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A NOTE ON CERTAIN PERMUTATION GROUPS IN THE

INFINITE DIMENSIONAL ROTATION GROUP

NOBUAKI OBATA

Introduction

In his book [8] P. Levy discussed certain permutation groups of natu-

ral numbers in connection with the theory of functional analysis. Among

them the group ^, called the Levy group after T. Hida [3], has been

studied along with Hida's theory of white noise analysis and has become

very important keeping profound contact with the Levy Laplacian which

is an infinite dimensional analogue of the ordinary Laplacian ([6]).

This paper contains two topics on the Levy group. We now give a

summary of this paper.

I. Let TV be the set of all natural numbers. For an arbitrary subset

S of iV, the upper density and the lower density of S are defined by the

formulae:

= l imsup- i- |Sn{ l ,2 , . .

= liminf A r | S Π { l , 2 , . . }

respectively. If δ(S) = δ(S), this quantity is called the density of S and

denoted by δ(S). We denote by J^ the family of all subsets which admit

the density.

We denote by Aut (TV) the group of all permutations of N. Let cβ(S)

be the group of all permutations preserving density:

&(δ) = {g e Aut (Λ0; g^ = & and δ(g(S)) - δ(S) for any S e^}

and let ^ 0 be the group of all permutations whose supports are of null

density:
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^ 0 = {g e Aut (TV); 3(suppg) = 0}.

For any g e Aut (TV) and NeN, we put

Γ ( i) 1 < n < N and ^(zi) > ΛΓ; or

\ ' (ii) n> N and 1 < g(λi) < N

Let ^ be the set of all permutations g e Aut (TV) satisfying

Then ^ becomes a subgroup of Aut (TV) and is called the Levy group. It

will be proved that ^ 0 c ^ C (̂<5). A characterization of the Levy group

is given by

THEOREM 1. For a permutation g e Aut (iV) the following three condi-

tions are equivalent:

( i ) ge9, i.e. F(g) = 0;

(ii) δ(g(S)) = δ(S) for any S c TV;

(iii) g(g(S)) - 3(S) /or any S c N.

In order to discuss the Levy Laplacian we shall give another char-

acterization of the Levy group. Let £°° be the Banach space of all

bounded real sequences a = (αn)?7=1 with the usual norm | |α| | — sup|αn | .

Define two continuous functionals L+ and L" on ί™ by the formulae:

1 Λ 1 Λ

L+(a) - lim sup — - Σ an , L~(a) = l i m i n f - T T E ^ -

respectively. The group Aut (N) acts on S00 as coordinate permutations,

i.e. by means of the maps:

a i > ga = K - 1 ( n ) ) : = 1 , a = (αJ?T=1 e ^ , g e Aut (TV).

With these notations we may prove

THEOREM 2. For a permutation g e Aut (TV) the following three condi-

tions are equivalent:

( i ) ge&, i.e. F(g) = 0;

(ii) L+(ga) = L+(a) for any ae£™;

(iii) L~(ga) — L~(a) for any a e £°°.

II. Let S be the subspace of all sequences o e f such that L+(a) =

L~(a) and put
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1 N

L(a) = Jim -—- Σ α n , a = (αn)~β l 6 ^ .

Then Sf is a closed subspace of ~̂ and L a continuous linear functional
on it. Define the group ^(L, 2)) by

{geAut(N); g9 = ^ and L{ga) = L(α) for any α e ^ } .

It is noted that the Levy group ^ is a proper subgroup of &(L, ^ ) .
We then come to the Levy Laplacian. Let E = C00^1) and H =

U(Sι) be the nuclear space of all i?-valued C°°-functions on the circle S1

and the Hubert space of all i?-valued square integrable functions, respec-
tively. Once we fix a complete orthonormal system {en}ζ=ι c E for if, the
group Aut (TV) may be regarded as a subgroup of the orthogonal group
O(H) in an obvious manner.

Let Doπitf (Δ) (resp. Dom# (Δ)) be the space of all R-valued continuous

functions on H (resp. E) satisfying the following two conditions:

32/Λ(i) sup for any ξ e H (resp. E)

iii) lim —Σ~(ξ) e x i s t s for any ξ e H (resp. E).
N-*™ N n-l 9f2

Here we note that every i?-valued function f on H (resp. JB) is regarded
as one of countably infinite variables (?n)Γ=i through the Fourier series
expansion ξ = J] fnen, f e £Γ (resp. f 6 ίJ). For /e Dom# (J) (resp. Dom^ (J)),
we put

(Af)(ξ) = lim - L Σ | ϊ ( f ) , f e i ϊ (resp. E).

