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TORUS-EQUIVARIANT VECTOR BUNDLES

ON PROJECTIVE SPACES

TAMAFUMI KANEYAMA

Introduction

For a free Z-module N of rank n, let T = TN be an ^-dimensional

algebraic torus over an algebraically closed field k defined by N. Let

X = TN emb (A) be a smooth complete toric variety defined by a fan Δ

(cf. [6]). Then T acts algebraically on X A vector bundle E on X is

said to be an equivariant vector bundle, if there exists an isomorphism

ft: t*E-+E for each /^-rational point t in T, where t: Z - > X i s the action

of t Equivariant vector bundles have T-linearizations (see Definition 1.2

and [2], [4]), hence we consider T-linearizsd vector bundles.

The 72-dimensional projective space Pn has a natural action of T and

can be regarded as a toric variety. In [4], we classified indecomposable

equivariant vector bundles of rank two on F2. When n > 2, Hartshorne

[3] constructed vector bundles of rank two from codimension two sub-

schemes satisfying certain conditions. Bertin and Elencwajg [2] then used

this method to construct equivariant vector bundles of rank two on Pn

and showed that there exist no indecomposable equivariant vector bundles

of rank two on Pn which are obtained in this way.

In this paper, we generalize our method in [4] to show that there

exist no indecomposable equivariant vector bundles of rank r (1 < r < ή)

on Pn (Corollary 3.5) and that indecomposable equivariant vector bundles

of rank n on Pn are isomorphic to E(d) or E*(d) for some integer d,

where E is defined by an exact sequence

0 • ΘPn > © ΘPn{aτ) > E > 0
i = 0

for positive integers at.
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§ 1. Preliminaries

Let N be a free Z-module of rank n. Let M be the dual Z-module
of N. Then there is a natural Z-bilinear map

< , >: MxN >Z.

It can naturally be extended to MR X NR -> R, where MR = M ®z R and

iVβ = N®ZR. We denote p(£) = <<?, ̂ ?> for f in MR and ^ in NR. Let

T7 = T7^ be an ^-dimensional algebraic torus defined by N over an alge-

braically closed field k. Then we can identify M with the additive group

of characters of T. Let X = TN emb (J) be a smooth complete toric

variety of dimension n defined by a fan Δ of 2V for which the reader is

referred to [6].

DEFINITION 1.1. An equivariant vector bundle £ on I is a vector

bundle on X such that there exists an isomorphism ft: t*E —> E for every

^-rational point t in ϊ7, where t: X—> X is the action of £ on X.

DEFINITION 1.2. An equivariant vector bundle E = (Z?, /£) is said to

be ^-linearized if fw — fv o t'*(ft) holds for every pair of ^-rational points

t, V of T, where

In [4], we showed that an equivariant vector bundle necessarily has

a ^-linearization. We also studied how to describe Γ-linearized vector

bundles in terms of fans, as we now recall.

We denote by Δ(l) the set of /-dimensional cones in Δ. For C in

Δ(l), there exists a finite subset {<pi9 , φt} of JV such that C = RQφι +

+ Roψι, where i?0 is the set of non-negative real numbers. We say that

{ψu '"9 ψι\ is t n e fundamental system of generators of C if ψt are primitive,

i.e., ψt is not a non-trivial integral multiple of any element of AT. The

fundamental system of generators {φ19 -φt} of C is uniquely determined

by C and is denoted by |C|. We consider the following:

( I ) m: { |C' | |C'eJ(l)} > Z®r

sending φ to m(φ) = (m(φ)l9 , m(φ)r), and for every C in Δ(n)

mc: \C\ >Z®r

so that there exists a permutation T = τc such that

mc(ψ) = (mc(φ)l9 ',mc(φ)r) = (m(9)r(1), , m(φ)τ{r))
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for every φ in |C|.

