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ON SEGRE PRODUCTS OF AFFINE SEMIGROUP RINGS

LE TUAN HOA

§ 0. Introduction

Let N denote the set of non-negative integers. An affine semigroup

is a finitely generated submonoid S of the additive monoid Nm for some

positive integer m. Let k[S] denote the semigroup ring of S over a field

k. Then one can identify k[S] with the subring of a polynomial ring

Wu , tm] generated by the monomials tx = %1- t%?, x = (x» --,xm)eS.

Let Q denote the field of rational numbers. Let σ: Qm -* Q be a linear

functional such that σ(S)^N and σ(x) = 0, x e S, implies x == 0. Then one

can define an JV-grading on k[S] by setting deg tx = σ(x) for all x e S.

Such a procedure is called specializing to an N-grading [13, p. 190].

If T^Nn is another affine semigroup and k[T] is specialized to an

iV-grading by a linear functional τ: Qn —> Q, then one can define a new

affine semigroup W^Nm X Nn by setting

W: = (Sχ T)ΠF,

where F denotes the set of all elements (x, y)eQm X Qn with σ(x) = τ(y).

We call k[W] the Segre product of the ΛΓ-graded rings k[S] and k[T] with

respect to σ and r (cf. [9, p. 125]). The class of rings of the form k[W]

includes, for example, the usual Segre product of polynomial rings, the

Segre-Veronese graded algebra and the Rees algebras of certain rings

generated by monomials. Several authors have been dealt with the

Cohen-Macaulayness and the Gorensteiness of Segre products of special

classes of affine semigroup rings [1], [2], [3], [4], [16].

The main result of this paper is a combinatorial criterion for k[W]

to be a Cohen-Macaulay (res. Gorenstein) in terms of S and T (Theorem

2.1). It is based on a combinatorial criterion of [16] for an affine semi-

group ring to be Cohen-Macaulay (res. Gorenstein) which uses certain

simplicial complexes associated with the affine semigroup (see Section 1),

We shall see that the associated simplicial complexes of W are the joins
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of the associated simplicial complexes of S and T. This fact gives a
topological meaning to the Segre product of affine semigroups and will
play an essential role in the proof of the main result of this paper. If
one of the rings k[S] and k[T] is Cohen-Macaulay and σ(S) = τ(T) = N,
the conditions of our criterion turn out to be rather simple (Theorem
3.1). From these conditions one can easily derive the results of [1], [2],
[4], [16] on the Cohen-Macaulayness and Gorensteiness of Segre products
of certain affine semigroup rings. Moreover, as a by-product of our in-
vestigation, we can also show that the Buchsbaumness of affine semigroup
rings is dependent upon the characteristic of the basic field (Proposition
4.1). This is of some interest because only polynomial rings modulo ideals
generated by square-free monomials were known to possess the same
property [11]. (Cf. [10] and [16] for the Cohen-Macaulay case).

§ 1. Preliminaries

In this section, we recall some basic facts on affine semigroup rings.
Let Z denote the set of integers. Let G(S) denote the additive group

in Zm generated by S and put r = rankz G(S). In this paper, we always
assume that r>2.

If A and B are subsets of G(S), A ± B denotes the set of all elements
of the forms e ± f with e e A, fe B, respectively. Consider the elements
of S as points in the space Qm. Let <gs denote the convex rational poly-
hedral cone spanned by S in Qm. Then tfs is r-dimensional. Suppose
that Pl9 - - , Pp are the facets of <gs, i.e. the (r—l)-dimensional faces of
<tfs. Set

Further, let [l,p] denote the set of the integers 1, ,p. For every
subset J of [l,p], set

U
iGJ

and let πj denote the simplicial complex of non-empty subsets I of J
with the property Γ)ίel SίΊ Pi Φ (0). Note that πj is called acyclic if the
reduced homology group Hq(πj k) vanishes for all q > 0.

