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ALGEBRAIC THREEFOLDS

WITH TWO EXTREMAL MORPHISMS

ATANAS ILIEV

§0. Introduction

0.1. In [3] Mori gives a description of all extremal rays (extremal morph-

isms) arising on a smooth projective threefold with a numerically non-effective

canonical bundle. Generally speaking, every smooth projective threefold V with

a numerically non-effective canonical class Kv admits an extremal morphism

π : V—> Y. The assumption that V admits a non-trivial pair of extremal morph-

isms

imposes strong conditions on V. This is the essence of the Theorem 1.5 of the pre-

sent work. In particular, we obtain a description of the threefolds which admit two

biregular structures of conic bundles over non-singular surfaces Sγ — Yι and

S2 — Y2. By the results of §3 the surfaces Sλ and S2 must be either ruled surfaces

with isomorphic basic curves, or Sλ — S2 — P .

0.2. Remarks

0.2.1. In [5] E. Sato has obtained a description of the threefolds with two

structures of P -bundles; this description corresponds to the Case A.a of Theorem

1.5. The second basic result of [5] states that if dim V^ 3 and V admits two

structures of projective space bundles over projective spaces Yγ—P and Y2 —

Pm, then: either Vis a product V = Pl x P m or / = m and V = P(TP>).

0.2.2. Every Fano threefold V with p(V) > 2 admits at least two extremal

morphisms. However, in most of the cases V admits a ray of the type Ex. Because

of that, there are too many Fano threefolds with p ^ 2 in the list of Mori and

Mukai in [4], in contrast to the list of Theorem 1.5 in which are classified only the

strongly primitive ones.
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§1. Definitions and statement of the main theorem

1.1. Everywhere in the present article, we suppose that the threefold V is a

smooth projective threefold over the field of complex numbers C.

1.2. Definitions

1.2.1. NV — {l-cycles on V } / = 0 R , where = denotes the numerical

equivalence of cycles. NV is a finite dimensional real vector space, which is dual

to NS(V) ® R, where NS(V) is the Neron-Severi group of V.

1.2.2. (the Picard number of V) = p(V) = dimRWV).

1.2.3. NE(V) is the closure of the convex cone NE(V), generated by all

the effective l-cycles from NV (in the metrical topology of the vector space NV).

1.2.4. Let Z G NE(V). The half-line R = R+[z] is called an extremal ray,

if: (a) - Kv.z > 0 (b) for all Zl9 Z2 e ~NE(V), the assumption Zx + Z2 e R im-

plies Zγ e R and Z2 e R, cf. [3].

1.2.5. Let R be an extremal ray on V. Then, there exists a unique, up to an

isomorphism, morphism π : V—* F corresponding to R, such that: (a) π*ΰv = 0 y

(b) if C c V is an irreducible curve, then [C] G 7? if and only if dim π(C) = 0,

cf. [3]. The morphism π is called a contraction of the extremal ray R, or an

extremal morphism (corresponding to R).

1.3. Description of the extremal morphisms on V(cf. [3])

Let 7Γ : V-^ Y be an extremal morphism, and let p(V) ̂  2. Then it can be

one of the following:

1.3.1. Type E : dim Y= 3

The morphism 7Γ is a contraction of a divisor D on V, and TΓ corresponds to

one of the types Ev E2, E3, E4, and E5. In the case Eγ the morphism π is a con-

traction of a ruled surface to a smooth curve, and the threefold Y is smooth. In the

case E2 the morphism π is a contraction of a divisor D — P , with a normal bun-

dle ΘD{D) — Upi(— 1), to a nonsingular point on Y. In the case E3 the morphism

7Γ is a contraction of a quadric D — P x P , with a normal bundle 0 ( — 1, — 1),

to an ordinary double point on Y. Moreover, the fibers P X t and s X P are

numerically equivalent on V, for t, s G P . In the case £ 4 the morphism 7Γ is a

contraction of a quadratic cone D c P to a double point on F, and ΘD(D) — ^

® ΘPz{~- 1). In the case £ 5 the morphism 7Γ is a contraction oί D — P to a quad-

ruple point on F, and ΘD(D) - Θp2(- 2).

1.3.2. T)^C:dimK=2

The variety F is a smooth projective surface, and π corresponds to one of the

types Cx or C2. In the case Cx the morphism 7Γ defines a conic bundle % : V--* F

in the case C2 the morphism π defines a P -bundle π : F —* F.
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1.3.3. TypeD : dim Y = 1

The variety Yis a smooth curve, p(V) = p(Y) + 1 = 2, and π corresponds

to one of the types Dv D2, and D3. In the case Dγ the threefold V has a structure

of a Del Pezzo bundle over the curve Y. In the case D2, Kis isomorphic to a P X

P -bundle over the curve Y. In the case D3 the threefold V is a P -bundle over F.