Let C be an n-dimensional cone in Δ(ή). Then we have a set of

characters {ξ{C)u , ?(C)r} in M by solving, for each 1 < i < r, the

equations φ(ξ(C)i) = m c ( ^ for every p in. |C|. Then it is easy to see that

(I) is equivalent to the following:

(Γ) ξ: Δ(n) >M®r

sending C to ξ(C) = (f (C)1? , ?(C)r) such that there exists a permutation

τ = rC5C, for every pair of cones C and C" in zf(τz)5 so that φ(ξ(C)ϊ) =

p(f(C0r(i)) for every i and every 9 in |C | (Ί |C' |.

(II) P: Δ(ή)X Δ(ή) > GLr(k)

sending (C, CO to P(C, CO = (P(C, 0%,) such that P(C, C% ψ 0 only if

φ(ξ(C)i) > φ(ξ(C')j) for every ψ in |C | Π \C'\ and that

P(C, C0P(C/, C;/) = P(C, C70

for every C, C, C;/ in Δ(ή).

For (m, P) defined by (I) and (II), we denote by E(my P) the Γ-linearized

vector bundle obtained from (m, P). We refer the reader to [4] as for the

construction of the T-linearized vector bundle E(m, P).

(III) Two pairs (m, P) and (m\ Pr) defined by (I) and (II) are said to

be equivalent if there exists a permutation τ — τc for every C in Δ(n)

such that

(mc(φ)l9 - ,mc(φ)r) =

for every ^ in |C | and if there exists

σ: Δ(n) > GLr(k)

such that a(C)ij ψ 0 only if φ(ξ(C\) > ^(f(C);) for every φ in |C | and such

that

PXC CO - σ(C)"1P(C, C0σ(C0

holds for every C and C/ in J(^ι).

THEOREM 1.3 (cf. ([4]). Let X = TN emb (Δ) be a smooth complete torίc

variety defined by a fan Δ. Then the set of T-linearized vector bundles of

rank r up to T-isomorphism corresponds bijectively to the set of (I) (or (F))

and (II) up to the equivalence (III).

Remark 1.4 Let Dφ be the divisor corresponding to the cone RQφ in

Put mφ = m(ψ) where m is defined by (I) in the case r = 1. Let
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P(C, CO = 1 for every C and C" in J(ή). Then the Γ-linearized vector

bundle E(m, P) is the line bundle Θx{— V ^ D f ) , where the summation

is taken over φ in {| C \ \ C e Δ{1)}.

Remark 1.5. Let E — E(m, P) be the T-linearized vector bundle of

rank r defined by (m, P). Then E® Gx{- Σ ™*A>) is T-isomorphic to

E(m', P), where

m'(φ) = (m^X + m9, ',m(φ)r + m̂ ,)

for every ^ in { |C| |Ce J(l)}. The dual vector bundle E* is T-isomorphic

to E(- m/P-1), where

ψ-'iC CO = fP(C. C7)"1 ,

and

- m(φ) = ( - /nί^i, , - m(φ)r)

for every φ in {|C|| Ce

§2. Some lemmas

LEMMA 2.1. Lei C and C 6e too cones in d(ή). Suppose P(C, C')u Φ 0

holds for every i. Then φ(ξ{C)τ) = ^(f(COi) Λo/rfs /or euery i αnrf every ψ

in | C | Π | C Ί .

Proo/. Since P(C? C0« # 0 we have φ{ξ{C\) > φiξ(C%) for every i

and every φ in |C | Π |CΊ Hence

?<f(C),) + + p(f(C)r) > φ(ξ(CV + + ^(f(CO,) .

Since the two sets {^(C)^, ,p(f(C)r)} and {p(f(C0i), • • ,p(f(C0r)} are

the same sets by (P), we have

X) + + ?(?(C)r) = p(f(COi) + +

Therefore φ(ξ(C\) = φ(ξ(C'\l • , y<f(C)r) - ?<f(C0r) for every φ in | C| Π! C |̂.

