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TENSOR PRODUCTS AND LOCALIZATIONS OF ALGEBRAS

S. R. BOWMAN AND L. O'CARROLL

In a recent paper [5], it was shown that the tensor product of a finite
number of fields over a common subfield satisfies the property that each
localization at a prime ideal is a primary ring (in the sense that a zero-
divisor is in fact a nilpotent element).

In the first section of this paper, we exploit the properties of associated
primes and of flat extensions so as to generalize the above result to zero-
dimensional algebras; a simple example shows that this is the best one
can hope for. The converse situation is also investigated.

In the second section, a result of Grothendieck [1] is used to answer
an open question in [2], so completing the programme of generalizing
the work of Trung [7] and Nagata [4] on a conjecture of O'Carroll and
Qureshi [6].

During work on this research, the first author was supported by an
S.E.R.C. postgraduate studentship at the University of Edinburgh.

§ 1. Locally primary rings

In this paper, all rings are commutative with identity element. In
fact only algebras over a field, k say, are considered, and all tensor
products are taken over k. For the properties of flat extensions and
associated primes we refer to [3, Chapters 2 and 3]. The basic theory of
the tensor product of algebras is given in [9, Chapter III] a brief discus-
sion of the interaction with the theory of flat extensions is given in [5].

A primary ring is one in which each zero-divisor is a nilpotent element.
A ring R is called locally primary if, for each prime ideal P in R, RP is
a primary ring. In [5, Theorem 3] it is shown that the tensor product
of a finite number of fields over a common subfield is a locally primary
ring. Our first result examines the converse situation.

PROPOSITION 1. Let Rl9 , Rn be algebras over a field k, and suppose
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that Rx ® - - - ® Rn is a locally primary ring. Then each Rt is also a locally

primary ring.

Proof. We may restrict our attention to R19 which we refer to as R;

let S = i?j (x) (x) Rn. Consider a prime ideal P in R. Since, by base

change, S is a faithfully flat extension of R, there exists a prime ideal

Q in S which contracts to P in R. Regarding S as an i?-module we

have RP c= SP, and we also have the natural map SP —• SQ. Let r e R.

Since S is a flat extension of i?, 0:s r = (0:R r)S. Hence if 0:s r $2 Q, then

0:RrζίP. It follows that RP is isomorphically embedded in SQ by the

natural maps given above. By hypothesis, SQ is a primary ring. It fol-

lows that RP is also a primary ring.

However, the following example shows that the converse of Proposi-

tion 1 does not hold in general.

EXAMPLE. Let Rx = Q[X, Y]/(X2 - 2Y2), and let R2 = Q(V2). Since

R1 and R2 are domains, they are primary, and so locally primary, rings

in a trivial way. However the ring

is not locally primary, since the maximal ideal (X, Y)S contains two

distinct minimal prime ideals (X - V~2Y)S and (X + \Γ2Y)S. (Note that

a primary ring contains a unique minimal prime ideal, consisting of all

the zero-divisors.)

Note also that dim R2 — 0, but that dim Rλ = 1.

We now wish to generalize [5, Theorem 3] in such a way as to provide

a partial converse to Proposition 1; a zero-dimensional ring is of course

locally primary. First we have two simple preliminary lemmas.

LEMMA 2. Let T be a zero-dimensional algebra, over a field k, which

is also a local ring, and lei F be a finite subset of T. Then F is contained

in a zero-dimensional subalgebra S of T, where S consists of a localization

of an afβne subalgebra of T at a prime ideal.

Proof. Let A = k[F] and let S = AP, where P is the restriction to

A of the maximal ideal of T. Since P consists of nilpotent elements, it

is the unique minimal prime ideal of A. Moreover, A\P lies in the group

of units of T, and in particular A\P consists of non-zero-divisors in A.

Hence ί1 c i c S c T and the result follows.
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LEMMA 3. Let A be a Noetherian ring. Then A is locally primary

if and only if, for each prime ideal P in A,

{Q e Spec A \ Q c P} n Ass^(A)

is a singleton.

Proof. Let P be a prime ideal in A. Now AP is a primary ring if

and only if Ass^p(AP) is a singleton. But by [3, Lemma, p. 50], Ass^P(AP)

contracts in A to {Q e Spec A \ Q c: P} f) AssA(A), and the result follows.

