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1. Introduction

Let (M, g) be a Riemannian manifold of dimension n > 3 and g another met-

ric on M which is pointwise conformal to g. It can be written g — u g, where

u is a positive smooth function on M. Then the curvature of g is computable in

terms of that of g and the derivatives of u up to second order. In particular, if S

and S denote the scalar curvature of g and g respectively, they are related by the

equation

/ 1 N A | o o (n+2)/(n-2) 4 (ft 1)

(1) - αnΔu + Su = Su , αn = n - 2 >

where Δu denotes the Laplacian of u, defined with respect to the metric g.

Now it is a fundamental problem to find criteria for a given function, say / to

be realized as the scalar curvature of some conformal metric. This is equivalent to

solving the equation (1) with / in place of S. Much investigation has been dedi-

cated to this problem especially when the manifold M is compact. In the noncom-

pact case, it is geometrically natural to require the metric to be complete and then

the problem amounts to seeking a solution of the above equation, which has

appropriate asymptotic behavior at infinity. Also, it will be reasonable to first

consider the above problem on Riemannian manifolds with simple structure at

infinity. Among this class of manifolds is the complement of a closed subset in a

compact Riemannian manifold. Aviles-McOwen [2] proved that, if (M, g) is a com-

pact Riemannian manifold of dimension n and Σ is a compact submanifold in

M, the complement (M\Σ, g\M\Σ) admits a complete conformal metric with
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constant negative scalar curvature if and only if the dimension of Σ is greater

than (n — 2)/2. When (M, g) is the sphere Sn with its standard metric, this re-

sult had been known to Loewner-Nirenberg [11]. On the other hand, Schoen-Yau

[21] (see also [20]) proved that if Σ is a closed subset in Sn and Sn\Σ admits a

complete conformal metric with nonnegative scalar curvature, then the Hausdorff

dimension of Σ is less than or equal to (n — 2)/2.

In this paper, motivated by these results, we consider the following problems:

If (M, g) is a compact Riemannian manifold of dimension not less than three and

Σ is a closed subset in M, then

(a) does Λ f \ Σ admit complete conformal metrics with nonnegative scalar

curvature ?

And

(b) if it does, find criterion for a (nonnegative) function on M\ Σ to be realized as

the scalar curvature of a complete conformal metric. Can the scalar curvature be

made constant ?

In order to describe our results, let μλ(M) denote the first eigenvalue of the

operator L- — anΔ + S, that is,

μι(M) = inff f φLφdυβ \ φ e C°°(M), f φ2dvg =

where dvg is the volume element of the metric g. As is well-known (see [9]), the

sign of μ^iM) is an invariant of the conformal class of g, and it is positive (resp.

zero, negative) if and only if the class contains a metric with everywhere positive

(resp. zero, negative) scalar curvature.

In §2 we prove that if (M, g) is a compact Riemannian manifold with

μx(M) < 0 and Σ c M is a nonempty closed subset, then M\ Σ admits no com-

plete conformal metrics with nonnegative scalar curvature (Theorem 1). As a

corollary, it follows that if (M, g) is a compact Riemannian manifold with

nonempty boundary, then its interior admits no such metrics.

In §§3, 4 we consider the case μ^iM) > 0 and show that if Σ ^ M is a com-

pact submanifold of dimension d ^ (n — 2)/2, then M\ Σ admits a variety of

complete conformal metrics with nonnegative scalar curvature. In fact, letting r de-

note the distance from a point in M\ Σ to Σ , we prove that any function / which

decays near Σ faster than r n~ can be realized as the scalar curvature of in-

finitely many complete conformal metrics on M \ Σ (Theorem 2 (a)). In particular,

M \ Σ admits such a metric with vanishing scalar curvature. In this result, we

can replace the assumption o n / by a weaker one, which, if/ does not change sign,

is also necessary for/ to be realized as above (Theorem 2'). If/ is uniformly posi-
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tive or decays near Σ rather mildly, it is not necessarily realized as above. We

show, however, that if d < (n — 2)/2, there exists a complete conformal metric

whose scalar curvature is positive and behaves like r near Σ , for each / ^ [0, 2

— 4d/(n — 2)) (Theorem 4). In particular, M \ Σ admits such a metric with uni-

formly positive scalar curvature. In the proof of these results, we use the Green's

function (on M) for L, being averaged over Σ in one variable, to construct super-

and subsolutions of the equation (1) (with / in place of S). Essential is the esti-

mates of this function and its derivatives near Σ . When the closed Σ is not a

smooth manifold, our method does not work in general. However, the examples in

§3 indicate that if Σ supports an appropriate measure, our argument would still

apply.