LEMMA 2.2. Let C and C be two cones in Δ(rί) such that C Π C; is in

Δ(n - 1). Then, by rearranging {ξ(C)u , ξ(C)r] and {ξ(C% . ,ξ(Or} and

replacing (m, P) by an equivalent pair, we can reduce the matrix P(C, C)

to an upper triangular matrix.

Proof. Put P = P(Cy CO. Since det (P) Φ 0, we may assume that

Pu Φ 0 for every ί by rearranging {ξ(C)J and {ξ(C0<} Suppose that Phk Φ 0
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and Pkh = 0 for some h, k (h > k). Then, by interchanging ξ(C)h with

f(C)fc and ?(C)Λ with £(C')fc we have PΛfc = 0, PfeΛ Φ 0. So we may further

assume that if Phlc Φ 0 for h > k then Pkh Φ 0.

Suppose that P is not an upper triangular matrix. Then we take

minimal k such that Phk Φ 0 for some h > k. Then Pi} = 0 for 7 < k and

i > j . Since PΛfc ^ 0 and Pkh Φ 0 by assumption, we have

Ψ(ξ(C)A) > 9<f(C0») and ^(f(C)fc) > ?(?(C')Λ)

for every ^ in \C\ Π |Ox |. Consequently, for 9 in |C | Π |C7 | , we have ?>(£(C)A)

> ?<f(C0*) if φ(ξ(C)h) > φ(ξ(C)k), while φ(ξ(C)k) > 9<e(C0fc) if ?<f(C)Λ) <

φ(ξ(C)k), a contradiction by Lemma 2.1. Therefore we have

?<e(C)Λ) = ^f(C)fc) for every φm\C\n\C'\.

Since C Π Cr is in Δ(n - 1), put \C\ - |C | ΓΊ \C'\ = {ψ}. Suppose ψ(f(C)A)

< ψ(f(C)fc). Then we interchange f(C)Λ and f(C)fc. This procedure inter-

changes Phi with P fcί for each 1 < ί < r. Therefore the minimality of- ^

is preserved. Hence we may assume that

φ(ξ(C)h) > φ(ξ(C)k) for every φ in \C\.

Now we define (τ(C) = (σ(C)^) by

1 for i = j ,

c Φ 0 for i = h and j = k ,

0 otherwise,

and replace (m, P) by an equivalent pair using this σ(C). This is allowed

by what we have just seen. In this way, we can reduce ourselves to the

case Phlc = 0. Hence we have Pi1c = 0 for all i (i > k). After this re-

placement, however. Pa may be zero for i > k. By rearranging {ξ(C)k+u

• , f(C)r} and {?(C')*+i, , ξ(C')r}, we may assume that Pu Φ 0 for every

i. So we can repeat the same procedure, which will terminate after finitely

many steps and leads to an upper triangular matrix P.

LEMMA 2.3. Let C, C", C" be three distinct cones in J(ή) such that

C Π C" is in Δ(n - 1). Then, by rearranging {f(C)J, {£(C')<} <md {f(C/;)ί}

and replacing (m, P) 6y an equivalent pair, we can reduce ourselves to the

situation where P{C, C") is an upper triangular matrix and P(C, Cf)u Φ 0

for every i.
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Proof. By Lemma 2.2, P(Cr, C") is first reduced to an upper triangular

matrix. Since det (P(Cy C')) Φ 0, we have P(C, C')u Φ 0 by rearranging

{ξ{C)u . ..,f(C) r}.

COROLLARY 2.4. Let C, C", C" 6e three distinct cones in Δ(ri) such that

C Π C" is in Δ{n - 1). Then by rearranging {f (C)J, {f(C')J and {ξ{C%}

and replacing (m, P) by an equivalent pair, we may assume that

),) = φ(ξ(C%) for every φ in \C\ Π \C'\

and

φ(ξ(C%) = φ(ξ(C%) for every φin\C'\Γl \C"\

hold for every ί.

LEMMA 2.5. Let C, C , C" be three distinct cones in Δ{ή) such that

C Π C is in Δ{n — 1). Suppose that P(C, C") = I is the identity matrix.

