T. Matsuzawa
Nagoya Math. J.
Vol. 103 (1986), 133-143

PARTIAL REGULARITY AND APPLICATIONS
TADATO MATSUZAWA

Dedicated to Professor Sigeru MIZOHATA on his sixtieth birthday

§1. Introduction

The problem to determine the Gevrey index of solutions of a given
hypoelliptic partial differential equation seems to be not yet well inves-
tigated. In this paper, we shall show the Gevrey indices of solutions of
the equations of Grushin type, [6], are determined by a rather simple ap-
plication of a straightforward extension of the results given in [7], [8] and
[18]. For simplicity to construct left parametrices in the operator valued
sense, we shall consider the equations under the stronger condition than
that of [6] (cf. Condition 1 of Section 3). Typical examples of Grushin
type are given by L, = D} + y*Di, L, = D} + («* + y*)D;, - - -, which will
be discussed in Section 4. We remark that our approach may be com-
pared with the one to a similar problem discussed in [17] by using suitable
L,-estimates constructed in [16].

In Section 2, we prepare some direct extension of the results given in
[13] on partial regularity of the distributions and those on pseudodifferen-
tial operators given in [7]. In Section 3, we shall establish a method to
treat the equations of Grushin type. Finally, Section 4 will be devoted
to a discussion on typical examples of Grushin type and to a brief com-
ment on the application of our method for more general class of hypoel-
liptic partial differential equations.

§2. Partial regularity and a class of pseudodifferential operators

In this Section, we shall give some refinement of the results in [7]
and [13]. Let £ be an open subset of RY whose point is denoted by x =
(x,- -+, xy). Letq=(q, ---,qy) be a N-tuple of real numbers q; > 1, j =
1, ---, N. We use general notations such as || = a, + - -+ + ay, (&) = (&,
=14 |&Ma 4 - 4 |Gy and (@, q) = @,q; + - -+ + axQx.
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134 TADATO MATSUZAWA

DEFINITION 2.1. Let ue C*(Q), then we say that u is in G«Q) if for
any compact set K of 2 there are positive constants C, and C, such that

2.1 sup | Dou(x)| < C,Cl{* a2, aeZ¥.
2EK

PropositioN 2.1. Let ue 92/(22). Then ueG? in a neighborhood of
x, € Q if and only if for some neighborhood U of x, there is a bounded se-

quence u, € 6'(9), j =1, 2, ---, which is equal to u in U and satisfies the
estimates
(2.2) 29 < CGCLjIE, =12+,

for some constants C, and C, > 0.

Proof. Necessity. Let ue G? in {{x — x| < 33}, § > 0. We can find
the functions X,(x), j = 1,2, ---, such that X, e Cy(lx — x,| < 28), equal to
1 when |x — x| < 6 and

(2.3) ID<+8%,| < C,C4j19 if e <.

Here C depends only on NV and d, and C; depends only on N, § and 8
(cf. [11], Lemma 2.2). Then u; = X,z is bounded in é’. By assumption we
have for some constant C,

2.4) sup |Deu| £ Citlaf e,

|x~z0|£38

It follows that
D) < CC,(C + CYj=”, (@) <j+a,

where q, = max(q, - -+, qy) = 1, from which we have

N i .
X u@| < CPjr, ey q)y <+ ¢,
On the other hand we have

Z lsalgc:g 55 ]:1’2’

(@, d=j+qo

for a constant C, independent of j, then we conclude that the estimates
(2.2) hold.