There is the following criterion for an affine semigroup ring to be
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Cohen-Macaulay.

LEMMA 1.1 [16, Main Theorem]. Let S be an arbitrary afflne semi-

group. Then k[S] is a Cohen-Macaulay (res. Gorensteίn) ring iff the following

conditions are satisfied:

(i) S/ = S (res. there exists an element xe G(S) such that G ^ = x

- s).
(ii) For every non-empty proper subset J of [l,p], Gj = 0 or πf is

acyclic.

If S — S', there is even a description of the local cohomology modules

of k[S] in terms of Gf and πj. To formulate it we need some more

notations:

Given two Zm-graded modules M1 and M2 over k[S], one can define

the Zm-graded Segre product

where [M^\x and [M2]x denote the x-graded piece of Mx and M2. Obviously,

Mι®Mι can be considered as a Zm-graded module over k[S] = k[S]®k[S].

Note that if A, B are arbitrary subsets of G(S) such that A + S c: A,

B + S c: B, then A [A] and k[B] can be considered as Zm-graded modules

over k[S] and

k[A]®k[B] - Λ[AΠB].

Let JD^Λ denote the complex

0 >DU-^Dl( >0,

where D°Sti : = k[G(S)], £>!,,:= ^[G(S)\SJ, and d is the canonical map

from k[G(S)] to ^[G(S)\SJ = k[G(S)]lk[St], i = 1, ••-,]?. Put

which consists of the terms

For simplicity, set πs — 7rfi)P]. Let Z)^ denote the subcomplex of D's con-

sisting of the terms

D>,:= ® DS!,
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j > 0. Then we have

LEMMA 1.2 [16, Lemma 3.2]. Suppose that S' = S. Put ms : = Jfe[S\(O)].

Then

for all j > 0.

In particular, one can express the graded piece [Hls(k[S])]x in terms

of some simplicial subcomplexes πj of πs as follows.

LEMMA 1.3 [16, Theorem 3.3]. For every xeG(S), set

Jx:= {ie[l,p\; xeSt}.

Suppose that S' = S. Then

= H^(πjj k)

for all j > 0.

Note that the set of all elements x e G(S) such that Jx = J for some

fixed subset J c [l,p] is just the set Gf (cf. [16, Corollary 3.7]).

§ 2. Main result

Using the notations of the preceding sections, the main result of this

paper may be formulated as follows.

THEOREM 2.1. Let p and q are the numbers of facets of &$ and <£T,

res.. Then k[W] is a Cohen-Macaulay (res. Gorenstein) ring iff the follow-

ing conditions are satisfied:

(i) σ(S\S)ΐ\τ(T) = 0 and τ(T'\T)Dσ(S') = 0 (res. there exist ele-

ments x e Gf1)P] and y e Gf1)β] with σ(x) = τ(y) such that

σ(GlUΛ\(x - S)) Π r(Gc

Γ

1|β]) = 0 , τ(G^ql\(y - T)) Π σ(GξltPl) = 0 ) .

(ii) For every pair of subsets I<^[l,p], J<Ξ:[l9q\ such that (I9J)Φ

(0, 0), ([l,p], [1, q]) and

either πj or πTj is acylic.

To prove Theorem 2.1, we need some auxiliary considerations.

Let Pu - —,PP and Ql9 , Qq denote the facets of ^s and <gτ, respec-

tively. Since:
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has the following p + Q facets:

X Qt-p) Π F , i = p + 1, , p + g .

LEMMA 2.2. Pa* W< - W - W Π #<, ί = 1, , p + <?.

= p , X G(D) Π F, ί = l, . . . , p ,

Proof. We only need to prove that

!?; = ($ X G(T))Π F .