Then, by rearranging {f(C)J, {ξ(C%} and {ξ(C")i} and replacing (m, P) by

an equivalent pair, we can reduce ourselves to the situation where P(C, C")

is an upper triangular matrix and P(C\ C") = L

Proof. By Lemma 2.2, P(C, C;) is reduced to an upper triangular

matrix. In this case, {?(C')i, ,?(C')r} is only rearranged. If we rear-

range {ξ(C")u , ξ(C")r} exactly as {ξ(C% , ξ(C')r} is rearranged, then

P(C\ C") remains the identity matrix.

LEMMA 2.6. Let C and Cf be two cones in Δ(ή). Suppose that P =

P(C, C) is an upper triangular matrix. Let ψ be in \C\ Π \C'\. Then, by

rearranging {f(C)<} and {ξ(C%}9 we may assume that P(C, C) is an upper

triangular matrix and that

"> φ(ξ(C)r)

and

ψ(ξ(C%) > φ(ξ(CV > > ψ(ζ(C%)

hold.

Proof. Suppose φ(ξ(C)h) < φ(ξ(C)h+1) Since ^(f(O.) = φ(ξ(C%) for

every i by Lemma 2.1, we have Ph,h+i — 0. Hence we have Phjh Φ 0,

PΛ+i,Λ+i Φ 0, PΛ,Λ+i = 0, Ph+hh = 0. By interchanging the order of ξ(C)h

and f(C)A+1 as well as ξ(C% and ξ(C\+u we have <p(ξ(C)k) > φ(ξ(C)h+ί).

After a finite repetition of this process we are done.
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COROLLARY 2.7. Let C, C be two cones in Δ(ή). Suppose that P(C, C)

is an upper triangular matrix. Let φί9-'-,φι be elements in | C | ί Ί | C " | .

Then, by rearranging {f(C)J and {f(C0J, we may assume that P(C, C) is

an upper triangular matrix and that for every pair of h and k (h > k), one

of the following conditions holds:

(a) φMC)k) = φMC)k+d = • . . = . φMC)h) for I < ί < I.

(b) There exists v (<l) such that

φ forl<ί<v

and

Proof We first apply Lemma 2.6 to φt. If ^(f(C)fc) = . . . = φ,(ξ(C)Λ),

then we further apply Lemma 2.6 to ^2 with respect to {ξ(C)k, , ?(C)Λ}

only. Repeating this procedure, we are done.

§ 3. The case of Pn

From this section on, we restrict ourselves to the case X — Pn and

consider a T-linearized vector bundle E — E(m, P) of rank r (r > 2) on

Pn. When n = 1, a vector bundle on Pι is split. Hence we assume n > 2.

Let {φί9 , £>w} be a Z-base of N and let ^0 = — φί — φ2 — — φn. Let

Δ be the fan defined by {<p0, φl9 , φn}, i.e., Δ(n) consists of Ct = ΣJΦί RQψj

(i = 0,1, , τι). Then P71 = Γ^ emb (Δ) and C7Cί = {X, Φ 0} is the affine

open set in Pn corresponding to Ci9 where Xo, , Xn are homogeneous

coordinates. In this case we note that C Γ\ C' is an (n — l)-dimensional

cone in Δ for every pair of cones C and C" in Δ(n).

PROPOSITION 3.1. Suppose that P(C, C") — I is the identity matrix

for some C and C" in Δ(ή) with Cf Φ C". Then the T-linearized vector

bundle E is a direct sum of TΊίnearίzed line bundles, hence, in particular,

decomposable.

