A. Iliev Nagoya Math. J. Vol. 132 (1993), 115-129

ALGEBRAIC THREEFOLDS WITH TWO EXTREMAL MORPHISMS

ATANAS ILIEV

§0. Introduction

0.1. In [3] Mori gives a description of all extremal rays (extremal morph isms) arising on a smooth projective threefold with a numerically non-effective canonical bundle. Generally speaking, every smooth projective threefold *V* with a numerically non-effective canonical class *K^v* admits an extremal morphism $\pi: V \rightarrow Y$. The assumption that V admits a non-trivial pair of extremal morphisms

$$
Y_1 \xleftarrow{\pi_1} V \xrightarrow{\pi_2} Y_2
$$

imposes strong conditions on *V.* This is the essence of the Theorem 1.5 of the pre sent work. In particular, we obtain a description of the threefolds which admit two biregular structures of conic bundles over non-singular surfaces $S_1 = Y_1$ and $S_{\rm{2}} = Y_{\rm{2}}$. By the results of §3 the surfaces $S_{\rm{1}}$ and $S_{\rm{2}}$ must be either ruled surfaces with isomorphic basic curves, or $S_1 \simeq S_2 \simeq P^2$.

0.2. Remarks

0.2.1. In [5] E. Sato has obtained a description of the threefolds with two structures of $P¹$ -bundles; this description corresponds to the Case A.a of Theorem 1.5. The second basic result of [5] states that if $\dim V \geq 3$ and V admits two structures of projective space bundles over projective spaces $Y_1 = P'$ and $Y_2 =$ P^m , then: either *V* is a product $V = P^l \times P^m$, or $l = m$ and $V = P(T_{P^l})$.

0.2.2. Every Fano threefold V with $\rho(V) \geq 2$ admits at least two extremal morphisms. However, in most of the cases V admits a ray of the type $E_{\rm 1}$. Because of that, there are too many Fano threefolds with $\rho \geq 2$ in the list of Mori and Mukai in [4], in contrast to the list of Theorem 1.5 in which are classified only the strongly primitive ones.

Received July 26, 1989.

§1. Definitions and statement of the main theorem

1.1. Everywhere in the present article, we suppose that the threefold *V* is a smooth projective threefold over the field of complex numbers **C.**

1.2. Definitions

1.2.1. $NV = \{1-\text{cycles on } V\} / \equiv \otimes \mathbf{R}$, where \equiv denotes the numerical equivalence of cycles. *NV* is a finite dimensional real vector space, which is dual to $NS(V) \otimes \mathbf{R}$, where $NS(V)$ is the Neron-Severi group of V.

1.2.2. (the Picard number of $V = \rho(V) = \dim_{\mathbf{R}} (NV)$.

1.2.3. $NE(V)$ is the closure of the convex cone $NE(V)$, generated by all the effective l-cycles from *NV (in* the metrical topology of the vector space *NV).*

1.2.4. Let $Z \in \overline{NE}(V)$. The half-line $R = \mathbf{R}_{+}[z]$ is called an extremal ray, if: (a) $-K_v.z > 0$; (b) for all $Z_1, Z_2 \in \overline{NE}(V)$, the assumption $Z_1 + Z_2 \in R$ im plies $Z_1 \in R$ and $Z_2 \in R$, cf. [3].

1.2.5. Let R be an extremal ray on V . Then, there exists a unique, up to an isomorphism, morphism $\pi: V \to Y$ corresponding to R , such that: (a) $\pi_* \mathcal{O}_V = \mathcal{O}_Y$ (b) if $C \subset V$ is an irreducible curve, then $[C] \in R$ if and only if dim $\pi(C) = 0$, cf. [3]. The morphism π is called a contraction of the extremal ray R , or an extremal morphism (corresponding to *R).*

1.3. Description of the extremal morphisms on V (cf. [3])

Let $\pi: V \rightarrow Y$ be an extremal morphism, and let $\rho(V) \geq 2$. Then π can be one of the following:

1.3.1. *Type E : dim Y= 3*

The morphism π is a contraction of a divisor D on V , and π corresponds to one of the types E_1 , E_2 , E_3 , E_4 , and E_5 . In the case E_1 the morphism π is a contraction of a ruled surface to a smooth curve, and the threefold *Y* is smooth. In the case $E_{\text{\bf 2}}$ the morphism π is a contraction of a divisor $D\cong P^{2},$ with a normal bun dle $\mathcal{O}_D(D) \simeq \mathcal{O}_{P^2}(-1)$, to a nonsingular point on *Y*. In the case E_3 the morphism π is a contraction of a quadric $D \simeq P^1 \times P^1$, with a normal bundle $\mathcal{O}(-1, -1)$, to an ordinary double point on *Y*. Moreover, the fibers $P^1 \times t$ and $s \times P^1$ are numerically equivalent on V , for $t, \, s \in P^{1}$. In the case $E_{\textbf{4}}$ the morphism π is a contraction of a quadratic cone $D\subseteq P^3$ to a double point on Y , and $\mathscr{O}_D(D)\,\cong\,\mathscr{O}_D$ \otimes $\mathscr{O}_{P^3}(-1)$. In the case E_5 the morphism π is a contraction of $D\cong P^2$ to a quadruple point on *Y*, and $\mathcal{O}_D(D) \simeq \mathcal{O}_{P^2}(-2)$.

1.3.2. Type $C: \text{dim } Y = 2$

The variety Y is a smooth projective surface, and π corresponds to one of the types C_1 or C_2 . In the case C_1 the morphism π defines a conic bundle $\pi: V \to Y$ in the case $C_{\scriptscriptstyle 2}$ the morphism π defines a $P^{\scriptscriptstyle 1}$ -bundle $\pi: V \!\rightarrow Y$.

1.3.3. *TypeD* : **dim** *Y =* 1

The variety *Y* is a smooth curve, $\rho(V) = \rho(Y) + 1 = 2$, and π corresponds to one of the types D_{1} , D_{2} , and D_{3} . In the case D_{1} the threefold V has a structure of a Del Pezzo bundle over the curve Y . In the case $D_{2}, \; V$ is isomorphic to a $P^{\text{-}}\times$ P -bundle over the curve Y . In the case D_{3} the threefold V is a P -bundle over Y .

