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Consider the function with variables zv.. .,zm

(0.1) Γ Π (ti-t,)" Π (t,- zi)
λidt1dt2...dtn,

Γ l<i<,j<n l<i<n

where v and λ} (j = 1,. . . ,m) are complex numbers and Γis a suitably chosen in-

tegral domain. In case m — 2, if we set [zv z2]
n as Γ, it is the Selberg

integral [22]. Our function can be regarded as an extention of it; so we may call

(0.1) a Selberg type integral. It is known that (0.1) satisfies a Gauss-Manin system,

i.e. a system of rationally holonomic differential equations [3], [21].

The purpose of the present paper is to study the (ir)reducibility conditions of

the Gauss-Manin system associated with the integral above. Here the (ir)reducibil-

ity of a system means the (ir)reducibility of its monodromy representation.

Throughout our arguments, we adopt a framework of the theory of twisted

rational de Rham cohomology and twisted homology, which will be briefly

reviewed in Section 1. Let the many-valued n-ίorm Φdtγ.. .dtn be the integrand of

(0.1). A basis of the twisted n-th de Rham cohomology group attached to Φ natur-

ally induces a system of matrix valued differential equations of the first order,

which is called the Gauss-Manin system. Our first result is its explicit expression

(Proposition 2.1). Luckily enough, our system happens to have logarithmic poles

with residues of constant matrices, which makes our discussion much simpler. A

study about (ir)reducibility is made in Section 3. Our second result is the irreduci-

bility condition when v = 0. In this case, it is shown that if λj (1 < j < m) <£ Z

and Σj l i λj £7A then our system is irreducible (Theorem 3.1). This suggests that
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4 4 KATSUHISA MIMACHI

our Gauss-Manin system is generically irreducible, though we could not succeed in

finding (ir)reducibility conditions in general setting. If a given system of differen-

tial equations has a subsystem, then the monodromy representation of the original

one is reducible, of course. It seems an interesting problem to find a subsystem of

our system. We find four reducible cases, when m — 3 (Theorem 3.3). We also

prove that the Lie algebra generated by the residue matrices is isomorphic to the

general linear Lie algebra Qi(n + 1 C) (Proposition 3.4). The author believes that

this Lie algebra should shed light on the irreducibility conditions in the future.

When m is arbitrary, we obtain a reducibility condition and a corresponding sub-

system in Theorem 3.5: We find that if 0 < £ < n - 1 and 2λ},+ v£ = 0 (j =

1 , . . . ,rn — 2) then our system is reducible. By virtue of the formula in Theorem

3.5 in the case £ — 1, we can derive a system of the differential equations of the

second order which is satisfied by the integral (0.1) (Theorem 4.1). This system is

related with the spherical functions of BC type defined in [11].

We finally give a comment that the integral (0.1) is used to give an integral

representation of the solution of 31 (2) Knizhnik-Zamolodchίkov equation in Con-

formal field theory. Its monodromy representation is studied in various aspects

and related with our work. See [6], [8], [21], [26].

1. Twisted cohomology and homology

Let zv.. .,zm be complex parameters. Let

(1.1) Φ= Π (/,-*/ Π Ut-ZjΫ'
l<i<j<n l<i<n

\<j<m

be a many valued holomorphic function with variables tlt . . . ,tn on X = Cn\D,

where

D:= U {*,-*, = ()} U {ti-zj = O},

and v and λj (1 ̂  j ^ m) complex numbers. The symmetric group Sn acts freely

on X as permutations of the coordinates tlt... ,tn.

Let ΩP(* D) be the space of rational p-ίorms on CΓ that are holomorphic on

X. Then the (single-valued holomorphic) 1-form ω : = dΦ/Φ on X determines a

rationally integrable connection (Gauss-Manin connection)

Vω:Ωp(*D) 3 φ^ Vωφ = dφ + ωΛφ e β'+ 1(*Z».

Then we have the following complex:
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Its p-th cohomology, denoted by HP(Ω'(* D), Vω), is called the p-th twisted

rational de Rham cohomology associated with the connection form ω. The follow-

ing fact is fundamental.

THEOREM 1.1 ([3], [9]). (1) Suppose that

(Mon): non of the values of i iλj + ~κ (i ~ 1) v) (1 < j < tn, 1 < i < n),

^ i (i+ l)v (1 < ι< n ) Λ i - 1 - n) Σ^λk + {(l ~ 2

λ ) + (n

2)}v (1 < ι< n)

lies in N\{0).