Proof Let C be another cone in Δ(ή). By Lemma 2.5, we may as-

sume that P = P(C, Cf) is an upper triangular matrix and P(C\ C") = L

We show that P can be reduced to the identity matrix. Suppose Phk Φ 0

for some h and k (h < k). Then <p(ξ(C)h) > <p(ξ(C%) for every ψ in |C|Π C'|,

while φ(ξ(C)k) = φ(ξ(C%) by Lemma 2.1. Hence we have φ(ξ(C)h) > φ(ξ(C)k)

for every φ in |O| n |O'|.
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Put {ψ} = \C\ - \C\ Π |C' | . Then ψ is in \C\ Π | C " | by the definition

of Δ. Assume now that ψ(ξ(C)ft) < ψ(f(C)fc). Since P(C, C") = P(C, CO

P(C", C") = P we have P(C, C")hk = Phk Φ 0, and ψ{ξ(C)Λ) > ?(f(C")fc) for

every p in | C | Π |C" | . Therefore, since ψ is in \C\ Π |C" | , we have ψ(f(C)fc)

> ψ(f(C)ft) > ψ(ξ(C")k). This is a contradiction to Lemma 2.1 since

P(C, C") = P is an upper triangular matrix and det (P) Φ 0. So we have

ψ(f(C)Λ) > ψ(f(C)fc). Since | C | = (| C | Π | C |) U {ψ} we have tff(C)Λ) > Ψ(ξ(C)k)

for every ^ in \C\. Now we define <J(C) = (σ(C)tj) by

1 f o r i=j>

c Φ 0 for i = Λ and j = k ,

0 otherwise,

and replace (m, P) by an equivalent pair using this σ(C). Then we can

reduce ourselves to the case P(C, C')hk = 0. If this process is repeated

for all P(C, C')hk Φ 0 (h Φ k), then finally P(C, C) will become a diagonal

matrix. By taking σ'(C) = (σ'(C)ί3) with σ'(C)i3 = P(C, C% and replacing

(m, P) by an equivalent pair using this σ'(C), we may assume P(C, C) = I.

Hence P(Cy C") = I.

Furthermore, if n > 3, let C* be another cone in Δ(ή). We apply the

same process to P(C*, C"). Then we may assume P(C*, C) = I. Hence

P(C, C*) - P(C, C0P(C*, C O 1 = / .

Therefore all P(C, C*) can be reduced to the identity matrix. This means

that the T-linearized vector bundle E is a direct sum of Γ-linearized line

bundles by the very construction of E{m, P).

PROPOSITION 3.2. Suppose that P(C, C), P(C, C") and P(C", C) are

upper triangular matrices for some triple of pairwise distinct cones C, C"

and C" in Δ(ή). Then the T-linearίzed vector bundle E is a direct sum

of TΊinearized line bundles.

Proof. Concerning the first row of P for (m, P), we suppose that

there exists s > 1 such that

P(C, C% = 0, P(C, C'% = 0, P(C", C)l} = 0 for 1 < < s

and that

P(C, C% Φ 0 , P(C", Oi. Φ 0

Then, since P(C, C')u Φ 0 and P(C", C)u Φ 0, we hav«
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φ(ξ(C\) > φ(ξ(C')s)

φ(ξ(C)s)

= φ(ξ(C%)

= φ(ξ(σ%)

> ?<f(C).)

and

Since, by Lemma 2.1,

and

we have

and

Since |C| = (|C| Π \C'\) U (|C| Π I

?<f(C)i) > ^(f(C)s)

We define σ(C) = (σ(d)υ) by

II

c Φ 0

0

for every φ in \C\ Π \C'\

for every p in | C " | Π | C | .

for every p in \C\ Γi\C'\

for every p in | C " | Π | C | ,

for every φ in |C| Π |C ' |

for every P in | C " | Π | C | .

'I) we have

for every φia\C\.

f or i = j ,

for i = 1 and j = s ,

otherwise,

and replace (m, P) by an equivalent pair using this σ(C). Then we can

reduce ourselves to the case P(C, C% = 0. Furthermore if P(C", C)u Φ 0

or P{C\ C")u Φ 0 we do the same. Then we are reduced to the case

P(C"9C)U = 0, hence P(C, C")u = 0. Thus we may assume that

P(C, for i

Repaet the same process to the other rows successively. Then P(C, CO,

P(C, C") and P(C", C) become diagonal matrices. We define σ(C) =

(σ(C)ij) by σ(C)ij = P(C, C')^ and replace (m, P) by an equivalent pair

using this σ(C). Then we are reduced to the case P(C, C") = /. Therefore,

by Proposition 3.1, the Γ-linearized vector bundle E is a direct sum of

Γ-linearized line bundles.