1.4. DEFINITION. 77ιe threefold V is called strongly primitive if there are no ex-

tremal rays of type Eλ on V.

1.5. The Main Theorem

THEOREM. Let V be a {smooth, projective) strongly primitive threefold which

admits two extremal morphisms nι : V—> Yγ and π2 : V~* Y2. Then, the following

cases are possible:

Case 1. The morphisms πλ and π2 correspond to the type C. Then

2 < p(V) < 3 and:

(LA) Ifp(V) = 3, then

either: (A.a). V — Sx X c S2, where Sx and S2 are ruled surfaces over a curve C,

or: (A.b). V is a two-sheeted covering of Sx X c S2, where Sv S2, and C are

as in (A.a).

(l.B) Ifp(V) = 2, then V is a Fano threefold {see Corollary 2.6.2).

Case 2. The morphism rcι corresponds to the type C, and the morphism π2 corres-

ponds to one of the types D or E. Then V is a Fano threefold {see Corollary 4.2, Corol-

laries 5.3 and 5.4).

Case 3. Let the extremal morphisms πlf π2,. . . on V be of the type E. Then the

corresponding divisors Dl9 D2J. . . are mutually disjoint {see §7).

Remark. The rest of the paper is devoted to the proof of Theorem 1.5. Espe-

cially, Case 1 is discussed in §2 and §3. It follows from the considerations in §3

that the double covering π : V—> Sλ x c S2, in case (A.b), has the following

properties:

Let 8j be a normalized locally free sheaf of rank 2, over the base curve C,

such that Si = P c ( ^ ), i = 1,2 (see [1, ch. V, §2]). Let e{ = ~ deg(det^), let φ{

be the general fibre of S,—• C, and let b{ be the section of S{ such that £(bt) =

ΰP{gi)(\), i — 1,2. Let p{: S L X C S2~^ SJ be the natural projections, and let C{ =

pi (bj), F{ — pi (φt)y i— 1,2. Then Fx and F2 are numerically equivalent, i.e.

Fλ = F2 = F for some F e />f(Pic 5X) Π ̂ 2*(Pic 52). The branch divisor B a S,

x c S2 of 7Γ is smooth, and 5 is numerically equivalent to 2 . Q + 2.C2 + 2q.F for

some ^ > 0. Moreover, the threefold V is a standard conic bundle over S{ with a
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discriminant curve Δ{ = 4.^- + (4q — 2^ ). φit where {i, j} = {1, 2}.

§2. The case (C,C)

2.1. Let 7ΓX and ττ2 be of type C. Let τcι : V~^ Y1 and τz2: V—• F2 be the cor-

responding extremal morphisms. In particular, Sx = Yι and S2 = Y2 are smooth

surfaces (see 1.3.2). Denote by fk the general fiber of the morphίsm πk, k = 1,2.

2.2. PROPOSITION. If p(V) ^ 3, then p(V) = 3, and Sλ and S2 are ruled sur-

faces.

Proof.

2.2.1. Let H be a very ample divisor on S2, and let C ̂  | i / | be a smooth

curve. Then (τr2 C, τr2 C ) v = m./2, where m = (C, C ) s > 0. Therefore, π2 C £

Tίγ (Pic S)); hence, the mapping τtλ\ π2C—* Sλ is surjective. Since E(TΓ2 C) = — °°,

then £(5X) = — °° (here £UO is the Kodaira dimension of -X"). Similarly l{S2) =

— °°. Consequently, there exist morphisms hk: Sk—+ Sk0, where Sk0 are ruled

surfaces or P2. As p(V) > 3, then p(SA) > 2.

Let, for example, Sh0 = P . Then the surface Sλ is rational, and the morphism

hλ: Si-* Sί0 = P is non-trivial; in the opposite case p(V) — p(P ) + 1 = 2,

which contradicts the assumption p{V) > 3. Consequently, there exists a morph-

ism h[ : Sj, —• F x , such that ^i = ^.cr, where o \ Fγ—* P is a blowing-up of a

point in P . Therefore, we can always assume that Slt0 and S2ι0 are ruled surfaces

(rational or non-rational).

