T. Kaneyama Nagoya Math. J. Vol. 111 (1988), 25-40

TORUS-EQUIVARIANT VECTOR BUNDLES ON PROJECTIVE SPACES

TAMAFUMI KANEYAMA

Introduction

For a free Z-module N of rank n , let $T = T_{N}$ be an n -dimensional algebraic torus over an algebraically closed field *k* defined by *N.* Let $X = T_N \text{ emb } (\Delta)$ be a smooth complete toric variety defined by a fan Δ (cf. [6]). Then *T* acts algebraically on X A vector bundle *E* on *X* is said to be an equivariant vector bundle, if there exists an isomorphism f_t : $t^*E \to E$ for each *k*-rational point *t* in *T*, where $t: X \to X$ is the action of *t* Equivariant vector bundles have T-linearizations (see Definition 1.2 and $[2]$, $[4]$), hence we consider T-linearized vector bundles.

The *n*-dimensional projective space P ^{*n*} has a natural action of T and can be regarded as a toric variety. In [4], we classified indecomposable equivariant vector bundles of rank two on P^2 . When $n > 2$, Hartshorne [3] constructed vector bundles of rank two from codimension two sub schemes satisfying certain conditions. Bertin and Elencwajg [2] then used this method to construct equivariant vector bundles of rank two *on Pⁿ* and showed that there exist no indecomposable equivariant vector bundles of rank two on P^n which are obtained in this way.

In this paper, we generalize our method in [4] to show that there exist no indecomposable equivariant vector bundles of rank $r (1 \lt r \lt n)$ on *Pⁿ* (Corollary 3.5) and that indecomposable equivariant vector bundles of rank *n* on P^n are isomorphic to $E(d)$ or $E^*(d)$ for some integer d, where *E* is defined by an exact sequence

$$
0 \longrightarrow {\mathcal O}_{P^n} \longrightarrow \bigoplus_{i=0}^n {\mathcal O}_{P^n}(a_i) \longrightarrow E \longrightarrow 0
$$

for positive integers a_i .

Received August 23, 1986. Revised April 28, 1987.

26 TAMAFUMI KANEYAMA

§ 1. Preliminaries

Let *N* be a free Z-module of rank *n.* Let *M* be the dual Z-module of *N.* Then there is a natural Z-bilinear map

$$
\langle , \rangle: M \times N \longrightarrow Z.
$$

It can naturally be extended to $M_{\mathcal{R}} \times N_{\mathcal{R}} \to \mathcal{R}$, where $M_{\mathcal{R}} = M \otimes_{\mathcal{Z}} \mathcal{R}$ and $N_R = N \otimes_{\mathbf{Z}} \mathbf{R}$. We denote $\varphi(\xi) = \langle \xi, \varphi \rangle$ for ξ in M_R and φ in N_R . Let $T = T_N$ be an *n*-dimensional algebraic torus defined by N over an alge braically closed field *k.* Then we can identify *M* with the additive group of characters of *T*. Let $X = T_{N}$ emb (*A*) be a smooth complete toric variety of dimension *n* defined by a fan *Δ* of 2V for which the reader is referred to [6].

DEFINITION 1.1. An equivariant vector bundle E on X is a vector bundle on X such that there exists an isomorphism $f_t: t^*E \to E$ for every k -rational point t in T , where $t: X \to X$ is the action of t on X .

DEFINITION 1.2. An equivariant vector bundle $E = (E, f_i)$ is said to be *T*-linearized if $f_{\mu\nu} = f_{\nu} \circ t'^*(f_{\iota})$ holds for every pair of *k*-rational points t, t' of T , where

$$
f_{\iota\iota'}=f_{\iota'}\circ t'^*(f_{\iota})\colon\thinspace (tt')^*E \xrightarrow{t'^*(f_{\iota})} t'^*E \xrightarrow{f_{\iota'}} E\,.
$$

In [4], we showed that an equivariant vector bundle necessarily has a T-linearization. We also studied how to describe T-linearized vector bundles in terms of fans, as we now recall.

We denote by *Δ(l)* the set of /-dimensional cones in *Δ.* For C in *Δ(l)*, there exists a finite subset $\{\varphi_1, \dots, \varphi_l\}$ of N such that $C = \mathbf{R}_0 \varphi_1 + \varphi_2$ $+$ $\mathbf{R}_{0}\varphi$, where \mathbf{R}_{0} is the set of non-negative real numbers. We say that $\{\varphi_1, \dots, \varphi_l\}$ is the fundamental system of generators of C if φ_i are primitive, *i.e.*, φ_i is not a non-trivial integral multiple of any element of N. The fundamental system of generators $\{\varphi_1, \cdots, \varphi_l\}$ of C is uniquely determined by C and is denoted by $|C|$. We consider the following:

 (I) *m:* $\{ |C'| | C' \in \Delta(1) \} \longrightarrow Z^{\oplus r}$ ${\rm sending} \; \varphi \; {\rm to} \; m(\varphi) = (m(\varphi)_1, \; \cdots, \; m(\varphi)_r), \; {\rm and \; for \; every} \; C \; {\rm in} \; \varphi \; {\rm to} \; m(\varphi) = (m(\varphi)_1, \; \cdots, \; m(\varphi)_r),$

$$
m_{c}\colon |C|\longrightarrow Z^{\oplus r}
$$

so that there exists a permutation $\tau = \tau_c$ such that

$$
m_c(\varphi)=(m_c(\varphi)_1, \cdots, m_c(\varphi)_r)=(m(\varphi)_{r(1)}, \cdots, m(\varphi)_{r(r)})
$$

for every φ in $|C|$.

Let C be an *n*-dimensional cone in $\Delta(n)$. Then we have a set of $\text{characters }\{\xi(C)_\mathfrak{l},\cdots,\xi(C)_r\}\ \text{ in }\ M\ \text{ by solving, for each }\ 1\leq i\leq r,\ \text{ the }$ equations $\varphi(\xi(C)_i) = m_c(\varphi)_i$ for every φ in $|C|$. Then it is easy to see that (I) is equivalent to the following:

 $(I') \quad \xi \colon \Delta(n) \longrightarrow M^{\oplus r}$

sending C to $\xi(C) = (\xi(C), \dots, \xi(C)_r)$ such that there exists a permutation $\tau = \tau_{C,C'}$ for every pair of cones C and C' in $\Delta(n)$, so that $\varphi(\xi(C))_i$) $\varphi(\xi(C')_{\tau(i)})$ for every i and every φ in $|C| \cap |C'|$.

