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ON TWISTING OPERATORS AND

NEWFORMS OF HALF-INTEGRAL WEIGHT

MASARU UEDA

In memory of my father

Introduction

The theory of newforms is very important and useful for arithmetical study

of modular forms of integral weight. It is natural to try to extend this theory into

the case of modular forms of half-integral weight Until now, several authors have

attempted to find a theory of newforms of half-integral weight (cf. [She], [N], [K],

[M-R-V], [She-W]). But complete results have not been obtained yet.

The purpose of this paper is to complete Kohnen's results in [K] and to estab-

lish a theory of newforms for (what is called) Kohnen space of arbitrary level

(cf. §0(d)).

This paper is composed as follows: §0 is general preliminaries. §1 and §2 are

preparations for the main parts of this paper. We shall deal with both the full

space S(k + 1/2, N, χ) and Kohnen space S(k + 1/2, N, χ)κ in these sec-

tions. The main parts of this paper are §3 and §4 and the main results are

Theorems (3.10-11) and Theorem (4.13). In these sections, we shall deal with

only Kohnen space.

Let us explain the contents of this paper, precisely.

Let k, N be positive integers with 4 | N and χ an even character modulo N

with χ = 1. Denote the space of cusp forms of weight k + 1/2, level N, and

character χ by S(k + 1/2, N, χ) (cf. §0(c)).

In particular, when ord2(Λ0 = 2, W. Kohnen ([K]) defined a canonical sub-

space S(k + 1/2, N, χ)κ of S(k + 1/2, N, χ) which is called Kohnen space

(cf. §0(d)). He also established the theory of newforms for this subspace when

N/4 is (odd) squarefree.
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Unfortunately, when iV/4 is not squarefree, Kohnen's theory does not work. In

fact, there exists a case such that all common eigen subspace of S(k + 1/2, TV, χ)κ

for Hecke operators have dimension > 2 and hence a strong "multiplicity one

theorem" does not hold good (cf. [Ul, Proposition 3(3)]).

This difficulty can be resolved by decomposing S(k + 1/2, N, χ)κ into

eigen subspaces of twisting operators. For simplicity, we write S = S(k + 1 /2,

N, χ) or S(k + 1 /2, N, χ)κ. We decompose N as follows:

N=2orά*<N)M1M2+, M,= Π p , M 2 + = Π p o r d p i N ) .
p\N,pΦ2 p\N,pΦ2

oτdp(N) = l ordp(N)>2

Denote the set of all prime divisors of M2+ by Π.

In §1, we shall decompose S by twisting operators:

S = ( Θ S9tX)®Keτ(Rπ;S).
\κeMap(i7,{±l}) '

Here, S*'K = {/ e 5 f\ Rι = /c(/)/ for all / e 77) and i?^ (resp. i?,) is the

twisting operator of the character Π / e 7 7 (y j (resp. ( τ ) ) We define an operator 5/

by / | JBjfe) : = f(lz), ^ ^ ^ . Then Ker(i?^ S) - Σ / € E / 7 S ( A ; + 1 /2 , JV//,

χ ( - ) ) I JB, or Σ/e j?7s(A: + 1/2, N/l, χ ( - ) ) | JB, (cf. Propositions (1.5) and

(1.10-11)). This means that Ker(Rπ S) consists of "oldforms".

Each S '* is stable under the action of all Hecke operators Tin )((w, ΛO — 1).

Moreover, there exists a case such that S ' — S as Hecke modules for distinct

A:, κr e Map(i7, {± 1}) (cf. [U6]). This is the reason why Kohnen's theory does

not work when N/4 is not squarefree (<=> M2+ Φl).

Thus, Kohnen space is not good for establishing a theory of newforms, and in-

deed, the space S ' is important for that. We shall study the space 5 ' as Hecke

module in the rest of §1 and §2. In particular, we shall explicitly compute the

trace relation between the traces of Hecke operators T(n )((w, N) = 1) on S '*

and the traces of Hecke operators T(n) on certain subspaces of S (2k, iVO, where

N' varies any positive divisors of N/2 (cf. Proposition (2.23)). We need some

assumptions about iV and χ for obtaining the above trace relation.

In §3, We shall consider only Kohnen space and establish a theory of new-

forms on the space 5 '* (and so S(k + 1/2, N, χ)κ), which contains Kohnen's re-

sults in [K], by using the above trace relation formula (2.23).

The main results are as follows:

( i ) There exists a canonically defined subspace © >κ(k + 1/2, N, χ)κ of S '*
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and a canonical decomposition:

S

0 * = e ®e "(k + 1/2, 4dM2+, χ)κ\ U(e2),
0<e,d
ed\Mι

(cf. (3.5) and Theorem (3.10)). Here, U(e2) is the operator: Σ ^ ^ W e f c ) *-+

Σin>1a(e2n)e(nz).

(ii) We can explicitly express the trace t r ( ί i n ) ©0'κ(A; + 1/2, TV, χ)^)

((», ΛO = 1) with the traces tr(T(n) C/) for all primitive forms / e S(2A, JV/4)

and the multiplicity of each primitive form in that expression is at most one (cf.

Theorem (3.10)). In particular, we have a strong "multiplicity one theorem" for

©0'κ(/c + 1/2, N, χ)κ (cf. Theorem (3.11)).

