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TERNARY QUADRATIC FORMS AND BRANDT MATRICES

RAINER SCHULZE-PILLOT

Introduction

In a recent paper [9] the author showed (among other results) esti-
mates on the asymptotic behaviour of the representation numbers of
positive definite integral ternary quadratic forms, in particular, that for
n in a fixed square class tZ2 and lattices L, K in the same spinor genus
one has r(n9 L) = r(n, K) + O(n1/4+ε). The main tool utilized for the proof
was the theory of modular forms of weight 3/2, especially Shimura's
lifting from the space of cusp forms of weight 3/2 to the space of modular
forms of weight 2.

It is the purpose of this note to show that the aforementioned esti-
mate can be obtained without explicitly using Shimura's lifting. Instead,
we employ Eichler's Anzahlmatrices. We prove that they are essentially
the same as the (reduced) Brandt matrices (a result that has been dem-
onstrated by Ponomarev in special cases [6]) and that the difference of
two rows of the (reduced) Brandt matrix series belonging to lattices in
the same spinor genus consists of cusp forms. From this the estimates
on the asymptotic behaviour of the representation numbers can easily be
deduced. The methods used allow us to state and prove our results for
totally definite forms over the integers of an arbitrary totally real num-
ber field.

Although Shimura's lifting does not appear explicitly in the proof
given here, there are close connections. In fact, multiplying the vector
(r(t, Lj), , r(t, Lh)) with the reduced Brandt matrix series defines a lifting
for the θ(z, Lt) that is essentially the same as Shimura's lifting and
coincides with it in special cases [6],

§ 1. Preliminaries

Let V be a 3-dimensional vector space over the totally real number

field F of degree d over Q, o the ring of integers of F, Σ the set of prime
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spots p of F, π a prime element in the completion op. Let q be a quadratic

form on V with associated bilinear form B(x, y) — q(x + y) — q(x) — q(y)

which is positive definite at all infinite spots of F, L a lattice on V with

q(L) c o, b(L) the reduced determinant ([3], § 12) of L. C+(V) is the second

Clifford algebra of V, by C+(L) we denote the order of C+(V) associated

to L (see [1], Satz 14.1). Let Lj = L, L2, , LΛ be a set of representatives

of the classes in the genus of L, O1? , ©Λ the associated orders in C+(V).

Oi> •> OΛ then is a set of representatives of the types of orders in C+(V)

which are locally everywhere conjugate to C+(L). A left ©-ideal $ for

an order © of C+(V) is a lattice % on C+(V) with © = {A e C+(V)| A£ Q %}

(O is the left order of £) and %p = ©PAP with some Ape C+(V)P for all

p e l 7 , i.e., $ = C+(V)n©^A for some A e C+(V)^ (the subscript A denoting

adelization). The normalizer 3ί(C+(L)) is by Satz 14.2 of [1] the same as

the set of all A e C+(V)X for which the map x >-> A'^xA is a unit of L.

§ 2. Brandt matrix and Anzahlmatrix

Let ί&j, , $ l r i , , ̂ Λ 1, , ̂ Λ Γ Λ be a set of representatives of the

classes of left d-ideals where %3 has right order of the type of D<. As

usual [4] for an integral o-ideal n the Brandt matrix B(n) is the quadratic

matrix of r1 + + rh rows with entry bίJtkι(n) equal to the number of

integral left © rideals of norm n equivalent to SsΓ/Sfci ^ n equivalent

definition of the bίjtkl(n) is the following: Let ek = (O|: ox), let n19 - - -,ns be

a set of representatives of the totally positive numbers n with n

= n modulo squares of units in o1 (if such an n exists). Then

6 ( n )

where r(np, S^1^^) denotes the number of representations of n by the

lattice ίδίi1^ equipped with the reduced norm as quadratic form.