The linear operator Δ is called the Levy Laplacian. In some literature
the Levy Laplacian is denoted by ΔL in order to avoid confusing it with
the number operator (or the Ornstein-Uhlenbeck operator). In this paper,
however, it is denoted by Δ for simplicity.

For each g e O(H) we define an operator U(g) by

(U(g)fXξ) = f(g-*ξ), ξeH,

where / is an arbitrary function on H. For a function on E we need
further notation, since the space E is not stable under O(H). Following
H. Yoshizawa [11] we call an orthogonal operator g e O(H) a rotation of
E if its restriction to E induces a topological automorphism of E. Let
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O(E, H) denote the group of all rotations of E, It plays an important

role in probability theory ([4], [5], [10], etc). Restricted to the group

O(E, H), the above formula defines an operator U(g) acting on the space

of functions on E. We are now in a position to state the main results

on the Levy Laplacian.

THEOREM 3. The group &(L, @) consists of all permutations which com-

mute with the Levy Laplacian Δ with the domain Dom^/ί).

THEOREM 4. The group &(L9 2) Π O(E, H) consists of all permutations

which commute with the Levy Laplacian Δ with the domain Dom^(J).

From the above results it follows that the Levy group ^ (resp. the

group ^ Π O(E, H)) commutes with the Levy Laplacian Δ with the domain

(J) (resp. T)omE (Δj). This fact was first remarked by T. Hida [3],

ACKNOWLEDGEMENT. I would like to express my gratitude to the re-

feree for his suggestions and to Professor T. Hida for his valuable advice

and constant encouragement.

§ 1. Density of natural numbers and the Levy group

Let TV denote the set of all natural numbers. For an arbitrary subset

S C TV we put

δ(S) = limsup J L | S n {1, 2, ,N}\,

δ(S) = lim inf -±-\S D {1, 2, . ,N}\,

where | | denotes the cardinality. The quantity δ(S) (resp. δ(S)) is called

the upper density (resp. lower density) of S. If δ(S) = δ(S), this is called

the density of S and denoted by δ(S). We denote by & the collection of

all subsets of TV which admit the density. Then the triple (TV, J*\ δ) is

analoguous to a probability space but not quite. In fact, 8F is not finitely

additive. Nevertheless, we have the following

PROPOSITION 1.1.

(1) If SeP, then Sce^ and δ(Sc) = 1 - δ(S).

(2) If Sle0r and S2 e &, then £(£ U S2) < δiSJ + δ(Sd

(3) Let S.e^ and S2 e &. If δ(S, Π S2) = 0, then S, U S2 6 & and

U S2) = δfo) + δ(S2).



PERMUTATION GROUPS 95

The proof is easy and omitted. Let Aut (TV) be the group of all per-

mutations of N and @(δ) the subgroup of all permutations which preserve

the density:

= {g e Aut (TV); g& - & and δ(g(S)) = δ(S) for any Se^}.

For any g e Aut (N) we put

supp g = {neN; g(n) ̂  n}.

Then g is a bijection from suppg" onto itself. In particular, suppg =

suppg""1. By Proposition 1.1 (2) the set

^ 0 = {g e Aut (TV); <S(supp g) = 0}

forms a subgroup of Aut (N). It is known that the group ^ 0 is closely

related to the average power introduced in [1], however, we shall not go

into a detailed discussion in this paper.

For g e Aut (TV) we put

FUg) = {neN;l<n<N, g(ή) > N},

F^g) - {rceiV; n > N, 1 < g(ή) < N}

and

FN(g) = F+

N(g) U

Obviously, \FN(g)\ =

F(g) = lim sup

and put

(disjoint union).

. Define a function on Aut (TV) by

^ e Aut (iV),

= 0 } .

As is easily seen, ^ forms a subgroup of Aut (N) and is called the Levy

group after T. Hida. It was first introduced by P. Levy in connection

with equally dense complete orthonormal systems ([8]).