1.4. DEFINITION. The threefold V is called strongly primitive if there are no ex*tremal rays of type* E_1 on V.

1.5. The Main Theorem

THEOREM. *Let V be a {smooth, projective) strongly primitive threefold which* $admits$ two extremal morphisms $\pi_1: V \to Y_1$ and $\pi_2: V \to Y_2$. Then, the following *cases are possible:*

 \mathcal{C} ase $1.$ The morphisms π_1 and π_2 correspond to the type $C.$ Then $2 \leqslant \rho(V) \leqslant 3$ and:

 $(I.A)$ *If* $\rho(V) = 3$ *, then*

either: (A.a). $V \cong$ $S_1 \times_{\sub{c}} S_2$, where S_1 and S_2 are ruled surfaces over a curve C ,

or: (A.b). *V* is a two-sheeted covering of $S_1 \times_C S_2$, where S_1 , S_2 , and C are *as in* **(A.a).**

(1.B) If $\rho(V) = 2$, then V is a Fano threefold (see Corollary 2.6.2).

 \mathcal{C} *ase* 2. The morphism π_1 corresponds to the type C , and the morphism π_2 corres*ponds to one of the types D or E. Then V is a Fano threefold {see Corollary* 4.2, *Corollaries* **5.3** *and* **5.4).**

 \mathcal{C} ase 3. Let the extremal morphisms π_1 , π_2, \ldots on V be of the type E . Then the *corresponding divisors* D_1 , D_2 , ... are mutually disjoint (see §7).

Remark. The rest of the paper is devoted to the proof of Theorem 1.5. Espe cially, Case 1 is discussed in §2 and §3. It follows from the considerations in §3 that the double covering $\pi: V \rightarrow S_{1} \times_{c} S_{2}$, in case (A.b), has the following properties:

Let \mathscr{E}_i be a normalized locally free sheaf of rank 2, over the base curve C , such that $S_i = P_c(\mathscr{E}_i)$, $i = 1,2$ (see [1, ch. V, §2]). Let $e_i = -\deg(\det \mathscr{E}_i)$, let φ_i be the general fibre of $S_i \rightarrow C$, and let b_i be the section of S_i such that $\mathscr{L}(b_i)$ \equiv $P_{P(\mathcal{S}_i)}(1)$, $i=1,2$. Let p_i : $S_1 \times_{\substack{c}} S_2 \to S_i$ be the natural projections, and let $C_i=1$ $p_i^*(b_i)$, $F_i = p_i^*(\varphi_i)$, $i = 1,2$. Then F_1 and F_2 are numerically equivalent, i.e. $F_1 \equiv F_2 \equiv F$ for some $F \in p_1^{\infty}(\text{Pic } S_1) \cap p_2^{\infty}(\text{Pic } S_2)$. The branch divisor $B \subseteq S_1$ \times $_c$ S_2 of π is smooth, and B is numerically equivalent to $2.C_1+2.C_2+2q.F$ for some $q > 0$. Moreover, the threefold V is a standard conic bundle over $S_{\bar{i}}$ with a

118 ATANAS ILIEV

discriminant curve $\Delta_i \equiv 4.b_i + (4q - 2e_i) \cdot \varphi_i$, where $\{i, j\} = \{1, 2\}$.

§2. The case *(C,C)*

2.1. Let π_1 and π_2 be of type C. Let $\pi_1: V \to Y_1$ and $\pi_2: V \to Y_2$ be the corresponding extremal morphisms. In particular, $S_1 = Y_1$ and $S_2 = Y_2$ are smooth surfaces (see 1.3.2). Denote by f_k the general fiber of the morphism π_k , $k = 1,2$.

2.2. Proposition, If $\rho(V) \geqslant 3$, then $\rho(V) = 3$, and S_1 and S_2 are ruled sur*faces.*

Proof.

2.2.1. Let H be a very ample divisor on S_2 , and let $C \in |H|$ be a smooth curve. Then $(\pi_2^*\;C,\;\pi_2^*\;C)_{\,V}=\bm{m}.f_2$, where $\bm{m}=(C,\;C)_{S_2}>0.$ Therefore, $\pi_2^*\bar{C}\not\in\bm{m}.$ $\pi_1^*(\text{Pic } S_1)$; hence, the mapping $\pi_1 : \pi_2^* C \to S_1$ is surjective. Since $\chi(\pi_2^* C) = -\infty$, then $\mathfrak{g}(S_1) = -\infty$ (here $\mathfrak{g}(X)$ is the Kodaira dimension of X). Similarly $\mathfrak{g}(S_2) =$ $-\infty$. Consequently, there exist morphisms $h_k: S_k \to S_{k,o}$, where $S_{k,o}$ are ruled surfaces or P^2 . As $\rho(V) \geq 3$, then $\rho(S_k) \geq 2$.

Let, for example, $S_{1,o} = P^2$. Then the surface S_1 is rational, and the morphism $h_1: S_1 \rightarrow S_{1,0} = P^2$ is non-trivial; in the opposite case $\rho(V) = \rho(P^2) + 1 = 2$, which contradicts the assumption $\rho(V) \geq 3$. Consequently, there exists a morphism $h'_1: S_1 \to \mathbf{F}_1$, such that $h_1 = h'_1 \cdot \sigma$, where $\sigma: \mathbf{F}_1 \to P^2$ is a blowing-up of a point in P^2 . Therefore, we can always assume that $S_{1,o}$ and $S_{2,o}$ are ruled surfaces (rational or non-rational).

Let $S_{k,o} = P(\mathscr{E}_k)$, let $\mathscr{L}(b_{k,o}) = \mathscr{O}_{P(\mathscr{E}_k)}(1)$, and let $\varphi_{k,o}$ be the general fiber of $S_{k,q}$, $k = 1,2$ (see the Remark after Theorem 1.5). Let

Num
$$
S_k = \mathbf{Z}b_k \oplus \mathbf{Z}\varphi_k \oplus \bigoplus_{i=1}^{m_k} \mathbf{Z}_{\varepsilon_{k,i}}
$$

where $\varepsilon_{k,i}$ are the exceptional curves of h_k , and b_k and φ_k are the preimages of $b_{k,c}$ and $\varphi_{k,o}$ on S_k , $k = 1,2$. Let $m = \rho(V) - 1$. Obviously $\rho(S_k) = m = m_k + 2$, $k = 1,2$.