The conclusion CΞ is obvious. Conversely, each element of (S^ X G(T))

Π F has the form (s - sl9 t - t'), with s e S , st e S Π P1 ? ί, f e Γ and

σ(s — s^ = τ(ί — V). We may assume that sλ Φ 0, t' Φ 0, Then u = σίs^

^ 1 and u = r(ί7) > 1. Hence

(S - 8U t - tf) = (S + (U - 1)S2 - USj, ί + (M - ϊ)t' - Ut')

= (s + (u - l)s1? ί + (ι/ - 1)0 - (υsl9 ut') e ^ ,

as required.

LEMMA 2.3. Let K be an arbitrary subset of [l,p + q]. Set I — K f]

[l,p] and J = {i — p; ί e K, i >p} . TTierc

(i) GS? = (Gf x GfJ) Π F,

(ii) 7r̂  = πf * TΓJ (ίΛe join of πf and πTj {see [12])).

Proof. (i) Straightforward.

(ii) By the definition of TΓ̂ , πf9 and πj, it suffices to show that

nwnEtΦφ) itΐ nsnPtΦ (o)

and Γ\jeJ Tf) Qj Φ (0). First note that

n wn E4 = ans n P4) X (n m Q,» n F.
ίex ίe/ ie/

Suppose that P{ieκ W Γi Et contains an element (x, y) Φ 0, x 6 Γ)ίeI S Π Pt

and 3/ e Γ\jeJ T Π Qj with σ(x) = τ(y). Then x ^ O and 3/ ̂  0 because σ(x)

= τ(y) = Q iff Λ = y = = o . Conversely, if Diei S Γ\ P, and Π i e / Γ Π Qj

contain elements x ^ 0 and y Φ 0, then (τ( y)x, σ(x)y) is a non-zero element

of n i 6 ^ n £ .
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Proof of Theorem 2.1. Note that S Λ = Gs

φ, T = GJ1. Then, by Lemma

2.3(i),

w = (s/ x r ) n F, G^,P+Q] = (GflιP] x G&,p]) n F .

Hence it is easy to check that Wf = W(res. G£fl,+ff] = (x,y) — VFfor some

element (x,y) e G(W)) iff condition (i) of Theorem 2.1 is satisfied. Let K

be an arbitrary non-empty proper subset of [1, p + q] and 7, J as in Lemma

2.3. Then, by Lemma 2.3 (i), G£ = 0 iff σ(G?) Π τ(GJ) - 0 . Moreover,

using Lemma 2.3(ii) we get

for all s > 0 by [5, p. 126]. Therefore, TΓJ is acyclic iff πf or πj is acyclic.

Now, we can conclude that condition (ii) of Lemma 1.1 formulated for W

is equivalent to condition (ii) of Theorem 2.1. Hence, the statement fol-

lows from Lemma 1.1.

Remark. The canonical module of k[W] can be expressed in terms

of the ones of k[S] and k[T] as follows. By Lemma 2.3 and [16, Corollary

3.8].

H*w(k[W]) = fe[(Ggiri X G£,g]) Π F =

where d = dimfefW], m^ = *[W\(0)]. Hence

where Kkίwl, Kkm, and iΓfe[Γ] denote the canonical Z-graded modules of

k[W]9 k[S], and k[T]9 respectively.

The following example show that k[S] and k[T] needn't to be Cohen-

Macaulay and even Buchsbaum rings if their Segre product with respect

to some Z-gradings is a Cohen-Macaulay ring.

EXAMPLE 2.4. Let Sc:N2 be generated by four elements (5,0), (4,1),

(1, 4), and (0, 5). Then k[S] = k[tl t\t2, t&, tξ\ is the homogeneous coordi-

nate ring of a double projection of a Veronese variety. It is easy to see

that k[S] is not Cohen-Macaulay. By [15], k[S] is even not Buchsbaum.

