P. Orlik and H. Terao Nagoya Math. J. Vol. 134 (1994), 65-73

COMMUTATIVE ALGEBRAS FOR ARRANGEMENTS

PETER ORLIK AND HIROAKI TERAO¹

1. Introduction

Let *V* be a vector space of dimension / over some field K. A hyperplane *H* is a vector subspace of codimension one. An arrangement $\mathcal A$ is a finite collection of hyperplanes in V . We use [7] as a general reference. Let $M(\mathscr{A})\,=\,V-\,\cup_{\,{H}\in\mathscr{A}}H$ be the complement of the hyperplanes. Let V^* be the dual space of V. Each hyperplane $H \in \mathscr{A}$ is the kernel of a linear form $\alpha_{H} \in V^{\ast}$, defined up to a constant. The product

$$
Q(\mathcal{A}) = \prod_{H \in \mathcal{A}} \alpha_H
$$

is called a *defining polynomial* of $\mathcal A$. Brieskorn [3] associated to $\mathcal A$ the finite dimensional skew-commutative algebra $R(\mathcal{A})$ generated by 1 and the differential forms $d\alpha_H/\alpha_H$ for $H\in\mathscr{A}$. When $\mathbf{K}=\mathbf{C}$, the algebra $R(\mathscr{A})$ is isomorphic to the coho mology algebra of the open manifold $M(\mathcal{A})$. The structure of $R(\mathcal{A})$ was determined in [6] as the quotient of an exterior algebra by an ideal. In particular this shows that $R(\mathcal{A})$ depends only on the intersection poset of $\mathcal{A}, L(\mathcal{A})$, and not on the individual linear forms $\alpha_{H^{\star}}$

A subarrangement $\mathcal{B} \subseteq \mathcal{A}$ is called *independent* if $\bigcap_{H \in \mathcal{B}} H$ has codimension \mathcal{B} , the cardinality of \mathcal{B} . In a special lecture at the Japan Mathematical Society in 1992, Aomoto suggested the study of the graded K -vector space

$$
AO(\mathscr{A}) = \sum_{\mathscr{B}} \mathbf{K} Q(\mathscr{B})^{-1}, \quad \mathscr{B} \text{ independent.}
$$

It appears as the top cohomology group of a certain 'twisted' de Rham chain com plex [1]. When $\mathbf{K} = \mathbf{R}$, he conjectured that the dimension of $AO(\mathcal{A})$ is equal to the number of connected components (chambers) of $M(\mathcal{A})$, which he proved for generic arrangements. In this paper we prove this conjecture in general. We construct a

Received March 3, 1993.

 1 This work was supported in part by the National Science Foundation

commutative algebra $W(\mathcal{A})$ which is isomorphic to $AO(\mathcal{A})$ as a graded vector space. Note that $AO(\mathcal{A})$ is not closed under multiplication because a product $Q(\mathscr{B})^{-1}Q(\mathscr{B})^{-1}$ may contain the same linear form α_H more than once. In order to allow this, we need the following definition. A *multiarrangement 8* is a finite set of hyperplanes where each hyperplane may occur more than once. The multiplicity of *H* in *8*, $m(H, \mathscr{E})$ is the number of times *H* occurs in \mathscr{E} . The cardinality of \mathscr{E} , $|\mathscr{E}|$, is the total number of elements of *8,* each hyperplane counted with its multiplicity. Let $\mathbf{E}_p(\mathscr{A})$ be the set of multisubarrangements \mathscr{E} of \mathscr{A} of cardinality p . Let $\mathbf{E}(\mathcal{A}) = \bigcup_{\mathbf{z} \geq 0} \mathbf{E}_{\mathbf{z}}(\mathcal{A})$. This union is disjoint. We write $\mathbf{E} = \mathbf{E}(\mathcal{A})$ when \mathcal{A} is fixed. Let $\bigcap_{B \in \mathcal{B}} B = \bigcap_{B \in \mathcal{B}} H$. We call $\mathcal{B} \in \mathbf{E}$ *independent* if codim $(\bigcup \mathcal{B}) = |\mathcal{B}|$, and *dependent* otherwise. Note that if $m(H, \mathcal{E}) > 1$ for some $H \in \mathcal{E}$, then \mathcal{E} is dependent. Let \textbf{E}^t denote the set of independent multisubarrangements. This is a finite set. Let \mathbf{E}^{d} denote the set of dependent multisubarrangements. This is an infinite set. There is a disjoint union $\mathbf{E} = \mathbf{E}^t \cup \mathbf{E}^d$. Let $S = S(V^*)$ be the symmetric algebra of V^* . Choose a basis $\{e_1, \ldots, e_l\}$ in V and let $\{x_1, \ldots, x_l\}$ be the dual basis in V^* so $x_i(e_j) = \delta_{i,j}$. We may identify $S(V^*)$ with the polynomial algebra $S = K[x_1, \ldots, x_l]$. Let $Q(\mathscr{E}) = \prod_{H \in \mathscr{E}} \alpha_H$ for $\mathscr{E} \in \mathbf{E}$. Note that α_H appears with multiplicity $m(H, \, \mathscr{E})$ in $Q(\mathscr{E})$. Let $S_{(0)}$ be the field of quotients of S , the field of rational functions on *V,*