Then the symmetric part Hn(Ω'(*D), VωΫn of the cohomology Hn(Ω'(*D),

Vω) is generated by the symmetrization of the logarithmic forms

(1.2) dlog (t, - zh) Adlog (t2 - zi2) Λ Λrflog (tn - zj

for 1 < i v . . ,,in < m.

(2) If we suppose Π \λm + -w k) ^ 0, in addition to the assumption (Mon),
Q<k<n-l X Δ '

then a basis of H (12* ( * / ) ) , Vω) n is given by the symmetrization of

(1.3) dlog (*! - zh) Adlog (t2 - zi2) Λ -Λdlog (tn - zin)

for 1 < i v . . .,in < m — 1.

Then the rank of Hn(Ω'(*D), VωΫn is ( n Λ ~ m ~ 2 \

\ m — Z I

This theorem was first proved by Aomoto [3]. His proof depends on the argu-

ments for the generalized Pochhammer differential equations. On the other hand,

Esnault-Schechtman-Viehweg gave another proof of (1) under more general set-

ting (They treat the case of arbitrary hyperplane arrangements [9].). Their proof is

given by the combination of the arguments for the degeneracy of the Hodge-

Deligne spectral sequence and a result by Brieskorn [5].

Let Sω be the local system on X defined by the monodromy of Φ and Sω the

dual local system of Sω. Let HP(X, Sω) be the p-th homology group with coeffi-

cients in Sω. Then we have the perfect pairing (see [7], [23])
HP(X, S*) x HP(Ω'(*D), FJ

(Γ, <p) ^ [ φΦdt^. dtn,
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which induces the pairing of the symmetric parts:

In this paper we consider only the (Sn-) symmetric (co)homology, i.e., the (twisted)

cycles Γ in the integral (0.1) are so chosen that

(1.4) f φ(Φdt1...,dtn)
σ= \ φΦdtι...,dtnj Γ JΓ

for all symmetric rational functions ψ €= C(tlf.. ,,tn) and σ €= Sn.

We refer the reader to [1], [14], [15], [16], [21], [25] for related works with

the twisted cohomology and homology.

By using this framework, in the next section, we derive a Gauss-Manin sys-

tem associated with this Selberg type integral.

2. Gauss-Manin system

This section is devoted to deriving a system of matrix valued differential

equations of the first order associated with the Selberg type integral

f Π (f, - t)v Π (f, - ZjΫ* dtxdt2. ..dtΛ
JΓi<i<j<n l<i<n

with variables zl9 . . . ,zm. In what follows we suppose m > 2 and fix a cycle Γ

satisfying (1.4).

Notice that for a rational function φ, we have

(2.1) ~dz~ J <Pφdt1dt2...dtn = J (VZsφ)Φ dtλdt2.. .dtn,

where

_ . _ d , dlogΦ

For brevity we put

(2.2) φ(aι , : = Π (ti - za)~ι

\<i<n

for 1 < at < m (1 < i < n) and also use the notation

Ψ{lk\2k\...,mk") ' = (P(llZ^Λ,211^2,...,m11_^1r!1

kι k2 km
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for kv... ,km such that k{ > 0 (1 < i < m) and kγ + + km = n.

Moreover we write

:= fφΦdt1dt2...dtn

for all symmetric twisted cycles Γ, and φλ = φ2 for (φ^ = <φ2)

Under these notations, we derive a system of differential equations of the first

order (Gauss-Manin system) with respect to the basis

(2.3) {<φα*. 24 («-!)*-)> ^ - ^ 0 ( 1 < f < m - 1), Σ k{ = n)
l<i<m-l

Note that the cardinality of the set (2.3) is ( * M

 n ).

(2.4)

PROPOSITION 2.1. (i) For r = 1 , . . . ,m — 1,

<

\<s<m-\ Zr Zs

+
krksv + λskr + λrks

2~> z ~~z r~ Zr ~~

Σ
\<s<m-l

and

(2.5)

k,

Σ -
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Proof. First we derive the equality (2.7) used below. By the Stokes theorem,

we have

(2.6) — 2 Σ φ(aι an_vaj) + Σ λa φ(Oi flw_i>α)

- - - -i l < a < m

indeed, the right hand side of (2.6) is

y J ± [ ^ L - + - ^ ί-
> ( t i ) 2 U M - f, ί ; - 2 a ^ ί, ~ tn t n -

Set

+ π α , - ^ ) - 1 Σ Λβ(/W-zj-1

I<ί<«-1 \<a<m

( V λ Ί
= Σ / _ . + Σ , _! t\ Π (ί,. - zβ)

S"(*n) f« f ; l < α < w fw f α ^ I < ί < « - 1

= F, Π (ί, - z j " 1 = 0.

and αM = m in the relation (2.6). Then the equality

(2.7) 0 = JΛ + \ (K - 1)) φ(1, (Λ_1).-,

+ Σ
2<5<w-l

holds.