Let Skf0 = P($k), let £(bkf0) = UPigκ)(l), and let φk>0 be the general fiber of

Skt0, k = 1,2 (see the Remark after Theorem 1.5). Let

Num Sk = Zbk θ Zφk θ φ ^ Z6jk ί,

where εki are the exceptional curves of hk, and 6A and φk are the preimages of bk>0

and φΛ>0 on 5 λ, k — 1,2. Let w = p(V) — 1. Obviously p(Sk) = m — mk + 2,

k = 1,2.

Let Cx = πx bv C2 = πx φlf Ci+2 = πx ε u , Dx = π2 b2, D2 = π2 φ2ί Di+2 =
πΐ ε2,i (* = 1»2, . . . m — 2). If πk: F—• SΛ is a conic bundle, then Pic V =

k 1 ίfc

7Γ2 Pic SΛ + Z/i v if πk: y—* SΛ is a P -bundle, then Pic V = πk Pic Sk + ZLk,

where Lk corresponds to a section of τtk. In both cases

i.e. the divisors D{ (resp. C, ) are linear combinations, with integer or half-integer
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coefficients, of the divisors C{ (resp. Dt) and Kv (in the numerical sense). There-

fore, there exists a system of equations of the form:

2.2.2. C, + ΣjdijDj = - d{Kv

where the numbers 2dijf 2dif 2cij, and 2c, are integer.

Let D = (d ί y), C = (c l 7), d = (dx, . . . , d j ' , c = (clt . . . ,cm)', and let £ be

the unit matrix of rank m. By the adjunction formula Kv.fk = — 2, k — 1,2 and

from 2.2.2 we conclude that Cf ./2

 = 2df , />,-./! = 2ct . The integers 2d, and 2c, are

non-negative; they can be interpreted as follows:

If d, = 0, then C, e ττ2* Pic S2

if di > 0, then df = the degree of the covering π2: C, —• S2

(similarly — for c,). Further, from 2.2.2 we derive:

(— cf + Σ/ ̂  / dt).Kv = J9, — Σ/py ^7d/; /?y, i = 1,2, . . . m. Therefore, from

the formula connecting Pic V and Pic S2, we obtain that the both sides of the last

equation are equal to zero, in the numerical sense. Hence, CD = E, and C d — c.

These matrix equations will be used in the proof of Proposition 2.3.

2.2.3. Let CfCj = rί7/i, ΐ>iDi = δj2, k{j = KyCfi^ After multiplying the

first m equations from 2.2.2 by CJ)^ we obtain the following system:

2.2.4. Rm = 2d, Σ, dkl δu + dk ku + τki.2Cj =0 .

By the choice of the curves bk, φk, εki, the numbers γki and δu satisfy the follow-

ing conditions:

2.2.5. (a) Tii = ~Pi< 0 , δu =-qi<0,i>3;

(b) Tu = Ϊ2i = δu = δ2i = 0, i > 3

(c) 7 2 2 = 522 = 0, γn = - elf δn = - e2,

w h e r e ~ek= (bk, bk)Sk = (bk>0, bk>o)Sko, k = 1,2.

2.2.6. LEMMA. If d2 = 0, then d3= = dm = 0 {similarly - /or c, ).

Proo/. Every ε l t l is a component of some degenerating fiber <pu = φι of /zx,

Φ l t/ being a linear combination with integer coefficients of exceptional curves

and the preimage of some fiber of Sl0. Let, for example, φγ = Σn>0 λnεln, where

λn > 0 and εlt0 is the proper preimage of some fiber of Sl0, over which we take

blowing-ups. Then

2.2.7. 0 = 2dz = C/ 2 = λ0. n* txj2 + Σn>1 λn.2dn+2.

Hence, 2 d ί + 2 = Ci+2f2 = π x ε l t / 2 = 0.
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2.2.8. LEMMA. Ifm = p(V) - 1 > 3, then Yl™=3 C& = 0.

Let us look at the equations Rl3k = 0, k > 2, and R23k = 0, /c > 2 (s<?<? 2.2.4).

s/iαΠ g w α ^roo/ o/ 2.2.8 on an example, which is not different from the general

case.

EXAMPLE, m = 4 i.e. from 2.2.5 we have <533 Φ 0, <543 Φ 0, <513 = <523•= 0.

For definiteness, we may assume that δ 3 3 = — 2 and <543 = 1 therefore <544 = — 1.