PROPOSITION 1.2. cz

Proof. From the inequality

F(g) < 2§(supp g), ge Aut (N),

which is easily seen, the inclusion ^ 0 c ^ follows. We shall prove the

inclusion ^ c ^(3). First note that, for any g e Aut (TV) and S a N
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s n ίs(i), ,g(N)} c (s n {i, ,N» U

Therefore, if g e ^, we have

= limsup-ί-IS Π {g(l), • • -,g(N)}\

< limsup(4rlS Π {1, , N}\ + - | H F ^ ) i ) = ̂ (S)

Since ^ is a group, we see that

δ(g(S)) = δ(S) for any S c N and £ e & .

Similarly,

δ(g(S)) = δ(S) for any S c i V and g e & .

Hence ^ c ^(3) as desired. Q.E.D.

The following result was established during the above proof.

COROLLARY 1.3. The upper density δ and the lower density δ are in-
variant under the Levy group.

EXAMPLE 1.4 ([3]). Let 0 = No < JVΊ < be an increasing sequence
of integers. For any permutation g e Aut (N) which leave every subset
{Nk_1 + 1, , Nk} invariant, we have

F(g) < 2 lim

Therefore, if lim,,^ Nk/Nk_ί = 1, g belongs to ^. In particular, ^0 is a
proper subgroup of ^.

§ 2. Characterizations of the Levy group

We showed in the previous section that the upper density δ and the
lower density δ are both invariant under the Levy group ^. As we see
below, this property actually characterizes the Levy group.

THEOREM 1. For a permutation geAut(N) the following three con-
ditions are equivalent:

( i ) ge$, i.e. F(g) = 0;
(ii) δ(g(S)) = δ(S) for any SciV;
(iii) δ(g(S)) - δ(S) for any S C N.



PERMUTATION GROUPS 97

The following result whose proof is elementary and omitted will be
used in the proof of Theorem 1.

LEMMA 2.1. Let 0 = iV0 < Nx < be an increasing sequence of inte-
gers and let {pn}n=i be a sequence of integers satisfying 0 < p ? ι < Nn — Nn_u

For any subset S C N satisfying

| S n { i V n - i + l , Λ U + 2 , ' - , N n } \ = p n , n > l ,

we have

(1) δ(S) < lim sup — — 1 Σ Pk

«->« iVw_i + p π *-l

(2) §(S) > lim inf - - 1 g

Proof of Theorem 1. The implication (i) => (ii) and (iii) has been al-
ready shown in Corollary 1.3.

Suppose that a permutation g does not belong to £?. It suffices to
construct a subset S c i V such that δ(g(S)) < δ(S) and δ(g(S)) < δ(S).
By assumption, there exists a sequence 0 = NQ < iVi < N2 < such that

For simplicity we put \F^κ(g)\ = pn. Here we may assume that
g(Nn)<Nn+1. Put

S = 0 Ή.te)
w = l

Then we obtain

Given ε > 0, there exists nc > 1 such that

) κ for all

Then, for any n > n0 we have

i s n { i , •••,Nn}\=±pk
fc = l

\ 2 / fc-wo + i
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Hence,

(2.1) δ(S) > lim sup - L | S Π {1, , Nn]

.2

On the other hand, it follows from Lemma 2.1 that

(2.2) δ(g(S)) < lim sup — i Σ p,

-( ± Nk).

= (^F(g) + ε)(1 + 1 F(^))"1lim sup A-

Take ε > 0 sufficiently small such that

Ifte) - ε > (iF(^) + e)(l + j

Viewing (2.1) and (2.2), we have δ(S) > δ(g(S)). In a similar manner we

can show that δ(S) > δ(g(S)). Q.E.D.

In the rest of this section we give another characterization of the

Levy group. Let £°° be the Banach space of all bounded real sequences

a ~ (an)n=i with the norm ||α|| = sup|αTO|. The group Aut(TV) acts on £°°

as coordinate permutations, namely, by means of the maps:

a = (αj^i i > ga = (ag-Hn))ζ=1.

We now introduce two functionals L+ and L~ on £°°:

L+(a) = lim sup - ^ Σ an , L~(a) = lim inf -±- Σ «„

where α = (αj?7=i € °̂°. Then one can prove the following assertion easily.

LEMMA 2.2.

(1) L + ( - α) = - L"(α), α e f .

(2) lim inf αw < L+(ά) < lim sup an, a = (an)ζ=1 e 6°°.
n — > oo n — > oo

(3) \L+(a) - L+(b)\ < \\a - b\\, a,be£°°.