By the help of the equality (2.7), we derive the equations (2.4) and (2.5).

Direct calculation shows

(2.8)

= f Σ {-r(| Σ •
l<5<m

dlogΦ

2<s<m
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_ 4.
t

X (p(1., („_!)«.-.).

By virtue of the equality

1 1 1

t - 2
iKn li *1

| 1 1 1

- t, t, ~ Z, t,~ Zs tj - * ! * , - Zj. t, - Zs

we have

(2.9)

The equality

(2.10)

and (2.7) lead to

(2.11)

f Ψ(\kι

h-z, t{-zs zx-zs U - ^

5

Z2<s<x

+ Σ
"2
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Similarly,

(2.12)

the equality (2.10)

_ v
2<5<m-l Zs

gives

1

kl + X<.i<.n tt ~ Zl

K
- zγ

 {(p(lkl'

Therefore we get the differential equation (2.4) with r = 1 by substituting (2.9),

(2.11) and (2.12) into (2.8). The equations with respect to VZf (2 < r <

m — 1) are obtained by changing the suffices accordingly.

The equation for d/dzm is given by the same way as follows. First we note

the equality

(2.13) 0 { %

~̂ ~ ^ w Ψ{...,sks~ι (m-l)km-\ mι)

for 1 < s< m — 1, which is given by changing the suffices in (2.6) appropriately.

By (2.10) and (2.13), we have

(2.14) VZmφ{ι, ( w _ υ ^

— t ^ ( 1 * ' (w-1)*-1)

^ M ^ S //Λ — (D I }

- — - \ ί P ( l * « ( l ) * - 1 ) Φ ( s ^ 1 m V

Its
Zm Zs- l Zm Zs

λs + ^ (ks - 1)1 <p(1,,.

Σ (λt

which is (2.5).

Remark 2.2. To derive the system (2.4) and (2.5), we need no conditions.

Remark 2.3. Our system can be written as

(2.15) dΨ= { Σ Analog^ - z})}Ψ.
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Here Aijf 1 < i < j < rn, are square matrices with size ( ) and with

C coefficients, and Ψ= ' « p ( n >,.. . , W - i n » l t i s k n o w n ( t 1 8 D t h a t ( 2 1 5 ) i s

integrable if and only if the following conditions are satisfied.

[Aφ A i k + Ajk] = Uij + A i k , Ajk] = 0 for i<j< k,

[Aijf Ak£] = 0 for d i s t i n c t i, j , k, £.

These relations are called the infinitesimal pure braid relations, and also called the

classical Yang-Baxter relations, which play an important role in Mathematical Phy-

sics. The linear independence of the basis

guarantees the integrability of the system. Once we get the integrability under the

conditions (Mon), it is guaranteed without any conditions, since the elements of A{j

are linear in λj (/ = 1,... ,m) and v.

3. Reducibility and irreducibility

In this section, we study the (ir)reducibility of the Gauss-Manin system in

Proposition 2.1.

THEOREM 3.1. When v — 0, the Gauss-Manin system (2.4-5) is irreducible if λ{

^ Z ( 1 < / < m ) and Σ ί = 1 λj &Zi.

Proof Notice that the integral (0.1) reduces to the product of integrals of

Pochhammer type (i.e. case n — 1)

f π α,-z/ jdt ldt 2...dt n= π f π
J \<i<n l<i<nJ l<j\<i<n

Takano-Bannai [24] showed that when n = 1, if λ{ ^ Z and Σ™=ι ^i ^ Z then the

monodromy representation is irreducible. On the other hand T. Sasaki [20] showed

that the Zariski closure of this monodromy group is the general linear group

GL(m — 1 C). Hence there exists a basis Bx of the homology HX{X, Sω) in the

n—\ case which gives a fundamental representation of GL(m — 1 C). On the

other hand, each element in the homology Hn(X, Sω) n corresponds to the n-ίo\ά

symmetric tensor of elements in Bv Thus by WeyΓs reciprocity, there exists a

basis of Hn(X, Sω) n which gives an irreducible representation of GL(m — 1 C),
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and consequently of the monodromy representation of (2.4-5).