Let $C_1 = \pi_1^* b_1$, $C_2 = \pi_1^* \varphi_1$, $C_{i+2} = \pi_1^* \varepsilon_{1,i}$, $D_1 = \pi_2^* b_2$, $D_2 = \pi_2^* \varphi_2$, $D_{i+2} =$ z_2^* $\varepsilon_{2,i}$ ($i = 1, 2, \ldots$ *m* $-$ 2). If $\pi_k : V \to S_k$ is a conic bundle, then Pic $V =$ **k** Pic $S_k + \mathbf{Z}K_v$; if $\pi_k : V \to S_k$ is a P^1 -bundle, then Pic $V = \pi_k^*$ Pic $S_k + \mathbf{Z}L_k$, where L_k corresponds to a section of π_k . In both cases

2. Pic
$$
V \subseteq \pi_k^*
$$
 Pic $S_k + \mathbf{Z}K_v$,

i.e. the divisors D_i (resp. C_i) are linear combinations, with integer or half-integer

coefficients, of the divisors C_i (resp. D_i) and K_V (in the numerical sense). There fore, there exists a system of equations of the form:

2.2.2.
$$
C_i + \sum_j d_{ij} D_j \equiv -d_i K_v
$$

$$
\sum_j c_{ij} C_j + D_i \equiv -c_i K_v,
$$

where the numbers $2d_i$ *,* $2d_i$ *,* $2c_i$ *,* and $2c_i$ are integer.

Let $D = (d_{ij})$, $C = (c_{ij})$, $d = (d_1, \ldots, d_m)^t$, $c = (c_1, \ldots, c_m)^t$, and let E be the unit matrix of rank *m*. By the adjunction formula $K_v f_k = -2, k = 1,2$; and from 2.2.2 we conclude that $C_i f_2 = 2d_i$, $D_i f_1 = 2c_i$. The integers $2d_i$ and $2c_i$ are non-negative; they can be interpreted as follows:

If $d_i = 0$, then $C_i \in \pi_2^*$ Pic S_2

if $d_i > 0$, then d_i = the degree of the covering $\pi_2 : C_i \rightarrow S_2$;

(similarly $-$ for c_i). Further, from 2.2.2 we derive:

 $(-c_i + \sum_l c_{il} d_l)$. $K_v \equiv D_i - \sum_{l,i} c_{il} d_{lj} D_j$, $i = 1,2, \ldots$ *m*. Therefore, from the formula connecting Pic V and Pic S_2 , we obtain that the both sides of the last equation are equal to zero, in the numerical sense. Hence, $C.D = E$, and $C d = c$. These matrix equations will be used in the proof of Proposition 2.3.

2.2.3. Let $C_i C_j = \gamma_{ij} f_1$, $D_i D_j = \delta_{ij} f_2$, $k_{ij} = K_v C_i D_j$. After multiplying the first *m* equations from 2.2.2 by $C_i D_i$ we obtain the following system:

2.2.4.
$$
R_{ijk} = 2d_i \sum_l d_{kl} \delta_{lj} + d_k k_{ij} + \gamma_{ki}.2c_j = 0.
$$

By the choice of the curves b_k , φ_k , ε_{ki} , the numbers γ_{ki} and δ_{lj} satisfy the follow ing conditions:

2.2.5. (a)
$$
\gamma_{ii} = -p_i < 0
$$
, $\delta_{ii} = -q_i < 0$, $i \ge 3$;
\n(b) $\gamma_{1i} = \gamma_{2i} = \delta_{1i} = \delta_{2i} = 0$, $i \ge 3$;
\n(c) $\gamma_{22} = \delta_{22} = 0$, $\gamma_{11} = -e_1$, $\delta_{11} = -e_2$,
\nwhere $-e_k = (b_k, b_k)_{S_k} = (b_{k,o}, b_{k,o})_{S_{k,o}}, k = 1,2$.

2.2.6. LEMMA. If $d_2 = 0$, then $d_3 = \cdots = d_m = 0$ (similarly $-$ for c_i).

Proof. Every $\varepsilon_{1,i}$ is a component of some degenerating fiber $\varphi_{1,i} \equiv \varphi_1$ of h_1 , $_{1,i}$ being a linear combination with integer coefficients of exceptional curves and the preimage of some fiber of $S_{1,o}$. Let, for example, $\varphi_1 \equiv \sum_{n \geq 0} \lambda_n \varepsilon_{1,n}$, where $a_n \ge 0$ and $\varepsilon_{1,o}$ is the proper preimage of some fiber of $S_{1,o}$, over which we take blowing-ups. Then

2.2.7. $0 = 2d_2 = C_2 f_2 = \lambda_o$, $\pi_1^* \epsilon_{1,o} f_2 + \sum_{n \geq 1} \lambda_n \cdot 2d_{n+2}$. Hence, $2d_{i+2} = C_{i+2}f_2 = \pi_1^* \varepsilon_{1,i}f_2 = 0.$

120 ATANAS ILIEV

2.2.8. LEMMA. If $m = \rho(V) - 1 \ge 3$, then $\prod_{i=3}^{m} c_i d_i = 0$.

Let us look at the equations $R_{13k} = 0$, $k \ge 2$, and $R_{23k} = 0$, $k \ge 2$ (see 2.2.4). We shall give a proof of 2.2.8 on an example, which is not different from the general *case.*

Example. $m = 4$; i.e. from 2.2.5 we have $\delta_{33} \neq 0$, $\delta_{43} \neq 0$, $\delta_{13} = \delta_{23} = 0$. For definiteness, we may assume that $\delta_{\text{33}}=-$ 2 and $\delta_{\text{43}}=1$; therefore $\delta_{\text{44}}=-$ 1. The surface *S²* is obtained from *S2o* after blowing-up a point not lying on the base section, and a second blowing-up with a centre lying on the first exceptional di visor. The equations $R_{13k} = 0$ and $R_{23k} = 0$, $k \ge 2$, take the form:

2.2.9.
$$
R_{132} = -2c_3 + (-2d_{23} + d_{24}) \cdot 2d_1 = -d_2k_{13}
$$

\n $R_{13k} = (-2d_{k3} + d_{k4}) \cdot 2d_1 = -d_kk_{13}, k = 3,4$
\n $R_{23k} = (-2d_{k3} + d_{k4}) \cdot 2d_2 = -d_kk_{23}, k = 2,3,4$

From 2.2.9 we easily derive that \emph{either} $\emph{d}_\textrm{2}=0$ (and hence, according to Lemma 2.2.6, $d_3 = \cdots = d_m = 0$), *or* the assumption $d_3 \neq 0$ implies $c_3 = 0$.