The quantities lim inf αn and lim sup an (see Lemma 2.2 (2)) are in-

variant under the action of Aut (iV), namely, for any g e Aut (/V),
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lim inf ag-Hn) = Urn inf an and lim sup ag-Hn) = lim sup an .

While, L+(gά) varies when g runs over Aut (N). More precisely, we have

the following result whose proof is easy.

PROPOSITION 2.3. Let α e f be fixed. Then the range of the map

g •-» L+(ga), g e Aut (TV), coincides with the closed interval [lim inf an,

lim sup an].

Thus we are interested in the permutation group which keeps the

functionals L+ and L~ invariant. In this connection we have

THEOREM 2. For a permutation g e Aut (TV) the following three con-

ditions are equivalent:

( i ) ge&, i.e. F(g) = 0;

(ii) L+(ga) = L+(a) for any ae£°°;

(iii) L~(ga) = Zr(α) /or αTij' α e °̂°.

This is an immediate consequence of the following

LEMMA 2.4. For a permutation g e Aut (TV), the following three condi-

tions are equivalent:

( i ) ge%, i.e. F(g) = 0;

(ii) lim - L f; (αn - α ί ( n )) - 0 /or all ae£~;

1 N 1 N

(iii) lim sup — 2 αn = lim sup — T] α. ( n ) for all a e -#°°.

Proof. The implication (i) =φ (ii) is easily shown with the help of

the inequality:

Next we show the implication (ii) =Φ (iii). Let α e Γ . Then

lim sup J L Σ agin)

N—> oo TV rc = l

1 ^ 1 Λ

< lim sup —- 2 (α^(n) - an) + lim sup -— 2 α»

1 ^
= lim sup — Σ an -

Since the set of all permutations g e Aut (TV) satisfying the condition (ii)
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forms a subgroup, we have (iii).
Finally we show that (iii) implies (i). Suppose that g does not belong

to ^. It follows from Theorem 1 that there exists a subset S d N such
that δ(g(S)) * δ(S). We define a = (aX^ e £- by

an = 1 if ne S; = 0 otherwise.

Since

3(S) = lim sup — Σ an

and

1 #i
== limsup ^ ^_ i v π ; ,

(iii) does not hold. This completes the proof. Q.E.D.

§3. The Levy Laplacian

Let 2 be the subspace of all bounded sequences α e f such that

L+(a) — L~{a). Then S is a closed subspace of &°° and the functional

L(a) = l i m i - Σ β - a = (aX^ 6 3f,

is continuous and linear. We now define a subgroup ^(L, S) of Aut (iV):

^(L, ^) = {^e Aut(N); g@ = ^ and L(^α) = L(α) for any α e ^ } .

Then we have the following

PROPOSITION 3.1. ^ c ^(L, ^) c

Proof. The inclusion ^ c ^(L, ̂ ) follows from Theorem 2. The in-
clusion ^(L, 0) C ^(δ) is immediate. Q.E.D.

Let H be a real Hubert space with a complete orthonormal system
{ej^=1. Each ξ e if is sometimes identified with a real sequence (ξn)ζ=1

through the Fourier series expansion. Let O(H) be the group of all
orthogonal operators on H. With each g e Aut (N) we associate an or-
thogonal operator g (denoted by the same symbol) by means of the map:

ξ i — > gξ = (?tf-i(»))«=i, ί = (£n)««i e i ί .

Thus, we may regard Aut (TV) as a subgroup of O(H).
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Let Doπitf (A) be the space of all R-valued continuous functions on H

satisfying the following two conditions:

( i) < oo for all ξ € H;

(ii) lim J L f; J?£(£) exists for all ξ e H.
N-oo N n-l dξl

Here we note that every function f(ξ) on H is regarded as one of infi-

nitely many real variables (ξn)n=i If / e Dom# (J), we put

(3.1) ^έf

The linear operator Δ is called the Levy Laplacian.

EXAMPLE 3.2. A function f(ξ) is called a monomial of degree p if it

admits the expression:

(3.2) f(ξ) = (ξ®p, a), αe Spίf (p-th symmetric tensor product).

Every monomial belongs to Dom^ (J) and (Af)(ξ) = 0.

EXAMPLE 3.3. Consider a function /(f) given by

(3.3) f(ξ) = (A£®*, ίΘ ? )), A 6 B(SPH).