The surface S2 is obtained from S2o after blowing-up a point not lying on the base

section, and a second blowing-up with a centre lying on the first exceptional di-

visor. The equations Rl3k = 0 and R23k = 0, k > 2, take the form:

2.2.9. i?1 3 2 = - 2c3 + ( - 2d2 3 + d24) 2rfi = ~ d2k13

Run = (~ 2d/cs + dj.2^ = ~ dkk13, k = 3,4

2̂3A = ( - 2dk3 + dk4).2d2 = - dΛ/c23, A: = 2,3,4

From 2.2.9 we easily derive that either d2 — Q (and hence, according to Lemma

2.2.6, d3 — * * = dm — 0), or the assumption d3 Φ 0 implies c3 = 0.

2.2.10. LEMMA. If p(V) > 3, then p(V) = 3.

Proof According to Lemma 2.2.8, if m > 3, then Hi>3cidi = 0. Let, for ex-

ample, c3 = 0. Then D3 e 7rf Pic Sx. Hence ί) 3 = 7Γ* C, where C e Pic Sx and

(C, C) 5 i = r e Z. Then - ?/2 = (D3, D3)v = (πf C, Trf C)v - r/x, where q3 > 0

(i.e. ^3 =£ 0) — a contradiction. Therefore m — p(V) — 1 = 2, and the Proposition

2.2 is proved.

2.3. PROPOSITION. Let p(V) = 3. Ttoew π1 φλ ^ π 2 Pic S2 and π2 φ2 e

π^ Pic SL, t̂ /î r̂  φft is the general fiber of the ruled surface Sk, k = 1,2.

For convenience, we shall change the notation. As m = 2, the system

2.2.2 takes the form:

2.3.1. - d + ^ C 2 + ^ F 2 = r ^

g2Cx + d2F, - C2 = r2Kv

b2Cι + ΛgFi — F2 = c2ϋίκ,

where FΛ = τckφky Ck — τrΛ 6A, A: — 1,2, and all the coefficients are either inte-

gers, or half-integers.

The equality CD = E (see 2.2.2) implies g2 = εav d2 = — ε ^ , b2 = — εbh
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and a2 = εgv where ε = {gιaι — ft^)"1. From Cd — c and Dc = d (ibid.) we

obtain:

2.3.2. c2H

r2H

Ci •*

ri -1

h « 2Ci -

h d2cι -

h αiC 2 -

h d t c 2 -

h δ2rj

^ gin
\- b^

^ Sχr2

= 0
= 0
= 0

= 0.

After multiplying both sides of the equalities 2.3.1 by fγ and f2 we obtain FJ2 =

2clf FJγ — 2c2, CJ2 — 2rv and C/L = 2r2. The system 2.2.5 for γ{j and δ o takes

the form:

C 2F 2 = /2> F* = F2

2 = 0.

We divide the proof in several cases:

Case 1. Sx and S2 are rational.

CLAIM. In Case 1, t/ie equality cγc2rγr2 = 0 is fulfilled.

Proof of the Claim. Assume that C1C2Y1Y2 Φ 0 and let ε < 0. From the equa-

tion cιKvFιC2 = 2aιc1 — 2bιe2c1, we get KVF1C2 = 2ax — 2bιe2 therefore

c2{2ax - 2b1e2) = c2KvFγC2 = - 2 ^ + 2b2r2. By 2.3.2, 2q + 2a,c2 = - 2b,r2,

where b2 — — εδ^ Hence:

2.3.3. (2ε - 2) ̂ r 2 = 26^2^.

From ε < 0, r2 > 0, c2 > 0, and g2 > 0, we get that bγ = 0 in particular δ2 =

- ε*! = 0. Thus, from ^KyF^ = 2b1cί and ^ > 0, we obtain that KVFXF2 = 0.

Then, from r2KvFιF2 — 0 and r1KvFιF2 = 0, we conclude that — 2cγ + 2 g2c2 =

0 and — 2c2 + 2 g1c1 — 0. Therefore gx > 0, g2 > 0, and gγ.g2 — 1.

From KVF1C2 = 2 ^ , and from the equations of the type i?/7Λ = 0 for

r2KvF1C2 we obtain:

2.3.4. (aί-gjr2 = 2e2cι,

where ax — εglf g2 — εα^ ^ > 0, g2 > 0, and ε < 0. In that case, the equation

2.3.4 contradicts the assumption that cγ > 0 and r2 > 0.

Let ε < 0 and cλc2rγr2 — 0. In particular, if rγ = 1 then 2^c2 = YίKvF2C1 = 0.