Acknowledgement. The second author thanks the Yukawa Foundation of

Osaka University for awarding him a scholarship. Both the authors are grateful to

Professor H. Ozeki for his encouragement. They also wish to thank Professor A.

Kasue for his interest in this work and valuable suggestion.

During the preparation of this paper, we learned that Ma-McOwen [13]

announced a result corresponding to our Corollary 2. But their proof seems diffe-

rent from ours.

2. The c a s e μ ^ M ) < 0

In this section we give some nonexistence results. We first prove

PROPOSITION 1. Let (Mo, gQ) be a compact Riemannian manifold of dimension

n > 3 with nonpositive scalar curvature and Ω c MQ a domain such that Mo \ Ω Φ 0 .

For a complete conformal metric g on Ω, we set Lβ

 = — A + βS, where Δ and S are

the Laplacian and the scalar curvature respectively defined in terms of g. Then

λγ(Lβ) <0forβ> n/4(n - 1) ( = β(n)), where λ^L^ is defined by

λλ(Lβ) = infί f φLβφdvg | φ e C0°°(β), Γ φ2dυg = l ] .

Proof It suffices to prove Proposition 1 for /3 = β(n) because of the follow-

ing inequality, which holds for any function φ with compact support in Ω and any

β > β(n):

jf (I dφ |2 + β(n)Sφ2) > ^j- jf (I dφ |2 + βSφ2).
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τr 4/(n-2) ,,

If we write g — u g0, then
Λ / - 1 \ i n " 1 o -(n+2)/(n-2) ^ ^

— tfMZlU ) + Su = Sou < 0,

where So is the scalar curvature of g0. Setting h = u , this inequality can be

2\dh2

rewritten as

(2) Δ

Let φ e C0°°(β). Then

Λ(L,) Γ (φh)2 < f ( -

= f (- # 2 40 - 2 # < # , dh> - φ2hΔh + βSίφh)2)

< f (-φh2Aφ-\<d{φ2),d{h2)»-\ [φ2\dh\\

In the last inequality we have used (2). Integrating by parts we obtain

(3) λx(JLB) f (φh)2 < [ h 2 \ d φ \ 2 -\ f φ 2 \ d h |2.

We now let 0 be a function such that φ = 1 on BR, φ = 0 on Ω\B2R and | dφ \

< 2/R, where BR is the ^-geodesic ball of radius R centered at a fixed point.

Substitution in (3) gives

dh2

Letting R—• oo, the first term in the right-hand side tends to zero, since the integ-

ral is bounded above by the g0-volume of Ω. Moreover, the completeness of g im-

plies that u, hence h, is not constant. Thus | dh \ does not vanish identically.

Therefore we can conclude

^ α p fh2< - ^ f
JΩ n JΩ

This completes the proof of Proposition 1.

Remark. Proposition 1 is a generalization to higher dimensions of a theorem

of Fischer-Colbrie and Schoen ([4], Theorem 2, p. 203). In fact, our proof of Prop-

osition 1 runs on the same lines as their proof in two dimension.
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As an immediate consequence of Proposition 1, we obtain the following

THEOREM 1. Let ( M , g) be a compact Riemannian manifold of dimension n>3

with μγ{M) < 0 and Σ ^ M a nonempty closed subset. Then M\ Σ admits no com-

plete conformal metrics with nonnegative scalar curvature.

COROLLARY 1. Let (M, g) be a compact Riemannian manifold with boundary

dM (Φ 0 ) . Then M\ dM admits no complete conformal metrics with nonnegative sca-

lar curvature.

Proof. Let (N, h) be a compact Riemannian manifold (without boundary) such

that M c N and h M — g. By taking, if necessary, connected sum with a compact

Riemannian manifold of negative scalar curvature, we may assume that

μλ(N) < 0. The corollary now follows from Theorem 1.

3. The case μι(M) > 0 — scalar flat metrics

Let (M, g) be a compact Riemannian manifold of dimension n > 3 with

μ^M) > 0. We first recall existence and basic properties of the Green's function

for the conformal Laplacian:

LEMMA 1. Let (M, g) be as above. Then for each y €= M, there exists a positive

integrable function Gy on M such that LGy — δy in distribution sense, where 5y is the

Dirac measure at y. Such Gy is unique and smooth in M\ {y}.

