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ISOSPECTRAL SURFACES OF SMALL GENUS

ROBERT BROOKS* AND RICHARD TSE

Isospectral Surfaces of Small Genus

In this note, we will construct simple examples of isospectral surfaces.
In what follows, we will use the term "surface" to mean a surface endowed
with a Riemannian metric, while the term "Riemann surface" will be
reserved for a surface endowed with a metric of constant curvature. We
will show:

THEOREM 1. There exist pairs of surfaces Sx and S2 of genus 3, such
that Sj and S2 are isospectral but not isometric.

THEOREM 2. There exist pairs of Riemann surfaces St and S2 of genus 4
and 6, which are isospectral but not isometric.

THEOREM 3. There exist unoriented surfaces Sx and S2 of Euler char-
acteristic X(S^) — X(S2) — —6 which are isospectral but not isometric.

The problem of finding isospectral Riemann surfaces is an old one.
The first explicit example, of genus 24, was found by Vigneras [6] through
consideration of the arithmetric of quaternion algebras. Soon afterwards,
Sunada [5] found a quite general approach to the subject, which we will
discuss below. His method involves reducing isospectral properties to
certain group-theoretic properties of finite groups. His method was taken
up by Buser [3], who was able to construct isospectral Riemann surfaces
of genus 5, and all genera >7. Buser worked with the finite group which
is the semi-direct product (Z/8) X (Z/8)*.

We will show in Section 4 below how to extend Buser's work in
certain directions.

To prove Theorem 1, however, we will replace (ZjS) X (Z/8)* with the
group SL(3, Z/2). For reasons which we will explain below, SL(3, Z/2)
should be close to optimal for this problem.
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We have made an extensive but by no means exhaustive search of
finite groups likely to produce examples of isospectral surfaces of genus
2. All of the groups we studied turned out to be incapable of giving such
examples. It should be possible, using the classification of finite simple
groups, to decide whether or not the technique used here is capable of
producing genus 2 examples, but such a question is outside the scope of
this paper.

We would like to thank Robert Guralnick and David Wales for their
invaluable assistance on the group theoretic aspects of this paper.

§ 1. Finite groups and the Sunada theorem

In [5], Sunada gives a general technique for constructing isospectral
manifolds. The idea is to model this problem on an analogous problem
in the theory of finite groups. To that end, let G be a finite group, and
Hx and H? two subgroups of G. We will say that the triple (G, Hu H2)
satisfies the conjugacy condition if the following condition hold:
(*) ( i ) For every conjugacy class [g], geG,

Π H2)

(ii) Hi is not conjugate to H2 in G.
Then Sunada shows:

THEOREM ([5]). Suppose that (G, Hl9 H2) satisfies the conjugacy condi-

tion, and let M be a compact manifold with a surjectiυe homomorphism f:

π,(M) -> G.

If M1 and M2 are the Riemannian coverings of M with π^M1) = f~\H^)9

then M1 is isospectral to M%.

Furthermore, for a generic on M, M1 will not be isometric to M2.

We observe that it is not important for Sunada's argument that M
be a smooth manifold. It suffices to assume that there is a manifold M°
with G acting on M° by isometries, so that M = M°IG in the sense of
orbifolds. Similarly, we understand the homomorphism π^M) -> G in the
sense of orbifold fundamental groups. It will, however, be important that
M1 and M2 are smooth, so that Hx and H2 act freely on M°.

The problem of characterizing triples (G, Hu H2) satisfying the con-
jugacy condition has been studied by a number of people, in particular
[4]. In [4], the problem of which index [G:HJ = [G:H2] can occur is
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studied, and in particular it is shown that

THEOREM ([4]). Suppose (G, Hu H2) satisfy the conjugacy condition.

Then [G:H,] > 7.

Furthermore, there examples are of such triples with [GiϋΓJ = p, p a

prime number, for all p of the form p = (qa — ί)l(q — 1) with q a prime

and a > 3. In particular, there are examples with [G: ifj = 7.

As examples, we may take G = PSL(a, q) and Hx and H2 the following

subgroups:

(* * * *\

0 *

o
It is shown in [2], or can be seen by a direct elementary argument, that

(G, Hu H2) has the desired properties.

We will now specialize to the case p = 7, so that q = 2 and a — 3 in

the above example. We will need some elementary facts about the group

PSL(S, Z/2) = SL(3, Z/2).