Let k[S] be specialized to and iV-grading by the linear functional σ: Q2

-> Q, σ(xl9 x2) = (Xι + x2)/5. Then we have

σ(S'\S) = {1, 2}, σ(Gff) = σ(S') = N,

<7(GfM3) = {s e Z; s < - 1}.
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Let T = N2 and let k[T] = k[tu t2] be specialized to an iV-grading by the

linear functional τ: Q2 -> Q, τ(xl9 x2) = S(xx + x2). Then T = T and

σ(T) = τ(GJ) = {0, 3, 6, . . . } ,

r(G?U) = {-3, - 6, •••}.

Hence, by Theorem 2.1, the Segre product of k[S] and k[T] is a Cohen-

Macauly ring.

Now it is natural to ask about properties of iV-graded affine semi-

group rings whose Segre products are Cohen-Macaulay rings.

To give a partial answer to this question, we shall need the notation

of generalized Cohen-Macaulay rings (see [6]). Let(A, m) be a Noetherial

local ring. Then A is called a generalized Cohen-Macaulay ring if

l(H^(A)) < co for i = 0, , dim A — 1. This notation is a generalization

of that of Buchsbaum rings and many interesting properties were known

above them. An affine semigroup ring k[S] is called a generalized Cohen-

Macaulay ring if the localization of k[S] at the maximal ideal ms =

k[S\(0)] is a generalized Cohen-Macaulay ring.

COROLLARY 2.5. Suppose that σ(S) = τ(Γ) = N. If k[W] is a Cohen-

Macaulay ring, k[S] and k[T] are generalized Cohen-Macaulay rings.

Proof, By the definition of S' and T' one knows that every element

of S' res. Tf lies in the rational convex cone <ί£s res. c€τ. Hence o(β')

= N res. τ(T') = N if <;(S) = iV res. τ(Γ) = ΛΓ. From this and by condi-

tion (i) of Theorem 2.1 one easily gets S = S' and T = ϊ77. Hence, by

Lemma 2.3, iϊJis(£[S]) is concentrated in degrees σ(x), xe Gf for some I c:

[l,p] with Hi_2(π¥; k) Φ 0, i < dim^[S]. Since πf and ττΓ are not acyclic

[16, Corollary 3.6], from condition (ii) of Theorem 2.1 we get

σ(G?) Π τ(GU = 0 .

Note that if y is an arbitrary element of G[i,g] = G(T)\Uf=i ϊ7^ then

y — 2; also belongs to GJi,e] for all 2 e Γ. Since τ(T) = iV, we can find an

integer 5 such that τ(Gf1)β]) contains the set of integers < s. Hence σ(Gf)

contains only integers > s. By [17, Lemma 2.2] we can conclude that

^is(k[S]) is finitely generated. Hence k[S] is a generalized Cohen-Macaulay

ring. Similarly, one can also show that k[T] is a generalized Cohen-

Macaulay ring.
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§ 3. The case one ring being Cohen-Macaulay

In this section we will consider the case k[T] being a Cohen-Macaulay
ring with τ(T) = N. We shall see that the conditions of Theorem 2.1 can
be simplified by means of the following invariants of S and T:

a(S): = maxσ(G?ltPl),

α ( T ) : = max r(G c

r

l f e ] ).

THEOREM 3.1. Suppose that k[T] is a Cohen-Macaulay (res. Gorensteίn)
ring with τ(T) = N (res. σ(S) = τ(T) = N or τ(T Π Qt) = N for all i e [1, q\).
Then k[W] is a Cohen-Macaulay (res. Gorensteίn) ring iff the following
conditions are satisfied:

( i ) S' = S (res. Gjfi>p] = x — S for some element x e G(S) such that
σ(x) = a(T)\

(ii) α(S)<0,
(iii) a(T)<0,
(iv) For every non-empty proper subset I of [l,p], σ(Gf) ^ [a(T) + 1,

— 1] or Trf is acyclic.

We shall need the following consequences of the condition τ(T) = N.