(II) $P: \Delta(n) \times \Delta(n) \longrightarrow GL_r(k)$

sending (C, C') to $P(C, C') = (P(C, C')_{ij})$ such that $P(C, C')_{ij} \neq 0$ only if $\varphi(\xi(C)_i) \geq \varphi(\xi(C'))$ for every φ in $|C| \cap |C'|$ and that

$$
P(C, C')P(C', C'') = P(C, C'')
$$

for every C, C', C'' in $\Delta(n)$.

For (m, P) defined by (I) and (II), we denote by $E(m, P)$ the T-linearized vector bundle obtained from (m, P) . We refer the reader to [4] as for the construction of the T-linearized vector bundle *E(m,* P).

(III) Two pairs (m, P) and (m', P') defined by (I) and (II) are said to be equivalent if there exists a permutation $\tau = \tau_c$ for every C in $\Delta(n)$ such that

$$
(m_{\mathcal{C}}(\varphi)_1, \cdots, m_{\mathcal{C}}(\varphi)_r) = (m'_{\mathcal{C}}(\varphi)_{r(1)}, \cdots, m'_{\mathcal{C}}(\varphi)_{r(r)})
$$

for every φ in $|C|$ and if there exists

$$
\sigma\colon\thinspace \varDelta(n)\longrightarrow GL_r(k)
$$

 $\text{such that } \sigma(C)_{ij} \neq 0 \text{ only if } \varphi(\xi(C)_i) \geq \varphi(\xi(C)) \text{ for every } \varphi \text{ in } |C| \text{ and such}$ that

$$
P'(C, C') = \sigma(C)^{-1} P(C, C') \sigma(C')
$$

holds for every C and C' in $\Delta(n)$.

THEOREM 1.3 (cf. ([4]). Let $X = T_N$ emb (Δ) be a smooth complete toric *variety defined by a fan Δ. Then the set of T-linearized vector bundles of rank r up to T-isomorphism corresponds bijectively to the set of* (I) *(or* (F)) *and* (II) *up to the equivalence* (III).

Remark 1.4 Let D_{φ} be the divisor corresponding to the cone R_{φ} in $\Delta(1)$. Put $m_{\varphi} = m(\varphi)$ where *m* is defined by (I) in the case $r = 1$. Let $P(C, C') = 1$ for every C and C' in $\Delta(n)$. Then the T-linearized vector bundle $E(m, P)$ is the line bundle $\mathcal{O}_X(-\sum m_{\varphi}D_{\varphi})$, where the summation is taken over φ in $\{ |C| | C \in \Delta(1) \}.$

Remark 1.5. Let $E = E(m, P)$ be the T-linearized vector bundle of rank r defined by (m, P) . Then $E \otimes \mathcal{O}_X(-\sum m_*D_\varphi)$ is T-isomorphic to $E(m', P)$, where

$$
m'(\varphi)=(m(\varphi)_1+m_\varphi,\,\cdots,\,m(\varphi)_r+m_\varphi)
$$

for every φ in $\{|C||C \in \mathcal{A}(1)\}$. The dual vector bundle E^* is T-isomorphic to $E(-m, {}^{t}P^{-1})$, where

$$
{}^{t}P^{-1}(C,\,C')={}^{t}P(C,\,C')^{-1}\,.
$$

and

$$
- m(\varphi) = (-m(\varphi)_1, \cdots, -m(\varphi)_r)
$$

for every φ in $\{ |C| | C \in \Delta(1) \}.$

§2. Some lemmas

LEMMA 2.1. Let C and C' be two cones in $\Delta(n)$. Suppose $P(C, C)_{ii} \neq 0$ *holds for every i. Then* $\varphi(\xi(C)) = \varphi(\xi(C'))$ *holds for every i and every* φ $in |C| \cap |C'|$.

 $Proof.$ Since $P(C, C')_{ii} \neq 0$ we have $\varphi(\xi(C)_i) \geq \varphi(\xi(C'))_i$ for every *i* and every φ in $|C| \cap |C'|$. Hence

$$
\varphi(\xi(C)_1) + \cdots + \varphi(\xi(C)_r) \geq \varphi(\xi(C)_1) + \cdots + \varphi(\xi(C')_r).
$$

Since the two sets $\{\varphi(\xi(C),), \cdots, \varphi(\xi(C))\}$ and $\{\varphi(\xi(C')), \cdots, \varphi(\xi(C'))\}$ are the same sets by (I') , we have

$$
\varphi(\xi(C)_1) + \cdots + \varphi(\xi(C)_r) = \varphi(\xi(C')_1) + \cdots + \varphi(\xi(C')_r).
$$

 $\text{Therefore } \varphi(\xi(C)_i) = \varphi(\xi(C'))_i, \cdots, \varphi(\xi(C)_r) = \varphi(\xi(C'))_r \text{ for every } \varphi \text{ in } |C| \cap |C'|.$

LEMMA 2.2. Let C and C' be two cones in $\Delta(n)$ such that $C \cap C'$ is in $\Delta(n-1)$. Then, by rearranging $\{\xi(C)_1, \dots, \xi(C)_r\}$ and $\{\xi(C')_1, \dots, \xi(C')_r\}$ and *replacing (m, P) by an equivalent pair, we can reduce the matrix P(C, C) to an upper triangular matrix.*

Proof. Put $P = P(C, C')$. Since det $(P) \neq 0$, we may assume that $P_{ii} \neq 0$ for every *i* by rearranging { $\xi(C)_i$ } and { $\xi(C')_i$ }. Suppose that $P_{hk} \neq 0$

and $P_{k} = 0$ for some *h*, *k* (*h* > *k*). Then, by interchanging $\xi(C)_h$ with $\xi(C)_k$ and $\xi(C')_k$ with $\xi(C')_k$ we have $P_{\scriptscriptstyle{hk}}=0,$ $P_{\scriptscriptstyle{k\,h}}\neq 0.$ So we may further assume that if $P_{hk} \neq 0$ for $h > k$ then $P_{kh} \neq 0$.