Therefore, either c2 — 0, or ^ = 0. If eγ — 0, then Sx — P X P 1 , and we can

assume that bγ c 5X is a fiber (cf. 2.2.1).

Let q = 0, but c2 > 0. Then 2.3.2 implies that c2 + b2rx = 0, i.e. ft2 < 0. But,
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from the equations 0 = c1KvF2C1 = — 2c2 + 2b1r1 and b2 =

obtain that b2 > 0, which is impossible.

— εbv ε < 0, we

COROLLARY. If ε < 0, and S1 and S2 are rational, then q — c2 — 0.

If ε > 0, we come to a contradiction in the same way. The Claim is proved.

Proceeding in a similar way, from the above Claim and from 2.3.2, we obtain the

following

COROLLARY. In the Case 1 we have cλ = c2 — 0.

Then, from 2.3.1, we obtain that Fλ e π* Pic S2 and F2 e Trf Pic Sx.

Case 2. Sx or S2 is non-rational.

Let, for example, Sx be an irregular ruled surface and let gi' Sx—* C, g2: S2

—• C r be the corresponding representations of the surfaces Sx and S2 as

P -bundles over the curves C and C\ where ^(C) = g > 1. Then the general fi-

bers of I Lx I — ̂ ^ : K—• C and | L21 = g2τt2: V-^ C are rational surfaces.

Let I Lx I Φ I L21. Then f—L2 |L i is a curve on Lx and (/, f)Lι — L2L2LX — 0.

Hence, the restriction | L2\ \Ll: Lχ-+ C defines, on the rational surface Lh a struc-

ture of bundle with rational curves as fibers and with a non-rational base C,

which is impossible. Therefore C — C, and the diagram

where g(C) = g ^ 1, is commutative. Evidently, in this case πγ φγ ^ ττ2 Pic S2

and τr2 φ 2 e ^ Pic Sv The Proposition 2.3 is proved.

2.4. COROLLARY. If p(V) — 3, fΛβn ίfcβ equation 2.3.2 tote the form:

rKv= - d - C2 + dF,

where Fx = F2 = F ^ 7rx Pic S : Π 7Γ2 Pic S2, ί/ι̂  numbers 2r and 2d are integer,

and r > 0.
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The Corollary is a direct consequence from Proposition 2.3, and from the

first and the third equations of 2.3.1. Note that from the two other equations of

2.3.1 we obtain that bλ = b2 = 0 and aι — a2 — 1. Then, the former two equa-

tions give ε = — 1.

2.5. COROLLARY. If p(V) —3, then there exists a curve C such that the dia-

gram

is commutative.

Proof. For Sx and S2 — non-rational, the Corollary is proved in 2.3, Case 2.
jig

Let Sλ and S2 be rational ruled surfaces. By Proposition 2.3, we have τι1 φx

^ π2 Pic S2 and π2 φ2 ^ πx Pic Sv Consequently, there are correctly defined

morphisms λ = g1π1π2~ g2" '. Cf-^ C and λ~ = g2τι2πι gλ~ \C—*C\ where

gλ : Sι—^ C — P and g2: S2~^ Cr — P define structures of ruled surfaces on Sx

and S2. Therefore λ G Aut P and if we replace g2 by λ.g2, we shall obtain the

commutative diagram from above.

2.6. Casep(V) = 2

Let us consider the case p(V) < 3. Then p(V) =2, and there are on V two

extremal rays Rι and R2 of type C. As p(V) = &mn{NV) — 2, then Rι and R2

form a base of the two-dimensional real vector space NV. Let Rx = R + [/J and R2

— R+[/2] Since Rλ and i?2 are extremal rays in the two-dimensional cone

JfE(V) c ΛΓV, and since Kv. lγ < 0, Kv.l2 < 0, then KV.Z < 0 for any Z e

NE(V). By the Kleiman's criterion we derive that — ifF is ample, i.e. V is a Fano

threefold.

2.6.1. COROLLARY. // p(V) = 2 and (πlf π2) is of type (C, C), then V is a

Fano threefold.

2.6.2. COROLLARY (see [4]). In the conditions of 2.6.1, the threefold V is one of

the following:
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(1) a divisor of bidegree (2,2) in P X P

(2) α divisor of bidegree (2,1) twP x f

(3) a divisor of bidegree (1,1) in P x P

(4) α two-sheeted covering of a divisor D of bidegree (1,1) in P X P ,

branch divisor B ^ \ — KD

§3. Construction of threefolds of type (C, C) with p = 3,

Let V be of type (C, C), and let πι : F—* Sly τι2: F—> 52, C, etc., be as in §2.