COROLLARY 3.3. Suppose that P(C, C ) and P(C, C") are upper tri-

angular martίces for some triple of paίrwise distinct cones C, C" and C" in
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Δ(ή). Then the T-ϊinearίzed vector bundle E is a direct sum of TΊinearized

line bundles.

THEOREM 3.4. Let r > 1 and n>2. For a pair (m, P), suppose the

corresponding TΊinearized vector bundle E = E(m, P) on Pn of rank r is

indecomposable. Put \C\ = {φl9 , <pn} for a cone C in Δ{n). Then, for any

pair of distinct integers s and t (1 < s, t < n), there exist two integers h

and k such that

and

φMC)h) = φMC)k) for iφs,t.

Proof We prove the assertion only when s = 1 and t = 2 since the

proof in general is the same. Since we are working on Pn, there exist

C" and C" in Δ(n) such that

I C' l = fc>o> ψ2, ψi, ' ' , ψn} , I C"\ = {^c, φ u φi9 - , φn)

for some φ0 e N. By Lemma 2.3, we assume that P(C9 Cf)u Φ 0 for every

ί and that P(C", C") is an upper triangular matrix. Hence by Lemma 2.1,

we get

- <p(ξ(C%) for every ψ in | C\ Π | C'\ = fe, φ» - , φn)

and

φ(ξ(C%) = φ(ξ(C'%) for every ψ in |C ' | Π | C " | = fe, w , , p

Therefore

for every ?̂ in | C\ Π | C"| Π | C ; / | = {φs, <pi9 , ̂ n}. If n = 2 then this amounts

to nothing since |C | Π \C'\ Π | C / ; | = 0 . When n > 3, we further apply

Corollary 2.7 to ps, >9>n and P(C ; , C") and may assume that P(C\ C")

is an upper triangular matrix and that for every pair h and k (h > £),

one of the following conditions holds:

(a) φMC)k) = p*(*(C)*+i) = = φMOπ) for 3 < i < n .
(b) There exists v such that

φMC)k) = φMC)k+d = = . . . = P < ( f(C) Λ ) for 3 < i < υ

a n d
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φMC)k) > ΨMC)h).

P(C, C") cannot be reduced to an upper triangular matrix, since,

otherwise, E would be decomposable by Corollary 3.3 contradicting our

assumption. Thus there exist integers h > k such that P{C, C')hk Φ 0.

Then we have φ(ξ(C)h) > φ(ξ(C%) for every φ in \C\ Π \C'\. Since φ(ξ(C)k)

= φ(ξ(C%) for every φ in \C\ Π |C' |, we have ψ{ξ{C)h) > φ(ξ(C)k) for every

φ in \C\ Π |C7 | , hence for every p in {<p3, • , φn] = |C| Π 1 O r | Π |C 7 / | . This

means, by (a) and (b) above, that

φ(ξ(C)k) = φ(ξ(C)k + ί) = = φ(ξ(C)h)

for every φ in {̂ 3, , ̂ n}. Since φ2 is in |C| Π \C'\, we have ^2(f(C)Λ) >

ψϊiζ(C)k) as we saw above. Hence we have the following four possibilities:

1. ΨMC)h) > ΨMC)k) and φ2(ξ(C)Λ) = φ2(ξ(C)k),

2. ^(f(C) Λ )< Pl(f(C)fc) and ^(f(C)Λ) = φ2(ξ(C)k),

3. ^(ί(C)Λ) > φMC)k) and ^(f(C)A) > ^(f (C)fc),

4. P l(f (C) Λ )< φMC)k) and ^(f(C)Λ) > ^2(f(C)fc).

We now show that the case 4 happens for some h and k (h > k) such

that P(C, C")A* # 0. Suppose that the case 4 does not happen for any

such h, k. Then, by interchanging ξ(C)h and ξ(C)k if the case 2 happens,

we have

φ(ξ(C\) > φ(ξ(C)k) for every φ in \C\.