LEMMA 1. Let geSL(S, Z/2). Then either:

( i ) g has 1 as an eigenvalue, in which case g is of order 1, 2, 3 or 4

or

(ii) g is of order 7.

Proof. Consider the characteristic polynomial c(t) of g. It is of degree

3.

It c(t) is not irreducible over Z/2, it has a root, which then must be

1. If c(t) = (t — I)3, then g must be of order 1, 2, or 4. If c(t) has an

irreducible factor of degree 2, then its roots are primitive cube roots of

1, and g is of order 3. Finally, if c(t) is irreducible, then its roots are

primitive 7th roots of unity, and g has order 7.

LEMMA 2. There are generators A and B of G with the property that

A, B and AB are all of order 7.

Proof We begin with generators

/I 1 0\
1 = O i l and Y =
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It is well-known that X and Y generate SL(3, Z), so they also generate
SL(3, Z/2).

We observe that if (X, Y) generate a group, then so do (XY, Y) and
<X, XY). Our strategy now is to apply one of these two moves iteratively
until we arrive at a basis which satisfies the conditions of Lemma 2.
Along the way, we will use Lemma 1 as a simple criterion to decide when
an element has order 7.

Applying two moves of the first type, we see that {XY2, Y) generates
the group, where

has order 7.
We now apply two moves of the second kind to arrive at the genera-

tors {XY2, (XYJY), where

has order 7.
Finally, we observe that for any k prime to 7, (XY2, [(XYJYf) also

generates the group, and [(XY2)2Y]k will again have order 7. We now
seek k so that (XY2)[(XY2y~Y]k has order 7, and we verify that this is the
case for k = 2. The basis

4 = 1 1 0 5 = 11001 AB
\0 1 0/

then establishes Lemma 2.

§2, The examples

We begin this section by considering the group Γo = ΓQ(p, q, r) of
isometries of the hyperbolic plane generated by reflections in the sides of
a hyperbolic triangle with angles (πjp), (π/q), and (π/r) respectively. Let
Γ denote the subgroup of index 2 of Γo consisting of orientation preserv-
ing isometries.

When p, q, and r are integers, one sees from the Poincare polygon
theorem ([1]) that Γ is a discrete group, with a fundamental domain R
the rectangle obtained from the triangle by reflecting it in one of its
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sides. Γ is presented by generators and relations by

Γ = {A, B: Ap = Bq = (A5)r = 1}

where A and B are as shown in Figure 1.

Fig. 1

We may identify H2jΓ in the orbifold sense with the sphere with
three singular points, of order p, q, and r respectively.

We now seek a homomorphism f:Γ-+G PSL(3, Z/2) with the property
that, if Γ* = ΛWi) for ί = 1, 2, we should have W\Γι a smooth manifold.
To understand this, let us fix i — 1. Then G\ΉX may be identified with

3 x 3 non-zero column vectors, under the identification g -»g 01. We

may then identify H2lΓι with a hyperbolic surface built up of seven copies
of R according to the action of A and B on the column vectors. It is
easily seen that H2jΓi cannot be smooth if A, B or AB has an eigenvector,
for then in some copy of R some is glued to an adjacent side, and the
angle about the fixed vertex is not 2τr.

Applying Lemma 1, we see that A, B, and AB e Γ must be sent to
elements of G of order 7. This tells us that p, q, and r must be of order
7. Lemma 2 then tells us how to find appropriate elements of G for the
images of A, B, and AB. Since the only relations in Γ are as above, this
gives us a well-defined homomorphism f:Γ->G having the property that
H2jΓι is smooth.

We now apply the same considerations to H2. We may identify the
coset space GIH2 with row vectors, under the identification g-+ (1, 0,
One concludes as above that H2/Γ2 is smooth.
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Fundamental polygons for i/2/Λ a nd H2/Γ2 to which one may apply

the Poincare polygon theorem and check smoothness are shown in Figure 2.

(a) (b)
Fig. 2

Sudana's theorem now applies to tell us that H2\ΓX is isospectral to

H2IΓ2, and that furthermore this remains true for any choice of metric

on H2IΓ.

We now calculate the genus of H2jΓλ. But the area of R is 2π — 3

((2ττ/7)) = (8ττ/7), and H2/Γί has 7 copies of R, so H2/Γ has area 8/r. The

Gauss-Bonnet theorem then tells us that R has genus g = (l/4π)(8π) +

1 = 3.