DEFINITION 1.1. Let $\mathbf{K}[\alpha_{\mathscr{A}}^{-1}]$ be the \mathbf{K} -subalgebra of $S_{(0)}$ generated by

$$
\{Q(\mathscr{E})^{-1} \, | \, \mathscr{E} \in \mathbf{E} \}.
$$

Let $J(\mathscr{A})$ be the ideal of $\mathbf{K}[\alpha^{-1}_{\mathscr{A}}]$ generated by $\{Q(\mathscr{C})^{-1} | \mathscr{E} \in \mathbf{E}^n\}$. Let $W(\mathcal{A}) = \mathbf{K}[\alpha_{\mathcal{A}}]$

Consider the usual grading of $S_{(0)}$. Since $J(\mathcal{A})$ is a homogeneous ideal, *W(d)* is a graded commutative algebra. There is a natural map of graded vector spaces $j:AO(\mathcal{A}) \to W(\mathcal{A})$ defined by $Q(\mathcal{B})^{-1} \mapsto [Q(\mathcal{B})^{-1}]$. It is clear that *AO(* \mathcal{A} *)* is finite dimensional because the set \mathbf{E}^i is finite. Since the map *j* is surjective, the algebra $W(\mathcal{A})$ is also a finite dimensional **K**-vector space. Its total dimension, Poincare polynomial, or algebra structure are not obvious at this point. In the rest of this paper we determine these.

In Section 2 we define a polynomial algebra $\mathbf{K}[u_{\mathscr{A}}]$ based on $\mathscr A$ and a quotient algebra $U(\mathcal{A})$. We also study some properties of $U(\mathcal{A})$. Section 3 contains the proof that $U(\mathcal{A})$ and $W(\mathcal{A})$ are isomorphic graded algebras. In Section 4 we compute the Poincaré polynomial of $W(\mathcal{A})$ and prove that j is an isomorphism of vector spaces.

It is not clear from our results whether $W(\mathcal{A})$ depends only on $L(\mathcal{A})$ or not. Another interesting question is if $W(\mathcal{A})$ is the model for any topological invariant of $M(\mathcal{A})$.

2. The algebra $U(\mathcal{A})$

Let $\mathcal A$ be an arrangement. Let $L = L(\mathcal A)$ be the set of all intersections of elements of *d.* We agree that *L* includes *V* as the intersection of the empty collection of hyperplanes. We should remember that if $X \in L$, then $X \subseteq V$. Partially order L by reverse inclusion. Then L is a geometric lattice with rank function $r(X)$ = $codim(X)$ [7, Lemma 2.3].

Let $\mathbf{E}_x = \{ \mathscr{E} \in \mathbf{E} \mid \cap \mathscr{E} = X \}$. Then we have the disjoint union

$$
\mathbf{E} = \cup_{X \in L} \mathbf{E}_X
$$

We use notation such as ${\bf E}_{\rho, X} = {\bf E}_\rho \, \cap \, {\bf E}_X, \, {\bf E}_{\rho, X}^t = {\bf E}^t \, \cap \, {\bf E}_{\rho, X},$ etc.