Now we take the smallest έ such that P(C, C')hk Φ 0 for some h > £.

We define <j(C) = WC)^) by

for i=j,

for i = h and j = k,

otherwise,

and replace (m, P) by an equivalent pair using this σ(C). Then we can

reduce ourselves to the case P(C, Cf)hk = 0. Repeating the same proce-

dure for every h such that h > k and P(C, C')hk φ 0, we have P(C, Cf)ik

= 0 for all i > k. After this procedure, P(C, C')u may be zero for some

i, but, by rearranging the order of {ξ(C)k+1, ,f(C)r}, we have P(C, Cf)u

Φ 0 for all ί > k. So we can successively apply the same procedure, and

P(C, CO is finally reduced to an upper triangular matrix. By Corollary

3.3, this is a contradiction to the indecomposability of E. Therefore there

exist h and k such that
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φMC)h) < φι(ξ(C\) , 92(f(C)Λ) > φz(ξ(C)fc)

and

for i > 3 .

COROLLARY 3.5. Suppose 1 < r < n (n>2) and let E be an inde-

composable T-linearized vector bundle of rank r on Pn. Then we have:

( 1 ) r = n.

( 2 ) For every Ced(ή) and every φ in |C|, all except one of {φ(ξ(C)ι)9

• , φ(ξ(C)n)} are the same integers.

( 3 ) Let C = Roψi + - - - + Roφn be in Δ(n). We can tensor a suitable

T-linearized line bundle to E and rearrange the order of {ξ(C)u , ξ(C)n},

so that the following hold for every i = 1, , n:

<pMC)t) = at and ψi(ξ(C)j) = 0 for any j Φi.

In this case, aί9 , an are all positive or all negative.

Proof. Let | C\ = {φu , φn} for a C e ^l(^), and apply Theorem 3.4

to C. For each s, we first see that φs(ξ(CX), , φs(ξ(C)r) cannot be all

equal, since we can pick t Φ s and apply Theorem 3.4 to the pair (s, t).

Clearly, Theorem 3.4 gives a one-to-one map from the set {(s, t) \ 1 < s

< t < n} to the set of pairs [h, k} of distinct integers between 1 and r.

Thus n(n — l)/2 < r(r — l)/2. Since r < n by assumption, we have r = n,

and the above map must be a bijection.

We can so rearrange ξ(C)u , ξ(C)n that for each i, the pair (1, i)

is sent to the pair {1, i) by the above map. Then for each i, we see that

ψί(ζ(C)j) are equal for all j Φ ί.

In view of Remark 1.5, we may tensor a T-linearized line bundle to

E so that the following holds for each i:

φMC)d = at and ψMQj) = 0 for any ^ i.

By Theorem 3.4, we see that as, at should have the same sign for all s Φ t.

§ 4. Determination of P(C, C")

In this section we consider P(C, C") for an indecomposable T-linearized

vector bundle of rank n on Pn (n > 2). By Corollary 3.5, we may assume

that, for every C and every ψ in | C|, we have ψ(ξ(C)i) > 0 and <p(ξ(C)i) = 0

except for one ί. For C, C", C" e Δ(n), let
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ICI = fa, ψi, ψ3, , <ρn],

\C'\ — {ψ^ψi,ψi, • • ,ψn} ,

| C " Ί = {ψθ> ψu ψz> • • ,ψn} •

By changing the order of {ξ{C\), {ξ{C'\) and {ξ{C")t}, we assume that

'W • • ,φjiξ{c%)) = (ψMC'W • • ,ψlξ{C")n))