Moreover, there exist constants r0, clf c2 and c3, independent of y, such that if Y =

distCr, y) < γ0, then

(4)

(5)

2-n

an{n — 2)ω
Y <

dGy(x) < '2'

anω

(6) I VdGy{x) I < c3γ~\

where vx denotes the unit vector at x tangent to the minimal geodesic from x to y and

υx its dual.

For the proof, we refer the reader to [1], Chapter 4, where only the Laplacian

case is treated. But after slight modification the arguments there apply to our case.



1 6 0 SHIN KATO AND SHIN NAYATANI

We now let Σ c M be a compact submanifold of dimension d and define a

positive smooth function GΣ on M\ Σ by

= [Gy(x)dσy, i e M \ Σ ,

where do is the volume element of Σ with respect to the induced metric. By Fubi-

ni's theorem, GΣ is integrable on M. It is also easy to see that GΣ is a (unique)

solution of the equation Lu = <5Σ, where δΣ is a distribution on M defined by

<5Σ(0) = fφdσ, φ e C°°(M).
•^Σ

PROPOSITION 2. Suppose d ̂  n — 2. T^gn ί/ierg m s t positive constants c 4 , . . .,

ί10 szic/i ί/iαί ί/iβ following estimates hold near Σ :

(7) c/'n+2 < GΣ < c5r
d'n+2 ifd<n-2,

(8) c6log7^GΣ<c7log7 ifd=n-2;

(9) c8r
d-n+ι<\dGΣ\<c9r

d~n+\

(10) I FrfGΣ I <clQrd-\

where r = dist(x, Σ ) .

Remark. Let <̂  be a positive continuous function on Σ and define

GΣiφ(i) = JGy(x)φ(y)dσy, x^M\Σ.

As will be clear from the following proof, the estimates in Proposition 2 are still

valid if GΣ is replaced by GΣ>φ.

Proof of Proposition 2. In the proof, let c denote a generic constant which de-

pends only on M and Σ .

Let y ̂  Σ and (<o, ω) the geodesic polar coordinates on Σ centered at y.

Where these coordinates are defined, the volume element of Σ is expressed as

dσ = θ{p, ω)dpdω, θ(p, ω) > 0.

We take sufficiently small pQ > 0 so that

(11) jΰp
d-1
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(12)
10

p < dist(z/, z) ( < p), z = (p, ω),

for all y <Ξ Σ and p < p0.

Let x ^ M\ Σ be sufficiently near to Σ and y the point in Σ nearest to x.

Let Bp(y) denote the geodesic ball in Σ of radius p centered at y. By the triangle

inequality,

(13) distCr, z) < distCr, y) + dist(z/, z)

<r+p

< \2r if ZΪΞ Br(y),

~ [2p if z e 5Po(z/) \Br(y).

Therefore, by (4) and (11),

GΣCr) > I Gz(x)dσz
B (y)

> c I dist(x, z)2~ndσz
*Jβ (y)

> c j r2~ndσz + c j

X
r r»pQ

d-l i i I d-n+l i
p dp -r c \ p dp

p2~ndσz

(

(

if a < n — 2,

[ c l o g - if d= n-2.

The derivation of the upper estimate of GΣ is similar:

distCr, y) — Y

(14) distCr, z) >

and therefore

dist(z/, z) — dist(x, y) > ^w p — r> -^ p

if z(ΞBp(y)\B2r(y),

GΣ(x) < f Gz(x)dσz + c

< c I dist(x, z)2~ndσz +
JBn (u)
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< c r2 ndσz + c I p ndσz + c
JB2r(y) JBβQ{y)\B2r(y)

X
2r rPa

p dp + c I p dp + c
J2r

cr if d < n — 2,

clog— if d = n — 2.

By using (5) and (6) instead of (4), the upper estimate of | dGΣ | and | VdGΣ | is de-

rived in the same way.

To derive the lower estimate of \ dGΣ\, we fix a constant a ( > 2) for a

moment. Let x and y be as above and assume further that ar < p0. Let υ be the

unit vector at x tangent to the minimal geodesic from x to y. By (5), we have

dGz{x) (υ)>

c dist(r, z) ~n if z e Br(y),

0 if * e ββr(y) \ Br(y),

- c dist (x, s) 1 - w if z e β P o (y) \ β β r (y) .