DEFINITION 2.1. Let $\mathbf{K}[u_{\mathcal{A}}]$ be the polynomial ring in the indeterminates u_H , $H \in \mathcal{A}$. Write $u_g = \prod_{H \in \mathcal{E}} u_H$. Define

$$
\mathbf{K}[u_{\mathcal{A}}]_p = \sum_{g \in \mathbf{E}_p} \mathbf{K} u_g, \quad \mathbf{K}[u_{\mathcal{A}}]_X = \sum_{g \in \mathbf{E}_X} \mathbf{K} u_g,
$$

$$
\mathbf{K}[u_{\mathcal{A}}] = \sum_{g \in \mathbf{E}'} \mathbf{K} u_g, \quad \mathbf{K}[u_{\mathcal{A}}] = \sum_{g \in \mathbf{E}^d} \mathbf{K} u_g.
$$

We have the **following direct sum decompositions:**

$$
\mathbf{K}[u_{\mathcal{A}}] = \bigoplus_{p \geq 0} \mathbf{K}[u_{\mathcal{A}}]_p,
$$

\n
$$
\mathbf{K}[u_{\mathcal{A}}] = \bigoplus_{X \in L} \mathbf{K}[u_{\mathcal{A}}]_X,
$$

\n
$$
\mathbf{K}[u_{\mathcal{A}}] = \mathbf{K}[u_{\mathcal{A}}]^T \oplus \mathbf{K}[u_{\mathcal{A}}]^T.
$$

Let π_p , π_x , π^i , and π^d be the respective projections. These maps commute pairwise. We use notation such as $\mathbf{K}[u_\mathscr{A}]_{\mathfrak{p},X} = \mathbf{K}[u_\mathscr{A}]_{\mathfrak{p}} \cap \mathbf{K}[u_\mathscr{A}]_{X}$, $\mathbf{K}[u_\mathscr{A}]_{\mathfrak{p},X}^* =$ $\mathbf{K}[u_{\mathscr{A}}]^{\dagger} \cap \mathbf{K}[u_{\mathscr{A}}]_{p,X}$, etc.

DEFINITION 2.2. Let $I(\mathcal{A})$ be the ideal of $\mathbf{K}[\mathcal{U}_{\mathcal{A}}]$ generated by

- (i) the elements of $\mathbf{K}[u_{\mathcal{A}}]^{d}$,
- (ii) when $\sum_{H\in \mathscr{E}} c_H \alpha_H = 0$ with $c_H\in \mathbf{K}$, the element $\sum_{H\in \mathscr{E}} c_H u_{\mathscr{E}-\{H\}}$ Let $U(\mathcal{A}) = \mathbf{K}[u_{\mathcal{A}}]/I(\mathcal{A}).$

Grade $\mathbf{K}[u_{\mathscr{A}}]$ by $\deg u_{\mathscr{H}} = -1$. Since $I(\mathscr{A})$ is a homogeneous ideal, $U(\mathscr{A})$ is a graded commutative **K**-algebra. The isomorphism $U(\mathcal{A}) \simeq \mathbf{K}[\boldsymbol{u}_{\mathcal{A}}]^t / I(\mathcal{A})$ \cap $\textbf{K}[\boldsymbol{u}_{\mathcal{A}}]^T$ shows that $U(\mathcal{A})$ is a finite dimensional graded commutative **K**-algebra.

A *circuit* $C = {H_1, \ldots, H_k}$ is a minimally dependent subset of hyperplanes: C is dependent, but $C = {H_i}$ is independent for all *i*.

PROPOSITION 2.3. The ideal $I(\mathcal{A})$ is generated by the following finite set: (a) u_H^2 for $H \in \mathcal{A}$, (b) for each circuit $C = {H_1, \ldots, H_k}$ with $\sum_{i=1}^k c_i \alpha_{H_i} = 0$, the element $\sum_{i=1}^k c_i u_{C-H_i}$

Proof. Let I' denote the ideal generated by elements of type (a) and (b) of the proposition. It is clear that $I' \subseteq I$. To prove the converse, we argue separately for elements of type (i) and (ii) of the definition.