LEMMA 3.2. Suppose that τ(T) = N. Then
(i) σ(S'\S) Π τ(T) = 0 iff S' = S.
(ii) τ(G^) = {seZ; s < a(T)}.
(iii) For an element x e Gflj5] with σ(x) < a(T),

σ(G^\(x - S)) Π r(GFi.αO = 0

iff G E 1 P ] = x - S.

Proo/. To (i). See the proof of Corollary 2.5.
To (ii). Let x e GfM] such that τ(x) = α(Γ). Since

x — y e Gplϊβ] for all j/eΓ. Since τ(^) can be any non-negative integer,
we see that τ(G£,β3) = {seZ; s < α(Γ)}-

Γo (iii). We only need to prove the implication =>. Since x e Gf1>p],
JC — S c: GfliP] as shown above. It remains to show that GfljP]\(x — S) = 0.
If w e Gf1>p]\(x - S), then σ(a) > a(T) because of (ii) and σ(GfljP]\(x - S))
(Ί τ(Gfiίβ]) = 0. For each i = 1, ,p, one can choose a non-zero element
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st in SΠPi. Replacing ŝ  by nst for n sufficiency large, we may assume
that σ(s%) > - a(T) + σ(u). Then u - st e Gf1?p] and σ(u - s,) < a(T) for

all i — 1, •••,/>. From this and by (ii) it follows that w — ^ e x — S for

all ί = l, , p because

tf(GflfP3\(* - S)) Π τ(Gf1|β]) = 0 .
Hence

x - M e n (s - s n pt) = s ' .

Hence σ(x — w) = σ(x) — σ(u) > 0 because σ(S0 c= iV. Since ί (x) < a(T),

σ(u) < a(T), a contradiction.

Proof of Theorem 3.1. First we will prove that condition (i) is equi-

valent to condition (i) of Theorem 2.1. By Lemma 1.1, T* = T res. Gfhql

= y* — T for some y* e Gf1>g] (note that τ(;y*) = a(T)). Hence the neces-

sary part of the statement is trivial. For the proof of the sufficient part

of the statement, we note that the Cohen-Macaulay case follows from

Lemma 3.2(i). Concerning the Gorenstein case, letxeGf 1 ; P ] and yeGf l i g ]

such that σ(x) = τ(y),

σ(G^Pl\(x - S)) Π r(Gflfβ]) - 0 ,

and

- T)) Π σ(Gfl5P]) = 0 .

Since σ{x) = τ(y) < a(T), by Lemma 3.2(iii) we have GfliP] = x — S.

If σ(S) = iV, then again by Lemma 3.2(iii), G^,^ = y - T. From this

it follows that τ(y) = a(T). Since σ(x) = τ(^), σ(x) = a(T).

If τ(T (Ί Qi) = AT for all i = 1, . , g, we also have σ(x) = τ(y) = a(T).

Indeed, by Lemma 1.1, G£,g] = ^* - T for some 3/* e G(T) (τ(y*) = a(T)).

We shall show that y = y*. Write y = y* — t for some t e T, and assume,

without restriction, that T is a standard affine semigroup, i.e. T Π QΪ =

{x e Γ ; Xί = 0} for / = 1, , q [16, Section 1], If t Φ 0, there is an index

i e [1, g] such that tt > 0. Then T Π Q, Π (ί + T) = 0 . Hence (3/* - Γ

Π Q,) ίΊ (y - T) = 0 . That implies

- T) = Gf1|β]\(y - T ) .

Note that τ(y*) = α(Γ). Then

- T)) 3 Γ(3;* - T Π Q ^ α(Γ) - τ(Γ Π Qt
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On the other hand, since GflϊP] = x — S, a(G^pl) contains sufficiently small

negative integers. Therefore,

σ(G^Pl) ΓΊ r(G£,e]\(y - T)) Φ 0 ,

a contradiction. So we must have y = y*9 as required. Thus, we have

proved that (i) is equivalent to condition (i) of Theorem 2.1.