It follows from the considerations in §2 that there exists a commutative diagram

of natural morphisms:

3.1.

where px and p2 are the natural projections, and deg π — 1 or deg π — 2 (see

2.5).

We shall consider the case deg 7Γ = 2. In this setting, we shall obtain numer-

ical formulae for the branch divisor of the double covering π.

3.2. Let/A be the (general) fiber of πk, and let σk be the (general) fiber of Rk,

k = 1,2. Evidently σk — P 1 for any σk, k = 1,2. Let 8k, bk, φk, Ck, k — 1,2, and

F1 = F2 = F be as in the Remark after Theorem 1.5. Let εk — det(^ Λ ), ek =

— deg(εA) and let C1V = π Cv C2V = π C2, F 1 V = F2V = Fv be the divisors on

V, in the sense indicated in Corollary 2.4, i.e. Fv=πp (r) = π F (where F =

p (x), x G C). It is easy to see that:

3.3. i ί S l X c S 2 = ~ 2CX - 2C2 4- (ε, + ε2 4- A)F, where k = Kc is the cano-

nical divisor of C. The branch divisor B oί π has the form:

3.4. B = 2#1C1 4- 2<72C2 4- 2qF, where ^ and q2 are integers, and 2qF is

used in the sense that 2c\F = /? (q) for the divisor q on C.

We claim that Qγ — Q2~ l

In fact, as ^ : Sx x c S2 -• Sx is a P'-bundle, then Pic(S! x c S2) = pf Pic S,

Θ Z C 2 (since C2 is an 1-section of px). Therefore PicC^ X C S 2 ) =ZCί@g*
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(Pic C) Θ ZC2, in sense that ft*(Pic C). F = p* ft* (Pic C) = p*(Pic C). As

7Γ : fx —• aL is a two-sheeted covering for the general fx — P and 7ϋ{fx) = σι — P ,

then it has two branch points. Therefore deg(jB|σi) = degCB |ff2) = 2, i.e. 2 =

degCB lffi) = (2ft Cj + 2q2C2 + 2qF).σ1 = 2q2C2σι = 2q2 similarly - for ft. As

V is smooth, then B is smooth, and we derive:

COROLLARY. The (smooth) branch divisor B of π has the form

B = 2C, + 2C2 + 2qF

for some divisor q on C, where 2c\F = p (2q).

3.5. In the context of the situation, we shall derive some necessary numeric-

al conditions for B.

The general surface Cxv — iΐ Cx is smooth, and it is a two-sheeted covering

of Cx with a branch divisor B |C χ = ( 2 Q + 2C2 + 2#F) | C j = 2C 1 2 + 2(ε + q)σ l f

where C1 2 — ^ ^ 2 , and (C1 2, C 1 2 ) C l ~ C2C2Cι = — ^2 ^ ^ = — g2. Therefore,

for the existence of a (smooth) effective divisor C1 2 c Cx, one must have 2{q —

ex) > 2e2 if e2 > 0, or 2(q - ex) > ^. 2e2 = ^2 if e2 < 0 (see [1, Ch. V, §2]); here

q = deg(q). The same restrictions are available for C2 and ev and we derive:

COROLLARY. Let B, ev and e2 be as in 3.2-3.4. Then for q = deg(q) we have:

(a) q > ex + e2 if e x > 0, e 2 > 0

(b) 2q > 2ex + e2 if ex > 0, e2 < 0

(c) 2q > ex + 2e2 if ex < 0, e2 > 0

(d) 2q > max{2^ + e2, e, + 2e2) if ex < 0, e2 < 0.

3.6. The canonical divisor Kv, and the surfaces Cxv and C2V

3.6.1. It follows from the preceding that

Kv~ — Cιv — C2V + (εx + ε2 + ! + q)Fv. Therefore, by the adjunction for-

mula

KCιγ — — C12V — (ε1 + ε2 + f + q)/ l t where CX2V = C1V.C2V. Evidently, the

self-intersection number of CX2V in Cxv is equal to — 2e2, and CX2V.fx = 2.

Therefore KCιy.KCιv = (8 - 8#) — (4^ - 4 ^ - 2e2), where <7 = deg(q) and

3.6.2. From the Corollary in 3.5, we obtain Aq — 2ex — 2e2 > 0; similarly

for C2V. From KCiv = — C2V \Cιv + (2g — 2 — ex — e2 + q). fx we conclude that
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hι: C1V—+ (Clv)min is a composition of σ-processes with centers lying on the

curve hι(Cuv); here ( C i y ) m i n is some (relatively) minimal model of Cιv.