(i) Suppose $f \in \mathbf{K}[u_{\mathscr{A}}]^d$. Since $\mathbf{K}[u_{\mathscr{A}}]^d$ is an ideal, it suffices to assume that $f = u_c$, where $C = \{H_1, \ldots, H_k\}$ is a circuit. Suppose $\sum_{i=1}^{k} c_i \alpha_{H_i} = 0$. It follows from (b) that $\sum_{i=1}^k c_i u_{C-H_i} \in I'$ and $u_{H_1} \sum_{i=1}^k c_i u_{C-H_i} \in I'$. We use the distributive law and (a) to conclude that $c_1 u_c \in I'$. Since *C* is a circuit, $c_1 \neq 0$. Thus $f \in I'$.

(ii) We show that for each relation $\sum_{H \in \mathscr{E}} c_H \alpha_H = 0$ with $c_H \in \mathbf{K}$, the corres ponding element $\sum_{H\in \mathscr{E}} c_H u_{\mathscr{E}-\langle H\rangle} \in I'.$ Suppose not. Choose a counterexample with minimal $| \&|$. Note that minimality implies that for every $H \in \mathscr{E}$, $m(H, \mathscr{E}) = 1$. Let $\mathscr{E} = \{H_1, \ldots, H_m\}$ with distinct H_j . Let $\sum_{i=1}^m c_i \alpha_{H_i} = 0$ be the corresponding relation. Since $\&$ is dependent, it contains a circuit. We may assume that $C = \{H_1,$...*,H_k*}*, k* \leq *m*, is a circuit. Thus $\sum_{i=1}^{k} a_i \alpha_{H_i} = 0$ and $a_i \neq 0$ for $1 \leq i \leq k$. De fine $a_i = 0$ for $k + 1 \le i \le m$. Then we have

$$
\sum_{i=1}^m c_i \alpha_{H_i} - \frac{c_1}{a_1} \sum_{i=1}^k a_i \alpha_{H_i} = \sum_{i=2}^m \left(c_i - \frac{c_1}{a_1} a_i \right) a_{H_i} = 0.
$$

The index set of the last relation is $\mathscr{E} - \{H_t\}$. It follows from the minimality assumption, that the corresponding element

$$
\sum_{i=2}^m \left(c_i - \frac{c_1}{a_1} a_i\right) u_{g-(H_1,H_i)} \in I'.
$$

Multiply by u_{H_1} and rewrite to get

$$
\sum_{i=1}^m c_i u_{g-(H_i)} - \frac{c_1}{a_1} u_{g-c} \sum_{i=1}^k a_i u_{c-(H_i)} \in I'.
$$

Since the second sum is in I' by (b), so is the first sum. This contradiction com pletes the argument. \Box

3. The isomorphism

DEFINITION 3.1. Let $\Phi_{0}: \mathbf{K}[u_{\mathscr{A}}] \to S_{(0)}$ be the \mathbf{K} -algebra homomorphism in duced by $u_H \mapsto \alpha_H^{-1}$. Since $\text{im}(\Phi_0) = \mathbf{K}[\alpha_{\mathcal{A}}^{-1}]$, we have a surjective graded algebra homomorphism

$$
\Phi: \mathbf{K}[u_{\mathcal{A}}] \to \mathbf{K}[\alpha_{\mathcal{A}}^{-1}].
$$

Let $K = \ker(\Phi)$.

LEMMA 3.2. (1)
$$
\pi_p(K) \subseteq K
$$
, (2) $\pi_X(K) \subseteq K$, (3) $\pi^i(K) \subseteq K$, (4) $\pi^d(K) \subseteq K$.

Proof. (1) If a **K**-linear combination of $Q(\mathscr{E})^{-1}$ is zero, then each homogeneous component of it is zero.