Theorem 3.1 suggests us that under some generic condition for v and λ{

Gauss-Manin system (2.4-5) is irreducibile, although we could not prove it gener-

ally.

We consider the case m — 3, for a while.

Thanks to Proposition 2.1, the Gauss-Manin system takes the form

(3.1) dΨ={ Σ , - z,)}Ψ

with respect to the basis Ψ= ' (<ΦQ»)) , ^ ( I ^ 1 ) ^ Xφ(2n)^) Here the matrices

Au = (as

ι

t

3 )1<s>t<n+1 do not depend on the z/s and are given by

(3.2)

and

(3.3)

and

(3.4)

(i2) . Λ i v / Λ
« i + U = - ί ^ i + " 2 ( W - I)),

a™ = (i ~ 1) (in -i+l)v+(n-i + l)λ2 + (i -
(12) ~ .

βy = υ otherwise

+ λ3 + J (» - t)),

(13) ^ .

aυ = 0 otherwise

(23) / i i ^ / \ \

«*+!.* = i ^ + 2" (» - 0 j ,

(23)
= 0 otherwise.

These show the following: Fix an integer k such that 0 < k ^ n — 1. If

1 I ^ 7 — r\ i ( 1 2 ) _ ( 1 3 ) — ( 2 3 ) _ rv ^ 1 i i

λi + 2"fc - 0, we have an_k+1>n_k - an_k+1>n_k - an_k+Ln_k - 0. This yields a

subsystem of the system (3.1) with a basis

{φ(1*,2*2) O S f t j S f c , ^ T ^ wt.

Similarly for each k such that 0 < k < n — 1, if λ2 + ~κ k — 0, we have a

subsystem with a basis
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The following question naturally arises: Are there other subsystems of (3.1)? To

answer this question, we transform Au by the triangular matrix P 1 3. Consider a
.(13)

matrix P 1 3 = (p{j )1<u<n+ι defined by

(3.5)

. (13)
pi) = 1 for 1 < ι< 1,

/>(13) =
Pij

(13) (13)

Pi - Pt+i for 2<i<j<n+l,

. (13)
i™' — 0, otherwise,

where p / 3 ) = in — i + 1) \λι + λ3 + ~κ (n ~~ i)). Then we have the key lemma.

LEMMA 3.2. Under the condition

n-l

(3.6) Π
/ = 0

(3.7)

where

+ -o ί) Π (2^! + 2Λ3 + Λυ) ^ 0,
^ ' k=0

( 1

p 2

P = R — (h(23))
β^lS -°23 V ί y i ; 'l

(3.8)

+ Λ3 + -J- (n - i - 1)) (/i3 + y (n - i ) ) U + >l2 + -i3 + y (2» - t - 1)

U, + /i3 + (n - i)v) [λ, + A3 + ^(2n- 2» -

< = - (n - i + 1)

x + %(n- i)) (λ2 + j ( i - 1 ) ) ( ^ + /l 3

I1 + λ3 + -ϊ (2M - 2ι

, ( 2 3 )

ό j ; = 0 otherwise.
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Proof. Since

o (13) (13)
ί-2 ft r\

d e t P 1 3 = Π Π

= π π 3

ί=2 ί=0 2 ( n -

the condition detP13 ^F 0 is equivalent to (3.6). Then it suffices to prove the equal-

ity A23P13 = P13B23. The 0', /) -entry in this equality is

/O Π\ ( 2 3 ) ^ ( 1 3 ) _J_ ( 2 3 ) ^ ( 1 3 )

(3.9) ai,i-iPi-u + <*u Pϋ
_ . (13) T (23) . . (13) T (23) , . (13) , (23)

- pitH1 DH1j -1- /) / > y ^ i ; -h pitj+1 0j+ίtj.

Note that only the elements at j' — i — 1, ί, / + 1, . . . ,n + 1 are not zero. At

j = i — 1, the above equality is obvious. Thus the only cases j > i are crucial; so

we suppose j ^ i.