Sufficiency. Since we have
l§a|§<€>(]1’ <0(7Q>§.J, J=1)27

the estimates of type (2.1) in |x — x,] < § are almost evident by using the
Fourier inversion formula and (2.2).
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Now we shall use a partition of the variable x = (x', x”), x =
(x, -+, %), X7 = (x4, -+, %y), 1L <p <N —1. We also use the partition
of the multi-index a = (¢, a”), & = (@, -, ), &' = (2., -+, ay). We
recall that we &'(Q) is (partially) regular with respect to x’ if for any
s > 0 there exist numbers ¢ = #(s) ¢ R and C = C(s) such that

(2.5) @I = CA+[gD@ +1€"D", &eRY. (cf. [5])

DeriniTION 2.2. (cf. [13], Def. 38.2). Let ue 2/(2). We say u is in
GY, ¢ =, ,9) ¢;, =1, j=1,---,p, in a neighborhood of x,e 2 if
for some neighborhood U of x, there is a bounded sequence u;e &'(2),
Jj=1,2,-.., which is equal to u in U and satisfies the estimates
(2.6) [28)| = CCIIED A+ €7D, j=12 -

for some constants C,, C, > 0 and k¢ R. Here we have denoted by (&) =
14 |60 4 oo 4 |§,[V». We define quite similarly, ueGY, q” =
(@pers 75 Q-

We can see that by the same method of the proof of Proposition 3.1
of [13] we have its refininement as follows:

ProrosiTioN 2.2. Let ue 2'(2). Then ueG® in a neighborhood of
x, e if and only if ue G% and u e G% in a neighborhood of x,¢c 2.

For the proof we only replace |&'| by (&), and |&'| by («,q’) etc,
in the proof of Proposition 3.1 of [13].

DeriNITION 2.3 (Generalization of [7], Def. 4.1). Let — co < m < oo;
0<0<p=<1; 8521, q=(q, -9, ¢;=1, j=1,---,N. We denote

by S™(2 X RY) the set of all a(x, &) e C~(2 X R") such that for every

py0,8

compact set K of 2 there are positive constants C,, C, and B such that

@.7) sup [a5(x, §)| = GO ol BIET (g, = Blel”,
reK

where 0 = s/(p — J).
We associate with such a symbol a(x, &) a pseudo-differential operator
as usual:

a(x, Dyu(x) = (22)"~ j j e voa(x, Ouly)dyds,  ue Ci(Q).

Let K(x,y) e 2/(2 x Q) be the distribution kernel of a(x, D) expressed
by the oscillatory integral:



136 TADATO MATSUZAWA

K(x,y) = (2n)~" j e 1O a(x, E)dE .

Then we get the following theorem by a slight modification of the proof
of [7], Theorem 1.1.

THEOREM 2.1. Let a(x, &) e S™1(2 X R"). Then we have the following:

(1) K(x,3)eG2 X Q\d), 4= {(x,x);xe}, 6 =s/(o—9).

(i1) The operator a(x, D) is G”¢-pseudolocal i.e., for any ¢ = 6 and
u € &'(2) which is in G in a neighborhood of x, € 2 we have a(x, D)u € G**
in the same neighborhood of x, ¢ 2.

§3. Partial differential equations of Grushin type

In the following, we shall use the same notation of [6]. Let 2 be an
open set of RY whose point is denoted by x = (x,, - - -, xy). Let there be
given rational numbers p, > 1, and ¢, >0, 1 <j < N, such that for any
J, 1 <j < N, one of the following three relations is satisfied:

(3-1) a)pj:0j=1 b)p]>0]>0 C)O'j:().

Let y denote the family of variables x, for which property a) holds. Let
x" be the set of remaining variables, so that x has representation x = (x/, ),
X =%, %), y=1 ---,¥), k+ n=N. In turn x’' is represented in
the form x’ = (x”, x’””), where b) holds for x”” and c) for x”.

Let m be a positive integer and set
(3.2) M ={T,a); |la| < m, {p,a) = {a,T) = {p, ) — m},
(33) My = {(7’7 0(); Iai = m, <0-5 T> = <40’ “> - m} s

where (7, «) is a pair of multi-indices of dimension N with nonnegative
integers such that 7, =0 for jif ¢, =0 1 <j < k).
Now we study differential operators introduced in [6] of the form

(3.4) L(x, D) = 3 a,(x)x'D*, a,(x) e C*(R").
Associating with (3.4) we shall consider the operator
(3'5) Lo(x”, y’ D) = Z aar(o)xr‘Da .