Let d, , ίg be a set of integral representatives of the ideal classes

of o, denote by ciJtkι that ideal in this set of representatives belonging

to the class of NQ>~ffikl) and by c^lkl, •• ,c$,A.j a set of representatives

of the totally positive numbers c with (c) = c^^IVX^1^) modulo squares

of units in o. Finally, let σu , σd be the embeddings of F into R. We

define the Brandt matrix series

0ιw(Zi> -'yZ*) = — + Σ bίjikl(n-ciJtkl) exp (2πί t r (nz))
β f c π>>0
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and have

(1) 0ίjjkl(zu , zd) = 1
e

k

where θ(^l%J9 zu , sd) is the theta series of the lattice 8JM3<j w i t h

reduced norm and τz>0 means n, totally positive. θijikt(zl9 • , zd) therefore

is a (Hubert) modular form of weight 2. As in [6] we define the reduced

Brandt matrix B(n) to be the (h X Λ)-matrix with entry

bik(n) = Σ biJtkl(n)

where j (1 < j < r^) is arbitrary.

Equivalently, bίk(n) is the number of integral left O rideals of norm

n with right order of type £)fe.

Finally, the primitive Anzahlmatrix PQ(n2) is the (h X Λ)-matrix with

entry π$(n2) equal to the number of lattices isomorphic to Lk and con-

tained in n~xLi but not in m " 1 ^ for any proper divisor m of n and P(n2)

= (πik(n2)) is the sum of the PQ{vει2) with m|n and m^n the square of an

ideal. As in [8] let ZP(L) for pj(2~ιb be the graph whose vertices are the

lattices K on V with Kq = Lq for q e l - {£} and Kp = Lp and in which

two vertices K, Kf are joined by an edge if K c l)-1^', if' c p + % and

if ^ K'. Then πi/})2) is the number of neighbours of Lt in ZJJL,^) that

are isomorphic to Lj. We have

LEMMA 1. // n is prime ίo b ί/iβn 7rifc(n
2) = bik(n).

Proof. By the definitions, πίk(n2) is the number of classes of adeles

AeίO^nSRίOi^A^C-ίV)* with N(A)o = n where A;tLtAik = Lfc and A,

β are in the same class if A e 91(0^2?. On the other hand, 6<fc(π) is the

number of classes of adeles Ae(Ot)AΓ\ϊfl(Oi)ΛAikC
+(V)x with N(A)o = n

where now A and B are in the same class if A e (O<)JJB. NOW let A and

JB be in the same class under the first equivalence relation. Then for

p\b evidently Ap, JBP€(D,)J while for pj(b one has 91(0^ = ^ (0 , ) ? and
thus elements of 3l(D<X the norm of which is a unit are in (£>*)*. A and
B therefore are in the same class under the second equivalence relation,
which proves the lemma. The following proposition is crucial for the
rest of this paper.

PROPOSITION. Let Lί9 Lv be in the same spinor genus. For 1 < μ < g

put
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*ί»(«i, •••,*,*) = — + Σ &«(»• O exp (2πi t r (nz)) = £ *«,.«(«,, •••,«*)
ek n»0 I

nee'1

where j is arbitrary, the second sum is extended over those I (1 < I < rk)

with Nffiϊffibi) in the ideal class of cμ and tk is the number of such I.

Then θξk(zl9 , zd) - θ^k(zu - ,zd) is a cusp form.

Proof. By definition of the spinor genus we may assume without

loss of generality that

Aw e Spin (V)A = {A e C+(V)A\N(AP) = 1 for all p e Σ).