2.2.10. LEMMA. If $\rho(V) \geq 3$, then $\rho(V) = 3$.

Proof. According to Lemma 2.2.8, if $m \ge 3$, then $\Pi_{i \ge 3} c_i d_i = 0$. Let, for ex ample, $c_3 = 0$. Then $D_3 \in \pi_1^{\infty}$ Pic S_1 . Hence $D_3 = \pi_1^{\infty}$ C, where $C \in$ Pic S_1 and $(C, C)_{S_1} = r \in \mathbf{Z}$. Then $-q_3 f_2 = (D_3, D_3)_V = (\pi_1^\circ C, \pi_1^\circ C)_V = r f_1$, where $q_3 > 0$ (i.e. $q_3 \neq 0$) — a contradiction. Therefore $m = \rho(V) - 1 = 2$, and the Proposition 2.2 is proved.

2.3. Proposition. Let $\rho(V) = 3$. Then $\pi_1^{\pi} \varphi_1 \in \pi_2^{\pi}$ Pic S_2 and $\pi_2^{\pi} \varphi_2 \in$ $\mathcal{E}_1^{\cdot \cdot}$ Pic S_1 , where φ_k is the general fiber of the ruled surface S_k , $k = 1,2$.

Proof. For convenience, we shall change the notation. As $m = 2$, the system 2.2.2 takes the form:

2.3.1.
$$
-C_{1} + g_{1}C_{2} + d_{1}F_{2} \equiv r_{1}K_{V}
$$

$$
-F_{1} + b_{1}C_{2} + a_{1}F_{2} \equiv c_{1}K_{V}
$$

$$
g_{2}C_{1} + d_{2}F_{1} - C_{2} \equiv r_{2}K_{V}
$$

$$
b_{2}C_{1} + a_{2}F_{1} - F_{2} \equiv c_{2}K_{V},
$$

where $F_k = \pi_k^* \varphi_k$, $C_k = \pi_k^* b_k$, $k = 1,2$, and all the coefficients are either inte gers, or half-integers.

The equality $C.D = E$ (see 2.2.2) implies $g_2 = \varepsilon a_1, d_2 = -\varepsilon d_1, b_2 = -\varepsilon b_1$,

and $a_2 = \varepsilon g_1$, where $\varepsilon = (g_1 a_1 - b_1 d_1)^{-1}$. From $C d = c$ and $D c = d$ (ibid.) we obtain:

2.3.2.
$$
c_2 + a_2c_1 + b_2r_1 = 0
$$

$$
r_2 + d_2c_1 + g_2r_1 = 0
$$

$$
c_1 + a_1c_2 + b_1r_2 = 0
$$

$$
r_1 + d_1c_2 + g_1r_2 = 0.
$$

After multiplying both sides of the equalities 2.3.1 by f_1 and f_2 we obtain $F_1 f_2 =$ $2c_1$, $F_2f_1 = 2c_2$, $C_1f_2 = 2r_1$, and $C_2f_1 = 2r_2$. The system 2.2.5 for γ_{ij} and δ_{ij} takes the form:

$$
C_1^2 = -e_1f_1, C_2^2 = -e_2f_2, C_1F_1 = f_1, C_2F_2 = f_2, F_1^2 = F_2^2 = 0.
$$

We divide the proof in several cases:

Case 1. S_1 and S_2 are rational.

CLAIM. In Case 1, the equality $c_1c_2r_1r_2 = 0$ is fulfilled.

Proof of the Claim. Assume that $c_1c_2r_1r_2 \neq 0$; and let $\varepsilon \leq 0$. From the equa tion $c_1 K_v F_1 C_2 = 2a_1 c_1 - 2b_1 e_2 c_1$, we get $K_v F_1 C_2 = 2a_1 - 2b_1 e_2$; therefore $c_2(2a_1 - 2b_1e_2) = c_2K_vF_1C_2 = -2c_1 + 2b_2r_2$. By 2.3.2, $2c_1 + 2a_1c_2 = -2b_1r_2$, where $b_2 = -\varepsilon b_1$. Hence:

2.3.3. $(2\varepsilon - 2) b_1 r_2 = 2b_1 e_2 c_2.$

From $\varepsilon < 0$, $r_2 > 0$, $c_2 > 0$, and $e_2 \ge 0$, we get that $b_1 = 0$; in particular $b_2 = 0$ $\epsilon^2 \epsilon^2 = 0$. Thus, from $c_1 K_v F_1 F_2 = 2b_1 c_1$ and $c_1 > 0$, we obtain that $K_v F_1 F_2 = 0$. Then, from $r_2 K_v F_1 F_2 = 0$ and $r_1 K_v F_1 F_2 = 0$, we conclude that $-2c_1 + 2 g_2 c_2 =$ 0 and $-2c_2 + 2g_1c_1 = 0$. Therefore $g_1 > 0$, $g_2 > 0$, and $g_1.g_2 = 1$.

From $K_vF_1C_2 = 2a_1$, and from the equations of the type $R_{ijk} = 0$ for $r_2K_vF_1C_2$ we obtain:

2.3.4. $(a_1 - g_2) r_2 = 2e_2c_1$

where $a_1 = \varepsilon g_1, g_2 = \varepsilon a_1, g_1 > 0, g_2 > 0$, and $\varepsilon < 0$. In that case, the equation 2.3.4 contradicts the assumption that $c_1 > 0$ and $r_2 > 0$.

Let $\varepsilon < 0$ and $c_1 c_2 r_1 r_2 = 0$. In particular, if $r_1 = 1$ then $2e_1 c_2 = r_1 K_v F_2 C_1 = 0$. Therefore, either $c_2 = 0$, or $e_1 = 0$. If $e_1 = 0$, then $S_1 \simeq P^1 \times P^1$, and we can assume that $b_1 \subset S_1$ is a fiber (cf. 2.2.1).