ConprtioN 1. L(x”,y, D) is strongly elliptic of even degree m for
[+ ly| = 1.

ConpiTION 2. The differential equation
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(3.6) L(x", y,& D)u(y) =0
has no non-trivial solution in #(R;) for any fixed £ e R*, £ £ 0 and x”.

Remark 3.1. Condition 1 is stronger than that of [6] in which the
operator Lyx”,y, D) is merely supposed to be elliptic for |[x”| + |y| = 1.
We can replace Condition 1 by the original one if we apply the investiga-
tion of Beals, [2], Section 6 in the proof of Theorem 3.2 below.

THEOREM 3.1. Under the conditions 1 and 2, the operator L is partially
hypoelliptic in vy in a neighborhood of the original in the following sense:

(i) There exists an open set U3 0 such that if u € &'(U) and L(x, D)u
is regular with respect to y in U then u is also regular with respect to y
in U.

(i1) If the coefficients a,(x) are in G'(U), s =21, and if ueé’(U),
L(x, D)yu € G in an open subset of U, then uc G} in the same set.

Proof. We shall investigate how the assumptions of [13], Theorems
4.3 and 4.4 are satisfied for the characteristic polynomial L(x’,y, ¢, 5).
Following [6] we set

E A A R R LI R

(2] = |®[r 4 oo A [xe [V

[§lo = 1&]7or 4 - 4 [&a]VPs,

h(x",y,§) = |2 E] 4+ -+ |xTE],

where the summation for |x|, and |x’|, is only over the indices for which
0; % 0. Then by Lemma 3.3 of [6], there exist a neighborhood U of 0 ¢ RY
and positive constants B and C such that

(GN)) Lx,y, &pl=zC 20 P, y, 8’|,

=m

ﬁ=(151|’"'119ﬂ)
x=@yelU, |g=B.

From this we have particularly

@7y L, 3, 6,9l = CA + Inh™, |yl = B.

This shows that L is partially elliptic in y since the degree of L is m and
Hypothesis (H-1). of Theorem 4.4, [13] is satisfied with respect to y
taking m, = m. Furthermore (H-2), of [13] is also satisfied in the fol-
lowing form: There are positive constants C,, C, and B such that
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(3.8) LG, 3, & )| < CCI#al BEILIAL + [9) 7' @ + (€)™,
(«,y,&meUX{n =z Bla]}.

This means we can take p=1, =0 in (H-2).. To prove (3.8) it is
nearly sufficient to verify that we have the simple estimate of the form

\D;D;,, 6| < CA + [p)= "' A + €)™, xeU

for ",a + Pl e, = (ay, -+, ;,0,---,0), =0, -, 8,---,8,) and v <7,
7 < a+ B. Thus we have the assertion of Theorem 3.1 by Theorems 4.3
and 4.4 of [138]. We remark that the term (1 + |£))™ has not appeared in
the Hypothesis (H-2). of [13] but this does not demand any change of

the proof.
Next we shall study the partial regularity with respect to x’ for the

solutions of the equation
L(x, Dyu(x) = f(x).
Let

0o = min p;, o’ = maxp;, o, = ming;, ¢® = maxg;.
1=jsk 1sj5k 1sjsk 1sjsk

If o, > o°, setting q' = (o./po, - - > 0:/0s) and & = ¢°/p,, We have ¢; =1, j =
1, -,kand 0 o< L

THEOREM 3.2. Under the Conditions 1 and 2 and p, > ¢° we have the
following;

(i) The operator L(x, D) is hypoelliptic in a neighborhood of the origin.

(ii) If the coefficients a,/(x) are in G°(2), s = 1, 20, then there exists
an open set U 50 such that if ue &' (2), L(x, D)yu e G(2) then ue Gi%U),
where 6 = s/(1 — J).