Suppose that *P* is not an upper triangular matrix. Then we take minimal *k* such that $P_{hk} \neq 0$ for some $h > k$. Then $P_{ij} = 0$ for $j < k$ and $i > j$. Since $P_{\scriptscriptstyle hk} \neq 0$ and $P_{\scriptscriptstyle kh} \neq 0$ by assumption, we have

$$
\varphi(\xi(C)_h) \geq \varphi(\xi(C')_k) \quad \text{and} \quad \varphi(\xi(C)_k) \geq \varphi(\xi(C')_h)
$$

 ${\rm for\ every}\ \varphi \ {\rm in}\ \vert C\vert \cap \vert C' \vert. \ \ \ {\rm Consequently,\ for}\ \varphi \ {\rm in}\ \vert C\vert \cap \vert C' \vert, \ {\rm we\ have}\ \ \varphi (\xi(C)_\hbar)$ $\langle \varphi(\xi(C'))_h\rangle \;\; \text{if} \;\; \varphi(\xi(C)_h) > \varphi(\xi(C)_k) , \;\; \text{while} \;\; \varphi(\xi(C)_k) > \varphi(\xi(C')_k) \;\; \text{if} \;\; \varphi(\xi(C)_h) < \epsilon.$ *φ(ξ(C)^k),* a contradiction by Lemma 2.1. Therefore we have

$$
\varphi(\xi(C)_n)=\varphi(\xi(C)_k)\qquad\text{for every }\varphi\text{ in }|C|\cap|C'|.
$$

Since $C \cap C'$ is in $\Delta(n-1)$, put $|C| - |C| \cap |C'| = {\psi}$. Suppose $\psi(\xi(C))_n$ $\langle \psi(\xi(C))_k\rangle$. Then we interchange $\xi(C)_h$ and $\xi(C)_k$. This procedure interchanges P_{h_i} with P_{k_i} for each $1 \leq i \leq r$. Therefore the minimality of k is preserved. Hence we may assume that

$$
\varphi(\xi(C)_\hbar)\geq \varphi(\xi(C)_\hbar)\qquad\text{for every }\varphi\text{ in }|C|\,.
$$

Now we define $\sigma(C) = (\sigma(C)_{ij})$ by

$$
\sigma(C)_{ij} = \begin{cases} 1 & \text{for } i = j\,, \\ c \neq 0 & \text{for } i = h \text{ and } j = k\,, \\ 0 & \text{otherwise}\,, \end{cases}
$$

and replace (m, P) by an equivalent pair using this $\sigma(C)$. This is allowed by what we have just seen. In this way, we can reduce ourselves to the case $P_{hk} = 0$. Hence we have $P_{ik} = 0$ for all *i* $(i > k)$. After this replacement, however. P_{ii} may be zero for $i > k$. By rearranging $\{\xi(C)_{k+1},$ \cdots , $\xi(C)_r$ } and $\{\xi(C')_{k+1}, \, \cdots$, $\xi(C')_r\}$, we may assume that $P_{ii} \neq 0$ for every *i.* So we can repeat the same procedure, which will terminate after finitely many steps and leads to an upper triangular matrix P.

LEMMA 2.3. Let C, C', C'' be three distinct cones in $\Delta(n)$ such that $C' \cap C''$ *is in* $\Delta(n-1)$ *. Then, by rearranging* $\{\xi(C)_i\}$, $\{\xi(C')_i\}$ and $\{\xi(C'')_i\}$ and *replacing (m,* P) 6y an *equivalent pair, we can reduce ourselves to the situation where* $P(C', C'')$ *is an upper triangular matrix and* $P(C, C')_{ii} \neq 0$ *for every i.*

Proof. By Lemma 2.2, $P(C', C'')$ is first reduced to an upper triangular matrix. Since det $(P(C, C')) \neq 0$, we have $P(C, C')_{ii} \neq 0$ by rearranging $\{\xi(C)_1, \dots, \xi(C)_r\}.$

COROLLARY 2.4. *Let C,* C", C" 6e *three distinct cones in Δ(ri) such that* $C' \cap C''$ is in $\Delta(n-1)$. Then by rearranging $\{\xi(C)_i\}$, $\{\xi(C')_i\}$ and $\{\xi(C'')_i\}$ *and replacing (m, P) by an equivalent pair, we may assume that*

 $\varphi(\xi(C)_i) = \varphi(\xi(C'))$ for every φ in $|C| \cap |C'|$

and

 $\varphi(\xi(C')_i) = \varphi(\xi(C'')_i)$ for every φ in $|C'|\cap |C''|$

hold for every ί.

LEMMA 2.5. *Let* C, C, *C" be three distinct cones in Δ{ή) such that* $C \cap C'$ is in $\Delta(n-1)$. Suppose that $P(C', C') = I$ is the identity matrix. *Then, by rearranging* $\{\xi(C)_i\}$, $\{\xi(C')_i\}$ and $\{\xi(C'')_i\}$ and replacing (m, P) by *an equivalent pair, we can reduce ourselves to the situation where P(C,* C") *is an upper triangular matrix and* $P(C', C'') = I$ *.*

Proof. By Lemma 2.2, $P(C, C')$ is reduced to an upper triangular matrix. In this case, $\{\xi(C')_1, \cdots, \xi(C')_r\}$ is only rearranged. If we rearrange $\{\xi(C'')_1, \dots, \xi(C'')_r\}$ exactly as $\{\xi(C')_1, \dots, \xi(C')_r\}$ is rearranged, then $P(C', C'')$ remains the identity matrix.

LEMMA 2.6. Let C and C^{*i*} be two cones in $\Delta(n)$. Suppose that $P =$ *P(C, C') is an upper triangular matrix. Let* φ *be in* $|C| \cap |C'|$. Then, by *rearranging* $\{\xi(C)_i\}$ and $\{\xi(C')_i\}$, we may assume that $P(C, C')$ is an upper *triangular matrix and that*

$$
\varphi(\xi(C)_1)\geq \varphi(\xi(C)_2)\geq \cdots \geq \varphi(\xi(C)_r)
$$

and

$$
\varphi(\xi(C')_1) \geq \varphi(\xi(C')_2) \geq \cdots \geq \varphi(\xi(C')_r)
$$

hold.