Therefore

dGΣ(x)(v)>f dGz(x)(v)dσz~ c
B (y)

> c j distCr, z)ι~ndσz — c j distCr, zΫ~~ndσz — c
JBrM

 JBp0(y)\BarW

X T f*Po

pd~ιdp - c \ pd~ndp ~ c (by (11), (13) and (14))
^ d-n+l / \d-n+l

> cr — c\ar) — c.

It is clearly possible to choose a, depending only on M and Σ , so that the last ex-

pression is bounded below by cr . This completes the proof of Proposition 2.

COROLLARY 2. Let (M, g) be a compact Riemannian manifold of dimension n > 3

with μγ{M) > 0 and Σ c M a compact submanifold of dimension d. If d ̂  (n — 2)/2,

then M\ Σ admits a complete conformal metric with vanishing scalar curvature.

Proof. Let G = GΣ be as above. We define a conformal metric g on M \ Σ by

g = G g. Since LG = 0 o n M \ Σ , g is scalar-flat. By (7) and the assumption

on α, we have (J > cr , or G > cr , near 2-.. Hence g is complete.
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We recall here the formula which relates the curvature of two pointwise con-

formal metrics. Let g — u g and let R (resp. R) denote the curvature tensor

of g (resp. g). Then

(15) R)kι = R]kl - {B[gjl - Bjkδΐ + Bnδ[ ~ B\gjk),

where

5 =
2 - 2 / „ , , 1

n-2
u 2\uVdu -\ —~1 du |2 g —p du ® du)

and the components are with respect to an arbitrary frame. Let {e) be a

£-orthonormal frame. Then {et — u~ n~ e) is g-orthonormal. If we let the com-

ponents of R (resp. R) be with respect to the frame {#,-} (resp. iet)), then (15) is

rewritten as

(16) Rim = u-i/(n-2){Rmι - {Bikδit - Bikδu + Bjtδik - B,,δik)}.

We now let g be as in the proof of Corollary 2. Then in (16), Rijkι are bounded

and, by Proposition 2, \ B{j \ are at most of the order r near Σ . Hence Rijkι are
- ,, , (rf-n+2)(-4/(n-2)) -2 2-4d/(«-2) v-. ^ u .. , ^

at most of the order r r — r near 2-.. Thus, if a <

(n — 2)/2, ( M \ Σ , g) is an "asymptotically flat" manifold. This generalizes

Schoen's construction of asymptotically Euclidean spaces (see [12], [18]).

We now summarize some results on the existence of metrics with constant

scalar curvature, which are restatement or an immediate consequence of the result

of Aviles-McOwen [2], our Theorem 1 and Corollary 2. Let (M, g) be a compact

Riemannian manifold of dimension n > 3 and Σ c I a compact submanifold of

dimension d. If d > (n — 2)/2, then M\ Σ admits a complete conformal metric

with constant negative scalar curvature, and if μ^M) > 0 and d < (n — 2)/2,

then M\ Σ admits a complete conformal metric with vanishing scalar curvature.

Otherwise, that is, if μx(M) < 0 and d < (n — 2)/2, M\ Σ admits no complete

conformal metrics with constant scalar curvature. This last assertion was proved

by Jin [7] when Σ is a finite set of points. In view of Theorem 4 in §4, it would

be plausible to expect that if μx(M) > 0 and d < (n — 2)/2, then M\ Σ admits a

complete conformal metric with constant positive scalar curvature. This is, howev-

er, not true in general. In fact, there exist no such metrics on the sphere minus

one point, as was proved by Gidas-Ni-Nirenberg [5] and Gidas-Spruck [6]. On the

other hand, Schoen [19] constructed such a metric on the complement of any finite

set of at least two points on the sphere. See also [14] for more existence results.
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In the following examples, we treat the case when the closed subset Σ is not

a smooth manifold but supports an appropriate measure, and show that its comple-

ment admits a complete conformal metric with vanishing scalar curvature.

EXAMPLE 1. Let (M, g) be the sphere S with its standard metric. Fix y G

Sn and let a > 0. We choose, for i = 1,2,..., a maximal set of points Σ , —

{y{

}} in the sphere of radius i a centered at y such that d is t ί^ ; , y{ ) > i a

if j Φ k. The number of points in Σ , is then of the order i . Let Σ — U Σ , U

{y}. Schoen-Yau [21] observed that if a < 1 there exist no complete conformal

metrics o n S w / Σ with nonnegative scalar curvature and with bounded curvature.