= (α,0,0, - , 0 ) ( σ > 0 ) ,

n)) = (6, 0, 0, • , 0) ,

'Oi), , ψAξ(CO,)) = (0, 6, 0, , 0) (6 > 0),

= (0,c,0, ( 0 0),

and

,o,<4

for i > 3, where d4 > 0 is the i-th entry.
Then, by (Π), we have

P(C, C) =

1 0 0 0
Pi 1 0 • 0

A 0 1 0

P(C>, C) =

Pn 0 0

0 - 1 0
1 r2 0
0 r, 1

• 1

• 0
• 0
• 0

P(C, C") =

1 g, 0
0 1 0
0 g3 1

0 r, 0 1

Since P(C, C0P(C', C")P(C", C) = I we have:

L E M M A 4.1. QΊ = 1 , p2 = — 1 , r2 = 1 cmci

Pi = — Qi = rt for 3 < i < n.

LEMMA 4.2. Pi Φ 0 for 2< i < n.

0 1
0
0

0 g, 0 1



38 TAMAFUMI KANEYAMA

Proof. Fix two cones C and C and P(C, C"). We take another C"

successively and calculate in the above way. Then we have pt Φ 0 for

LEMMA 4.3. We may assume that pt = 1 /or 1 < i < ra.

Proof. Since p z =£ 0 for i > 2, we take

1 0

σ(C) = α(C') = A •

1° ' p . .
and replace (m, P) by an equivalent pair using these σ(C), σ(C"). Then

we have

P(C, CO =

1 0 . . . 0
1 1 0

i o Ί

Hence we may assume that pt = 1 for 1 < i < n.

If P(C, CO is in the above form, then P{C, C") and P(C", C) are

naturally determined if m in (I) is given. Therefore P in (m, P) is deter-

mined for every pair of cones in Δ(n). Hence, for each indecomposable

Γ-linearized vector bundle of rank n, P is unique up to equivalence (III).

Therefore, for any given m in (I) which we know by (3) of Corollary 3.5,

an indecomposable Γ-linearized vector bundle is uniquely determined if it

exists.

THEOREM 4.4. Let E be a TΊinearized vector bundle defined by the

sequence

(*) 0 E 0

such that f sends 1 to (X?0, X?1, , Xnn), where Xo, , Xn are homogeneous

coordinates of Pn and α0, , an are positive integers. Then E is an inde-

composable vector bundle.

Proof. Suppose E is decomposable and let E = ^ 0 E2® 0 Et

with I > 2 be a decomposition of E into indecomposable vector bundles.

Every indecomposable component Et is T-equivariant by virtue of the
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Krull-Sehmidt Theorem (see [1]). Since rank (E?) < n, Et is necessarily a

line bundle by Corollary 3.5. Hence E is a direct sum of line bundles

and we may let

E = OPn{d,) © Θpn{d2) 0 φ Θpn(dn)

for d^ < do < - - < dn. We may assume that α0 < ax < < an. By

tensoring the sequence (*) with Θpn( — k) for k > 0 we have

Λ°

We have a contradiction, if we take k = an when an > c?n while we take

k = dn when an < dn. Hence we have αTC = dπ. Similarly, we have at = ^

for 1 < i < n. By (*), we have det (i?) = ^P«(Σ?=O ^)> which is equal to

^p»(Σ?=i «̂) Hence α0 = 0 and (*) is split, a contradiction. Therefore E

is indecomposable.

If we take α0 = αx = = an = 1 in Theorem 4.4, then the T-linearized

vector bundle E is the tangent bundle Tpn for Pn.

COROLLARY 4.5. Tpn is indecomposable.

By short calculation, we have

= (— ai9 0, , 0) for 0 < i < n

for the T'-linearized vector bundle E which is defined by (*) in Theorem

4.4. Therefore we have:

THEOREM 4.6. An indecomposable equivarίant vector bundle of rank n

on Pn (n > 2) is ίsomorphίc to E(d) or E*(d) for some integer d, where E

is defined by the sequence (*) in Theorem 4.4 for some positive integers at

(0<ί< ή).
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