(2) Fix $f \in K$. By (1), we may assume that $f \in K[u_{\mathcal{A}}]_p$. Write

(i)
$$
f = \sum_{g \in \mathbf{E}_p} c_g u_g.
$$

Let $f_z = \pi_z(f)$ for $Z \in L$. If $f_z \in K$ for all Z, we are done. Suppose there exist some $Z \in L$ with $f_z \notin K$. Among these Z we choose one with minimal rank and call it X. Thus we may assume $f_Y \in K$ for all Y with $r(Y) \leq r(X)$. We may write $\Phi(f) = 0$ as

(ii)
$$
\sum_{\substack{\mathscr{E}\in \mathbf{E}_p\\n\mathscr{E}=X}}c_{\mathscr{E}}Q(\mathscr{E})^{-1}=-\sum_{\substack{Y\neq X\\f_Y\in K}}\sum_{\substack{\mathscr{E}\in \mathbf{E}_p\\n\mathscr{E}=Y}}c_{\mathscr{E}}Q(\mathscr{E})^{-1}.
$$

Multiply both sides of (ii) by $Q(\mathscr{A})^p$. All the resulting terms are in S . We count zeros on both sides separately. We may choose coordinates so that $X = \{x_1 = \cdots \}$ $= x_r = 0$. Let M be the ideal of S generated by $\{x_1, \ldots, x_r\}$.

Let $c_{g}Q(\mathscr{E})^{-1}$ be a term from the right side of (ii). Let $Y=\cap \mathscr{E} \neq X$. Note that *Y* \le *X* because if *Y* \le *X*, then *r*(*Y)* \le *r*(*X*) so *f*_{*Y*} \in *K* by the minimality assump tion. Thus $\mathscr{E} \cap (\mathscr{A} - \mathscr{A}_X) \neq \mathscr{B}$. It follows that $Q(\mathscr{A})^P Q(\mathscr{E})^{-1} \in M^{P|\mathscr{A}_X| - P + 1}$. Now α consider the left side of (ii). Since $Q(\mathscr{A})/Q(\mathscr{A}_X) \notin M$ and $M^{p|\mathscr{A}_X|+p+1}$ is an M -primary ideal, we have

$$
Q(\mathscr{A}_X)^p \sum_{\substack{\mathscr{E}\in \mathbf{E}_p\\ \cap \mathscr{E}=X}} c_{\mathscr{E}} Q(\mathscr{E})^{-1} \in M^{p|\mathscr{A}_X|-p+1}.
$$

The degree of this nonzero polynomial is equal to $p \,|\, \mathscr{A}_X \,|\, -\, p$. This contradiction completes the argument.

(3) Suppose $f \in K$. It follows from (1) and (2) that we may assume $f \in$ $\mathbf{K}[u_{\mathscr{A}}]_{p,X}$. If $p > r(X)$, then $f \in \mathbf{K}[u_{\mathscr{A}}]^d$. Thus $\pi^if=0 \in K$. If $p = r(X)$, then $f \in$ $\mathbf{K}[u_{d}^{\dagger}]^{i}$. Thus $\pi^{i}f = f \in K$.

(4) follows from (3) because $\pi^{i} + \pi^{d} = 1$ \Box .

THEOREM 3.3. The map $\Phi : K[u_{\mathscr{A}}] \to K[\alpha_{\mathscr{A}}^{-1}]$ induces an isomorphism of graded $algebras \phi: U(\mathcal{A}) \longrightarrow W(\mathcal{A}).$

Proof. Since $\ker(\phi) = K + \mathbf{K}[u_{\phi}]^d$, it is enough to show that $I = K + \phi$ $\mathbf{K}[u_{\mathcal{A}}]^d$. It is clear that $I \subseteq K + \mathbf{K}[u_{\mathcal{A}}]^d$ because the generators of *I* of the second kind belong to K. Since $\mathbf{K}[u_{\mathcal{A}}]^d \subseteq I$, it suffices to show for the converse that if $f \in K \cap K[u_{\mathscr{A}}]^i$, then $f \in I$. It follows from Lemma 3.2 (1) and (2) that we may assume $f \in K \cap \mathbf{K}[u_{\mathscr{A}}]_{p,X}^i$. We argue by induction on p . If $p = 0$, then $f = 0 \in I$. If $p > 0$, then $\mathscr{A}_X \neq \emptyset$. Let $H_0 \in \mathscr{A}_X$. Write $f = \sum_{\mathscr{E} \in \mathbf{E}^t_{p,X}} c_{\mathscr{E}} u_{\mathscr{E}}$. If $\mathscr{E} \in \mathbf{E}^t_{p,X}$, then $\{\mathscr{E},\ H_0\}$ is a dependent set. Thus we have