Let $c_1 = 0$, but $c_2 > 0$. Then 2.3.2 implies that $c_2 + b_2 r_1 = 0$, i.e. $b_2 < 0$. But,

from the equations $0 = c_1 K_v F_2 C_1 = -2c_2 + 2b_1 r_1$ and $b_2 = -\varepsilon b_1$, $\varepsilon < 0$, we obtain that $b_2 > 0$, which is impossible.

COROLLARY. If $\varepsilon < 0$, and S_1 and S_2 are rational, then $c_1 = c_2 = 0$.

If $\varepsilon > 0$, we come to a contradiction in the same way. The Claim is proved. Proceeding in a similar way, from the above Claim and from 2.3.2, we obtain the following

COROLLARY. In the Case 1 we have $c_1 = c_2 = 0$. *Then, from* 2.3.1, we obtain that $F_1 \in \pi_2^*$ Pic S_2 and $F_2 \in \pi_1^*$ Pic S_1 .

Case 2. S_1 or S_2 is non-rational.

Let, for example, S_1 be an irregular ruled surface and let $g_1: S_1 \rightarrow C, \ g_2: S_2$ \rightarrow C' be the corresponding representations of the surfaces S_1 and S_2 as *P*¹-bundles over the curves *C* and *C*', where $g(C) = g \ge 1$. Then the general fibers of $|L_1| = g_1 \pi_1$: $V \rightarrow C$ and $|L_2| = g_2 \pi_2$: $V \rightarrow C'$ are rational surfaces.

Let $|L_1| \neq |L_2|$. Then $f = L_2|_{L_1}$ is a curve on L_1 and $(f, f)_{L_1} = L_2L_2L_1 = 0$. Hence, the restriction $|\ L_2| \ |_{L_1} : L_1 \to C$ defines, on the rational surface L_1 , a struc ture of bundle with rational curves as fibers and with a non-rational base C, which is impossible. Therefore $C \cong C$, and the diagram

where $g(C) = g \ge 1$, is commutative. Evidently, in this case $\pi_1^{\pi} \varphi_1 \in \pi_2^{\pi}$ Pic S_2 and π_2^* $\varphi_2 \in \pi_1^*$ Pic S_1 . The Proposition 2.3 is proved.

2.4. COROLLARY. *If* $\rho(V) = 3$, then the equation 2.3.2 take the form:

$$
rK_v=-C_1-C_2+dF,
$$

where $F_1 \equiv F_2 \equiv F \in \pi_1^*$ Pic $S_1 \cap \pi_2^*$ Pic S_2 , the numbers $2r$ and $2d$ are integer, *and* $r > 0$.

The Corollary is a direct consequence from Proposition 2.3, and from the first and the third equations of 2.3.1. Note that from the two other equations of 2.3.1 we obtain that $b_1 = b_2 = 0$ and $a_1 = a_2 = 1$. Then, the former two equa tions give $\varepsilon = -1$.

2.5. COROLLARY. If $\rho(V) = 3$, then there exists a curve C such that the dia*gram*

is commutative.

Proof. For S_1 and S_2 — non-rational, the Corollary is proved in 2.3, Case 2. Let S_1 and S_2 be rational ruled surfaces. By Proposition 2.3, we have $\pi_1^* \varphi_1$ $\epsilon \in \pi$ ₂ Pic S₂ and π ₂ φ ₂ $\epsilon \in \pi$ ₁ Pic S₁. Consequently, there are correctly defined morphisms $\lambda = g_1 \pi_1 \pi_2$ $g_2 : C \to C$ and $\lambda = g_2 \pi_2 \pi_1$ $g_1 : C \to C$, where $g_1: S_1 \to C \cong P$ and $g_2: S_2 \to C \cong P$ define structures of ruled surfaces on S_1 and S_2 . Therefore $\lambda \subseteq$ Aut P ; and if we replace g_2 by $\lambda.g_2$, we shall obtain the commutative diagram from above.

2.6. *Case* $\rho(V) = 2$

Let us consider the case $\rho(V)$ < 3. Then $\rho(V) = 2$, and there are on V two extremal rays R_1 and R_2 of type C. As $\rho(V) = \dim_R(VV) = Z$, then R_1 and R_2 form a base of the two-dimensional real vector space *NV*. Let $R_1 = \mathbf{R}_+ \lfloor l_1 \rfloor$ and R_2 $= \mathbf{R}_+[\ell_2]$. Since R_1 and R_2 are extremal rays in the two-dimensional cone \overline{X} *FE(V)* \subseteq *NV*, and since K_v , $l_1 \leq 0$, K_v , $l_2 \leq 0$, then K_v , $Z \leq 0$ for any $Z \in$ *NE*(*V*). By the Kleiman's criterion we derive that $-K_V$ is ample, i.e. *V* is a Fano threefold.

2.6.1. COROLLARY. *If* $\rho(V) = 2$ and (π_1, π_2) is of type (C, C) , then V is a *Fano threefold.*

2.6.2. COROLLARY *(see* [4]). *In the conditions of* 2.6.1, *the threefold V is one of the following:*

124 **ATANASILIEV**

- (1) a divisor of bidegree (2,2) in $P^2 \times P^2$;
- (2) a divisor of bidegree (2,1) in $P^2 \times P^2$;
- (3) a divisor of bidegree (1,1) in $P^2 \times P^2$;
- (4) a two-sheeted covering of a divisor D of bidegree (1,1) in $P^2 \times P^2$, with a *branch divisor* $B \in |-K_D|$ *.*

§3. Construction of threefolds of type (C, C) with $\rho = 3$,

Let V be of type (C, C) , and let $\pi_1: V \to S_1$, $\pi_2: V \to S_2$, C , etc., be as in §2. It follows from the considerations in §2 that there exists a commutative diagram of natural morphisms:

where $p_{\scriptscriptstyle 1}$ and $p_{\scriptscriptstyle 2}$ are the natural projections, and $\deg\pi=1$ or $\deg\pi=2$ (see 2.5).