We now come to the main result of this section.

THEOREM 4. Let R19 , Rn be zero-dimensional algebras, over a field

k. Then Rx ® ® Rn is a locally primary ring.

Proof. Let R = Rι ® ® Rn, and let P be a prime ideal in R. For

ί = 1, , n, let Pi denote the restriction of P to Ri7 and let R't denote

the localization of Rt at P,. (Each R[ is a zero-dimensional local ring.)

Then RP is a localization, at a prime ideal, of the ring R[ ® ® i?£.

Hence, without loss of generality, we assume in addition that each Rt is

a local ring.

To prove that RP is a primary ring, it suffices to show that a zero-

divisor of the form jc/1 e i?P (where xe R) is nilpotent. Thus, consider

x e R such that sxy = 0 for some y e R and s e R\P, with AnnΛ yc: P; we

wish to show that Ann^x7* $Z P, for some positive integer n. Now each

of s, x and j> consists of a finite sum of tensors of the form rγ ® ® rn9

where rt e Rt (ί = 1, , n). For each such i, let F f denote the finite set

of the Ti which occur in this way, and let S* be the corresponding sub-

algebra of Rt given by Lemma 2 (with Rt playing the role of T).

Let S = S^ - - ® Sn. Then S and each of the St are Noetherian

(in fact, S is the localization of an affine algebra over k), and s, x and

y lie in S; moreover, each Si is a local, zero-dimensional, ring. Let Q =

P Π S . Then Ann sy c= Q, and if Annsx
n g Q for some positive integer n,

then AχyvLRxn(£P. Hence, without loss of generality, we assume also

that R and each of the Rt are Noetherian. Recall that each Rt is also

local and zero-dimensional, with maximal ideal P* (using the same nota-

tion as before).

For i = 1, , 7i, let Ft denote the field RJPi, and let D = Fx ®

®i^TC. Now each Pt consists of nilpotent elements, and hence so does

(Pu—-9Pn)R, Thus Spec R« Spec D, under the map induced by the
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natural projection R->D.

Note that for i = 1, , n, F1 ® (x) F,., ® Ri ® ® Rn is a fiat

i?Γalgebra, by base change. By repeated use of [3, Corollary, p. 58] and

[loc. cit., Proposition, p. 57], we deduce that AssR(R) corresponds to

Ass^D) under the above isomorphism of spectra. However, by [5, Theorem

3], D is locally primary. Thus R is locally primary, by the criterion of

Lemma 3.

Remarks. Similar ideas can be used to derive an alternative proof

of [5, Theorem 3] from an extension of Vamos' result (cf. [8, Corollary 4]),

viz. that in a finite tensor product of fields any prime ideal contains a

unique minimal prime ideal. (This extension is a corollary of [5, Theorem

3], of course.) As above, one reduces to the case where the field extensions

involved are finitely generated. It follows from [9, Corollary 1, p. 191]

that the zero ideal in the tensor product of fields, which is now a Noe-

therian ring, is unmixed. The extension of the Vamos result, together

with Lemma 3, now yield [5, Theorem 3].

Similarly, in any example like that given after Proposition 1 involving

a Noetherian tensor product of two algebras which are domains, we know

from [9, Corollary 1, p. 191] that the zero ideal in the tensor product

will be unmixed. Hence (cf. Lemma 3), in constructing the example, the

property to aim for is that some prime (and hence, some maximal) ideal

should contain more than one minimal prime.

§ 2. Localizations yielding equidimensional Hubert rings

Trung [7], and independently Nagata [4], confirmed a conjecture by

O'Carroll and Qureshi [6] (which had been verified in special cases), that

the tensor product of a finite number of fields over a common subfield,

where at most one of the field extensions has infinite transcendence

degree, is an equidimensional Hubert ring. Subsequently this work was

generalized by Howie and O'Carroll [2]. The result of this section answers

a question left open in [2] this completes the programme of generalizing

the result of Trung and Nagata, without having to resort to the awkward

device of shifting to a companion result in order to cover the case where

the base field is finite. (See [2, § 3, Remarks 3, 4 and 5].) We refer to

[2] for a discussion of the connections between the various results men-

tioned above, and also Theorem 5 below.