Further, by Lemma 1.1, for every non-empty proper subset J of

[1, q], Gj = 0 or πτj is acyclic. Hence it remains to check condition (ii)

of Theorem 2.1 for every subset K of [1, p + q] such that K Π [p + 1,

p +q] = 0ovK^[p+l,p +q]. Put I = K Π [1, p]. If I = 0 or [l,p].

one has to check the conditions

*(GfiiP3) Π

*(S0 Π τ(GSfί]) = 0

Since τ(Γ0 = N and τ(Gflιg]) = {s e Z; s < α(Γ)}, these conditions are equi-

valent to (ii) and (iii), respectively. If J is a non-empty proper subset of

[l,p], one has to check the condition

σ(Gf) Π τ{T> U G£iβ]) - 0 ,

which is equivalent to (iv).

Remark. One can not delete the assumption σ(S) — τ{T) = iV or

τ(Γ Π Q<) = iV for i = 1, , g in the Gorenstein case of Theorem 3.1. For

example, let S = T c: N2 be the affine semigroups generated by (4, 0), (0, 4),

(1,1) and let k[S] (res. k[T]) be specialized to an iV-grading by the linear

functional σ: (xu x2) *-+ xx + x2 (res. r: (xu x^) ι-> (xt + x2)/2). Then τ(T) = N

and σ(S) = τ(Γ Π Qi) = τ(Γ IΊ Q2) = 2JV. By Theorem 2.1, one can easily

check that the Segre product k[W] of k[S] and £[T] is a Gorenstein ring,

although GfM] = ( - 1, - 1) - S and σ((- 1, - 1)) = a(S) = - 2 < α(Γ) =

- 1.

COROLLARY 3.3. Suppose that k[S] and k[T] are Cohen-Macaulay (res.

Gorenstein) rings with σ(S) — τ(T) = N. Then k[W] is a Cohen-Macaulay

(res. Gorenstein) ring iff a(S) < 0 and a(T) < 0 (res. a(S) = a(T) < 0).

Proof. The proof immediately follows from Theorem 3.1 and Lemma

1.1.

To illustrate the use of Corollary 3.3 we conisder the so-called

Segre-Veronese graded algebras [2], First, recall that the Veronese k-



SEGRE PRODUCTS 123

algebra of type (n, d) is the ring generated by all monomials of degree d

in n variables over k. It is the semigroup ring of the aίϊine semigroup

S(n, d) = {x e Nn x1 + • + xn = 0 modulo d).

It is well known that k[S(n, d)] is a Cohen-Macaulay ring, ^s^,^

has n facets and it is easy to see that

Gf#f = {xeZn; x, + + xn = 0 modulo d and x, < 0, i = 1, , τι}.

Hence, using Lemma 1.1, one can check that k[S(n, d)] is Gorenstein iff

n = 0 modulo d (see also [2], [8]). k[S(n, d)] has a natural iV-graded struc-

ture corresponding to the linear functional x >-• (χt + . . . + xn)jd.

A Segre-Veronese graded algebra is the Segre product of Veronese

algebras [2] with respect to this natural iV-graded structure.

COROLLARY 3.4 ([1], [2]). The Segre product k[W] of the Veronese al-

gebras k[S(nl9 dj], •••, k[S(nr9 dr)] is a Cohen-Macaulay ring. It is

Gorenstein iff

njdί = . . . = nΎ\dr eN.

Proof. The proof immediately follows from Corollary 3.3 and Lemma

2.3 (i) by induction on r.

Note that the statement that Segre products of polynomial rings are

Cohen-Macaulay [4] is only a consequence of Corollary 3.4.

One can also use Theorem 3.1 to study the arithmetically Cohen-

Macaulayness res. Gorensteiness of the blowing-up of a projective mono-

mial variety. For every affine semigroup S C Nm such that k[S] can be

specialized to an iV-grading by a linear functional σ, one can introduce

the following affine semigroup

Sσ : = {(x, ΐ) e Nm+1; x e S and σ(x) > i}.

k[Sσ] is isomorphic to the graded algebra φΓ=o^ where It denotes the

ideal of k[S] generated by elements of degree > i. Especially, if S is

generated by elements of degree one, then k[Sσ] is the Rees algebra of

k[S].