Proof. We need to recall some fundamental results of Grushin, [6] in
a slightly modified form as treated in [8], Chapter II. Let B,, x> 0, be
the ball {{y| < ¢} in R} and 2, = H{¥A(B,) N H™(B,), be the Sobolev space
of order m with Dirichlet boundary condition. Suppose 2 = 2’ X B,,
where 2’ is a neighborhood of the origin of RY. As in [6] and [8], we
consider L(x, D) as a pseudo-differential operator in the region 2’ with the
operator valued symbol

(3'9) p(x/; S) = L(x,, y9 59 Dy) € $(9m LZ(B;:)) .
The symbol p(x/, &) is in SP(2’ X Rf) in this sense.
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We state a straightforward extension of the results of [8] and [6]
without proof.

Lemma 3.1 (cf. [8], Lemma 6.1 and [6], Lemma 3.5). If the Hypotheses
of Theorem 3.2 are satisfied, there exist positive numbers A, C, p and a
neighborhood ' of 0¢€ R* such that for all ¢ R¥ |§|= A, x' € and
u(y) € D we have

(3.10) 3 [0l + b, 3, )14 D)y
< C[ILw, 5, & Dyurdy.

We may assume that there are constants C, and C, such that

(3.11) sup >, |Dfa,(x)] < C,Ci# B!, BeZ¥.

LEQ'XBy lalEm

Then from the estimate (3.10) we can find another couple of constants C,
and C, such that

(3.12) PGB, f)U”Lz(B,,)
é COC{MHS”CVI!‘BI!S Hp(xl, S)v”LZ(BF)<§>;la1l+5lﬁxl

for all [£] = A, ¥’ € 2’ and v = v(y) € 2,, where p(x/, &) is defined by (3.9)
and «;, B, are arbitrary multi-indices of dimension k. Since p{§3(x/, £)u(y)
is a sum of the terms

(@ ()XY E) 2 Di(y), (a,7) e M, a=(d,p),
it is sufficient to prove the estimate of the form

(3.13) l[(@4y (X)) *P(EX) D DY)l 2405,
< GO #lag 1 g 1o [g oot =2 | p(x!, E)VILyca, -

We note that
lgl;polaxhaolﬁxl = (|& /e 4 oo A |E,[Ver)Teoal 31BN
which is equivalent to
("Sllllql + . + ‘Skll/(lk)—la1|+5l,91l .
Thus (3.13) follows from the estimate of the form

(314) !xT’ﬁlsa"—aloﬁl é C]E,;(Pan*’(”yﬁl)('Elp + h(x//,y’ E)m—lﬁllvﬂ])
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for (a,7)e M, a = («/, B), which is established by observing the quasi-
homogeneity property of both sides in the sense of [6], that is, with posi-
tive parameter 1, make substitution x” — 27°x", y = 27"y, £ > &, p— 2y
then the left hand side of (3.4) is of degree < m — {p, a,) + {0, By in 2
while the right hand side is just of degree m — {p, a,) + {0, ;) in 2.

We take as the left inverse of p(x/, £) by

(3.15) p Y L(B,) —> 2, = HM(B,) N H™(B,),

which is defined in Ly«(B,) and [p7Y||.(ep.0,, i uniformly bounded in
(2, &) e 2’ X R (cf. (3.7)) and (3.10).)

Now in order to construct a left parametrix of p(x’, D), determine
recursively the symbols b, by means of the relations

(3.16) b(x', &) = p7(«, §) € (Ly(B,), 2,)
and for j =1,2, ...

(3.17) bix,8) = — [!Sl T<J 70%“ a;‘»'bj_mD:/p] -

We note that we have
D:.3tb, = — by(Dz0ip)b, e #(Ly(B,), 2,)

if |« + B| = 1 keeping in mind that pb, = Id in L,(B,) and p,b =Id in 2,.
By induction, Dz3%b, for any « and e Z% is a linear combination of the
monomials

b(a(1), - - -, a(h); B(L), - - -, B(R)) = b, [ (D7 3: p)by]
with @ = 37 a(j), p = 2 B(j). Then by using (3.12), we can see that b,(x/,&) €
Z(L,(B,), 2,) and there are constants C, and C, such that
(3'18) i‘ég Hb%s)l)(x’y 'S)H.?(LQ(B;J,Q,,)
< GO B] + Dl a7,
(% ﬁlezﬁ’ |§|2A