(As a point of notation, if D is a domain and B is a subring of D,



TENSOR PRODUCTS AND LOCALIZATIONS 159

tr.d. (DIB) denotes the transcendence degree of the quotient field of D
over that of B. Moreover, an equidimensional ring is one in which all
maximal ideals have the same rank.)

THEOREM 5. Let D be a domain and let B19 , Bn be subrings of D,
where n>l. Suppose that B1 is chosen so as to satisfy

tr.d. (DI Bd = min {tr.d. (D \ Bt)}.

Suppose further that
(i) D is a finitely generated Bralgebra, 1 < ί < n; and
(ii) B2, , Bn are integrally closed.

Let S be the multiplicatively closed set generated by U
Then S~ιD is a Noetherian equidimensional Hubert ring of dimension

d = tr.ά.(D\B1).

Proof. Let B = p|* Bt. In [2] (cf. Theorem 2 there) this result has
been established in the case where B is infinite. Thus we now suppose
that B is finite, and reduce to the former case. We may assume that
d>l.

Hence suppose that B is a finite field, which has algebraic closure
K, say. Consider the effect of applying K ® —, where the tensor product
is taken over B.

Let q be a minimal prime in K®D. Now the extension D c= K0D
is (faithfully) flat, by base change, and D is a domain. Thus q Π D = 0,
by "Going Down".

Fix ί such that 1 < ί < n. Consider the extension
Let

and let

and Bt = (K® Bt)lqt9

where we take ^ c D , D c ΰ and Bt c: β, (since qif]Bi = 0).
Now the extension Bt^ K® Bt is integral, with Bt a domain and

qt Π Bi — 0; hence qt is a minimal prime in K®Bt. Note also that D c= D
is an integral extension of domains, as is BciBΰ thus tr.d. (D\Bi) =
tr.d. (DI Bi). Moreover, D is a finitely generated B
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We are given an element a e D\0, and we wish to produce a non-zero

prime ideal P ' in D such that a&P' and P'Π Bt = 0, l<ί<n; as in [2],

this will suffice to prove the result. We consider a as a non-zero element

of D.

The proof of [2, Theorem 2] shows (on replacing F, Bt and D there

by K, Bi and D respectively) that

( i ) there exists an element x e D which is transcendental over each

Bΰ

(ii) there exist an element b e K and a prime ideal P in D such

that P is minimal over (x — b)D;

(iii) α g P and PΠB.lx] = (x - fyBάx]; and

(iv) for each ί = 2, , ft, there exists an element cf in a maximal

extension C ( ί ) of S^M (in D) by a finite number of algebraically inde-

pendent elements, with C^} <Ξ £)Ci an integral extension and c* g P.

Fix ί such that 2<i<n, and let P< = PΓlS*. Pull Pt back to a

prime ideal pt of K®Bt which contains q<β By [1, Corollary (6.14.2)] (cf.

[loc. cit., (5.13.5)]), (K(S)Bi)Pi is an integrally closed domain. In particular,

(c[i\t = 0, so (if® Bi)p. = (Bi)Pt, and the latter is an integrally closed

domain. Let Qt = PΠC^K Then (C ( ί %. is an integrally closed domain,

being a localization of a polynomial extension of (Bi)P.. Since Ci g Qί?

the extension (C ( ί %. c D^. is integral (here we regard flasa C(ί)-module).

By the "Cohen-Seidenberg" theorem, the extension (C(ί))Qί c: DQ. satisfies

"Going Down". Moreover the extension Bt[x] ^ (C{ί))Q. also satisfies

"Going Down", since it is a flat extension, being a composite of flat

extensions. Thus the composite extension B^x] c; DQi satisfies "Going

Down".

We are now in a position to apply the argument of [2, § 2], Note

that P survives in DQi. By the "Going Down" property, the prime

PΓlBi[x] is minimal over the ideal (x — b)Bi[x]. But the latter is itself

a prime ideal. We deduce that

PΓ\Bt[x] = (x - 6)B4[x], 1 < i < n.

Hence, for ί = 1, , n, Pt — PΓ) Bt = 0; moreover a£P.

Finally, set P / = PΠD. Note that a<zP', and that P' Φ 0 by the

"Incomparability" property in the integral extension D c; D of domains.

Moreover P r Π JŜ  = 0, 1 < i < n, and the result follows.
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