It is not hard to see that k[Sσ] is isomorphic to the Segre product of

k[S] and k[tl912] = k[N2] (with the natural iV-graded structure). Hence one

can apply Theorem 3.1 to give a criterion for k[Sσ] to be Cohen-Macaulay

(res. Gorenstein) in terms of S.

COROLLARY 3.5 [16, Lemma 4.8]. Let Sσ be as above. Then k[Sσ] is a
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Cohen-Macaulay (res. Gorensteίή) ring iff the following conditions are

satisfied:

( i ) S' = S (res. GflϊP] = x - S for some x e G(S) with σ(x) = - 2),

(ii) α(S)<0,

(iii) For every non-empty proper subset I of [1, p], σ(Gf) £ {— 1} or

πf is acyclic.

Proof. Put T = N2 and let τ denote the linear functional (x2, x2) «->

XJ + x2. Then it is esay to see that

TΠ Q1 = {(0,*2); x2eiV},

Γ ί l Q2 = {(*i,0); ^e iV} ,

GS,a] = {(*„ *2) e Z2; x, < 0 and x2<0} = ( - 1, - 1) - Γ.

Thus A[Γ] is a Gorenstein ring with a(T) = - 2 and τ(Γ) = τ(T Π QO

= τ(T Π Q2) = N. Hence the statement follows from Theorem 3.1.

§ 4. Buchsbaumness of afϊine semigroup rings

In 1976 Reisner [10] obtained the surprising result that the Cohen-

Macaulayness of polynomial rings modulo ideals generated by square-free

monomials is dependent upon the characteristic of the ground field. Later,

Solcan [11] showed the same phenomenon for the Buchsbaumness of such

rings. By [16] we also know that the Cohen-Macaulayness of affine semi-

group rings is dependent upon the characteristic of the ground field.

However, one was unable to establish the same phenomenon for the

Buchsbaumness of such rings. Now, it will be done by applying results

of the preceding sections.

Recall that a local ring A with maximal ideal m is called a Buchsbaum

ring if for every system of parameters xl9 , xd (d = dim A > 0) of A

for i - 1, , d.

Here, we will need the following properties of Buchsbaum rings:

(i) Let (A, m) be a Buchsbaum ring of dimension d > 0. Then

mfl&A) - 0 for all 0 < i < d [14].

(ii) Let k be a field, A = ®n>0 [A]n a Noetherian iV-graded ring with

AQ — k and m = Θn>o l^L Suppose that there is an integer n such that

for 0 < i < d = dim A and for every j Φ n

[H<(A)]} = 0 .
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Then Am is Buchsbaum [7]. In this case, we will also say, for short, that

A is a Buchsbaum ring.

PROPOSITION 4.1. There exists an affine semigroup ring such that it

is non-Cohen-Macaulay Buchsbaum if char (k) Φ 2, but it is non-Buchsbaum

if char (k) = 2.

For the proof, we consider the following two examples.

EXAMPLE 4.2. Let Δ be the simplicial complex associated with the

minimal triangulation of the projective plane:

Then Δ can be considered as a subcomplex of the simplicial complex Δίu^

of non-empty subsets of [1,6]. J [ 1 6 ] \zJ has the following 10 minimal

simplexes: {1,2,3}, {1,2,4}, {1,3,5},' {1,4,6}, {1,5,6}, {2,3,6}, {2,4,5},

{2, 5, 6}, {3, 4, 5}, {3, 4, 6}. Consider the system of l inear equations

6(x1 x2 + x3) = x4

x2 + x4) = x3

15x7

6(x3 x4
x6) = 15x1(

where the i-th equation corresponds to the i-th minimal simplex of J [ 1 ) 6 ] \J

in the above order. Let S be the affine semigroup of solutions x e Nu of

this system of linear equations with xi = Xj modulo 16 for all i, j e [1, 16]

and x, Φ 1, 3 for all i e [1, 6].