Proof. Suppose $\varphi(\xi(C)_h) < \varphi(\xi(C)_{h+1})$. Since $\varphi(\xi(C)_i) = \varphi(\xi(C')_i)$ for every *i* by Lemma 2.1, we have $P_{h,h+1} = 0$. Hence we have $P_{h,h} \neq 0$, $P_{n+1,n+1} \neq 0$, $P_{n,n+1} = 0$, $P_{n+1,n} = 0$. By interchanging the order of $\xi(C)_h$ and $\xi(C)_{n+1}$ as well as $\xi(C')_n$ and $\xi(C')_{n+1}$, we have $\varphi(\xi(C)_n) > \varphi(\xi(C)_{n+1})$. After a finite repetition of this process we are done.

VECTOR BUNDLES 31

COROLLARY 2.7. Let C, C' be two cones in $\Delta(n)$. Suppose that $P(C, C')$ *is an upper triangular matrix. Let* $\varphi_1, \dots, \varphi_t$ be elements in $|C| \cap |C'|$. *Then, by rearranging* $\{\xi(C)_i\}$ and $\{\xi(C)_i\}$, we may assume that $P(C, C')$ is an upper triangular matrix and that for every pair of h and $k (h > k)$, one *of the following conditions holds:*

- $\varphi_i(\xi(C)_k) = \varphi_i(\xi(C)_{k+1}) = \cdots = \varphi_i(\xi(C)_k) \quad for \; 1 \leq i \leq l.$
- (b) There exists $v \leq l$ such that

$$
\varphi_i(\xi(C)_i)=\varphi_i(\xi(C)_{i+1})=\cdots=\varphi_i(\xi(C)_i) \quad \text{for } 1\leq i < v
$$

and

$$
\varphi_v(\xi(C)_k) > \varphi_v(\xi(C)_h) .
$$

Proof. We first apply Lemma 2.6 to φ_1 . If $\varphi_1(\xi(C)_k) = \cdots = \varphi_n(\xi(C)_k)$, then we further apply Lemma 2.6 to φ_2 with respect to $\{\xi(C)_k, \dots, \xi(C)_n\}$ only. Repeating this procedure, we are done.

§ 3. The case of *Pⁿ*

From this section on, we restrict ourselves to the case $X = P^n$ and consider a T-linearized vector bundle $E = E(m, P)$ of rank $r (r \ge 2)$ on *P*^{*n*}. When $n = 1$, a vector bundle on *P*¹ is split. Hence we assume $n \geq 2$. Let $\{\varphi_1, \dots, \varphi_n\}$ be a Z-base of N and let $\varphi_0 = -\varphi_1 - \varphi_2 - \dots - \varphi_n$. Let be the fan defined by $\{\varphi_0, \varphi_1, \dots, \varphi_n\}$, *i.e.*, $\varDelta(n)$ consists of $C_i = \sum_{j \neq i} R_0 \varphi_j$ $(i = 0, 1, \dots, n)$. Then $P^n = T_{N}$ emb*(* Δ *)* and $U_{C_i} = \{X_i \neq 0\}$ is the affine open set in P^n corresponding to C_i , where X_0, \cdots, X_n are homogeneous coordinates. In this case we note that *C Γ\ C'* is an *(n —* l)-dimensional cone in *Δ* for every pair of cones C and C" in *Δ(n).*

PROPOSITION 3.1. Suppose that $P(C', C'') = I$ is the identity matrix *for some C' and C'' in* $\Delta(n)$ *with C'* \neq C''. Then the T-linearized vector *bundle E is a direct sum of T-linearized line bundles, hence, in particular, decomposable.*

Proof. Let C be another cone in $\Delta(n)$. By Lemma 2.5, we may assume that $P = P(C, C')$ is an upper triangular matrix and $P(C', C'') = I$. We show that *P* can be reduced to the identity matrix. Suppose $P_{hk} \neq 0$ for some *h* and *k* ($h < k$). Then $\varphi(\xi(C)_h) \geq \varphi(\xi(C')_k)$ for every φ in $|C| \cap C'|$, while $\varphi(\xi(C)_k) = \varphi(\xi(C')_k)$ by Lemma 2.1. Hence we have $\varphi(\xi(C)_h) \ge \varphi(\xi(C)_k)$ for every φ in $|C| \cap |C'|$.

32 TAMAPUMI KANEYAMA

Put $\{\psi\} = |C| - |C| \cap |C'|$. Then ψ is in $|C| \cap |C''|$ by the definition of *Δ*. Assume now that $\psi(\xi(C)_h) < \psi(\xi(C)_k)$. Since $P(C, C') = P(C, C')$ $P(C', C'') = P$ we have $P(C, C'')_{hk} = P_{hk} \neq 0$, and $\varphi(\xi(C)_h) \geq \varphi(\xi(C'')_k)$ for every φ in $|C| \cap |C''|$. Therefore, since ψ is in $|C| \cap |C''|$, we have $\psi(\xi(C_k))$ $\geq \psi(\xi(C)_h) \geq \psi(\xi(C'')_k).$ *).* This is a contradiction to Lemma 2.1 since $P(C, C'') = P$ is an upper triangular matrix and det $(P) \neq 0$. So we have $\psi(\xi(C)_\hbar) \geq \psi(\xi(C)_\hbar).$ Since $|C| = (|C| \cap |C'|) \cup \{\psi\}$ we have $\varphi(\xi(C)_\hbar) \geq \varphi(\xi(C)_\hbar)$ for every φ in $|C|$. Now we define $\sigma(C) = (\sigma(C)_{ij})$ by

$$
\sigma(C)_{i_j} = \begin{cases} 1 & \text{for } i = j\,, \\ c \neq 0 & \text{for } i = h \text{ and } j = k\,, \\ 0 & \text{otherwise}\,, \end{cases}
$$

and replace (m, P) by an equivalent pair using this $\sigma(C)$. Then we can reduce ourselves to the case $P(C, C')_{hk} = 0$. If this process is repeated for all $P(C, C')_{hk} \neq 0$ ($h \neq k$), then finally $P(C, C')$ will become a diagonal matrix. By taking $\sigma'(C) = (\sigma'(C)_{ij})$ with $\sigma'(C)_{ij} = P(C, C')_{ij}$ and replacing (m, P) by an equivalent pair using this $\sigma'(C)$, we may assume $P(C, C') = I$. $Hence P(C, C'') = I.$

Furthermore, if $n \geq 3$, let C^* be another cone in $\Delta(n)$. We apply the same process to $P(C^*, C')$. Then we may assume $P(C^*, C') = I$. Hence

$$
P(C, C^*) = P(C, C')P(C^*, C')^{-1} = I.
$$

Therefore all $P(C, C^*)$ can be reduced to the identity matrix. This means that the T-linearized vector bundle *E* is a direct sum of Γ-linearized line bundles by the very construction of $E(m, P)$.