$$
c_0\alpha_{H_0} + \sum_{H \in \mathscr{E}} c_H \alpha_H = 0.
$$

Since $\&$ is independent, $c_0 \neq 0$ and we may assume that $c_0 = 1$. By definition we have

$$
u_{g}+u_{H_{0}}\sum_{H\in\mathscr{E}}c_{H}u_{g-(H)}\in K.
$$

It follows that $f - u_{H_0}g \in K$ for $g \in K[u_{\mathscr{A}}]_{p-1}^i$, so $u_{H_0}g \in K$. Since $K =$ **ker(** Φ **)** is a prime ideal, $f \in K$ and $u_{H_0} \notin K$, we conclude that $g \in K$. Let $g_Y =$ *(g)* and write $g = \sum g_Y$ where $g_Y \in \mathbf{K}[u_{\mathscr{A}}]_{p-1,Y}^t$. It follows from Lemma 3.2 (2) that $g_Y \in K$ for all *Y*. By the induction hypothesis, $g_Y \in I$. Thus $g \in I$ and $f \in I$. **D**

4. Structure theorems

Let $U(\mathscr{A})_X = \mathbf{K}[u_{\mathscr{A}}]_X / \mathbf{K}[u_{\mathscr{A}}]_X \cap I$ and $W(\mathscr{A})_X = \mathbf{K}[\alpha_{\mathscr{A}}^{-1}]_X / \mathbf{K}[\alpha_{\mathscr{A}}^{-1}]_X \cap J$.

THEOREM 4.1. The algebra $U(\mathcal{A})$ is the direct sum $U(\mathcal{A}) = \bigoplus_{X \in L} U(\mathcal{A})_X$.

Proof. It follows from Theorem 3.3 and Lemma 3.2 that $\pi_X(I) = \pi_X(K + I)$ $\mathbf{K}[u_{\mathscr{A}}]^d) \subseteq K + \mathbf{K}[u_{\mathscr{A}}]^d = I$. It implies that $\pi_X(y) \in I \cap \mathbf{K}[u_{\mathscr{A}}]_X$ for any $y \in I$. Thus we have $I = \bigoplus_{X \in L} (I \cap \mathbf{K}[u_{\mathscr{A}}]_X)$. The result follows.

THEOREM 4.2. *The map j :* $AO(\mathcal{A}) \rightarrow W(\mathcal{A})$ *is an isomorphism of graded vector spaces.*

Proof. Observe that j is a graded, **K**-linear, surjective map. It remains to show that *j* is injective. Note that $AO(\mathcal{A}) = \Phi(\mathbf{K}[\mathbf{u}_{\mathcal{A}}]^{\dagger})$. Thus we have a commuting diagram.

$$
AO(\mathcal{A}) = \Phi(\mathbf{K}[u_{\mathcal{A}}]) \simeq \mathbf{K}[u_{\mathcal{A}}]^{i}/K \cap \mathbf{K}[u_{\mathcal{A}}]^{i}
$$

$$
j \downarrow \qquad \qquad \downarrow \tau
$$

$$
W(\mathcal{A}) \simeq U(\mathcal{A}) = \mathbf{K}[u_{\mathcal{A}}]/I
$$

where τ is induced by the diagram. We show that τ is injective. It suffices to show that $I \cap K[u_{\mathscr{A}}]^T = K \cap K[u_{\mathscr{A}}]^T$. Theorem 3.3 implies that $I \cap K[u_{\mathscr{A}}]^T \supseteq K \cap K[u_{\mathscr{A}}]^T$ $\textbf{K}[\bm{u}_{\mathscr{A}}]^{\text{\tiny{\textit{1}}}}$. For the converse, write an element of $I = K + \textbf{K}[\bm{u}_{\mathscr{A}}]^{\text{\tiny{\textit{d}}}}$ as $a+b$, where a $\epsilon \in K$ and $b \in K[u_{\alpha}]^d$. Then an arbitrary element of $I \cap K[u_{\alpha}]^i$ is $\pi'(a + b) =$ $\pi^{i}(a) \in K \cap \mathbf{K}[u_{a}]$ ^t by Lemma 3.2 (2).