3.6.3. For Fv = π p Cr), x e C, we have similarly: KFy = ( — C i y —

C 2 y ) . Fv and if^. ifFκ = 4. The surface F y is obtained from P after blowing-up

of five points.

3.7. Examples of Fano threefolds of type (C, C)

3.7.1. Let deg π = 2. Then 7 is of type (Cv Cλ), and Kv = - C1V - C2V

+ (2g — 2 + q — eλ — e2). Fv. Let, moreover, 7 be a Fano threefold. Then

KVC1VC2V = 4g + 2q — 4 < 0; in particular g = 0 and tf < 1. Therefore (see the

Corollary in 3.5) 1> q> eι + e2 (since ^ > 0, e2 > 0).

Let eλ ^ £2,
 a n d let eλ — \f e2 — 0. Then β | C i = 2C2 | C i is not a reducible di-

visor, which is impossible. Therefore eλ = e2 = 0 and Kv = — C1V- ~ C2V — Fv.

The manifold V is a two-sheeted covering of Sι x c S2 = (P 1 X P^1) XpiίP^ X

P 1 ) ~ p1 x p1 x p1

 W i th a branch divisor JB = 2Cγ + 2C2 + 2F of multidegree

(2,2,2).

3.7.2. Let d e g τ r = l . Then V = S, x c S2, and ί ί F = - 2 ^ - 2C 2 +

(2^ - 2 - ^ - e2). F, where KVCXC2 = 2g - 2 + e, + e2 and i ί y

3 = 24. (2g - 2).

If V is a Fano threefold, then Kv

3 < 0, hence g = 0. Therefore UTyQCg

= *! + e2 - 2 < 0, where ^ > 0, e2 >0.

Let ^ > e2, and let, for example, ^ = 1, e2 = 0. Then 7 = F x x ^ ( P 1 x P 1 ) ,

and ΛLK Ξ - 2CX - 2C2 - 3 F , KYCγC2 = - 1, Kv

3 = - 48, X ^ = Kvσ2 = - 2.

On the other hand, — i ί F | F = 2σ1 + 2σ2, — Kv | C i = 2C2 |Cl + φ b and — Kv |C a

= 2CX lc2 + 3<p2 are ample divisors on the surfaces F - P 1 X P 1 , C, - P 1 X P 1 ,

and C2 — F ^ Since Kv. C1 2 = — 1, and C1 2 = C : Π C2 is a rational curve, then

there exists an extremal ray R3 = R+[C1 2] (see [3]). As (C2 | c , C2 | c ) = 0, then

C2 | C i moves in Cγ as one of the rulings of the quadric D = Cι — P X P . The

restriction of the normal bundle NCι\V on C12 has a degree — 1. In fact Nc^v |C i 2 —

UCi (Cx) ® ^ C i 2 - ΘCι(- σλ) ® ^ C i 2 - ^ c 1 2 ( ~ 1). where C1 2 = P 1 . Therefore, we

can contract Cx along C1 2 (see [2, p.1020], or [3]); that is, there is an extremal ray

of type Ex on V, i.e. Vis not strongly primitive (see 1.4 and 0.2.2).

Let *χ = β2 = 0. Then V- ( P 1 x P.1) x p i (P.1 x P 1 ) - p 1 x p 1 x p \ a nd

- Kv = 2CX + 2C2 + 2F is a divisor of multidegree (2,2,2) in P1 X P1 X P\

3.8. The discriminant curves for τrί and π 2

Let Δι and 4 2 be the discriminant curves of πλ and ττ2. Then 4X = 4δx +

(4# — 2 ^ ) ^ ! on Sλ, and 4 2 = 4ύ2 + (Aq — 2eλ)φ2 on 52. These numerical equali-

ties follow immediately from the formula — 4.ifs = π*(— Kv) + Δ, connecting

the discriminant curve Δ of a conic bundle % : V—+ S with the canonical bundles
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of V and 5.

§4. The Case ( C , D)

4.1. Let the extremal morphism π1 be of the type C, and let 7Γ2 be of the type

D. In particular p(V) = 2 (see 1.3.3). In just the same way as in 2.6 we obtain

that Vis a Fano threefold.