PROPOSITION 3.2. Suppose that $P(C, C')$, $P(C', C'')$ and $P(C'', C)$ are *upper triangular matrices for some triple of pairwise distinct cones* C, C" *and C" in Δ(ή). Then the T-linearίzed vector bundle E is a direct sum of TΊinearized line bundles.*

Proof. Concerning the first row of *P* for *(m,* P), we suppose that there exists $s > 1$ such that

$$
P(C, C')_{i,j} = 0
$$
, $P(C', C'')_{i,j} = 0$, $P(C'', C)_{i,j} = 0$ for $1 < j < s$

and that

$$
P(C, C')_{1s} \neq 0
$$
, $P(C'', C)_{1s} \neq 0$.

Then, since $P(C, C')_{1s} \neq 0$ and $P(C'', C)_{1s} \neq 0$, we have

$$
\varphi(\xi(C)_i) \geq \varphi(\xi(C')) \qquad \text{for every } \varphi \text{ in } |C| \cap |C'|
$$

and

$$
\varphi(\xi(C'')_1) \geq \varphi(\xi(C)_s) \quad \text{for every } \varphi \text{ in } |C''| \cap |C|.
$$

Since, by Lemma 2.1,

$$
\varphi(\xi(C)_s) = \varphi(\xi(C')) \qquad \text{for every } \varphi \text{ in } |C| \cap |C'|
$$

and

$$
\varphi(\xi(C)_i) = \varphi(\xi(C'')_i) \quad \text{for every } \varphi \text{ in } |C''| \cap |C|,
$$

we have

$$
\varphi(\xi(C)_i) \ge \varphi(\xi(C)_i) \quad \text{for every } \varphi \text{ in } |C| \cap |C'|
$$

and

$$
\varphi(\xi(C)_i) \geq \varphi(\xi(C)_s) \quad \text{for every } \varphi \text{ in } |C''| \cap |C|.
$$

Since $|C| = (|C| \cap |C'|) \cup (|C| \cap |C''|)$ we have

 $\varphi(\xi(C)_\text{\tiny{l}}) \ge \varphi(\xi(C)_\text{\tiny{s}}) \qquad \text{ for every } \varphi \, \text{ in } \, |C|\,.$

We define $\sigma(C) = (\sigma(C)_{ij})$ by

$$
\sigma(C)_{\imath\jmath} = \begin{cases} 1 & \text{for } i = j\,, \\ c \neq 0 & \text{for } i = 1 \text{ and } j = s\,, \\ 0 & \text{otherwise}\,, \end{cases}
$$

and replace (m, P) by an equivalent pair using this $\sigma(C)$. Then we can $\text{reduce ourselves to the case } P(C, C')_{\scriptscriptstyle{1s}} = 0. \quad \text{Furthermore if } P(C'', C)_{\scriptscriptstyle{1s}} \neq 0$ or $P(C', C'')_{\scriptscriptstyle 1s} \neq 0$ we do the same. Then we are reduced to the case $P(C'',C)_{1s} = 0$, hence $P(C',C'')_{1s} = 0$. Thus we may assume that

$$
P(C, C')_{ij} = 0
$$
, $P(C', C'')_{ij} = 0$, $P(C'', C)_{ij} = 0$ for $j \neq 1$.

Repaet the same process to the other rows successively. Then $P(C, C')$, *P(C', C'')* and *P(C'', C)* become diagonal matrices. We define $\sigma(C)$ = $(\sigma(C)_{ij})$ by $\sigma(C)_{ij} = P(C, C')_{ij}$ and replace (m, P) by an equivalent pair using this $\sigma(C)$. Then we are reduced to the case $P(C, C') = I$. Therefore, by Proposition 3.1, the Γ-linearized vector bundle *E* is a direct sum of Γ-linearized line bundles.

COROLLARY 3.3. Suppose that $P(C, C')$ and $P(C', C'')$ are upper tri*angular martίces for some triple of paίrwise distinct cones* C, C" *and C" in* $Δ(n)$. Then the T-linearized vector bundle E is a direct sum of T-linearized *line bundles.*

THEOREM 3.4. Let $r > 1$ and $n \geq 2$. For a pair (m, P) , suppose the $corresponding$ *T*-linearized vector bundle $E = E(m, P)$ on P^n of rank r is $indecomposable.$ $Put |C| = {\varphi_1, \cdots, \varphi_n}$ for a cone C in $\varDelta(n)$. Then, for any *pair of distinct integers s and t* $(1 \leq s, t \leq n)$, there exist two integers h *and k such that*

$$
\varphi_{s}(\xi(C)_h) < \varphi_{s}(\xi(C)_k), \qquad \varphi_{t}(\xi(C)_h) > \varphi_{t}(\xi(C)_k)
$$

and

$$
\varphi_i(\xi(C)_h)=\varphi_i(\xi(C)_k)\qquad\text{for }i\neq s,\ t\,.
$$

Proof. We prove the assertion only when $s = 1$ and $t = 2$ since the proof in general is the same. Since we are working on P^n , there exist C' and C'' in $\Delta(n)$ such that

$$
|C'| = {\varphi_0, \varphi_2, \varphi_3, \cdots, \varphi_n}, \qquad |C''| = {\varphi_0, \varphi_1, \varphi_3, \cdots, \varphi_n}
$$

for some $\varphi_0 \in N$. By Lemma 2.3, we assume that $P(C, C')_{ii} \neq 0$ for every i and that $P(C', C'')$ is an upper triangular matrix. Hence by Lemma 2.1, we get

$$
\varphi(\xi(C)_i) = \varphi(\xi(C')_i) \quad \text{for every } \varphi \text{ in } |C| \cap |C'| = {\varphi_2, \varphi_3, \cdots, \varphi_n}
$$

and

$$
\varphi(\xi(C')) = \varphi(\xi(C'')_i) \quad \text{for every } \varphi \text{ in } |C'| \cap |C''| = {\varphi_1, \varphi_3, \cdots, \varphi_n}.
$$