We now show that if a > (n + 2)/(n — 2), S \ Σ admits a complete confor-

mal metric with vanishing scalar curvature. Let a{ — i for ε > 0 and define

GΣ(x) = ΣΓ-i a^Σj GWlW(x)), x e Sn\Σ.

Since ΣΓ=i 0>i*~ < °° , the right-hand side converges up to derivatives. Hence

LGΣ = 0 and so g — (GΣΫ
nn~2)g is a scalar-flat metric on Sn\ Σ . Let r — r{x)

— dist(x, Σ ) . For any x G Sn\ Σ there exists y^ such that r = dist(x, y^).

Then we have r < α α , where c is a constant independent of x. Therefore a{ ^

cr and

>^ 2-Λ

> ca{r

> cr

{n+ε)/iι

If α > (n + 2)/{n — 2), then choosing ε sufficiently small we have (n + ε)/(a + 1)

+ 2 — n < — (n — 2)/2 so that GΣ > cr~ n~2 2 near Σ . Hence g is complete.

EXAMPLE 2. Let Γ be a Kleinian group, that is, a discrete subgroup of the

group of conformal diffeomorphisms of Sn. Let A — Λ(Γ) denote the limit set of Γ

and δ = δ{Γ) the critical exponent of Γ. For the terminologies above and in the

following, we refer the reader to [17]. We only note here that δ coincides with the

Hausdorff dimension of A for a certain class of Γ. Let μ be a Patterson-Sullivan

density, which is a measure on Sn with support on A, and define

GA(x) = I Gy(x)dμy, x^ Sn\Λ.

Then LG^ = 0 and g— (GΛ)
 n g is a scalar-flat metric on S W \A We now

assume that Γ is convex co-compact. Then the measure μ coincides, up to a con-
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stant multiple, with the δ-dimensional Hausdorff measure restricted to A and

there exist constants c, C, p0 such that if y ^ A and p < p0 then

(17) c<μiBβiy))/p <C,

where Bpiy) is the ball in Sn of radius p centered at y (see [17], pp. 82-84). Let

x e Sn\Λ be sufficiently near to Λ, r = distGr, /I) and t/ the point in Λ nearest

to x. By (7) and (17), we have

GΛix) > c J distCr, z)2 ndμz

> cr2-nμ(Br(y))

> crδ~n+2.

Hence, if δ > (n — 2)/2, g is complete.

4. The case μι(M) > 0 — prescribing" scalar curvature

Let (M, ^) be as in §3 and Σ c M a compact submanifold of dimension d.

In Theorem 2 below we prove that, if d ̂  (n ~ 2)/2, any function on M \ Σ

which decays rapidly enough near Σ can be realized as the scalar curvature of a

complete conformal metric on M\ Σ . To do this we need the following

LEMMA 2. Let (M, g) be a Riemannian manifold and Fix, u) a smooth func-

tion on M X R+. Suppose there exist functions u+ and u_ such that u+ > u_ > 0

and

Lu+ > F(x, u+), Lu_ < Fix, u_) on M.

Then the equation

(18) Lu = Fix,u)

admits a solution u satisfying u_ < u < u+.

The function u+ (resp. u_) is referred to as a supersolution (resp. subsolution)

of the equation (18). This lemma is now standard among the experts and we omit

the proof (see [9], [16], for example).

THEOREM 2. Let ( M , g) be a compact Riemannian manifold of dimension n>3

with μ1iM) > 0, Σ c M a compact submanifold of dimension d < in — 2 ) / 2 and r
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the distance from a point in M \ Σ to Σ .

(a) Let f be a smooth function on M\Σ which satisfies

\f\<crι

near

for some constants c > 0 and / > 2 — Ad/(n — 2). Then there exist infinitely many

complete conformal metrics on Λ f \ Σ whose scalar curvature is equal to f and whose
. . . . - , , , -(4-4d/(n-2)) TTΛ

ratio to g is of the order r near 2^.
(b) Let f be a nonpositive smooth function on M\Σ which satisfies

— c'r1 < / < — cr nearΣ

for some constants c > 0, c' > 0 and I > Γ > 2 — 4d/(n — 2). Then there exists at

least one complete conformal metric on M\Σ whose scalar curvature is equal to f and

whose ratio to g is at least of the order r near Σ .