First we get

(23) . (13) - (23) . (13)

<li,i-ιPi-ιj + 0f,i A;
. _ 2 (13) (13)

= d - 1) Π

(» - i + 2) ^ + ̂ (n-i+ 1)) (A2 + I (» - 2))

(i - j - 1) (λ, + λ3 +1 (2« + 2 - i - ; ) )

On the other hand, by noting

f-2 & ~ ft Ul "^ ^3 + "O" ̂ ^ ~ i "*" 1) ) ί-2
Π (/o;_1 - p / + 1) = Π (pj - pt+ι)

ί = 0 (1 ~ j) (λ, + λ3 + g- (2w - t ~ + 2) y

and

») „( \ )
Π (pj+1 - pι+1) = Π (pj - pl+1),

i -j-Ό (λ, + λ3 + ~
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we obtain

, (13) , (23) , , ( 1 3 ) , (23) , , (13) , (23)

Pij-,, bj^j + pu bjj + piJ+1 bj+hj

i-2

π
(13) (13)

P

(1

Pi

- ) [λ1

Π

, / , (23) , (23)

+ (- Vu ~ Vu

(13) (13)
Pi - Pt+ι

(i - j) [λ, + λ3 + j (2M - j + 1)

~ t -

o (2«-;)

, (23)

t - y - υ Λ

( ί - 1)

- )

a -1) a,

; + 1)) (23)
"i-l.j

2)

r (23)

(i- j - 1) U + Λ3 + y (2» - )

(13) (13)

= π
f - 1

1=0 {(n - ί) 2j

(n - j + 1) ^ 1 + 7r (n - ) j ^ 2 + f ( - 1)

Therefore the equality (3.9) reduces to

i + Λ3 + \ (2M ~ 2; + 1)) {(M - t + 2) ^ + - | (M - ί + 1)) (^2 + | (i - 2)

+ (i - - 1) (/i, + ^ + ~ (2M - t - + 2)) 6 2 + λ3 + ~ (i - 2)

~(n- j)) ίλ3 + ~(n-j+ 1)) L + λ2

( » - ; + !) (Λ + /i3 + I (2» - t - + 2)) L +~ (n - j)

2" (2«-»
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which can be checked readily. This completes the proof. •

Notice that P^3 A13Pl3 is diagonal and P±3 A23Pl3 is tri-diagonal.

THEOREM 3.3. If one of the foHomings holds, the Gauss-Manin connection (3.1) is

reducible:

v
(1) λλ + -y k = 0 for some k such that 0 < k < n — I,

(2) λ2 + -K k = 0 for some k such that 0 < k < n — 1,

(3) under the condition (3.6),

λ3 + -K k — 0 for some k such that 0 < k < n — 1,

(4). under the condition (3.6),

λi + λ2 + Λ3 + ^ (2» - k - 2) = 0 for some k such that 0 < k < n - 1.

Proo/. The assertions (1), (2) have already been proved. The assertions (3)

and (4) are derived from Lemma 3.2, since one of the off-diagonal elements of

PΪ3A23Pl3 vanishes. •

On the other hand, as a by-product of the argument above, we have

PROPOSITION 3.4. Under the condition (3.6), the Lie algebra SEie(Al2, A13,

A23) generated by three matrices Al2, Al3 and A23 is isomorphic to the general linear

Lie algebra Qί(n + 1 C) .

Proof It suffices to show that Lie algebra generated by two matrices

^^13^13 a n c * P13 A23Pl3 is isomorphic to gl(» + 1 C) under the condition (3.11).

We suppose (3.11) in what follows. By (1) of Lemma 3.2, ί\3 Ά13-P13 is a diagonal

matrix with different entries each other, which will be written by D13. Any ele-

ments of matrix B23 = PΪ3A23P13 are not zero. Hence by considering the adjoint

actions [Dl3[Dl3[,,,[Dl3, B23]]]] and Vandermonde determinant, it is seen matrix

units Eu+1 and Ei+hi for 1 < i < n and Eu for 1 < i < n + 1 are included into

the Lie algebra generated by D13 and B23. This completes the proof. •

The author believes that the Lie algebra 2He(Al2, Al3, A23) generated by the

residue matrices of the system (3.1) coincides with the Lie algebra Lie(PV) of the
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Picard-Vessiot group PV of (3.1).

We refer the reader for related works [2], [10], [17], [18], [19].

As for general m, we obtain the following.

THEOREM 3.5. Fix £ as 0 < £ < n - 1 and λ{ + ^ £ = 0 for i = 1,. . . ,m ~ 2.

Then the Gauss-Manin system (2.4-5) is reducible, indeed, we have a subsystem of it

with a basis

(3.10) {<φa, ( w - υ ^ ) > 0 < k{ < £ (1 < i < m - 2), 0 < /cw_J.