Similary as in [16, Section 5], one sees that dim S — 6, S' — S, GfM]

= {(1, •••,!), (3, , 3)}, πfi,6] = Δ and that for every non-empty proper

subset J Φ [1, 6] of [1, 16], Gj = 0 or πj is acyclic. Note that

0 tiqφl,

Z2 if q = 1 ,
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and that

Hq(Δ; k) = (Hq(Δ; Z) ®z k) ® Ύoτz (HqM; Z); k)

for all q > 0 (the universal coeίBcient theorem [12]). Then, by Lemma 1.3,

HLMS] = o

for i Φ 3, 4, 6 and

[IPmβ(k[S])]h = [ffB

4

β(*[S])]* = P 2 ® ' * if Λ = Λ, or Λ,,
1 0 if Λ ^ A,, Λ,,

where Ax : = (1, , 1) and A8 : = (3, , 3) are elements of G(S). Thus,

fe[S] is a Cohen-Macaulajr ring if char (k) Φ 2.

If char (k) = 2, let A2 denote the element (2, , 2) of S. Since

W 1 -W 1 - ί * tfίS[i,βl,
[nSJu - W*M* - | 0 a J s 2 [ l j 6 ] t

the multiplication by A2 induces an isomorphism of complexes:

Since by Lemma 1.2,

[

for every element x e G(S), we get

In particular, A2 [fl"ί5(A[S])]Λx ^ 0. Therefore, A[S] is a non-Buchsbaum

ring.

EXAMPLE 4.3. Let S be as in Example 4.2, and let σ denote the linear

functional

(*i, •• ,ΛIβ)ι > f o + ••• + x16)/16.

Then (j(G )̂ = σ(S0 = JV and σ(G^) - {1, 3}. Moreover, since

GfM6] = G(S)\U St
ΐ = l

= {Λ: e G(S); xt < 0 or xt = 1, 3 for i e [1, 6], x, < 0 for e [7,16]

and xt = Xj modulo 16},

it is easy to see that <τ(Gf1)163) = {me Z; m < — 1}.
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Now let T c: N2 be the affine semigroup generated by (3, 0), (2, 1),

(0,3). Let k[T] be specialized to an Aggrading by the linear functional

T: (xl9 x2) >-* (Xi + *2)/3. Then by Lemma 1.1, it is easy to see that k[T] is

a Cohen-Macaulay ring and τ(T) = N and r(Gjfli2]') = {/neZ; m < 0}.

Let fe[W] denote the Segre product of k[S] and k[T] with respect to

the functionals a and τ. By Lemma 2.3, Example 4.2, and the above

formulas, there are only two non-empty proper subsets K of [1, 18] such

that GZ Φ 0 and πj is not acyclic. They are [1, 6] and [17, 18]. We have

G[T,6] = {(K Xi), (K *s); x» 3̂ € Γ, τ{xx) = 1 and T(Λ:3) = 3},

G^7ll8] = {(0, - . . , 0 , 1 , - 1 ) } .

where hlf hd are as in Example 4.2.

Since W = W, by Lemma 1.3 and [16, Corollary 3.6] we ge»

for i Φ 2, 3, 4, 7 and

i f ^ = ( 0 ' •• ί 0 ^ ί - l ) »
θ if wφ(0, . . . , 0 , 1 , - 1 ) ,

0 if w; g G^,6].

From this it follows that k[W] is a non-Cohen-Macaulay Buchsbaum ring

if char (k) Φ 2. If char (k) = 2 one can see, similarly as in Example 4.2,

that k[W] is non-Buchsbaum.
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