We shall consider the case $\deg \pi = 2$. In this setting, we shall obtain numerical formulae for the branch divisor of the double covering *π.*

3.2. Let f_k be the (general) fiber of π_k , and let σ_k be the (general) fiber of R_k , $k = 1,2$. Evidently $\sigma_k \simeq P^1$ for any σ_k , $k = 1,2$. Let \mathscr{E}_k , b_k , φ_k , C_k , $k = 1,2$, and $F_1 \equiv F_2 \equiv F$ be as in the Remark after Theorem 1.5. Let $\varepsilon_k = \det(\mathscr{E}_k)$, $e_k =$ $-$ deg(ε_k); and let $C_{1V} = \pi^{\circ}C_1$, $C_{2V} = \pi^{\circ}C_2$, $F_{1V} \equiv F_{2V} \equiv F_V$ be the divisors on *V*, in the sense indicated in Corollary 2.4, i.e. $F_v \equiv \pi^* p^* (x) \equiv \pi^* F$ (where $F \equiv$ $p^*(x)$, $x \in C$). It is easy to see that:

3.3. $K_{\texttt{S}_1 \times \texttt{c} \texttt{S}_2} = 2C_{1} - 2C_{2} + (\varepsilon_{1} + \varepsilon_{2} + k)F$, where $k = K_{\texttt{C}}$ is the cano nical divisor of C. The branch divisor B of π has the form:

 $3.4.$ $B = 2q_{1}C_{1} + 2q_{2}C_{2} + 2qF$, where q_{1} and q_{2} are integers, and $2qF$ is used in the sense that $2qF = p^*(q)$ for the divisor q on C.

We claim that $q_1 = q_2 = 1$.

In fact, as $p_1 : S_1 \times_c S_2 \rightarrow S_1$ is a P^* -bundle, then $Pic(S_1 \times_c S_2) = p_1^*$ Pic S_1 \oplus **ZC**₂ (since C_2 is an 1-section of p_1). Therefore $\text{Pic}(S_1 \times_{\sub{C}} S_2) = \mathbf{Z} C_1 \oplus g_1^*$

(Pic C) \oplus **ZC**₂, in sense that g_1^{π} (Pic C). $F = p_1^{\pi} g_1^{\pi}$ (Pic C) = p^{π} (Pic C). As $\pi : f_1 \to \sigma_1$ is a two-sheeted covering for the general $f_1 \simeq P^*$ and $\pi(f_1) = \sigma_1 \simeq P^*$, then it has two branch points. Therefore $\deg(B|_{\sigma}$ ^{$) = \deg(B|_{\sigma}$ ^{$) = 2$}, i.e. 2 =} **deg**(B[|]_{σ_1}) = (2q₁C₁ + 2q₂C₂ + 2qF). σ_1 = 2q₂C₂ σ_1 = 2q₂; similarly - for q₁. As *V* is smooth, then *B* is smooth, and we derive:

COROLLARY. The (smooth) branch divisor B of π has the form

$$
B=2C_1+2C_2+2\mathfrak{q}F
$$

for some divisor q *on C*, where $2qF = p^*(2q)$.

3.5. In the context of the situation, we shall derive some necessary numerical conditions for *B.*

The general surface $C_{1V} = \pi ^\pi C_1$ is smooth, and it is a two-sheeted covering of C_1 with a branch divisor $B\mid_{C_1}=(2C_1+2C_2+2qF)\mid_{C_1}=2C_{12}+2(\varepsilon+{\mathfrak{q}})\sigma_1$ where $C_{12} = C_1.C_2$, and $(C_{12}, C_{12})_{C_1} = C_2 C_2 C_1 = -e_2 \sigma_2 C_1 = -e_2$. Therefore, for the existence of a (smooth) effective divisor $C_{\scriptscriptstyle{12}} \subset C_{\scriptscriptstyle{1}}$, one must have $2(q$ e_1) $\geqslant 2e_2$ if $e_2 \geqslant 0$, or $2(q-e_1) \geqslant \frac{1}{2}$. $2e_2 = e_2$ if $e_2 < 0$ (see [1, Ch. V, §2]); here $q = \deg(\mathfrak{q})$. The same restrictions are available for C_2 and $e_{\mathfrak{l}}$, and we derive:

COROLLARY. Let B , e_1 , and e_2 be as in 3.2–3.4. Then for $q = \deg(q)$ we have:

- (a) $q \ge e_1 + e_2$ *if* $e_1 \ge 0, e_2 \ge 0$
- (b) $2q \ge 2e_1 + e_2$ if $e_1 \ge 0, e_2 \le 0$
- (c) $2q \ge e_1 + 2e_2$ if $e_1 < 0, e_2 \ge 0$
- (d) $2q \geq \max\{2e_1 + e_2, e_1 + 2e_2\}$ if $e_1 < 0, e_2 < 0$.

3.6 . The canonical divisor $K_{\rm\scriptscriptstyle V}$, and the surfaces $C_{\rm\scriptscriptstyle 1V}$ and $C_{\rm\scriptscriptstyle 2V}$

3.6.1. It follows from the preceding that

 $K_v = -C_{1v} - C_{2v} + (\varepsilon_1 + \varepsilon_2 + \mathfrak{k} + \mathfrak{q})F_v$. Therefore, by the adjunction for mula

 $K_{C_{1V}} = -C_{12V} - (\varepsilon_1 + \varepsilon_2 + \mathfrak{k} + \mathfrak{q}) f_1$, where $C_{12V} = C_{1V} C_{2V}$. Evidently, the self-intersection number of C_{12V} in C_{1V} is equal to $-2e_2$, and C_{12V} , $f_1 = 2$. Therefore $K_{C_{1v}}$, $K_{C_{1v}} = (8 - 8g) - (4q - 4e_1 - 2e_2)$, where $q = \deg(q)$ and $g = g(C)$.

3.6.2. From the Corollary in 3.5, we obtain $4q - 2e_1 - 2e_2 \ge 0$; similarly for C_{2V} . From $K_{C_{1V}} \equiv - C_{2V}\left|_{C_{1V}} + (2g-2-e_1-e_2+q).\, f_1$ we conclude that $h_1: C_{1V} \rightarrow (C_{1V})_{min}$ is a composition of σ -processes with centers lying on the curve $h_1(C_{12V})$; here $\left(C_{1V}\right)_{\rm min}$ is some (relatively) minimal model of C_{1V} .

3.6.3. For $F_{v} = \pi^{v} p^{v} (x)$, $x \in C$, we have similarly: $K_{F_{v}} = (-C_{1v} C_{\textit{zv}}$). $F_{\textit{v}}$ and $K_{\textit{F}_{\textit{v}}}$, $K_{\textit{F}_{\textit{v}}} =$ 4. The surface $F_{\textit{v}}$ is obtained from $P^{\textit{z}}$ after blowing-up of five points.