Therefore

$$
\varphi(\xi(C)_i) = \varphi(\xi(C')_i) = \varphi(\xi(C'')_i)
$$

 ${\rm for\,\, every\,\, }\varphi {\rm\,\, in\,\, } |C|\cap |C'| \cap |C''| = \{\varphi_{\scriptscriptstyle 3},\, \varphi_{\scriptscriptstyle 4},\, \cdots,\, \varphi_{\scriptscriptstyle n}\}. \ \ \ {\rm If\,\, }n=2{\rm\,\, then\,\, this\,\, amounts}$ to nothing since $|C| \cap |C'| \cap |C''| = \emptyset$. When $n \geq 3$, we further apply Corollary 2.7 to $\varphi_3, \dots, \varphi_n$ and $P(C', C'')$ and may assume that $P(C', C'')$ is an upper triangular matrix and that for every pair h and k ($h > k$), one of the following conditions holds:

(a)
$$
\varphi_i(\xi(C)_k) = \varphi_i(\xi(C)_{k+1}) = \cdots = \varphi_i(\xi(C)_k)
$$
 for $3 \leq i \leq n$.

(b) There exists *v* such that

$$
\varphi_i(\xi(C)_k)=\varphi_i(\xi(C)_{k+1})=\cdots=\varphi_i(\xi(C)_h)\quad\text{for }3\leq i
$$

a nd

$$
\varphi_v(\xi(C)_k) > \varphi_v(\xi(C)_h) \, .
$$

 $P(C, C')$ cannot be reduced to an upper triangular matrix, since, otherwise, *E* would be decomposable by Corollary 3.3 contradicting our assumption. Thus there exist integers $h > k$ such that $P(C, C')_{hk} \neq 0$. Then we have $\varphi(\xi(C)_h) \geq \varphi(\xi(C')_k)$ for every φ in $|C| \cap |C'|$. Since $\varphi(\xi(C)_k)$ $=\varphi(\xi(C')_k)$ for every φ in $|C|\cap|C'|$, we have $\varphi(\xi(C)_h)\geq\varphi(\xi(C)_k)$ for every in $|C| \cap |C'|$, hence for every φ in $\{\varphi_3, \dots, \varphi_n\} = |C| \cap |C'| \cap |C''|$. This means, by (a) and (b) above, that

$$
\varphi(\xi(C)_k)=\varphi(\xi(C)_{k+1})=\cdots=\varphi(\xi(C)_k)
$$

 ${\rm for\,\; every}\,\; \varphi \,\; {\rm in}\,\; \{\varphi_{\scriptscriptstyle 3},\, \cdots,\, \varphi_{\scriptscriptstyle n}\}. \;\; {\rm Since\,\;} \varphi_{\scriptscriptstyle 2} \,\; {\rm is\,\; in}\,\; |C|\cap |C'|, \,\; {\rm we\,\; have}\,\; \varphi_{\scriptscriptstyle 2}(\xi(C)_{\scriptscriptstyle h}) \geq$ $\varphi_{\scriptscriptstyle 2}(\xi(C)_\imath)$ as we saw above. Hence we have the following four possibilities:

- 1. $\varphi_1(\xi(C)_h) \geq \varphi_1(\xi(C)_h) \text{ and } \varphi_2(\xi(C)_h) = \varphi_2(\xi(C)_k)$
- $2. \quad \varphi_1(\xi(C)_\hbar)<\varphi_1(\xi(C)_\hbar) \quad \text{and} \quad \varphi_2(\xi(C)_\hbar)=\varphi_2(\xi(C)_\hbar)\,,$
- $3. \quad \varphi_{\scriptscriptstyle{1}}(\xi(C)_\hbar) \ge \varphi_{\scriptscriptstyle{1}}(\xi(C)_\kappa) \quad \text{and} \quad \varphi_{\scriptscriptstyle{2}}(\xi(C)_\hbar) > \varphi_{\scriptscriptstyle{2}}(\xi(C)_\kappa) \ ,$
- $4. \quad \varphi_{\scriptscriptstyle 1}(\xi(C)_\hbar) < \varphi_{\scriptscriptstyle 1}(\xi(C)_\hbar) \quad \text{and} \quad \varphi_{\scriptscriptstyle 2}(\xi(C)_\hbar) > \varphi_{\scriptscriptstyle 2}(\xi(C)_\hbar) \,.$

We now show that the case 4 happens for some h and k $(h > k)$ such that $P(C, C')_{hk} \neq 0$. Suppose that the case 4 does not happen for any such *h, k.* Then, by interchanging *ξ(C)^h* and *ξ(C)^k* if the case 2 happens, we have

$$
\varphi(\xi(C)_\hbar) \geq \varphi(\xi(C)_\kappa) \qquad \text{for every } \varphi \, \text{ in } \, |C| \, .
$$

Now we take the smallest k such that $P(C, C')_{hk} \neq 0$ for some $h > k$. We define $\sigma(C) = (\sigma(C)_{ij})$ by

$$
\sigma(C)_{ij} = \begin{cases} 1 & \text{for } i = j, \\ c \neq 0 & \text{for } i = h \text{ and } j = k, \\ 0 & \text{otherwise}, \end{cases}
$$

and replace (m, P) by an equivalent pair using this $\sigma(C)$. Then we can reduce ourselves to the case $P(C, C')_{hk} = 0$. Repeating the same proce dure for every *h* such that $h > k$ and $P(C, C')_{hk} \neq 0$, we have $P(C, C')_{ik}$ $= 0$ for all $i > k$. After this procedure, $P(C, C')_{ii}$ may be zero for some *i*, but, by rearranging the order of $\{\xi(C)_{k+1}, \dots, \xi(C)_{r}\}$, we have $P(C, C')_{ii}$ $\neq 0$ for all $i > k$. So we can successively apply the same procedure, and $P(C, C')$ is finally reduced to an upper triangular matrix. By Corollary 3.3, this is a contradiction to the indecomposability of *E.* Therefore there exist *h* and *k* such that

$$
\varphi_1(\xi(C)_h) < \varphi_1(\xi(C)_k), \qquad \varphi_2(\xi(C)_h) > \varphi_2(\xi(C)_k)
$$

and

$$
\varphi_i(\xi(C)_\hbar)=\varphi_i(\xi(C)_\hbar)\qquad\text{ for }i\geq 3\,.
$$

COROLLARY 3.5. Suppose $1 \lt r \leq n \ (n \geq 2)$ and let E be an inde*composable T-linearized vector bundle of rank r on Pⁿ . Then we have:*

 (1) $r = n$.