(iii) We can define an involution w^ for any prime divisor p of Mι (cf. (3.6)). This

wp corresponds to the Atkin-Lehner involution of integral weight (cf. Theorems

(3.9-11)).

The author thinks that these results are still incomplete. Because the conduc-

tor of each primitive form of integral weight, which corresponds to © >κ(k + 1/2,

Â > X^κ (cf (ii)), is not always N/4 = M1M2+ and all we can say is that it is of

the form MγM
r for a certain positive divisor Mf of M2+ (cf. Theorem (3.11)).

We shall discuss this topic in §4. We denote by -ϊc a certain subspace of

©0>κ(/c + 1/2, N, χ)κ constructed with the spaces ©0>κ'(Λ; + 1/2, Nf, χ)κ's and

the operators U(a),Rh where ttr is a restriction of K and N' is a positive

divisor of N with N' < N (cf. the sentences before Theorem (4.13) for a precise

definition). We also denote by ϊί <κ the orthogonal complement of -K 'κ in © tX(k +

l/2,N,χ)x.

Then we have a decomposition:

©0'κ(/c + 1/2, N, χ)κ = 9ΐ0

and we can characterize 9ΐ 'κ(resp. SR >κ) as the subspace of © >κ(k + 1/2, N, χ)κ

corresponding to only primitive forms of conductor N/4 (resp. of conductor smal-

ler than N/A), under a certain assumption (4.1) on the character χ (cf. Theorem

(4.13)).

Moreover, the author believes that the assumption (4.1) is not necessary (cf.

the discussion at the end of §4). If it is true, the space ϊϊ ' is the true space of

newforms and S(k + 1/2, N, χ)κ can be constructed with 9ΐ >κ's (of various Λ 'S

and various levels) and the operators (Bh U(a ), i?/).

The author hopes that this is a final form of a theory of newforms of

half-integral weight.



138 MASARUUEDA

Finally, we have some comments. It seems likely that the results in §3 and §4

can be generalized to the full space S(k + 1/2, N, χ ) , because their proofs de-

pend largely on applying the results in §1 and §2 of this paper.

The proofs in §3 is to a large extent analogous to Kohnen's ([K]). We remark
N

that Kohnen's results on the operator wpk+l/2x ([K, Proposition 4, Theorem 1])

contain a mistake. The factor ί—r^-J falls out. Our operator w^ in §3 is a correc-

t i o n of Wp>k+1/2tΓ

§0. Preliminaries

Throughout this paper, we use the following notations.

(a) General notations

Let A, B be subsets of a set X and {Af}ieI a family of subsets of X. If A U B

is a disjoint union, then we denote A + B ' = A U B for simplicity. Similarly, if

U ieIA{ is a disjoint union, then we denote Σ^^ = U ίe/Aj.

We denote the set of positive integers by Z + the symbol CH denotes any

square integer. For any n ^ Z+, we denote by φ(n) the order of the group

(Z/nZ)\

For any prime p, the symbol | |̂  is the />-adic absolute value which is

normalized with \p\p — p~ and we also denote the additive valuation for any in-

teger m by ord^Cm). Then \m\p— ρ~oτdp m .

For a real number x, [x] means the greatest integer m with x > m and we

denote sgnCr) = 1 or — 1, according as x > 0 or x < 0.

See [M, p.82] for the definition of the Kronecker symbol \-r) (a, b integers

with (a,b) Φ (0,0)).

For a positive integer L and mlf m2 ^ (Z/LZ) X , we denote mλ ~ m2 if

m 1 ( Z / L Z ) x 2 = m2(Z/LZ)x2. Let N be a positive integer and m an integer Φ 0.

We write m \ N°° if every prime factor of m divides N.

Let k denote a non-negative integer. If z ^ C and x e C, we put z"27 =

exp(j: log(z)) with logU) = log(| z\) + y/— 1 arg(z), arg(z) being determined

by — 7Γ < argGε) < π. Also we put e(z) = exp(27Γ\/— I2).

Let § be the complex upper half plane. For a complex-valued function

r/x I a b\ + / x (u υ\
f(z) on «p, α = ( . G GL 2 (R), 7 = 1 ) ^ -Γ0(4) and 2 ^ f i , we define

\ c a ' \ w x '
functions / ( α , z), j(γ, z) and f\[a]k(z) on ^ by: / ( α , 2:) = C2 + d, j(γ, z) =

(f ) t e + x ) and/|[α]fcω = (det a)k/2J(a, z)~kf(az).
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For m G Z + we define an operator U(m) on formal power series in e(z) by

Σ a(n)e(nz) \ U(m) '•= Σ a(mή)e(nz).
n>0 n>0

Let X be a Dirichlet character modulo N. Then we denote the conductor of χ

by f (χ) and the ^-primary component of χ by χp for each prime divisor p of N.

For a primitive character φ modulo r, we put the Gauss sum for 0 : g(0) —

Let V, Vr be finite-dimensional vector spaces over C. We denote the trace of

T on V for a linear operator T on V by tr(Γ V) and also the kernel of a linear

map F from V to V by KerCF V).

(b) Modular forms of integral weight

Let k and TV be positive integers. By S(2k, N), we denote the space of all

holomorphic cusp forms of weight 2k with the trivial character on the group

Γ= Γ0(N). We also denote the subspace of S(2k, N) spanned by all newforms in

S(2k,N) by S°(2k, N).