3.7. Examples of Fano threefolds of type *(C, C)*

3.7.1. Let $\deg \pi = 2$. Then V is of type (C_1, C_1) , and $K_v = -C_{1v} - C_{2v}$ $+$ $(2g - 2 + q - e_1 - e_2)$. F_v . Let, moreover, V be a Fano threefold. Then $K_vC_{1v}C_{2v} = 4g + 2g - 4 < 0$; in particular $g = 0$ and $q \le 1$. Therefore (see the Corollary in 3.5) $1 \geq q \geq e_1 + e_2$ (since $e_1 \geq 0$, $e_2 \geq 0$).

Let $e_1 \geqslant e_2$, and let $e_1 = 1$, $e_2 = 0$. Then $B\left|_{C_1} = 2C_2\left|_{C_1}\right.$ is not a reducible d visor, which is impossible. Therefore $e_1 = e_2 = 0$ and $K_v = -C_{1v} - C_{2v} - F_v$. The manifold V is a two-sheeted covering of $S_1 \times_C S_2 = (P^1 \times P^1_o) \times_{P^1_o}(P^1_o \times P^1_o)$ $(P') \simeq P' \times P' \times P'$ with a branch divisor $B = 2C_1 + 2C_2 + 2F$ of multidegree $(2,2,2)$.

3.7.2. Let $\deg \pi = 1$. Then $V = S_1 \times_c S_2$, and $K_V \equiv -2C_1 - 2C_2 +$ $(2g - 2 - e_1 - e_2)$. F, where $K_v C_1 C_2 = 2g - 2 + e_1 + e_2$ and $K_v^3 = 24$. $(2g - 2)$. If V is a Fano threefold, then $K_v^{\;\;3} \leq 0$, hence $g=0$. Therefore $K_v C_1 C_2$ $= e_1 + e_2 - 2 < 0$, where $e_1 \ge 0$, $e_2 \ge 0$.

Let $e_1 \geqslant e_2$, and let, for example, $e_1 = 1, e_2 = 0$. Then $V = \mathbf{F}_1 \times_{P^1}(P^1 \times P^1)$, and $K_v = -2C_1 - 2C_2 - 3F$, $K_vC_1C_2 = -1$, $K_v^3 = -48$, $K_v\sigma_1 = K_v\sigma_2 = -2$. On the other hand, $-K_v|_F = 2\sigma_1 + 2\sigma_2$, $-K_v|_{C_1} = 2C_2|_{c_1} + \varphi_1$, and $-K_v|_{C_2}$ $=2C_1\left|_{C_2}+3\varphi_2\right|$ are ample divisors on the surfaces $F\cong P^1\times P^1,\ C_1\cong P^1\times P^1,$ and $C_{_2} \simeq \mathbf{F}_{1}$. Since K_{ν} . $C_{12} = -$ 1, and $C_{12} = C_{1} \cap C_{2}$ is a rational curve, then there exists an extremal ray $R_{\text{3}} = \mathbf{R}_{+} [C_{12}]$ (see [3]). As $(C_{2}|_{C_{1}}, \ C_{2}|_{C_{1}}) = 0$, then $C_2\mid_{C_1}$ moves in C_1 as one of the rulings of the quadric $D=C_1\simeq P^1\times P^1.$ The restriction of the normal bundle $N_{C_1|V}$ on C_{12} has a degree $= 1$. In fact $N_{C_1|V}\left|_{C_{12}}\right.$ \simeq \mathscr{O}_{C_1} (C₁) $\otimes \mathscr{O}_{C_1} \simeq \mathscr{O}_{C_1}(-\sigma_1) \otimes \mathscr{O}_{C_{12}} \simeq \mathscr{O}_{C_{12}}(-1)$, where $C_{12} = P^1$. Therefore, we can contract \mathcal{C}_1 along \mathcal{C}_12 (see [2, p.1020], or [3]); that is, there is an extremal ray of type $E_{\rm 1}$ on V , i.e. V is not strongly primitive (see 1.4 and 0.2.2).

Let $e_1 = e_2 = 0$. Then $V \simeq (P^1 \times P^1_o) \times_{P^1_o} (P^1_o \times P^1) \simeq P^1 \times P^1 \times P^1$, and *-* $K_v = 2C_1 + 2C_2 + 2F$ is a divisor of multidegree (2,2,2) in $P^1 \times P^1 \times P^1$.

3.8. The discriminant curves for π_1 and π_2

Let \varDelta_1 and \varDelta_2 be the discriminant curves of π_1 and π_2 . Then $\varDelta_1\equiv 4b_1+$ $(4q - 2e_2)\,\varphi_1$ on S_1 , and $\varDelta_2 \equiv 4b_2 + (4q - 2e_1)\,\varphi_2$ on S_2 . These numerical equali ties follow immediately from the formula $-$ 4. $K_{\scriptscriptstyle S} \equiv \pi_*(-\,K_{\!\scriptscriptstyle V})^2 + \varDelta$, connecting the discriminant curve Δ of a conic bundle $\pi: V \rightarrow S$ with the canonical bundles

of *V* and 5.

§4. **The Case** (C, *D)*

4.1. Let the extremal morphism π_1 be of the type C , and let π_2 be of the type *D.* In particular $\rho(V) = 2$ (see 1.3.3). In just the same way as in 2.6 we obtain that *Vis* a Fano threefold.

4.2. COROLLARY. Let the pair (π_1, π_2) be of the type (C, D) . Then V is one of *the following {see* [4]):

(1) $V = P^2 \times P^1$;

(2) a two-sheeted covering $\pi : V \to P^2 \times P^1$ with a branch divisor $B \subset P^2 \times P^1$ *of bidegree* (4,2);

(3) a two-sheeted covering $\pi : V \to P^2 \times P^1$ with a branch divisor $B \subset P^2 \times P^1$ of bidegree $(2,2)$.

§5. The Case (C, E)

Let $\pi_{\scriptscriptstyle 1}$ be of type C , and $\pi_{\scriptscriptstyle 2}$ be of type E . We have to prove that if V is strongly primitive, then *V* must be a Fano threefold. We shall consider separately the cases $E_{\scriptscriptstyle 2}$, $E_{\scriptscriptstyle 3}$, $E_{\scriptscriptstyle 4}$, and $E_{\scriptscriptstyle 5}$ (see 1.3.1 and 1.4).