(2) For every $C \in \Delta(n)$ and every φ in $|C|$, all except one of $\{\varphi(\xi(C))\}$ *,* \cdots , $\varphi(\xi(C)_n)$ are the same integers.

(3) Let $C = \mathbf{R}_0 \varphi_1 + \cdots + \mathbf{R}_0 \varphi_n$ be in $\Delta(n)$. We can tensor a suitable *T*-linearized line bundle to E and rearrange the order of $\{\xi(C)_1, \dots, \xi(C)_n\}$, *so that the following hold for every* $i = 1, \dots, n$ *:*

 $\varphi_i(\xi(C)_i) = a_i$ and $\varphi_i(\xi(C)_j) = 0$ for any $j \neq i$.

In this case, a_1, \ldots, a_n are all positive or all negative.

Proof. Let $|C| = {\varphi_1, \dots, \varphi_n}$ for a $C \in \Delta(n)$, and apply Theorem 3.4 to C. For each *s*, we first see that $\varphi_s(\xi(C),), \dots, \varphi_s(\xi(C))$ cannot be all equal, since we can pick $t \neq s$ and apply Theorem 3.4 to the pair (s, t) .

Clearly, Theorem 3.4 gives a one-to-one map from the set $\{(s, t) \mid 1 \leq s\}$ $\langle t \leq n \rangle$ to the set of pairs $\{h, k\}$ of distinct integers between 1 and r. Thus $n(n-1)/2 \le r(r-1)/2$. Since $r \le n$ by assumption, we have $r = n$, and the above map must be a bijection.

We can so rearrange $\xi(C)_1, \dots, \xi(C)_n$ that for each *i*, the pair $(1, i)$ is sent to the pair $\{1, i\}$ by the above map. Then for each i, we see that $\varphi_i(\xi(C)_i)$ are equal for all $j \neq i$.

In view of Remark 1.5, we may tensor a T-linearized line bundle to *E* so that the following holds for each *i:*

$$
\varphi_i(\xi(C)_i) = a_i
$$
 and $\varphi_i(\xi(C)_j) = 0$ for any $j \neq i$.

By Theorem 3.4, we see that a_s , a_t should have the same sign for all $s \neq t$.

§ 4. Determination of *P(C,* C")

In this section we consider $P(C, C')$ for an indecomposable T-linearized vector bundle of rank *n* on P^n $(n \geq 2)$. By Corollary 3.5, we may assume that, for every *C* and every φ in |*C*|, we have $\varphi(\xi(C)_i) \geq 0$ and $\varphi(\xi(C)_i) = 0$ except for one *i*. For C, C', $C'' \in \Delta(n)$, let

VECTOR BUNDLES **37**

$$
|C| = {\varphi_1, \varphi_2, \varphi_3, \cdots, \varphi_n},
$$

\n
$$
|C'| = {\varphi_0, \varphi_2, \varphi_3, \cdots, \varphi_n},
$$

\n
$$
|C''| = {\varphi_0, \varphi_1, \varphi_3, \cdots, \varphi_n}.
$$

By changing the order of $\{\xi(C)_i\}$, $\{\xi(C')_i\}$ and $\{\xi(C'')_i\}$, we assume that

$$
(\varphi_0(\xi(C'))_1, \dots, \varphi_0(\xi(C'))_n) = (\varphi_0(\xi(C''))_1, \dots, \varphi_0(\xi(C'')_n))
$$

\n
$$
= (a, 0, 0, \dots, 0) \qquad (a > 0),
$$

\n
$$
(\varphi_1(\xi(C))_1, \dots, \varphi_1(\xi(C))_n) = (b, 0, 0, \dots, 0),
$$

\n
$$
(\varphi_1(\xi(C''))_1, \dots, \varphi_1(\xi(C'')_n)) = (0, b, 0, \dots, 0) \qquad (b > 0),
$$

\n
$$
(\varphi_2(\xi(C))_1, \dots, \varphi_2(\xi(C))_n) = (\varphi_2(\xi(C'))_1, \dots, \varphi_2(\xi(C'))_n) = (0, c, 0, \dots, 0) \qquad (c > 0),
$$

and

$$
(\varphi_i(\xi(C)_i),\,\cdots,\varphi_i(\xi(C)_n))=(\varphi_i(\xi(C'))_i),\,\cdots,\varphi_i(\xi(C')_n))\\=(\varphi_i(\xi(C''))_i,\,\cdots,\varphi_i(\xi(C'')_n))\\=(0,\,\cdots,0,\,d_i,\,\cdots,0)
$$

for $i \geq 3$, where $d_i > 0$ is the *i*-th entry.

Then, by (II), we have

$$
P(C, C') = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ p_2 & 1 & 0 & \cdots & 0 \\ p_3 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ p_n & 0 & 0 & \cdots & 1 \end{bmatrix}, \qquad P(C', C'') = \begin{bmatrix} 1 & q_1 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & q_3 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & q_n & 0 & \cdots & 1 \end{bmatrix},
$$

$$
P(C', C') = \begin{bmatrix} 0 & -1 & 0 & \cdots & 0 \\ 1 & r_2 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & r_3 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & r_n & 0 & \cdots & 1 \end{bmatrix}.
$$

Since $P(C, C')P(C', C'')P(C'', C) = I$ we have:

 \texttt{LEMMA} 4.1. $q_1 = 1$, $p_2 = -1$, $r_2 = 1$ and

$$
p_i = -q_i = r_i \quad \text{for } 3 \leq i \leq n \, .
$$

LEMMA 4.2. $p_i \neq 0$ for $2 \leq i \leq n$.