Let a €= GL2(R). If Γ and a Γa are commensurable, we define a linear

operator [ΓaΓ\2k on S(2k, N) by: f\[ΓaΓ\2k = (de tα)*" 1 Σ ^ . / l K ] ^ , where α,

runs over a system of representatives for Γ\ΓaΓ. For a positive integer n with

(n, N) — 1, we put T2kN(ή) = Σ μ ( ) Γ , where the sum is extended
ad=n L X 0 ά' J2/c

over all pairs of integers {a, d) such that a, d > 0, a d, ad — /?.

Let 0 be a positive divisor of N such that ((?, N/Q) = 1. Take any element

7Q ^ SL2(Z) which satisfies the conditions:

0 -

(J J ) (modiV/Q).

Put ίF(0) = 7Q ( π )• T h e following facts are well-konwn: W(Q) is a

normalizer of Γ [W^(Q)]2Λ induces a C-linear automorphism of order 2 on

S(2λ;, ΛO and this operator is independent of a choice of an element γQ. For

Q = 1, we can take ft = W(l) = ( ). Hence we have [(f(l)] 2 ) i = 1. Moreover

for the sake of simplicity, we use the following abbreviated notation: Let A be a

subset of the set of all prime divisors of N. Then WA '-— W(HpeAp
 p ). In par-
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ticular, we simply write Wι = WA if A = {/}.

Moreover, if the subscripts are obvious and any confusion does not occur, we

simply write T(n) = T2kN(n) and W(Q) = [W(Q)]2k, etc..

For any f(z) = Σ ^ = 1 a(n)e(nz) ^ S(2k, N) and χ a primitive character

modulo f = f(χ), put f\ Rχ(z) : = Σ~ = 1 χ(n)a(n)e(nz). From [Sh 3, Proposition

3.64] we have f\Rx& 5(2A:, AT, χ ), where JV' is the least common multiple of

N and f(χ) . We call this operator Rχ the twisting operator of χ.

If / and g are cusp forms of weight 2k on a subgroup Γ of finite index in

SL2(Z), we denote their Petersson inner product by:

</, g> = υit^y1 f f(z)J(z)y2k-2dxdy,

υ(Γ\ξ>) = f y~2dxdy (x = Re(2), y = Im(z)).

In the following sections, we shall use various properties for the operators

T2k,N^9 W(Q)> and Rx. We shall collect them in the appendix 1.

(c) Modular forms of half-integral weight

Let k denote a non-negative integer, N a positive integer divisible by 4, and

χ an even character modulo N such that χ2 = 1. Put μ = ord2C/V), M— 2~UN

and Γ= Γ0(N). Then there is a square-free odd positive divisor Mo of M such

/MΛ (2MΛ
that χ = (—"Ί or ( "• I (the Kronecker symbol).

Let ®(k + 1/2) be the group consisting of pairs (α, φ), where a = ( , I

^ GL2 (R) and )̂ is a holomorphic function on ξ> satisfying φ(z) =

ί(det α)"Λ / 2" 1 / 4/(«, z)k+U2 with / e C and \t\ = 1. The group law is defined by:

(α, φ(z))-(β, φ(z)) = (α^S, <p(βz)φ(z)). For a complex-valued function / on

$ and (α, <p) ^ ©(A: + 1/2), we define a function / | (α, <̂ ) on ^ by:

/ | (α, φ) (2) = φ{z) f(az). Moreover if there will be no confusion, we also write

7* = (7, j(r, *)2*+ 1) for all r e Γ0(4).

By zl = Δ0(N, χ) = 40(iV, χ) Λ + i / 2 , we denote the subgroup of ®(k +

1/2) consisting of all pairs (7, φ), where ( , ) = γ ^ Γ and φ(z) = χ(d)

\ c d 1

j(γ, z)2k+1 and also denote Δx = ΔX(N) : = {7* | 7 e Γ.iN)}.

We denote by G(k + 1/2, AT, χ) (resp. S(fc + 1/2, N, χ)) the space of in-

tegral (resp. cusp) forms of weight k + 1/2 with the character χ on the group Γ,

namely, the space of all the complex-valued holomorphic functions / on «£) which
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satisfy f\ ξ = /for all ξ e Δ and which are holomorphic (resp. are holomorphic

and vanish) at all cusps of Γ. In particular, we write S(k + 1/2, ΛO = S(k +

1/2, N, χ) if χ is the trivial character. Moreover we also denote by S(k + 1/2,

ΔiiN)) the space of cusp forms of weight k + 1/2 on the group ΓX(N) i.e., the

space of all the complex-valued holomorphic functions/ on ξ> which satisfy/| ζ

— f for all ξ <Ξ Δγ and which are holomorphic and vanish at all cusps of

Γλ(N) ([cf. Sh 1]).

If / and g are cusp forms of weight k + 1 /2 on a subgroup JΓ of finite index

in -Γ0(4), we denote their Petersson inner product by:

</, g) = υ(Γ\ξ>Yι f f(z)~g(z)yk-3/2dxdy,
Jr\Φ

v(Γ\ξ>) = f y~2dxdy (x = Re(z),y = ImU)).

Now for y = 0 or 1, we denote by ΩV(N, χ) the set of all pairs (p, 0, where

jθ is a primitive character modulo r with jθ(~ 1) = (— lY and ^ is a positive inte-

ger, which satisfy the following two conditions:

(0.1) Ur2\N.