Proof We may assume without loss of generality that the scalar curvature S

of the metric g is positive everywhere on M. Recall that the metric u n~ g has

scalar curvature / if and only if u satisfies the equation

(19) Lu—fu

Let G = GΣ be as above. To prove (a) we define functions M± on M \ Σ by

u+ = TGiX + G~a), u_ = γG(l - βG~a),

where 0 < α < l , 7 > 0 and β = (min G)a /2 . The constants a and γ will be de-

termined later. By direct computation, we have

-(«+2)/(n-2) T -4/(n-2) sΛ-2n/in-2)-a/Λ ι ^ -ct\ -(«+2)/(«-2)

u+ Lu+ = aγ G (1 + G )

x (SG2 + an(l -a) \dG\2).

The right-hand side is positive on M\ Σ and, by Proposition 2, is estimated from

below by

/ \ -4/(»-2) (d-n+2)(-2n/(n-2)-a) 2(d-n+l)

cκa)γ r r
/ x -4/(w-2) 2-4d/(n-2)+a(n-2-d)

= c\a)γ r

near Σ , where c(a) is a constant which depends only on a. It is now possible to

choose a > 0 so that / > 2 — 4d/(n — 2) + a(n — 2 — d) and hence

-Oί+2)/(n-2) j \ / \ -4/(«-2) /

u+ Lu+ > c\a)y r

near Σ . By taking γ sufficiently small, we can finally realize w~ n+ n~ Lu+ > f
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everywhere on M \ Σ . Thus u+ is a supersolution of the equation (19). We can

similarly show that, by choosing a and then γ sufficiently small, u_ gives a sub-

solution of (19). It is clearly possible to choose a and γ so that u+ and u_ simul-

taneously give super- and subsolutions respectively. Since u_ < u+, we can find,

by Lemma 2, a solution u of (19) such that u_ < u < u+. Thus the metric u g

has scalar curvature / Moreover, u+ and u_ are of the order r near Σ and

so is u. This implies the completeness of u g. Since y can be arbitrarily small,

there exist infinitely many such metrics. This finishes the proof of (a).

To prove (b) we define functions u± on M\Σ by

u+ = γGPa +βG~a), u_ = fGp',

where p = (n - 2)(/ + 2)/4(w - 2 - d), p' = (« - 2 ) 0 ' + 2)/4(w - 2 - d)

and α is a fixed constant such that p — 1 < a < p. Notice that p > pr > 1 and so

a > 0. The constants /5, 7 and yf are positive and to be determined later. By

direct computation, we have

Lu+ = γ G (1 + βG )

x {- (0 - l)SG2 - aj)(p - 1) I dG |2 4- j8(α - p + l)SG2'a

+ anβ(p -a)(a-p + l)G~a \ dG |2}.

By taking β sufficiently large, we can realize u+ Lu+ > 0 ( ^ / ) away

from Σ . On the other hand, by Proposition 2, the right-hand side is estimated

from below by

-4/(«-2) (d-n+2)(-4p/(n-2)-2) 2(d-n+l)

— cr r r
-4/(n-2) /

= — cγ r

near Σ . We now take γ sufficiently large so that u+

 w + n Lu+ > / near Σ .

Thus u+ is a supersolution of the equation (19). It is an easy matter to verify that

if Y is chosen sufficiently small, u_ gives a subsolution of (19) and satisfies u_

< u+. By repeating the same argument as in the proof of (a), we get a metric with

the required properties. The proof of Theorem 2 is now complete.

Remark. Let g — (GΣ) n g, the metric on M \ Σ as in the proof of Corol-

lary 2, and r the distance to a fixed point in M\ Σ with respect to g. Then it can

be shown, by a standard geometric argument, that f is of the order r~

near Σ if d < (n - 2)/2 and of the order - log r if d = (n - 2)/2. Thus, if

d < (n — 2)/2, the condition on / in Theorem 2 (a) can be expressed in terms of

r as " I / I ̂  cf near infinity for some s > 2". Now let g denote the metric
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u4/(n~2)g in the proof of Theorem 2 (a) and write g — v4/in~2)g. Then υ ( = u/GΣ)

is bounded below and above by positive constants. Moreover, we have an estimate

I ^ a(n-2-d)

v — γ\ S cr

near Σ , where a and γ are the constants in the proof. In view of this estimate, it

is interesting to observe that we can choose

a = 1

1 if n z~?d + 2 < /,

where ε may be arbitrarily small.