For I = 1, , rk the ideals A^ ŝΓî fci r ^ n through a set of representatives

of the ideals with left order ©*/ and right order of the type of £>k, i.e.,

there is a permutation r of {1, •••, rk} with

Aϋ'rxSn <$kι = ι^i'i^kt{i)Aι

for certain AιeC+(V)x.
Since Au, e Spin(V)A, the map x—^oc(Aw\ is an isometry from (Sί/SiiX

onto (Af^wSi'λ, i-e , the lattices S«3ii and Af^iSoS*'! on C+(V) belong
to the same genus. Since the difference of the theta series of lattices in
the same genus is a cusp form and since the definition of θίjtkl depends
only on the class of the ideal r̂/S*ί> the assertion follows. As an appli-
cation of the proposition we give the following corollary:

COROLLARY. Lei p )(2~ιb, 1 < i, j < h be such that there are neighbours

of Li in ZP(L) belonging to the spinor genus of Lό. Then all neighbours of

Li in ZP(L) belong to the spinor genus of L3 and with o(L3) = # O(Lj) one

has

o(Lk)

where the sum is taken over those k with Lk in the spinor genus of Lj

and a is such that \am\ ~ 0{Nl{m)a) holds for the m-th Fourier coefficient

of a Hilbert cusp form of weight 2 over F.

Remark. For F = Q one can choose a = 1/2 + ε by Eichler's proof of
the generalized Ramanujan-Petersson-conjecture [2]. For general F it
appears that Gundlach's [5] estimate a = 7/8 + ε is still best available.

Proof. It is easily seen that any two neighbours of Lt in ZP(L) belong
to the same spinor genus. By the proposition this implies
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Since one has

([9]), formula 1 of § 3) and

± ^ ( P 2 ) = ivg(p) + l

([8]) Satz 1 and Bemerkung 2), the assertion follows.

Remark 2. The corollary may be applied to replace the somewhat

ad hoc proof of Satz 4 in [9] by a more natural one: The equation

Σ cp(L, k)πt{S{K, z) - 9(L, *)) = 0 for all t
KegenL

(p. 294 of [9]) transforms on using the assertion of the corollary (with p

large enough and such that all lattices in ZP(L) belong to the same

spinor genus) into

7r,(<£(spn L, z) - 9(L, zj) = 0 for all t,

which is just another form of the assertion of Satz 4.

§ 3. Representation numbers of ternary quadratic forms

Before we can prove our main result we need a couple of auxiliary

lemmas. We recall the definition of ZP(L) from Section 2 and denote by

r(t, gen L) the vector (r(t, Lx\ •-, r(t, Lh)). Finally let Et = F(S-2tdetV).

LEMMA 2. Let p e Σ be odd, pj(b, μeN.

Then

(2) r(t, gen (p-'L))

( ^ ^ ) t , gen L) if to, = q(Lp)op

if top = q(Lp)p

NF

Q(p)B(p^)r(t, gen L) if to, c

// p is dyadic, pj(2"% the results of (2) for the case top cz g(Lp)p sίi//

Proof This is equivalent to the fact that the effect of the Hecke

operator T(p2) on the vector (θ(Ll9 z), , θ{Lh, zj) is given by multiplying

this vector by B(p) (also known as Eichler's commutation relation),
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and follows for μ = 1 and odd p from the results given in formula (11.19)

of [1]. For proofs see [6], [7], [8]. For dyadic p the results given in Satz

2 of [8] are proved only for unramified FJQ2. However, the proof goes

through for arbitrary dyadic p if one restricts attention to t with top c:

q(Lp)p. The statement of the lemma for arbitrary μ follows by induction

on using

S ( r + 1 ) = B(p)B(p>) - NF

Q(p)B(p^)

(see [4], Theorem 5. The additional factor A(p) occuring in the formula

given there becomes identity on passing from the B(pμ) to the B(pμ)).

For the remaining finitely many primes we restrict our attention to

t with ordp t sufficiently large (as we have already done for the dyadic

primes in Lemma 1).

LEMMA 3. Let pel — oo. Then there are λp(L) e N and a lattice U

on V with L{ = Lq for q e Σ — {p} such that for ordp t > λp(L) one has r(t, L)

— r(t, I/) and either

(i) Vp is anίsotropίc and Lp is a pλ)?-maximal lattice on Vp or

(ii) Vp is ίsotropίc and Lp is similar to L rv)_L<πs> for some s e N.