Proof. Fix two cones C and C' and $P(C, C')$. We take another C" successively and calculate in the above way. Then we have $p_i \neq 0$ for $2\leq i\leq n.$

LEMMA 4.3. We may assume that $p_i = 1$ for $1 \leq i \leq n$.

Proof. Since $p_i \neq 0$ for $i \geq 2$, we take

$$
\sigma(C) = \sigma(C') = \left[\begin{array}{ccc} 1 & & 0 \\ p_{2} & & \\ 0 & & p_{n} \end{array}\right]
$$

and replace (m, P) by an equivalent pair using these $\sigma(C)$, $\sigma(C')$. Then we have

$$
P(C, C') = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 1 & 1 & & 0 \\ \vdots & & \ddots & \vdots \\ 1 & 0 & & 1 \end{bmatrix}.
$$

Hence we may assume that $p_i = 1$ for $1 \leq i \leq n$.

If $P(C, C')$ is in the above form, then $P(C', C'')$ and $P(C'', C)$ are naturally determined if *m* in (I) is given. Therefore *P* in *(m, P)* is deter mined for every pair of cones in $\Delta(n)$. Hence, for each indecomposable Γ-linearized vector bundle of rank *n, P* is unique up to equivalence (III). Therefore, for any given *m* in (I) which we know by (3) of Corollary 3.5, an indecomposable Γ-linearized vector bundle is uniquely determined if it exists.

THEOREM 4.4. Let E be a T-linearized vector bundle defined by the *sequence*

$$
(\ast) \qquad \qquad 0 \longrightarrow {\mathcal O}_{P_n} \stackrel{f}{\longrightarrow} \bigoplus_{i=0}^n {\mathcal O}_{P_n}(a_i) \longrightarrow E \longrightarrow 0
$$

 $\mathbf{such\ that\ } f \ \mathbf{sends}\ 1\ \mathbf{to}\ (X_0^{a_0},X_1^{a_1},\ \cdots,X_n^{a_n}),\ where\ X_0,\ \cdots,X_n\ are\ homogeneous$ $coordinates of Pⁿ and a₀, ..., a_n are positive integers. Then E is an inde$ *composable vector bundle.*

Proof. Suppose *E* is decomposable and let $E = E_1 \oplus E_2 \oplus \cdots \oplus E_t$ with $l \geq 2$ be a decomposition of *E* into indecomposable vector bundles. Every indecomposable component E_i is T-equivariant by virtue of the

VECTOR BUNDLES 39

Krull-Schmidt Theorem (see [1]). Since $\text{rank}\left(E_{i}\right) < n, \; E_{i}$ is necessarily a line bundle by Corollary 3.5. Hence *E* is a direct sum of line bundles and we may let

$$
E=\mathscr{O}_{\boldsymbol{P}^n}\!\!\left(d_1\right)\oplus \mathscr{O}_{\boldsymbol{P}^n}\!\!\left(d_2\right)\oplus \,\cdots\, \oplus \mathscr{O}_{\boldsymbol{P}^n}\!\!\left(d_n\right)
$$

 $f \text{or} \;\; d_1 \leq d_2 \leq \cdots \leq d_n.$ We may assume that $a_0 \leq a_1 \leq \cdots \leq a_n$ *.* By tensoring the sequence (*) with $\mathcal{O}_{P^n}(-k)$ for $k > 0$ we have

$$
h^0\left(\bigoplus_{i=0}^n \mathcal{O}_{P^n}(a_i-k)\right)=h^0(E(-k)).
$$

We have a contradiction, if we take $k = a_n$ when $a_n > d_n$ while we take $k = d_n$ when $a_n < d_n$. Hence we have $a_n = d_n$. Similarly, we have $a_i = d_i$ for $1 \leq i \leq n$. By (*), we have $\det(E) = \mathcal{O}_{P^n}(\sum_{i=0}^n a_i)$, which is equal to $\mathcal{O}_{\mathbf{P}^n}(\sum_{i=1}^n d_i)$. Hence $a_0 = 0$ and $(*)$ is split, a contradiction. Therefore E is indecomposable.

If we take $a_{\scriptscriptstyle 0} = a_{\scriptscriptstyle 1} = \cdots = a_{\scriptscriptstyle n} = 1$ in Theorem 4.4, then the *T*-linearized vector bundle E is the tangent bundle T_{p^n} for P^n .

COROLLARY 4.5. *Tpn is indecomposable.*

By short calculation, we have

$$
m(\varphi_i)=(-a_i,0,\cdots,0) \quad \text{for } 0\leq i\leq n
$$

for the T'-linearized vector bundle *E* which is defined by (*) in Theorem 4.4. Therefore we have:

THEOREM 4.6. *An indecomposable equivarίant vector bundle of rank n on* P^n ($n \geq 2$) is isomorphic to $E(d)$ or $E^*(d)$ for some integer d, where E *is defined by the sequence* (*) *in Theorem* 4.4 *for some positive integers a^t* $(0 \leq i \leq n).$

REFERENCES

- [1] M. F. Atiyah, On the Krull-Schmidt Theorem with applications to sheaves, Bull. Soc. Math. France, 84 (1956), 307-317.
- [2] J. Bertin et G. Elencwajg, Symetries des fibres vectorieles sur *Pⁿ* et nornbre dΈuler, Duke Math. J., 49 (1982), 807-831.
- [3] R. Hartshorne, Stable vector bundles of rank 2 on P^3 , Math. Ann., 238 (1978), 229-280.
- [4] T. Kaneyama, On equivariant vector bundles on an almost homogeneous variety, Nagoya Math. J., 57 (1975), 65-86.
- [5] Kempf and Mumford, Toroidal embeddings, Springer Lecture notes 339.

40 TAMAFUMI KANEYAMA

- [6] T. Oda, Torus embeddings and applications, Tata Institute of Fundamental Research 58, (1978).
- [7] T. Oda and K. Miyake, Almost homogeneous algebraic varieties under torus action, Manifolds Tokyo 1973, 373-381, Proceedings of International Conference on Manifolds and Related Topics in Topology.

Department of Mathematics Gifu College of Education Yanaizu-cho Hashima-gun Gifu 501-61, Japan