(0.2) χ = f -̂  ) p as a character modulo N.

Then we consider the theta series of the following type:

hv(p z) = (1/2) Σ p(m)mue(m z), where ^ e § and y = 0 or 1.

For the case v = 0, we know that {/z°(p fe) | (p, β ^ Ω°(N, χ)} is a C-basis

of the space G ( l / 2 , N, χ) (cf. [S-S]). For the case v = 1, let t/C/V χ) be the

subspace of S(3/2, iV, χ) generated by {/z'Cp tz) \ (p, t) e β'OV, χ)} over C.

By V(N χ), we denote the orthogonal complement of U(N χ) in S(3/2,

iV, χ) with respect to the Petersson inner product.

Let ξ £ ® ( A + 1/2). If Δ and ξ Δξ are commensurable, we define a

linear operator Ld£d]Λ + 1 / 2 on G(k + 1/2, iV, χ) and S(k + 1/2, iV, χ) by:

/ | [4ξzl]^+ 1 / 2 = Σ J J / I ^ , where 7y runs over a system of representatives for

Δ \ΔξΔ. Similarly, if ζ and ξ Δλζ are commensurable, we define a linear operator

[Δ.ξΔ,] on 5(/c+ 1/2, ^UV)) by / I ^ ^ J = ΣηeΔιVιiΔι f \v

Then for a positive integer n with (^, ΛO — 1, we put
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where the sum is extended over all pairs of integers (a, d) such that a, d > 0,

a I d and ad = n. We simply write T(n ) : = Tk+1/2Nχ(n ) if the subscripts are ob-

vious and any confusion does not occur. These operators T(n )((n, N) — 1) are

hermitian and commutative with each other on S(k + 1/2, N, χ) (cf. [Sh 2, Lem-

ma 5), [Sh 3, Proposition (3.32)], [Ul, (1.9)]).

For k = 1, from [Sh 1, Theorem 1.7], it follows that h\p tz) with (p, f) e

Ω (N, χ) is an eigen function of the Hecke operators T3/2Nχ(p ) for all prime

numbers p X N. Hence, we see that U(N χ) and V(N χ) are invariant under

the action of the Hecke operators T3/2>N>χ(n ) for all natural numbers n with

(n, N) = 1 (cf. [Sh 3, Lemma 5]).

U(N χ) corresponds to the space of the Eisenstein series through the Shi-

mura correspondence and only the elements of V(N χ) correspond to the cusp

forms (cf. [St]). Hence, when k = 1, we shall be dealing with V(N χ) in place of

S(3/2, N, χ). Moreover, we can see the following: For any m e Z+, U(N χ)

<Ξ U(Nm χ) and V(iV χ) <Ξ V(Nm;χ). In fact, the first assertion follows

from the definition. Next, we have V(N χ) £ S(3/2, ΛΓ, χ) c S(3/2, ΛΓm, χ)

and also V(N χ) -1 U(Nm χ) because U(Nm χ) corresponds to the space of

Eisenstein series and V(N χ) corresponds to a space of cusp forms (cf. [C], [St]).

Hence V(N χ) <Ξ K(7Vm χ). Π

Let /(>ε) = Σ^= o a(n)e(nz) ^ G(/c + 1/2, N, χ) and 0 a primitive charac-

ter modulo f(0). Let iV' be the least common multiple of N, \(ψΫ, and f(0)f(χ).

Then /|/?^U) : = Σ^o^(»)«(»)e(»^) belongs to the space G(Λ + 1/2, N',

χφ ). In particular, if/ is a cusp form, so i s / | Rφ [Sh 1, Lemma 3.6].

(d) The Kohnen space

We keep to the notations in the subsection (c). Let k be a positive integer.

(M \
Suppose that N — 4M and M is an odd natural number. Then χ = (—"•) for some

positive divisor Mo of M (cf. §0(c)). Put ε = \~jf~) ~ %2^~ D» where χ2 is the

2-ρrimary component of χ. We define the Kohnen space S(k + 1/2, N, χ)κ as

follows:

i x S(k + k N, χ) 3 f(z) = Σ:= 1 a(n)e(nz)
^ i V , χ) = Z

* αθι) = 0 for ε(- \Ϋn = 2,3 (mod 4)

In particular, we write S(k + 1/2, N, χ)κ = S(k + 1/2, N)κ if χ is the trivial
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character.

Put ξ : = ξk+1/2>ε = (( J * ) , εk+U2e«2k + l)/8)) e ®(fc + 1/2) and

Qfc+i/2,Ar,χ = [ΔξΔ]k+1/2, Δ = ΔQ(N, χ)Λ +i/2. Then we know the following from

[K, Proposition 1]: Qk+i/2,N,x * s a hermitian operator on S(k + 1/2, ΛΓ, χ) ; and

S(k + 1/2, iV, χ)κ is the α-eigen subspace of S(k + 1/2, Af, χ) with respect

to the operator Qk+ι/2,N,χ> where a = ( — 1) 2V2"ε.

For /c = 1, from the definitions of S(3/2, N, χ ) x and ί/(iV χ ) , it is easily

shown that S(3/2, N, χ)κ contains U(N χ). We denote by V(N;χ)κ the

orthogonal complement of U(N χ ) in S(3/2, iV, χ ) ^ with respect to the Peters-

son inner product. Then we can see for any odd positive integer m, V(N χ)κ <Ξ

V(Nm χ)κ (cf. §0(c)).