As in [7], we prepare a series of cut-off functions ¢,&) e C(R%),j = 0,1, -- -,
satisfying

(3.19) 0=¢) =1 and ¢, =0
if (&), <2Rsup(j’,1) and ¢,&) =1

for (&, =3Rsup(j’,1), 6 =s/1—-3), R>0:
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(3.20) |D:g;| < (CIRj* D) if |a| < 2j.

Taking R sufficiently large we can see that
b(x',§) = T 6.6)b(x', §) € S1.(2' X RY)
F=

in the operator #(L.(B,), 2,)-valued sense. We can apply essentially the
same method of the proof of [7], Theorem 3.1 and have the relation

(3.21) b(x', D)p(x’, Dyv =v + Fv, ve®,,

where F is an integral operator with kernel F(x/, y') ¢ #(9,, 2,) such that
we have the estimate of the form

(3.22) sup | Dz DL F(x,y)], < CGCi**"al’Bl’,  a,peZi.
o,y e

Now if ue C=(2' X B,) and L(x, D)u e Gi{(2' X B,), then by Theorem
2.1, (ii), (3.21) and (3.22) we have the partial regularity, ue G, in a
neighborhood of the origin of R¥. Then by applying Theorem 3.1, (ii) and
Proposition 2.2, we have finally u e G%%;* in a neighborhood of the origin
of R¥. Thus we have obtained the assertion (ii) of Theorem 3.2. The
assertion (i) can be obtained by more rough procedure and we omit the

proof (cf. [6]).

§4. Examples and comments

First we shall consider the following operators:

aZ ) a2 a? 62
- 9 A L = .2 A2 ) 9
' 8y2+ ox* ’ 6y2+( +y)ax2
o " 9°
L, =" =9 4 2
? 0y* Y ox: ox2

(1) We see that L, has the form (3.4) with p, =0, =1, p, =2, g, = 0.
Then we have ¢ =1, d =0 and ¢ = 1. Thus by Theorem 3.2 we have
analytic hypoellipticity of L, in a neighborhood of the origin of R

(2) As for L* we have p, =0, =1, p =2, o, =1. Then we have
¢ =1, 6d=1/2 and ¢ =2. Thus by Theorem 3.2, we have ueG%), in 2a
neighborhood of the origin of R? for any solution u of the equation

(4.1) Lu(x,y) =0 in R*.

We note that a function u(x,y)e G%) in a neighborhood of ths origin
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satisfying (4.1) was constructed by G. Meétivier, [14].

(3) L, has the form (3.4) with p;=0,=1, p, =2, p.=1, 6, =06, = 0.
Then we have 6 =0, § =1 and ¢’ = (2,1). Hence by Theorem 3.2 we
have w(x,, x,,y) € G&12, , for any solution u of the equation

(4'2) Lau(xl’ x29 y) = 0

in a neighborhood of the origin of R®. We note that an example of the
solution u(x,, x,,y) € G& , of (4.2) was constructed by M.S. Baouendi and
C. Goulaouic, [1].

Our method can be applied for the operators with quasi-homogeneous
principal symbols i.e., degenerate quasi-elliptic operators. For example,
consider the equations

43) Pu= (—f”i —yt—a--)u(x,y) =0, j=012:,

oy* ox
2 2
44)  Qu = (i + 0 y;ci)u<x,yl,y2) =0, k=01---
ay;  9y; ax

Then we have ue G}, for any solution of (4.3) and ue GE;2)! for any

ZyY1,Y2

solution u of (4.4). We remark that relating results have been recently
obtained in [15].

Finally we remark that Theorem 2.1 of this paper can be extended
for a corresponding class of partially regular pseudodifferential operators
as in the manner of [13], Definition 2.3 and Theorem 2.1.
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