diagram:

hence, by Lemma 1, we have

[^:P2>+] = |Coker/| = q(f) = q(f')q{f")

We define Ono invariants by

h{k) h{Kjk)

and

E*(Kjk) = I

where h+{k) is the class number in the narrow sense, i.e., the order of

the group H% = IkjPt and so on. By Propositions 1 and 2, we see that

E(Klk) is nothing but the original one defined by Ono (cf. [5, 7]). The

first part of the following Theorem 1 is due to T. Ono and the second

one is our main theorem, whose proof becomes a simpler one than the

proof given by Ono (cf. [5, 7]), which is our motivation to write this paper.

THEOREM 1. Let Kjk be a finite Galois extension of finite algebraic

number fields with Galois group g; then we have

E(Klk) = tg(3, Uκ)\ IKer (ff°(g, K*) • ff°(8, Kj))\

and

E+(Klk) =
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where φ: kx+/NKx + —> kxjNKx is the canonical homomorphism.

Proof. We shall prove the second formula only. Let a: kx/NKx —>

k^jNK^ be a canonical homomorphism; then, by Lemma 3, we have q(d φ)

= q(φ) q(d) and we put ά-φ = a. Consider the commutative diagram:

1

then

( 0 )

we

•» U11

have

"+ n

X
NKX

q(a

a a"

kjNKA

q(a) = q(φ) q(a) = q(a'Ma") .

First we shall compute q(a;). Applying Lemmas 1 and 2 to the com-

mutative diagram:

1 > 0? + Π NKx+jNΘl+ > Θl + jNΘl+ > Θ^\Θl+ Π NKX+ > 1

I"
t H N U κ > UJNUK

we have

(1) a(af

q{bf) [0£-: NΘr] [Uk Π iVXJf: NE7J

where [t/fc: NUk] = \H\Q, Uk)\9 because Uk = C7t.

Secondly we shall compute ^(α"). Applying the snake lemma to the

commutative diagram:

I Nf N IN"
y v Y

we have an exact sequence:

1 > P$ + > /§> > Ker N"

-^-> Pϊ/NPi -^> hlNIκ > Coker iV;/ > 1

l< w [,
:+'Nκx+—>kx

A\υϊ

a"
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Therefore we have

( 2 ) ^ α / / ) = ?( c ) = ! C o k e r N" I/I K e r c I = 1 C o k e r N" I t 7 * : p(κ +

).[Γ2: P$+] = [Jg>: P$]h+

Thirdly we shall compute q(ά). From the exact sequence

1—¥K*—+Kϊ—*C][-^l

where Cκ is the idele class group, we have a long exact sequence:

where H«(g, i ί x ) = {1} and #°(g, C,,) s g/g' (cf. [1]). Thus we have

( 3 ) q(a) = q(ψ) • q(a) = q(φ) J§L^L.
f Ker a]

Combining (0), (1), (2), (3), we have the formula. Q.E.D.

§ 4. Cyclic extensions

Let Kjk be a finite cyclic extension of finite algebraic number fields

with Galois group g = <cr> and |g| = n. We denote by p the number of

real infinite places ramified in Kjk. We put

e = Π e%

where p runs over all finite places and e% is the ramification index of

any place 5β lying over p.

LEMMA 4. Let Kjk be a finite cyclic extension; then we have

Proof. We use the commutative diagram:

^ >JJ > K* π κ > I >1

\N [N lN

-j γr 7 x x -
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Let a be an idele in K% such that Na e Uk. Set πκ(a) = α, then (1) =

πk(Na) = N(πκ(a)) = Na. By Hubert's Theorem 90 for ideals, we get an

ideal q in Iκ such that a = tf~σ. If 6 is an idele in K% such that πκ(b)

= q, then we have πκ(a-(bι~a)~ι) = α α"1 = (1); hence there exists ueUκ

such that a^bλ-σ-u. Therefore we have Na = N(bι-σ)N(u) == NueNUκ.

Q.E.D.

LEMMA 5. Lei 99: kx+/NKx + ->kxjNKx be a canonical homomorphism

for a finite cyclic extension K/k; then we have

q(φ) = 2".