From [K] §3 and §4, we know that S(k + 1/2, N, χ)κ (resp. V(N ;χ)κ) is

invariant under the action of the Hecke operators Tk+1/2Nχ(n ) (resp. T3/2Nχ(n ))

for all positive integers n with (n, N) — 1.

Moreover Kohnen introduced the following operator on S(k + 1/2, N, χ)κ

in [K §3]:

0

where P r : = ^— (θΛ+i/2^,χ + "o") is the orthogonal projection from S(/c + 1/2,

N, χ) onto S(k + 1/2, N, χ)κ (cf. [K, Proposition 1]). We shall use this oper-

ator in §3. We collect various properties of Tk+1/2fNtX(4) in §3.

§1. The spaces S ' , V ' and several operators

Let A: be a positive integer, N a positive integer divisible by 4, and χ an even

character modulo N such that χ = 1. The letter z means an element of ξ>. Put

μ = ord2(Λ0 and vp — ordp(N) for any odd prime p. We decompose TV as follows:

N = 2UM = 2"Af1Af2+, where Mx' = ΐlplM>Vp=]p and M2+ : = Π ^ , ^ ^ ^ . We also

denote the set of all prime divisors of M2+ by Π — Π(M2+) = {/lf. . . ,/r}. From

now on to the end of this paper, these notations are fixed.

Remark. The case of Π = 0 (i.e., M is squarefree) was already studied by

Kohnen in [K]. We shall generalize Kohnen's results in the following sections.
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For any subset / of 77, we set the following notations: /7 = Π / e 7 / and φI'- =

( y ) (The Legendre symbol). In particular, we have /0 = 1 and φ0 = 1. For any

non-empty subset / of 77, we can define the twisting operator of φj on G(k +

1/2, N, χ) and S(k + 1/2, N, χ) (cf. [U2, §1]). We denote it by 7?7: = Rφj =

Π / e / 7?/_\. Also we put 7?0 '-= 1. Moreover, we write 7?7 = 7?/ if 7 = {/}. We de-

note the commutative algebras gererated by 7?7(7 <Ξ 77) as follows: 3? = Z[7?7 7

£ 77]and $ c : = C[7?7 7 c 77]. Then from [U2, Corollary 1.10] all 7?/s (7 c 77)

are hermitian with respect to the Petersson inner product. Therefore each element

of $, is also a hermitian operator. These notations are also fixed from now on to

the end of this paper.

In the following, for the sake of simplicity, we write

S' = S(k + 1/2, N, χ) or S(k + 1/2, N, χ)κ,
( ' } V:=V(N;χ) orV(N;χ)κ.

From [U2 §1], it follows that the spaces S and Kare fixed by the operator 7?7

for any 7 ̂  77. Hence both $ and 9lc act on these spaces.

Now we shall decompose these spaces S and V with the twisting operators.

For any 7 <Ξ 77, put Lj'-— {a ̂  Z (α, /#) = /7}. Then we have for any 7 <Ξ 77

(1.2) Z - ( U Z/j = Σ L 7 (disjoint union).
W-j / / s /

We define the operator R ι ^ Ά as follows: First R0- = Rπ and for any

non-empty subset 7 of 77 we define inductively 7?7 = 7?77_7 — Σ Rj. Then from

(1.2) and easy induction, we get the following.

PROPOSITION (1.3). For any f= Σn^oa(n)e(nz) e G(k + 1/2, N, χ) and

anyI^Π,wehavef\RI= Σ0^neLιa(n)e(nz) e G(/c + 1/2, ΛΓ, χ). Π

From this proposition we have the following relation as operators on G(k +

1/2, N, χ): For any subsets 7, / c 77(7^/) ,

(1.4) ^ 7

2 = ^ 7 , J?7Λ7 = 7?7£7 = 0, and Σ 7?7 = 1.

Hence {7?71 7 ̂  77} is a family of projection operators on G(k + 1/2, N, χ).

Put for any subset 7 <Ξ 77

S 7 : = S | ^ 7 = {Σ M >! b(n)e(nz) e S 6(n) = 0 forn
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and

V1 := V\Rj= iΣn^bWeinz) e V b(n) = 0 for nέLj}.

Since *ΆC is a commutative algebra, the space S and V (7 £Ξ 77) are stable under

the action of elements of $ c .

PROPOSITION (1.5). Under the above notations, we have the following.

(1) S and S are orthogonal with respect to the Peters son inner product for any 7, J <Ξ

Π(IΦJ).

(2) S = Θ S7, V= Θ V1.
i^π /e/7

(3) KerC^ S) = Θ S7, K e r ( ^ 10 = θ ^ 7 .

Proof Any £ 7 ^ 91(1 Q Π) is hermitian. The assertions (1) and (2) follow

from this fact and (1.4).

(3) It is easy to verify that

f(z) = Σ a(n)e(nz) e K e r ^ G(A + 1/2, N, χ))
w>0

<£> α(w) = 0 for all n(> 0) such that (w, lπ) = 1

«=>/! ^ 0 = 0 by Proposition (1.3).

The assertion (3) is easily deduced from the above. D

We denote the set of all maps from Π to {± 1} by {± I}7 7 = Map(/7, {+ 1}).

Put for any K e Map(77, {±1}) ,

S 0 > κ : = { / e S β ; / | J?7 = /c(/)/ for all / e 77},
0 β for all / e 77}.