Furthermore, for any φ e O{ Vp) one has {ψLp)
f = φl!r

Proof. When Vp is anisotropic, we have only to take any maximal

lattice contained in Lp. When Vp is isotropic, we take any sublattice of

Lp which is similar to L Λ)J_<(^ S ) and maximal with respect to the

inclusion.

LEMMA 4. Let p e Σ - oo, Lp ^ ft jh J_ <ττs> (seN).

Then there are exactly s + 1 lattices Mo, , Ms on V for which (Mt)p

is ps-maximal and contained in Lp and (MJq = Lq for q e Σ — {p}.

In the graph Zp(Mt) they form a chain of length ( = distance of the

endpoints) equal to s.

If φβOA(V) then the chain corresponding to ψL is φM0, •• ,pM,.

For ordp t > s one has

5 - 1

(3) r(t, L) = Σ r(t, Mt) - £ r(ί, Mt
X —

Proof Let zu z2y zz be a basis of Lp corresponding to which Lp has

the matrix given above. Then replacing Lp by
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(Mt\ = p% + ps-'z2 + opz3

(0 < i < s) one obtains a chain of lattices MOf , Ms in Zp(Mt) with

a ps-maximal lattice contained in Lp and (MJq = Lq for q e Σ — {£}. Let

Iζ, be any ^'-maximal lattice contained in Lp. From B(z3, Kp) cz β(e3, !,„)

c 2:p* we obtain z3 e 2psK* c: Jζ, and 23 can be split off orthogonally in

Kr KpΓ\Fpzλ + Fpz2 thus is a ^'-maximal lattice contained in Lp on Fpzx

+ Fpz2 and therefore equal to one of the pίzι + ps~ίz2. This proves the

first assertion of the lemma.

The second assertion follows from the uniqueness of the chain.

Finally, any vector xeLp with ordp q(x) > s is contained in at least one

of the Mit Since the set of Mt containing x forms a subchain of the Mi

([8], Lemma 3]), a vector contained in exactly j of the Mt is counted j — 1

times in the second sum on the right hand side of (3), which proves the

assertion.

LEMMA 5. Let L, p, Mx be as in Lemma 4, ordp t = s + v (v e TV). Then

( 4 ) r(t, M t nM i + 1 ) = 'Σi-WΛrit, P3Mτ) + r(t, p'Mt+1))

Proof. If x representing t is primitive in MiΓ\Mi+1 then from Lemma

4 of [8] it follows that x is primitive in exactly one of Mi9 Mi+ί. From

this one gets

r(t, Mi Π M<+1) - r(t, pMz) + r(t, pMi+ί) - r(t, p(Mt Π M< + 1)),

and (4) follows by iterating this.

We are now ready to prove our main result:

THEOREM. Let L = L1 and Lt be in the same spίnor genus, let a > 1/2

be a number such that for the m-th Fourier coefficient of a Hίlbert cusp

form for F of weight 2 the estimate

\am\ = 0(NF

Q{mY)

holds {see Remark 1 o/§ 2). Then for t e q(L)o and ε > 0 there is a con-

stant C depending on t, ε, and the genus of L such that for any integral

Q'ideal m one has:

\r(t, rn-'L,) - r(t, m " 1 ^ ) ! < C NF

Q(m)a+ε.
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Proof. Let m = Y\pμ9 = m1m2m3 where tr^ is prime to 2~*b and a

dyadic prime p ^ 2~*b divides ntj if and only if top c: c^L^ p, m2 is relatively

prime to mί and divisible only by primes p\b with Vp isotropic and m3

is divisible only by primes p for which Vp is anisotropic.

Let p |m 3 be such t h a t orάpt > λp(m~ιL) + 2 (ZP(L) defined as in Lemma

3). Then

r(t, gen (pm-'L)) = r(t, gen m^L)

since a pJ-maximal lattice on an anisotropic i^-space does not represent

primitively any numbers contained in pj+2. We can therefore assume that

for p \ m3 we have μp < ϊp where Tp is some constant depending only on

genL and t.