If $M = \bigoplus_{p\geq 0} M_p$ is a finite dimensional graded vector space, we let $\text{Poin}(M, t)$ $=\sum_{\nu\geq 0}^{\infty}$ (dim M_{ν}) t^{ν} be its Poincaré polynomial. Recall [7, 2.42] the (one variable) Möbius function $\mu : L(\mathcal{A}) \to \mathbf{Z}$ defined by $\mu(V) = 1$ and for $X > V$ by $\sum_{Y \leq X} \mu(Y) = 0.$

THEOREM 4.3.

$$
Poin(W(\mathcal{A}), t) = Poin(U(\mathcal{A}), t) = Poin(AO(\mathcal{A}), t) = \sum_{X \in L(\mathcal{A})} \mu(X) (-t)^{\tau(X)}.
$$

Proof. It suffices to show that $\dim W(\mathcal{A})_X = |\mu(X)|$. It follows from Theorem 4.2 that *j* induces an isomorphism $j_x : AO(\mathcal{A})_x \to W(\mathcal{A})_x$ for all $X \in L$. Thus it suffices to show that $\dim AO(\mathcal{A})_X = |\mu(X)|$. Since $AO(\mathcal{A})_X = AO(\mathcal{A}_X)_{X}$, we may assume that $X = \cap A$ is the maximal element of $L(A)$. Choose coordinates so that $X = \{x_1 = \cdots = x_m = 0\}$. Suppose $\mathscr{B} \subseteq \mathscr{A}$ is independent and $\cap \mathscr{B}$ $= X$. Then $\mathscr{B} = \{H_1, \ldots, H_m\}$ and $d\alpha_{H_1} \wedge \cdots \wedge d\alpha_{H_m}$ is a constant multiple of $dx_{1} \wedge \cdots \wedge dx_{m}$. Recall the graded \bf{K} -algebra $R(\mathscr{A})$ generated by 1 and $d\alpha_{H}/\alpha_{H}$. It follows that multiplication by $dx_1\wedge\,\cdots\,\wedge\,dx_m$ induces an isomorphism $AO(\mathcal{A})_X \simeq R(\mathcal{A})^m$. It was shown in [6] (see also [7, 3.129]) that $\dim R(\mathcal{A})^m =$ $\mu(X)$ and \Box COROLLARY 4.4. *We have*

$$
\dim W(\mathcal{A}) = \dim U(\mathcal{A}) = \dim AO(\mathcal{A}) = \sum_{X \in L(\mathcal{A})} |\mu(X)|.
$$

When $\mathbf{K} = \mathbf{R}$, this number equals the number of chambers of $M(\mathcal{A})$.

Proof. The first part is by Theorem 4.3 and the fact that $(-1)^{r(X)}\mu(X) =$ $|\mu(X)|$, see [7, 2.47]. When $\mathbf{K} = \mathbf{R}$, connected components are called chambers. The second part follows from Zaslavsky's theorem $[8]$.

5. **NBC bases**

In this section we construct explicit **K**-bases for $AO(\mathcal{A})$, $U(\mathcal{A})$, and $W(\mathcal{A})$. These bases are in one-to-one correspondence with the set of NBCs (non-broken circuits).

Fix a total order on $\mathscr A$ by $\mathscr A=\{H_{1},\,H_{2},\ldots,H_{n}\}$. Recall that a subset C of $\mathscr A$ is a circuit if it is a minimally dependent set. A subset *C* of *d* is a *broken circuit* or a *BC* if there exists a hyperplane $K \in \mathcal{A}$ satisfying $K \leq \min C$ so that the set *C* U *{K}* is a circuit. A subset *T* of *d* is called a *non-broken circuit* or an *NBC* if T contains no broken circuit.

LEMMA 5.1. If an independent subset C of $\mathcal A$ contains a BC, then $Q(C)^{-1}$ is a *linear combination of* $\{Q(T)^{-1} \mid \cap T = \cap C, T \text{ is an } NBC\}$.