If we need to specify k, N, and x, we will denote S '* = S ' (k + 1/2, iV, x) ,

S0'"(/c + 1/2, iV, χ ) , and V"'" = V0>X(N, χ), Vβ "(N, χ)κ.

Remark (1.6). When 77 = 0 , we understand that the meaning of these nota-

tions is Sβ>* = S" = S, V"'x = V" = V.

Since 7?^ = R{Rπ_j for any / £ Π, we have

Kertfftf S) 3 Kerίi?; S) and Ker(Rπ V) 3 Ker(i?7 V).

From this fact and Proposition (1.5), it follows that for any I Q Π
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S0 1 Ker(i?7 S) and V0 1 Ker(i?7 V).

Hence S and V are decomposed into ± 1-eigen subspaces with respect to all

R/§ (I Q Π). The decompositions are as follows:

S0 = Θ S0'x, V0 = Θ V0'\

Moreover, for any / ^ S '* or V '* we have

(1.7) / | i ? 7 = Kjf for all A: e {+ I} 7 7 and / £ tf.

Here /c7

 %=:: Π / e 7 /c(β e {± 1}. In particular, /c0 = 1.

Now we consider the Hecke operator T(n ) = Tk+1/2fNtX(n ) for any n ^ Z +

with (^, iV) = 1. From [U2, Proposition (1.7)], T(n ) commutes with the twisting

operator i?7 (/ Q 77). Hence it also commutes with any element of $ c . Therefore

the spaces S and 1/ are stable under T(n ) for all subsets / of Π. Similarly,
fry/ 2\ ,i r>0>* i T7-0'*

i (w ) acts on the spaces o and V

The main purpose of §1 and §2 is to compute the trace of the Hecke operator

T(n ) on the spaces S '* and V '*. Before computation, we prepare several nota-

tions and propositions.

For any m e Z+, put δm : - ( m ° ) and δ m : = (δm, m~k/2~1M) e ® (A: + 1 /2).

Then we can easily verify Δ0(Nrn, χ')k+1/2 ^ δ^Δ0(Nf χ)k+ι/2δm, where χ ' =

χ( — ) . Hence for a n y / ^ G(A: + 1/2, N, χ ) , / | <5W is stable under any elements

of Δ0(Ntn, χ0jfc+i/2 Therefore from the standard argument, it follows that the map-

ping fy-*f\ δ m maps G(k + 1/2, N, χ) into G(/c + 1/2, Nm, χ θ . We also

have the similar results for the spaces S and V. We need the following proposition

for that proof.

PROPOSITION (1.8). Let m be a positive integer and put χ'== χ ( — ) as a

character modulo Nm. We have the following relations for all f & G(k + 1/2,

N, χ) and n e Z + such that (n, Nm) = 1 :

* k + l/2,N,χ (n ' ~ J I 7 k+l/2,Nm,χW ' >

f\ Tk+1/2>N>x(n2)δm = / | §mTk+1/2>NmtX,(n2).
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Proof. We get these relations from straightforward computation. •

Now we can prove the following.

PROPOSITION (1.9). Under the above notations, we have the following. Let m be a

positive integer and put χf = χ ί — ) as a character modulo Nm. Then the mapping

f*-+f\δm maps the spaces G(k + 1 /2, N, χ), S(k + 1/2, N, χ ) , V(N χ )

into the spaces G(k + 1/2, Nm, χO, S(k + 1/2, Nm, χ θ , R/Vm χ') res/>βc-

ίifβZy. Moreover, if m is an odd positive integer, the mapping f *-* f\ δm maps the

spaces S(k + 1 /2, N, χ)κ and V(N χ)κ into S(k + 1 /2, Nm, χ θ * and 7(JVw

χOx, respectively.

Proof. We already proved the case of G(k + 1/2, iV, χ) and the proof for

S(k + 1/2, TV, χ) is exactly similar to those for G(k + 1/2, N, χ ) .

Next, we consider the case of V(N χ ) . V(N χ) has a C-basis consisting of

common eigen forms for Tin )((n, N) = 1). Take any element/ of such a basis.

Then the system of eigen values of / corresponds to a certain primitive cusp form

of weight 2 through Shimura correspondence (cf. [C], [St]).

By Proposition (1.8), f\ δmf(n) = f\ T(n)δm = λ(n)f\ δm for any n e Z +

such that (n, Nm) = 1. Here, λ(n) is the eigen value of/ with respect to T(n ).

Hence f\ δm G 5(3/2, Λ/w, χO is a common eigen form of T(n2)((n, Nm) — 1)

and those system of eigen values also corresponds to a primitive cusp form.

Therefore f\δm is orthogonal to the space of theta series U(Nm χO, i.e.,

/ | δ m € = VWm χ') (cf. [C], [St]).

For the case of S(/c + 1/2, iV, χ)κ, it is sufficiently to check the condition

of vanishing of Fourier coefficients. That is an easy computation.

Finally, since V(N χ)κ = V(N χ) Π S(3/2, N, χ)κ, the assertion for

V(N χ)κ follows from the results for V(N χ) and S(3/2, JV, χ)^. D

PROPOSITION (1.10). T/ιβ notations are the same as above. Let m be an odd posi-

tive divisor of N. Suppose that a C-valued function f on ξ> satisfies the following two

conditions : (i) f(z + 1) =/(*) for all z e φ (ii) / M e G(k + 1/2, iV, χ)

(resp. S(k +1/2, N, χ)).