It remains to check whether H2jΓ1 is isometric to H2jΓ2 when H2jΓ

is given a metric of constant curvature — 1. Since H2\Γ is a sphere with

three singular points, this metric is unique.

One may see by investigating the gluing diagrams Figures 2(a) and 2(b),

that they differ by a reflection. Therefore, if H2\T is given a metric

which is preserved by this reflection, H2/Γ1 and H2/Γ2 will differ by an

orientation reversing isometry. Since the unique metric on H2jΓ of con-

stant curvature —1 has this property, the metrics constructed above can-

not be taken to be of constant curvature.

We now extend our examples in the following way: instead of R,

we begin with a hexagon with gluing pattern as show in Figure 3. This

gives us a group Γ with H2\Γ a sphere with four singularities. Γ is then

given by generators and relations as

Γ = {A, B, C: A7 - B7 = C7 - (ABC)7 = 1}.

Once again, we may apply Lemma 2 to find a homomorphism Γ -> G
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Fig. 3

in the following way: We may send A and B to the generators of G

given by Lemma 2. Then AB is of order 7 in G, and all elements of

order 7 in G are conjugate. There is then an element D in G of order

7 such that (AB) D is order 7, and we may send C to D. The smoothness

of H2IΓ1 and /T/Γ2 follow exactly as above.

The area of R is now 4π - ((8ττ/7)) = (20τr/9), so the genus of /Γ/Λ

is (l/4τr)((7.(207r/7))) + 1 - 6 .

We now have a one complex parameter family of hyperbolic structures

for H2IΓ, and it is easily seen from an argument of [5] that for generic

choice of the hyperbolic structure, H2/Γι is not isometric to H2/A

§ 3. Isospectral surfaces of genus 4

In this section, we modify the techniques of the previous section to

construct isospectral surfaces of genus 4.

The base surface for this construction will be a torus M with one

singular point. Its fundamental group is given by

πx{M) = {X9 Y, C:C= [X, y ] , C f c - 1 } .

As before, we will take the group to be SL(3, Z/2). We seek a sur-

jective homomorphism πx(M) —> G such that Mx and M2 are smooth. This

requirement then forces C to not have 1 as an eigenvalue, so by Lemma

1, C must have order 7, and hence k = 7. We therefore seek matrices A

and JB in PSL(3, Z/2) which generate PSL(3, Z/2), whose commutator is

of order 7.

The following is easily proved:

LEMMA 3. Let
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/O 1 1\
A = 0 1 0

\ l 0 O)
Then

(i) [A, B] is or order 7.

(ii) A and β generate PSL(3, Z/2).

Proof, (i) is verified by a direct computation. Note that C = [A, B]

/0 1 1\
is 11 1 1 . To show (ii), we first observe the isomorphism PSL(3, Z/2) =

\0 1 0/

PSL(2, Z/7). We then observe that A is of order 4 and B is of order 3.

We now claim that, for any X, Ye PSL(2, Z/7), if X is of order 4 and

Y is of order 7, then X and Y generate PSL(2, Z/7). To see this, first

note that Y is a parabolic element of PSL(2, Z/7), and so fixes a unique

point p of the projective line (Z/7 X Z/7)/(Z/7)*. Then XYX'1 fixes the

point X(p). If X does not fix p, then conjugating by a linear fractional

transformation sends p to (1, 0) and X(p) to (0, 1), so that Y is conjugate

(J *) and XYX-* to (J; J).
erate PSL(2, Z/7). But an element of order 4 fixes no elements in (Z/7 X

Z/7)/(Z/7)*, so X cannot fix p. We may take X = A and Y = [A, 5] to

establish (ii).

We may now calculate the hyperbolic area of M to be (2π — (2τr/7))

= (127r/7), so that Mx and M2 have area 12ττ, and so are of genus 4, as

desired.

In Figure 4, we have provided gluing diagrams for the surfaces Mx

and M2. It is easily seen from these diagrams that Mx and M2 are not

isometric for generic choices of constant-curvature metrics on M. Indeed,

to It is then clear that Y and XYX'1 gen-

Fig. 4
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Mx and M2 have a number of distinguished geodesies on them. Since B

is of order 3, it has a unique eigenvector. The geodesic joining the pairs

of sides labeled 1 on both gluing diagrams must therefore correspond

under a isometry between Mx and M2, for a generic metric of constant

curvature on M. Similarly, A has a unique eigenvector and a unique

pair of vectors υx and v2 such that A(vι) = v2, A(v2) = vu It follows that

for a generic metric on M1 the geodesic joining the two pairs of sides

labeled A and B in Figure 4(a) must correspond to the geodesic joining

the pairs of sides labeled E and F in Figure 4(b). But the first of these

crosses the geodesic joining the sides labeled 1, while the second does

not meet the geodesic joining the sides labeled 1.