Proof. We denote by μ2 the group consisting of + 1 and — 1. Let

{<?!, * , σr} be the set of real imbedding of k and {σ^ll ^ i <£ r — p, 1 ^

7 ^ 7i = |g|} the set of real imbedding of K where {σlj)\l ^j^n} is the

set of extensions of σ4 to if. Define Sκ\ K-> μξ, R — n(r — p), by

Sκ(a) = (sgn a?{a\ , sgn <7^>))

and Sfc: k -> /ij by

Sfc(α) = (sgn ^(α), , sgn σr(a)) ,

then we have a commutative diagram:

Y

where N" is the homomorphism defined by

p(n)
ε l

Applying the snake lemma to this, we have an exact sequence:

• Ker NΠ > kx+/NKx+ -^-> kxjNKx > Coper N" • 1.

By Proposition 1.1 in [2], we have |Ker^| = 1. Therefore we have

q(φ) = [CokeriV^I = 2P.

Q.E.D.

THEOREM 2. Let K\k be a finite cyclic extension', then we have
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2" e
E(K/k) =

n-\H%Q,&$)\ \H\%,Θl)

and

E*{Klk) = _ — -

Proof. Since Kjk is cyclic, we have

|Ker (£P(g, K*) —-• H\Q, K$)\ =

and

H°(Q9Uκ) = e.2>

(cf. [1]). As is well known, we have

(cf. [10] CH. 13). Therefore, by Theorem 1, we have the first two equalities

in the first formula. Since the following two homomorphisms are isomor-

phisms :

Θψ = {ue Θl\Nu = 1} • Z\§, 0® (u , > (u, u1+% . . .,Nu))

and

we have the third equality.

Now we shall prove the second formula. By Theorem 1, Lemma 5

and the above argument, we have

ft * \βk + : NΘκ+] - q(φ) n

Q.E.D.

Let a(K/k) and a+(K/k) be the numbers of ambigous classes, i.e., the

numbers of ideal classes in Hκ and i?£ invariant under the action of g.

COROLLARY. Notation being as above, we have

a(K/k) == ^
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Proof. By Proposition 2, Lemma 4 and Theorem 2, we have the above

two formulas. Q.E.D.

Remark. The first formula in the Corollary is classical (e.g. cf. [10]).

The second one is proved by G. Gras [2] in the case where Klk is a cyclic

extension of a prime degree.

§ 5. Cyclotomic fields'50

Let K he a. CM field, i.e., a totally imaginary number field containing

a totally real subfield K+ with [K: K+] = 2 . We denote by Wκ the group

of roots of unity in K. Define a homomorphism

g: Θl >Θl

by g(u) = u/uJ, where J is the complex conjugation. Then g induces an

isomorphism

®l\Θl, Wκ > g(Θl)lg(Wκ)

and we have g(Θ%) c WK9 Kerg = <%+ and g(Wκ) = W2

K. We denote by Q

the index [Θ^\ Φκ+-Wκ]; then it is equal to 1 or 2. For details we refer

to [11].

THEOREM 3. Let K and K+ be a CM field and its maximal real sub-

field; then we have

E(KIK+) = 2 ί - 1 Q

where t is the number of finite places ramified in K/K+.

Proof. I f a u n i t u i n Θκ s a t i s f i e s u1 + J = u-U = 1, t h e n a n y c o n j u g a -

t i o n uσ (σeGal(K/Q)) of u s a t i s f i e s \uσf = uσ*ϋf = u σ ' ( ΰ ) σ = {u>U)σ = 1;

hence, by Kronecker's Theorem, we have w e W .̂ Since Wκ C ^ } =

{we^έ|w1+J = 1}, we have Wκ = ^ } ; hence we have

Therefore we have, by Theorem 2,

: Wi] = 2^ Q.
Q.E.D.

*) T. Ono obtained the results in this section.



142 RYUJI SASAKI

COROLLARY. Let Kn and K+ be the n-th cyclotomic field and its maximal

real sub field; then we have

Proof, If n is odd, we have Kn = K2n; hence we may assume that

n = 1 (mod 2) or n = 0 (mod 4). If n is equal to a power pm of a prime

p, then Q = 1 and KpmIKpi is ramified at the only prime lying above p.

If n is not a power of a prime, then Q = 2 and KJK+ is unramified

except at the infinite places (cf. [11]). Q.E.D.
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