Then we get the following.

(1) Ifm\(χf)\N,f<Ξ G(k + 1/2, N/m, χ') (resp. S(k + 1/2, N/m, χO).

(2) Ifnή(χ')*N,f=0.
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Here, χ' — χ( — ) and f(χθ is the conductor ofχ'.

Proof See [S-S, p.45, Lemma 7]. D

This assertion also holds good for the Kohnen space and V(N χ ) .

COROLLARY (1.11). The notations (m, χ\ etc.,) are the same as in Proposition

(1.10). Suppose that a C- valued function f on ξ> satisfies the following two conditions :

(i) f(z+l) =f(z) for all z ^ ξ> (ii) f{mz) e S(k + 1/2, N, χ)κ (resp.

V(N χ ) , V(N ;χ)κ). Then we get the following.

(1) If fnϊ(χ')\N,fe S(k +1/2, N/m,χ')κ (resp. V(N/m χ')> V(N/m

(2) Ifm\(χf) X N,f=0.

Proof. Since S(k + 1 /2, TV, χ ) * £ S(A + 1 /2, TV, χ) and K/V χ ) * c

(̂TV χ) ^ S(3/2, TV, χ), the above assertion (2) follows from the assertion (2)

of the Proposition (1.10).

Now we shall consider the case of wι\(χ') \ N.

First assume f(mz) e S(k + 1/2, N, χ)κ. Then from Proposition (1.10) we

know / e S ( H 1/2, N/m, χr). Put / = Σn^aWeinz). Since / W e

S(Λ + 1/2, iV, χ)^, we have that if a(n) Φ 0, χ 2 ( - 1 ) ( - \)knm s 0,1 (mod 4).

Moreover, we also have χ^""" D("" Ό n = ΊLi(~~ D("~ 1) ^ ^ (mod 4).

Hence a(n) Φ 0==> χ'2(- 1 ) ( - 1)*« = 0,1 (mod 4). Therefore from the de-

finition of the Kohnen space,/ ^ S(k + 1/2, N/m, χ')κ.

Next assume / W e 7(iV ; χ ) ( ^ 5(3/2, iV, χ)). By Proposition (1.10),

we know that/ €= 5(3/2, N/m, χf). It is sufficient to show that/ is orthogonal

to UiN/m x').

U(N/m χθ has a C-basis {h\p te) (p, f) e Ωι(N/m, χ')>. Then we

can easily verify that λ 1 ^ Λ»z) = m~k/2~ι/4h1(p tz) \ δ m ^ ί/(TV χ). Hence,

for any (p, f) e Ω (N/m, χf),

/r 7 1 / x \ \ /£ /c/2+1/4,1/

< / , A (p; tz)> = ( f , m h (p
= mk/2+ι/4(f\ δmJ h\p £m*)> (cf. [U2, Lemma (1.9)])

= m + (f(mz), h (p tmz)) = 0.

Therefore we g e t / I C/W/m χθ i.e.,/ e W / m χθ.

Finally, the assertion for V(N \ χ)κ is an easy consequence of the above

results, because V(N χ)κ = 5(3/2, TV, χ ) x Π F(iV χ). Π
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Let / be any subset of Π. Put χ '• = X\Lj- This χ is considered as a

Dirichlet character modulo N/lτ. We also set

\S(k +1/2, N/l,, χ(!)), if S = S(k + 1/2, N, χ)

' ( l/2, N/l,, χU))κ, if S = S(k+1/2, N, χ)κ;

and

= iV(N/li;x
U)), if V = V(N χ)

1 V(N/lj χn)κ, if V = V(N; χ)κ.

Let A be a C-vector space consisting of C-valued functions on $. Define for

any positive integer m\

A(m) :=A\δm = ia(mz) | a{z) e i4}.

Then we get the following relations (1.12)—(1.14).

(1.12) For any subset I of 77,

S7

( / / ) = Θ S7, K7

(//) = Θ V\

Proof. Take any / = Σ ^ a(ή)e(nz) e S7

(//). Then α(w) = 0 if /7 /K w. Since

Z/7= Σ 7 £ / £ 7 7 L 7 , / = Σ 7 Q / e 7 7 Σ 1 < w e L / «(w)e(^) = Σ / £ / e / y(/"| J?7) e Θ / e / e I 7 S / .

Next, take any / such that / c / c 77 a n d any / = Σ 1 < M e L / a(n)e(nz) e S7.

Put ^U) * = f(z/lj)(z e § ) . ^ satisfies the two conditions in Proposition (1.10)

and Corollary (1.11). We also have f(χ ( / )) | W// 7 ). Hence g e 5 7 and / e 57

( / / ). D

(1.13) For any I9J^Π with I ΠJΦ 0 , we have

S 7 | i ? 7 = {0}, K 7 | i ? 7 = {0}.

Proo/. This assertion follows from Proposition (1.3). Π

(1.14) Let / and / be any subset of Π with I Π J = 0 . We have the following

equation as the mapping from S7 (resp. V/) into 5 (resp. V):

Pro6>/. Since /71 (N/lj), we can define the twisting operator i?7 on S7 and V̂ .