§ 4. Further examples

In this section, we return to the group G = (Z/8) X (Z/8)*, which

was considered by Sunada [5] and Buser [4]. We will show:

THEOREM 3. There exist closed, unorίented manifolds Mx and M2 which

are ίsospectral and l(M^) = X(M2) = — 6.

Our method will be completely analogous to the method of Section 1

and Section 2 above.

Let us begin with a study of the group G. For convenience, we will

write elements of G in the form (α, b), a e (Z/8)* = {1, 3, 5, 7} and b e Z/8.

The composition rule is given by

(o,6) (α/,60 = (αo/,6 α/60-

Let Hx be the subgroup {(1, 0), (3, 0), (5, 0), (7, 0)} and H2 the subgroup

{(1, 0), (3, 4), (5, 5), (7, 0)}. It is easy to verify that [G: H,] = 8, and that

(G, Hu H2) satisfies the conjugacy condition.

We may identify the coset spaces G/ίfi and G/ϋΓ2 with the integers

(mod 8) in the following way: given (a, b) e G, then there is a unique c —

0 or 4 such that (α, c) 6 H^ Then (α, &) (α, c) = (1, ab + c), and we map

(α, b) to ab + c (mod 8).

We need some elementary results on the group structure of G analogous

to Lemma 1:

LEMMA 3. Let (a, b)e G. Then exactly one of the following holds:

( i ) (a, b) is of order 1, in which case a = 1, 6 = 0.
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(ii) (α, b) is of order 2, in which case

(a) a = 1, b = 4

(b) α = 3, 6 = 0, 2, 4, or 6

(c) a = 5, 6 = 0 or 4

(d) a = 7, b is arbitrary

(iii) (α, 6) is o/ order 4, in which case

(a) α = 1, b = 2 or 6

(b) α = 3, b = 1, 3, 5 or 7

(c) α = 5, 6 = 2 or 6

(iv) (α, 6) is o/ order 8, in which case

(a) α = 1, b = 1, 3, 5 or 7

(b) α = 5, 6 = 1, 3, 5 or 7.

We now need

LEMMA 4. ^ e G αcίs freely on the cosets of GIHt if and only if

(a) g is of order 2, in which case

a = 1 and h — 4 or a = 7 and b = 1, 3, 5, or 7

or

(b) g is o/ order 4 or 8.

Proof Suppose first that i = 1. We then consider the equation

(α, 6)(1, c)(a, 0) - (1, c).

This is the same as a(b + c) = c, or

α6 Ξ (1 - α)c (mod 8).

Since 1 — α is even, this will be solvable if and only if the power of 2

dividing a — 1 also divides 5. This establishes 4(α). To show 4(b), we

observe that if (α, 6) is not of order 2, then (α, 6)2 = (1, c) for c ^ O . Since

(1, c) acts freely, (α, b) will act freely if and only if (a, b) does not fix a

coset, and apply the above considerations to prove 4(b). For i = 2, the

consideration are the same.

We now consider the polygon R showed in Figure 5, with the gluing

patterns shown. C denotes an order 2 reflection.

If M denotes the orbifold so obtained, its orbifold fundamental group

is given by

{A, BC: C2 = A^ = B(i = id, C(AB)C-1 = AB}.
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Fig. 5

To obtain manifolds for Mx and M2, we must have that C, A, and B

act freely on the cosets of G/u"̂  In particular, C = (1, 4) or (7, odd). If

C = (1, 4), then A and B cannot be chosen so that A, B, and C generate

G. So, up to conjugation, we may assume that C — (7, 1).

The equation C(AB) + C"1 = AB now forces AB to be of the form

(a, b), where 26 = 1 — a. We may choose A = (5, 5) and B = (1, 1).

With this choice, one can now verify directly that Mι and M2 are

both non-oriented manifolds with X(Mt) = — 6, as desired. We may con-

struct gluing diagrams as in Figure 6.

(b)

Fig. β

Since there is no canonical metric on an unoriented surface, we are

free to choose an arbitrary metric on M, completing the proof of the

theorem.
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