Let p|m2 be such that ordp t > λp(m"1L)9 the lattice (m~1Lp)
/ is isomor-

phic to ί βl ^ ) J_ (π82} (S2 > st) and ordp t > s2 + 2. Then we first replace

r(t, m"^) by r{t, {XΪΪ^L)') and express r(t, (m"1!/)') on using Lemma 4 and

Lemma 5 as a sum of representation numbers r(t, pjMk) of t by integral

multiples of the lattices of the chain associated to (m~ιL)f plus a sum of

representation numbers r(t, pj(MkΓ)Mk+1)) where top ζL q(Mkf)Mk+ί)pZj+2.

Since corresponding members of the chains associated to {m~ιL)f and

(m~1Lίy respectively belong to the same spinor genus and since the

number of terms in either sum is bounded by a (bounded) power of

logiVQirts, it suffices to prove the assertion for each summand.

We are thus reduced to the case that μp < ϊp for all p \ m2m3 with

some constant Tp depending only on t and genL.

Denote by δj(τn) the i-th row of B(m), by mί the product of the p | mx

with top = q(Lp)op, and by m" the product of the p \ mι with top c q(Lp)p2.

Using Lemma 2 we obtain:

m
, genm^m^L)

Nζ(mί')\r(t, gen mί'mi^m;"1!*)! can be bounded by a constant times

\r(t, genOn^ΐtt^L))! by a computation of local densities, and \r(t, gen

(nt^m^L))! can be bounded by a constant depending only on t and gen L

since we are now assuming μp to be bounded for all p dividing m2m3.
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The assertion of the theorem then follows from the proposition of
Section 2.

Remark 2. If r(t, spn L) denotes SiegeΓs weighted average of the
r(t, L^ over the L* in the spinor genus of L then r(t, spn L) — r(t, L) is
a linear combination of the r(t, Lz) — r(t, L;) (Lt, Lj in the spinor genus
of L). The bound of the theorem therefore applies to this difference too.

r(t> spn L) has been computed in [10], in particular, conditions on t
have been given under which r(t, spn L) can be bounded from below by
some constant times ΛΓg(ί)1/2~ε (Korollar 2 and 3 of [10] deal only with
F = Q but the proof goes through for any F).

With the theorem and the estimates from [2], [5] quoted above
r(t, va~ιL) — r(t, spnίm"1!/)) + r{t, m~ιL) — r(t, spnm"1!) thus gives an as-
ymptotic formula for r(t, m~xL).

Remark 3. As in [6], putting

Aγ(L) = θ«Kzi, -"9zMt> gen L)

(1 < μ < g, θμ the matrix with entries θμ

ilc (see the proposition)) one obtains
a lifting (which we will call the Brandt lifting) from the space spanned
by the theta series of the lattices in the genus of L to a subspace of
the space of modular forms of weight two. By the proposition of Section
2, this lifting carries the difference of theta series belonging to lattices
in the same spinor genus to a cusp form.

For F=Q it is clear that this lifting is essentially the same as Shimura's
lifting [11], since for pJ(d the action of T(p2) on the vector (θ(Ll9 z), ,
θ(Lh9 z)) is given by multiplication with B(p) (Eichler's commutation
relation, see Lemma 2) as is the action of T(p) on the reduced Brandt
matrix series (see [3]). The lifting therefore has the characteristic property
of Shimura's lifting, viz. to commute with the Hecke operators in the
sense that the lifting of T(p2)f is the same as T(p) applied to the lifting
of/.

A consequence of this is that the Brandt lifting carries a cusp form
to a cusp form if and only if Shimura's lifting does so. Another con-
sequence is that the difference between the two liftings of a given cusp
form lies in the space that is generated by old forms. An explicit version
of this fact in a special case was proved by Ponomarev in Theorem 2
of [6].
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