If the limit

(3.4) 2p2 lim A . f; (A(en ® ξ®^) , ew ® f®^-1))

exists for any ξ e H, the function / belongs to Dom^ (J) and (Δf)(ξ) is

equal to the limit (3.4). If p = 1, any function of the form (3.3) is called a

quadratic functional on iί.

From now on, we assume that H is the Hubert space of all Z?-valued

square integrable functions on the circle. Each ξ e H is regarded as a

function on R with period 1. We fix a complete orthonormal system {ej"=1

as follows:

βj(ί) = 1, e2n(t) = V ^ sin 27r^ί, β2?ι + 1(ί) = V ^ cos 2πnt,

where n > 1. This system is equally dense ([8]). The Levy Laplacian

is closely related with the functional derivatives of second order through

an equally dense complete orthonormal system ([6]).
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EXAMPLE 3.4 ([2], [6]). Let a(t) be an essentially bounded function on

S1. Then the function

/(£) = Γ a(t)ζ(t)2dt, ξeH,
Jo

belongs to Dom^ (Δ) and (Δf)(ξ) = 2 Γ a(t)dt.
Jo

For each geO(H) we define an operator U(g):

(3.5) (U(g)f)(ξ) =

where / is an arbitrary function on H. The Levy Laplacian characterizes

the group ^(L, S) as follows.

THEOREM 3. The group @(L, <3) consists of all permutations which com-

mute with the Levy Laplacian Δ with domain Dom^ (Δ).

Proof. For g e &(L, &) and / e Dom# (J), we shall show that

(i) C/(£)/eDom*(J);

(ii) ΔU(g)f=U(g)Δf
Put

an(ξ) = Άξ), ξeH, n > l .
ξ

Then, by assumption the sequence a(ξ) = (an(ξ))ζ=x belongs to 2 for any

ξeH. Viewing the definitions of L and Δ, we obtain

(3.6) (Δf)(ξ) = L(a(ξ)), ξeH.

By definition,

(3.7) ga(ξ) e® for any ξ e #

(3.8) £(£<*(£)) = L(α(f)) for any ξ e i ί .

On the other hand, a direct calculation implies that

Therefore, by (3.7) we have U(g)f e Dom^ (J) and

(άU(g)f)(ξ) =
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Hence by (3.6) and (3.8) we have

(ΔU(g)f)(ξ) = L(αte-Έ)) = (dfXg-'ξ) = (U(gW)(ξ),

as desired.

Conversely, suppose that a permutation g e Aut (TV) commutes with

the Levy Laplacian J, i.e.

(iii) Dom^(J) is stable under U(g);

(iv) ΔU(g) = U{g)Δ.

For any a e 3) we define a diagonal operator A e B(H) by Aen — anen,

n > 1. Then /(?) = (A?, ?) belongs to Dom^ (J) and (Δf)(ξ) ΈΞ L(a). There-

fore, as is easily seen, the assumptions (iii) and (iv) imply that ga e@

and that L(ga) - L(ά). Hence g e ^(L, ^ ) . Q.E.D.

COROLLARY 3.5. Every permutation of the Levy group <g commutes with

the Levy Laplacian with the domain Dom# (A).

Let E — C^iS1) be the space of all 2?-valued C"-functions on the
circle. Equipped with countably many norms || ||p:

\ ξ { q ) ( t ) ? d t , ξ e E , p > 0 ,

E becomes a nuclear space. We introduce the space Dom^ (J) in the same

manner as Dom^ (Δ). Then the Levy Laplacian Δ is defined on Dom^ (Δ)

by the formula (3.1).

EXAMPLE 3.6. (cf. Example 3.2.) A function / on E is called a mono-

mial of degree p if it is of the form:

(3.9) f(ξ) = <α, ξ®») ,

where <,> denotes the canonical bilinear form on (E®p)*χEΘp. If the

limit

(3.10) p(p - 1) lim - L Σ <α, en®en®ξ®^)
N-+00 TV w = l

exists for all ξ eE, then / belongs to Dom£ (Δ) and (Δf)(ξ) is given by the

above limit (3.10).

A typical monomial is given by the integral:

(3.11) f(ξ) =
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where a(tu ••-,£*) is an integrable function on SXX x S 1 (£-times) and

Pu P2, - - , Pk > l After P. Levy [8] a linear combination of such func-

tions is called a normal functional. In particular, the function f(ξ) is

called a regular functional iί px = = pfc = 1.