4.2. COROLLARY. Let the pair (πv π2) be of the type (C, D). Then V is one of

the following {see [4]):

(1) V= P2 x P 1 ;

(2) a two-sheeted covering π : V—* P * P with a branch divisor B c P X P

of bidegree (4,2);

(3) α two-sheeted covering π : V—* P X P twt/i α branch divisor β c p X P

§5. The Case ( C , £ )

Let #! be of type C, and τr2 be of type E. We have to prove that if V is

strongly primitive, then V must be a Fano threefold. We shall consider separately

the cases E2, E3, E4, and E5 (see 1.3.1 and 1.4).

5.1. The cases (C, E2) and (C, E5)

Let 7Γ2 belongs to one of the types E2 or i?5. In particular, the morphism π2 is

a contraction of a divisor D — P in V to a point (see 1.3.1). The morphism πι

maps D — P onto Sv Actually, in the opposite case 7ΓX contracts D, because

7Γ2 ( = a contracting of Z)) is an extremal morphism. But 7ϋ1 is also an extremal

morphism, hence π x coincides with π 2 — a cootradiction. Therefore π2(D) = S1

and S, - P 2 .

5.2. The cases (C, £ 3 ) αnrf (C, £4)

Let 7Γ2 belongs to one of the types E3 or EA. Just as above, the fact that πγ and

τr2 are different extremal morphisms, implies that the morphism τcι maps the quad-

ric D c V, corresponding to ττ2 (see 1.3.1), onto the surface Sv As Sx is smooth, it

must be either P (in the cases E3 and E4) or P X P (in the case E3).

Let S^^ — P X P . Let 0X and 0 2 be the rulings of Sv and let φλ = s X P =

P X ί = <p2 be the rulings of D — P X P . Since (7^ ^ 0 f , 7rx 1̂  φ^)D = 0, ί =

1,2, then 77̂  ̂  0 f = m, φ t , where mf is a positive integer. Therefore (7^ \D φl9

π\ \D Φ ̂ D = (miΨu m2Ψ2^D — wi\WΊ' On the other hand, the last equals to m =

deg(ττ \D). But φγ and φ2 are numerically equivalent on V; therefore 0 = φvτcι φx



128 ATANASILIEV

= φ2.π* φλ = m2. In particular, deg π — m = m1m2 = 0, which is impossible.

Consequently, in the cases (C, E3) and (C, E4) the surface Sx is isomorphic to

P2.

5.3. COROLLARY. Let πx be of the type C and π2 be of the type E [E21 E39 E4, or

E5). Then V is a Fano threefold.

Proof. In fact, we obtained that in all cases Sx — P (see 5.1 and 5.2). There-

fore p(V) = p(P ) + 1 = 2, and V admits two different extremal morphisms. It

follows that Vis a Fano threefold (see 2.6).

5.4. COROLLARY (see [4]). Let V, πu π2, etc., be as in 5.3. Then V is one of the

following:

(1) V = PWP2 Θ 0p2(l))f in the case (C, E2)

(2) V = PWP2 Θ Up2(2)), in the case (C, E5)

(3) V is a two-sheeted covering ofY= PWP* @ ϋP2(l)) with a branch divisor

B e I — Kγ I, in the cases (C, E3) and (C, E4).

§6. The case (£>, D)

6.1. Let πλ and ττ2 be both of the type D (see 1.3.3). Let Sx = πf(x), x e

C υ and 5 2

 = ττ2 (x), Λ: ̂  C2, where 7ΓA : F~^ Ck, k — 1,2, are the corresponding

extremal morphisms. As /θ(V) == p(Ck) + 1 = 2, then Sx is represented in the

form Sx = a.S2 + b.Kv, for some rational a, b. In particular, KSi = (Kv + SJ

\Sχ = (1/W.(- a.S2 + (b + D.SJ \Sι. Hence

KSι.KSι = (l/b2).«b + D.S, - fl.S2)
2.S1 = 0,

since Si Si — S2.S2 = 0. On the other hand, the divisor — KSι must be ample,

since Sx is a Del Pezzo surface, P , or P X P (see 1.3.3). We come to a contra-

diction.

6.2. COROLLARY. There are no manifolds for which izγ and π2 are both of type D.

§ 7 . T h e case (E,E,...,E)

Let V admits morphisms πlf π2i. . . ,7Γn of the type E, and let V be strongly

primitive. Let Dv D2f...,Dn be the corresponding divisors on V, which πv π2,...,πn
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contract (see 1.3.1). Then, by [4, p. 124 (8.1)], the divisors Ό{ are mutually dis-

joint. Consequently, the contractions τri carry out independently.

Theorem 1.5 is proved.
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