If (M, g) is the sphere and Σ is a point, (M\ Σ , g) is isometric to the

Euclidean space. In this particular case, the above discussion shows that Theorem

2 (a) is reduced to a result of Ni ([16], Theorem 1.4, p. 494, see also [10], [15]).

The proof of Theorem 2 (b) also implies the following result by simply choos-

ing V = 0 :

THEOREM 3. Let (M, g) be a compact Riemannian manifold of dimension n > 3

with μ^M) > 0, Σ c M a compact submanifold of dimension d, (n — 2)/2 < d

< n — 2, and r the distance from a point in M \ Σ to Σ . Let f be a bounded non-

positive smooth function on M\ Σ which satisfies

f < — cr near Σ

for some constants c > 0 and / > 0. Then there exists a complete conformal metric on

M\ Σ whose scalar curvature is equal to f.

The assumption on / in Theorem 2 (a) can be weakened. In fact, / need not

decay uniformly near Σ as Theorem 2' below indicates (see [8] for related re-

sults). The proof of the second assertion borrows a technique from [3].

THEOREM 2'. Let (M, g), Σ and r be as in Theorem 2. Let f be a smooth func-

tion on M \ Σ which satisfies the following condition for some constant c :
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/o/-v\ I ^ / \ I / / \ I / \(d—n+2)(n+2)/(n—2) t ^- / \d-n+2 _ Ά Λ \ \-Λ

(20) I Gx(y) I fiy) I r(y) dvυ < cr(x) , x e M\ Σ .

77i£M there exist infinitely many complete conformal metrics on M \ Σ w/ws£ scalar
j , r 1 1 x x . r i ( , -(4-4rf/(»-2)) V1

curvature is equal to j and whose ratio to g is of the order r near JL.

Moreover, if f does not change sign, the condition (20) is necessary for the existence of

such a metric.

Proof Let

Φ(x) =
' f { y )

By (7), the condition (20) is equivalent to the boundedness of Φ.

We now prove the first assertion. Since I / | is locally Lipschitz, Φ is twice

continuously differentiable and L(GΦ) = \f \Gn+2 n~2 , where G — GΣ. We de-

fine functions u± on M\ Σ by

u+ = γG{\ + Φ), u_ = γG(l - βφ),

where β = (2 sup Φ)~ι and γ > 0 will be determined later. We compute

= γ Φ)-(n+2)/(n-2)

^ -4/(»-2)/n - Λ\-(»+2)/(n-2) I r

> γ (1 + sup Φ) I / .

By choosing 7 so that γ < (1 + sup Φ) , we obtain u+

Similarly,

(+2>/(2) 4/(2) ,.«,/(,-« ^ 1 f

-2) τ \ r

Lu+ > }.

if 7 < j8 w~ 4 = (2 sup Φ)~ n~ . The argument as in the proof of Theorem 2 (a)

finishes the proof of the first assertion.

To prove the second assertion, let {i2y}°°=1 be a sequence of relatively compact

domains in M \ Σ with smooth boundary such that β 1 c c β 2 c c and

U°°=1 Ωj = M\ Σ . For x e Ωjf let G^ be the Dirichlet Green's function on Ωj for

L with pole at x. We define

= G fa) J
(n+2)/(n-2)
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Then GΣΦ
 J is a unique solution of the equation

Lw—fG in Ωjf w = 0 on dί2;.

where G = GΣ. As tends to infinity, Gj converges to the minimal Green's func-

tion on M \ Σ . But this coincides with Gx, the Green's function on M, since Σ

has codimension not less than two (see [21], p. 55). Lebesgue's convergence

theorem then implies that Φ1 (x) converges to Φ(x).

Now suppose that the equation Lu = ju admits a positive solution u

which is of the order r near Σ . By (7), υ — u/G is bounded below and

above by positive constants; 0 < c1 < υ < c2. We first consider the case / > 0.