Forr= l,...,rn- 2;kr = £,

d
(3.11) <Φ(lV.,r'.....(«-l)*"V

£ksv + λs£+ λrks

zv — zQ

'
zv — zn

X <

Σ
<5<W-

s*r
ks<£

for r = 1,.. .,m - 2 kr < £,

(3.12)

- ( ^ r + jAr) Σ

^ Krtt<V T AsKγ ΊΓ ΛrKs

\<s<m-2 \ ^ Zm Zγ Zs

ks<£

- i ) i , - z - J~ΞΓ-Z <Φ( ..,/'"' o
/ lZr Zm Zr Zm-iJ
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for ίY — m— \,

(3.13)

- (λ + V k ^

+

9

3 ^ - 1 < < P α " (

) Σ K <••
l < s < w - 2 ^m-1 ^s

ςlS 1 ΛSΠγyι_ ^ 1 Λ ^ ~ 1 S
~Γ Zm-\ ~~ Zm

Σ km_γ(λs + \ ks) { * -
ks<l

x

and for r = m,

(314)

Σ
zm — Zc

Σ Σ

kf<£

kίλ +-k )
Σ —r^;

Proof. It is easily seen from the formulas in Proposition 2.1.

Remark 3.6. The dimension of our system is the cardinarity of the set

U / c 1 , . . . , / c w _ 1 ) ; O < / c / < f ( l < i<m - 2 ) , 0 < Λ m _ l f ftx + ••• fc^^n}.

F o r instances, it is (/ + l Γ ~ 2 if » > (m - 2)1 and ( Λ + W 7 2 ) if / > n > 1.
\ m — 2 /
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Remark 3.7. In case £ = 1, which will be discussed in the next section, the

dimension of the system is estimated as

N(m, n) ' = 1 + [ Λ ) + •'• + (
\ 1 / \ n

which is 2m~2 if n > m — 2.

4. Spherical functions of BC type

As an application of Theorem 3.5 in the case / = 1, we derive a system of

differential equations of the second order which is satisfied by the integral (0.1),

which is written by (1). It is known by Beerends-Opdam [4] and Kaneko [13] that

this system characterizes some generalized hypergeometric series of matrix argu-

ments under some conditions. Moreover, it was shown by Beerends-Opdam [4] that

this generalized hypergeometric series is a special case of the hypergeometric

function associated with the root system of BCm type defined in [11], [12].

THEOREM 4.1. For r — 1,.. ,,rn — 2, put

(4.1) Δr= (zr-zm)(zr-zm_ι)d2

r

r[l+ /%/% j < Ί I . j —4— J ί— ί 4/1 Ί Ί / I —I— I

^ l<s<w-2 ^^ As

v_ v (z5 ~ zm_λ) (zm - z3)

2 z — z s'

where d{ = d/dz{ and λr= — v/2. Then we have Δr <1> = 0 /or r = 1 , . . . ,m — 2.

Proo/. F ix r ( r = l , . . . , m - 2 ) . By (3.12), we have

(4.2) dr <φ((m-ir)> = z

Hence

(4.3) <φ{Λ ( w _ i r l ) > = <^((,-m> " ' n λ

 m " 1
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On the other hand, by (3.11) we have

(4.4) dr<φirUm_ir^

Σ >ί5 I _ -
l<s<m-2

\{n - 1)

By substituting (4.3) into both sides of (4.4), we finally obtain

(4.5)

{(zr - zj (zr - z^dl + {(l + ~ - λm_){zr - zj - Qr + λj {zr - zm_λ))dr

Mm + λm-ι + ̂ (n-m + l)\ +~(zr-zm_1)(zr-zj Σ 9r

l<5<m-2
5#r

The equation (4.1) is given by substituting λm_ι + 1 for λm_1 in (4.5).

Remark 4.2. If we put zm — 0 and z m - 1 = 1 in (4.1), then the operators

Δr (1 < r < m — 2) turn out to be

(4.6) 4 = Φ - zr)d2

r + { ( I - λm) ~ ( v - λ m - λm_λ)z]dr

+ \zri\-z) Σ γ±γdr

_v_ zs{\ - zs)
9 ^ 2 — 2 s'

s*r

Remark 4.3. By taking various Γ^Hn(X,Sω)n, we can construct

N(rn, n) solutions of (4.6) expressed by the integral (0.1) (see Remark 3.7). Notice
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that

N(m, n) = 2m~2, when n > m — 2,

N(rn, n) < 2m~\ when n < m - 2.

In [13], Kaneko states without proof that the rank of the system (4.6) is 2m~ (the au-

thor has been told by him that he has proved this fact). The author does not know if

the rank of the system (4.6) equals to N(m, n) when n < m ~ 2.
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