5.1. *The cases* (C, *E²) and* (C, *E⁵)*

Let π_2 belongs to one of the types E_z or E_5 . In particular, the morphism π_2 is a contraction of a divisor $D \simeq P^2$ in V to a point (see 1.3.1). The morphism π_1 maps $D \simeq P^2$ onto S _{*i*}. Actually, in the opposite case π ₁ contracts D , because $\pi_{\scriptscriptstyle 2}$ (= a contracting of D) is an extremal morphism. But $\pi_{\scriptscriptstyle 1}$ is also an extremal morphism, hence π_1 coincides with π_2 — a cootradiction. Therefore $\pi_2(D) = S_1$ and $S_1 \simeq P^2$.

5.2. The cases (C, E_3) and (C, E_4)

Let π_{2} belongs to one of the types E_{3} or E_{4} . Just as above, the fact that π_{1} and π_{z} are different extremal morphisms, implies that the morphism π_{1} maps the quad ric $D\subseteq V$, corresponding to π_2 (see 1.3.1), onto the surface S_{1} . As S_{1} is smooth, it must be either P^2 (in the cases E_3 and E_4) or $P^1 \times P^1$ (in the case E_3).

Let $S_1 \simeq P^1 \times P^1$. Let ϕ_1 and ϕ_2 be the rulings of S_1 , and let $\phi_1 = s \times P^1 = 0$ $P^* \times t = \varphi_2$ be the rulings of $D \simeq P^* \times P^*$. Since $(\pi_1 \mid_p^* \varphi_i, \pi_1 \mid_p^* \varphi_i)_p = 0$, $i =$ 1,2, then $\pi_1 \mid_p^* \phi_i = m_i \varphi_i$, where m_i is a positive integer. Therefore $(\pi_1 \mid_p^* \phi_i)$, $\pi_1 \mid_D^* \psi_2\rangle_p = (m_1 \varphi_1, m_2 \varphi_2)_p = m_1 m_2$. On the other hand, the last equals to $m = 1$ $\deg(\pi \mid_p)$. But φ_1 and φ_2 are numerically equivalent on V ; therefore $0 = \varphi_1.x_1^\tau \: \phi_1$

 $= \varphi_2 \cdot \pi_1^* \varphi_1 = m_2$. In particular, $\deg \pi = m = m_1 m_2 = 0$, which is impossible. Consequently, in the cases (C, E_3) and (C, E_4) the surface S_1 is isomorphic to *P 2 .*

5.3. COROLLARY. Let π_1 be of the type C and π_2 be of the type E ($E_{\textit{2}},\ E_{\textit{3}},\ E_{\textit{4}},\ \textit{on}$ *E5). Then V is a Fano threefold.*

Proof. In fact, we obtained that in all cases $S_1 \simeq P^2$ (see 5.1 and 5.2). There fore $\rho(V) = \rho(P^2) + 1 = 2$, and *V* admits two different extremal morphisms. It follows that V is a Fano threefold (see 2.6).

5.4. COROLLARY (see [4]). Let V , π_1 , π_2 , etc., be as in 5.3. Then V is one of the *following:*

- $V = P(\mathcal{O}_{P^2} \oplus \mathcal{O}_{P^2}(1))$, in the case (C, E_2)
- $V = P(\mathcal{O}_{P^2} \oplus \mathcal{O}_{P^2}(2))$, in the case (C, E_5)
- (3) *V* is a two-sheeted covering of $Y = P(\mathcal{O}_{P^2} \oplus \mathcal{O}_{P^2}(1))$ with a branch divisor $B \in |-K_Y|$, in the cases (C, E_3) and (C, E_4) .

§6. The case (D, D)

6.1. Let π_1 and π_2 be both of the type D (see 1.3.3). Let $S_1 = \pi_1^*(x)$, $x \in$ C_1 , and $S_2 = \pi_2^*(x)$, $x \in C_2$, where $\pi_k : V \to C_k$, $k = 1,2$, are the corresponding extremal morphisms. As $\rho(V) = \rho(C_k) + 1 = 2$, then S_i is represented in the form $S_1 \equiv a.S_2 + b.K_{V}$, for some rational a, b . In particular, $K_{S_1} = (K_{V} + S_{1}X_{V})$ $\left| \mathbf{s}_i \right| = (1/b) \cdot (-a \cdot S_2 + (b+1) \cdot S_1) \left| \mathbf{s}_i \right|$. Hence

$$
K_{S_1}.K_{S_1} = (1/b^2).((b+1).S_1 - a.S_2)^2.S_1 = 0,
$$

since $S_1.S_1 = S_2.S_2 = 0$. On the other hand, the divisor $-K_{S_1}$ must be ample, since $S_{\rm 1}$ is a Del Pezzo surface, P^{z} , or $P^{1} \times P^{1}$ (see 1.3.3). We come to a contra diction.

6.2. COROLLARY. *There are no manifolds for which iz and π² are both of type D.*

§7. The case (E, E, \ldots, E)

Let V admits morphisms $\pi_{1},\,\pi_{2},\ldots,\pi_{n}$ of the type E , and let V be strongly primitive. Let $D_1,$ $D_2,$..., D_n be the corresponding divisors on V , which $\pi_1,$ $\pi_2,$..., π_n

contract (see 1.3.1). Then, by [4, p. 124 (8.1)], the divisors D_i are mutually dis joint. Consequently, the contractions π_i carry out independently.

Theorem 1.5 is proved.

REFERENCES

- [1] R. Hartshorne, Algebraic Geometry, Springer-Verlag (1977).
- [2] V.S. Kulikov, Degenerations of $K3$ -surfaces and Enriques surfaces, Math. USSR Izvestija, Vol. 41, No. 5 (1977), 1008-1042 (in Russian).
- [3] S. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math., 116 (1982), 133-176.
- [4 1 S. Mori, S. Mukai, On Fano 3-folds with *B2>2,* Adv. St. in Pure Math., Vol.1-Algebraic Varieties and Analytic Varieties, Kinokuniya Comp. LTD (1983), 101-129.
- [5] E. Sato, Varieties which have two projective space bundle structures, J. Math. Kyoto Univ., 25 (1985), 445-457.

Institute of Mathematics Bulgarian Academy of Sciences ul. Acad. G. *Bonchev, bl.8 1113 Sofia, Bulgaria*