We have

T (r^ \ r(r^ \(»+2)/(Λ-2) ^ («+2)/(»-2)/.^(

LKGV) = f(Gv) > cx fG

and thus
j / ~(«+2)/(«-2) yθ \ \ / yθ(« +

L{cι Gv) >fG

on M\ Σ . On the other hand,

-4/(n-2) ^x Λ ^ /-

Since cι G < cλ Gv, it follows from Lemma 2 that there exists a
, /• i r £s*in+2)/(n-2) , , -4/(n-2) ^ ^ - >̂

solution wγ of the equation Lw=f(j such that cx G < wι <
2)/(n-2) ^x ^ u r

c2G). Therefore

i ~ GΦ(;)) = 0 in ΩJ9 wx - GΦiJ) = wx > 0 on dΩJfand the maximum principle implies

Φ < w1/G

rΛ TT SK ̂  -(«+2)/(w-2) Λ / Γ \ v̂ «

in Ωj. Hence Φ < cx c 2 o n M \ Σ .
We now treat the case / < 0. The same argument as above shows the exist-

. . ,. . . j £Γι(n+2)/(n-2) , , , , -(«+2)/(«-2)yo1

ence of a solution w;2 of the equation Lw — / G such that cx Gv
^ ^ -(n+2)/(n-2) ^ τ , . -(n+2)/(n-2) ^ , τ

< w2 < cx c2G. Letting w3 = cλ c2G ~ w2, we have Lwz =
rn(n+2)/(n-2) I r\ y-ι(n+2)/(n-2) , Λ < ^ ^ -(«+2)/(w-2)/^/ \/^< -(n+2)/(n-2)

—/G = | / | G and 0 < w3 < q G(c2 — v){<c1

(c2 ~ c^) G), and hence

L(w3 - GΦ(i)) = 0 in fly, w3 - GΦ( ;) = M;3 > 0 on dΩj.

The boundedness of Φ now follows in the same way as above. This completes the

proof of Theorem 2'.
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Remark. The second assertion in Theorem 2' fails to hold if we drop the

assumption that / does not change sign. To see this, we first observe that on R ,

which is conformally diffeomorphic to the sphere minus one point, the function Φ

in the above proof coincides (up to a constant multiple) with

Ψ(x) = ί \x - y\2 n\f(y) I dy.

Also, the existence of a metric with the required properties is equivalent to the ex-

istence of a solution of the equation ~ anΔv = fv on R which is bound-

ed below and above by positive constants. We now let υ — 2 + sin xv Then

r -(n+

f— ~an

υ

= an{2

which clearly changes sign. Since \f\ > c | s i n ^ | > c(έ) > 0 on ίε < xι < π — ε},

we obtain

¥(χ) = j n\yΐ~n\f(χ-y)\dy

> c I \y \2~n dy
*J{ε-x1<yί<π-ε-x1)

In Theorem 2 (a) the assumption on the power / is essential; if / < 2 —

— 2),f is not necessarily the scalar curvature of a complete conformal

metric whose ratio to g is of the order r~ ~ n~ near Σ . Without this last res-

triction on the metric we seek, however, we do not know whether the assumption

is optimal or not. On the other hand, we have the following

THEOREM 4. Let (M, g) be a compact Riemannian manifold of dimension n > 3

with β^M) > 0. Let Σ ^ M be a compact submanifold of dimension d < (n — 2)/2

and r the distance from a point in M\ Σ to Σ . For any I G [0,2 — 4d/(n — 2)),

there exists a complete conformal metric on M \ Σ whose scalar curvature is positive

and of the order r near Σ . In particular, M\ Σ admits a complete conformal metric

whose scalar curvature is bounded below and above by positive constants.

Proof. Again we assume that S, the scalar curvature of g, is positive. Let

u = GP where G = GΣ and p = (n - 2) (/ + 2)/40ι - 2 - d) ( < 1). Let g =
4/(n-2) o . , /Γ_v . , . , , —(«-2)/2 v"» ~ i -

u g. Since, by (7), u is at least of the order r near 2-., g is complete.
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Moreover, its scalar curvature is given by

-(n+2)/(n-2) τ ί Λ ,^n-Ap/{n-2)-2ion2 , . ι -,n 2N

u Lu=(l—p)G (SG +anp\dG ).

The right-hand side is positive and, by Proposition 2, of the order r near Σ .

This completes the proof of Theorem 4.

Addendum. During the submission of this paper, Professor R. McOwen

informed us that Theorem 1 and Theorem 2 (a) were obtained independently by

Delanoe [22]. But our proof of Theorem 1 is different from his.
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