We shall determine the subgroup of Aut (N) which commutes with

the Levy Laplacian Δ with the domain Dom^J). First note that the

space E is not stable under the orthogonal group O(H). Following

H. Yoshizawa [11] we call an orthogonal operator g e O(H) a rotation of

E if its restriction to E induces a topological automorphism of E. Let

O(E, H) denote the group of all rotations of E. All of our arguments

and calculations in Theorem 3 can be carried over to this case and we

have the following

THEOREM 4. The group &(L, &) Π O(E, H) consists of all permutations

which commute with the Levy Laplacian Δ with the domain ΏoτaE (Δ).

COROLLARY 3.7 ([6]). The group & n O(E, H) commutes with the Levy

Laplacian with the domain Dom# (Δ).

For the group Aut (N) Π O(E, H) we have the following result whose

proof is easy and omitted.

PROPOSITION 3.8. A permutation g e Aut (TV) belongs to O(E, H) if and

only if there exist two positive constants a and β such that

(i) supn > 1 n~ag(n) < 00;

(ii) infn > 17i->£(n)>0.

COROLLARY 3.9 ([1]). Let 0 - iV0 < Nt < < Nk < he an in-

creasing sequence of integers with l im*^ NJNJC^ — 1. Any permutation

geAut(N) which leaves every subset {Nk_ί + 1, ,Nk} invariant belongs

to O(E, H).

Proof. The condition in Proposition 3.8 is obviously satisfied if we

put a = β = 1. Q.E.D.

§ 4. Further properties of the Levy group

In this section we shall prove the following two assertions.

PROPOSITION 4.1. (cf. Proposition 3.1.) The Levy group & is a proper

subgroup of
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PROPOSITION 4.2. (cf. Corollary 3.7.) ^0 is not a subgroup of O(E, H).
In particular, the Levy group is not a subgroup of O(E, H).

Every finite subset S c N admits a unique decomposition into a sum
of disjoint segments as follows:

where ίe + j£ < iUί, jέ > 1, 1 < ί < k. Then we put

(4.1) λ(S) = Σ (2ί, + ;,) = έ ((ι, + 1) + (i, + Λ) - 1).
1=1 e=i

LEMMA 4.3. Assume that geAui(N) satisfies the condition:

sup J L {λ(F+Ag)) + λ(F-(g))} = r < oo.

g1 belongs to &(L, Θ).

Proof Let α e i Given ε > 0 we choose iV0 > 1 such that

(αn - L(α)) I < ε ΛΓ for every N > NQ.

Note that

(4.2)

Σ (αn - L(a))! + I Σ (<*« - L(a)) ^ε(2p + q),

where p > iV0 and g > 1. If JV > iV0 is sufficiently large, we have

F&g) C {iV0 + 1, N0 + 2, . .-} .

Then by (4.1) and (4.2),

(α« - α,- 1 ( f 0); = i Σ αft
1 ' '• neF^

Σ (αH-ί-(α

an

(σβ-L(α))

Therefore,

1 ! Λr
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for every sufficiently large N > NQ. This implies that ga belongs to Sf

and that L(ga) = L(ά). Q.E.D.

Proof of Proposition 4.1. Fix an increasing sequence 0 = NQ < Nt <

N2 < such that Nk — iV^! = 2mk, mk e N. Define g e Aut (N) as product

of disjoint transpositions as follows:

k

£ = Π Π (JV*-i + j , W*-ι
k=i j=i

It can be easily shown that if Nk_1 < N <

Hence

A {λ(F+

N(g)) + λ(F-(g))} = 2 + 4 F ( ^ - I -

Thus, if supfr>2 Nk/Nk_1 < oo, by Lemma 4.3 we see that g e ^(L, &). While,

it is easy to see that

F{g) = lim sup ^\FN(g)\ = 2 lim sup ffi ~ ^ .

Therefore, there exists a permutation g e ^(L, ^) with J^(^) > 0. This

completes the proof. Q.E.D.

Proof of Proposition 4.2. Let 2 = nλ < n2 < be an increasing se-

quence of prime numbers. We put

It follows from the prime number theorem that <5(supp g) = 0, namely,

g e ^o While, for any a > 0, we have

sup n~ag(ή) > sup nfcα2WA; = oo .

Therefore g does not belong to 0{E, H) by Proposition 3.8. Q.E.D.
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