Proof. We may assume that $C = {H_{i_1}, \ldots, H_{i_m}}$ itself is a BC. Suppose that $T = \{H_{i_0}\}\cup C$ is a circuit and that $i_0 < i_1 < i_2 < \cdots < i_m$. Let $T_j = T \setminus \{H_{i_i}\}$. This shows that $Q(C)^{-1}$ is a linear combination of $\{Q(T_j)^{-1}\}\,|\,j=1,\ldots,m\}$. Note that $\cap C = \cap T = \cap T_i$ and we get the desired result.

For any subset $C = {H_{i_1}, \ldots, H_{i_m}}$ of $\mathcal A$, define

height $(C) = i_1 + \cdots + i_m$.

THEOREM 5.2. Let $X \in L$. The set

$$
NBC(\mathcal{A})_X = \{Q(C)^{-1} \mid C \text{ in an } NBC \text{ and } \cap C = X\}
$$

is a K -basis for $AO(\mathcal{A})_X$. Therefore the set $\{Q(C)^{-1} \mid C \text{ is an } NBC\}$ is a K -basis for *AO(d).*

Proof. It follows from [2],[4],[5] that the cardinality of the set

 ${C \mid C$ is an NBC and $\cap C = X}$

is $|\mu(X)|$. We showed in the proof of Theorem 4.3 that $\dim AO(\mathcal{A})_X = |\mu(X)|$. Thus it suffices to show that $NBC(\mathscr{A})_{\overline{X}}$ spans $AO(\mathscr{A})_{\overline{X}}$. If not, there exists $C_{\overline{0}}$ such that:

- (1) C_0 is independent,
- (2) $\cap C_0 = X$,

(3) $Q(C_0)^{-1}$ is not spanned by elements of $NBC(\mathcal{A})_{X}$, and

(4) the height of $C_{\scriptscriptstyle 0}$ is minimum among all subsets satisfying (1)–(3). Since $C_{\scriptscriptstyle 0}$ is not an NBC , $Q(C_0)$ $\hat{ }$ is a linear combination of

 $\{Q(T)^{-1} | T \text{ is an NBC and } \cap T = X\}$

by Lemma 5.1. By condition (4) and (3), this is a contradiction. \Box

COROLLARY 5.3. (i) The residue classes of the set $\{u_{\scriptscriptstyle C} \vert \ C$ is an $NBC\}$ give a **K**-basis for $U(\mathcal{A})$ as a **K**-vector space.

(ii) The residue classes of the set ${Q(C)}^{-1}$ C is an NBC) give a **K**-basis for $W(\mathscr{A})$ as a **K**-vector space.

REFERENCES

- [1] Aomoto, K., Hypergeometric functions, the past, today, and(from complex analytic view point), (in Japanese), Sϋgaku, **45** (1993), 208-220.
- [2] Bjόrner, A., On the homotopy of geometric lattices, Algebra Universalis, **14** (1982), 107-128.
- [3] Brieskorn, E., Sur les groupes de tresses, In: Seminaire Bourbaki 1971/72. Lec ture Notes in Math., **317,** Springer Verlag, 1973, pp. 21-44.
- [4] Gelfand, I.M., Zelevinsky, A.V., Algebraic and combinatorial aspects of the general theory of hypergeometric functions, Funct. Anal. and Appl., 20 (1986), 183-197.
- [5] Jambu, M., Terao, H., Arrangements of hyperplanes and broken circuits, In: Sing ularities. Contemporary Math., 90, Amer. Math. Soc., 1989. pp. 147-162.
- [6] Orlik, P., Solomon, L., Combinatorics and topology of complements of hyperplanes, Invent, math. 56 (1980) 167-189.
- [7] Orlik, P., Terao, H., Arrangements of hyperplanes, Grundlehren der math. Wiss., **300,** Springer-Verlag, Berlin-Heidelberg-New York, 1992.
- [8] Zaslavsky, T., Facing up to arrangements: Face-count formulas for partitions of space by hyperplanes, Memoirs Amer. Math. Soc, **154,** 1975.

Mathematics Department University of Wisconsin Madison, WI 53706 U.S.A.