Then the equation follows from easy calculation. D
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Now we can compute the trace of T(n ) on the spaces S '* and V '*. Since the

computation for V '* is exactly the same as those for S >κ, we shall consider only

the space S 'κ.

Let / and / be subsets of Π such that / Π / = 0 and n a positive integer

with (n, ΛO — 1. Then the mapping f^fl δ tj is an isomorphism from S7 onto

Sjh\ Hence by using (1.8) and (1.12-14),

c 7i (w o J = tr(κτi(n ) oΓ )
1 ' J 1 ' J

= tr(R,T{n) Φ Sκ) = tr^RjTin) Θ Sκ) .

Therefore, we have the following by summing them up with respect to /:

(— 1) I / ) tr(i?7Γ(n ) S7) = Σ (— 1) tr(i?7T(w ) θ S )
/n/=0 ^ ^ / ' /n/=0 ^ j^κ^π-i

= Σ Σ ( - D ^ t r ^ f ^ j S * )

= Σ ( Σ (- 1)#/) trί̂ fCw2) Sx)

= trKRTT\n ) 6 ) = tr[RτT(n ) (13 o I = Z.\ /

= Σ icM(f(n);Se'K).

Here, Σ/n/=0 is the sum extended over all subsets / of Π with / Π / = 0 .

Moreover, for any /c, Λ:0 €= { ± 1} we have

{
U, otherwise.

Thus we obtain

PROPOSITION (1.15). Let n be a positive integer such that (n, N) = 1 and fc any

element of {± 1} . W

tr(T(n2) Se'x) = 2"#ί7 Σ KA Σ (- D # / (f) tr(^f(« 2) S

tr(7V) F0lX) = 2~#/7 Σ *, ί Σ (- l)# /(4) tr(i?,f(n2) V,)},
I^Π
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where Σ / n / = 0 is the sum extended over all subsets J of Π with I Π / = 0 . •

Now we introduce new operators W(Q), Yp and study their properties.

Let Q be an odd positive divisor of N such that (Q, N/Q) = 1. Take any

element γQ ^ SL2(Z) satisfying the conditions:

( m o d Q ) ;

(J J) (modN/Q).

Then ΪQ e Γ0(N/Q) <= Γ0(4). Put JQ ' = (γQ, j(γQi z)2k+1) and W(Q) : =

®(/c + 1/2).

Remark (1.16). For any / 6 β ( H 1/2, N, χ),f\ W(Q) is independent of

a choice of an element 7Q, because a gap of two elements is at most an element of

Γ(N). So we can choose a convenient element for calculations.

The following facts are easily verified by straightforward calculations:

(1.17) For all 7 = (° \) e Γ0(N),
\ c a i

W(Q)γ*W{QYι= (W(Q)rW(QΓY(l,

Hence W(Q)Δ0(N, χ) W(Q)~ι = Δ0(N, χ(^-)) and W(Q) is a normalizer of

From these facts, we can see that the mapping f*->f\W(Q) gives an

isomorphism from S(k + 1/2, N, χ) onto S ίk + 1/2, N, χi—j). Moreover we

have the following properties for W(Q).

PROPOSITION (1.18) Let Q and Qr be odd positive divisors of N such that

(0, N/Q) = (Q\ N/Q') = (Q, QO = 1. Then for any / e S(A + 1/2, JV, χ),

-A-l/2

χ β ( - DχN/Q(Q)f,

f\ W(Q)W(Q') = xQXQ)f\ W(QQ').

Here, χQ, χN/Q, and χQ, are the Q, N/Q, and Q'-primary components ofχ respectively.
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Proof. We get these relations from similar straightforward computation to

the case of integral weight. •

Next we investigate the relations between W(Q) and the other operators

U(p), Tin2), and Rv For simplicity, we write Γ = Γ0(N), Γx = Γ^N), Δ =

We remark that for each odd prime divisor p of N, the mapping

f^f\U(p) gives a linear map from S(k + 1/2, N, χ) to s(k+1/2, N,

Xy )), and we also have the following identity: for any/ ^ S(k + 1 / 2 , Δ-),

(1.19) f\U(p) =ptΛ"/*f\

/ ' W * Hoi)
_ .Λ/2-3/4

(cf. [Sh 1, Proposition 1.5]).

PROPOSITION (1.20). Let p, I be any odd prime divisors of N with p Φ I and put

Q = pordp(N)^ Thmfoγ any f <E S(k+ 1/2, N, χ), we have the following:

(1) / I UO)W(Q) = χp(l)f\ W(Q)U(ί).

(2) Suppose I e 77 (<̂ > ordz(iV) > 2). T/ien

(3) //n is a positive integer prime to N, then

f\ Um^^^itΐ) =f\ Tk+U2ιNΛ(n2)U(p),

f\ W(Q)Tk+U2,N,x(^(n2) =f\ fk+ι/2,NJn2)W(Q).

Proof. (1) From (1.17) and the fact Δ0(N) \> Δv we have the identity:

Δ.ξΔ.WiQ) = γ*W(Q)ΔιξΔι,

where ξ = ((I °. ) , lk/2+Ui) , r = ( a b) e Γ such that d = 1 (mod N/Q) and
\ \ 0 / / / \ c d'

d = / (mod Q). The relation (1) is verified by this fact.

(2) The first relation of (2) is easily verified by checking the coincidence of
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the Fourier coefficients of the both sides.

Next, from [U2, Proposition (1.5)], for any / e S(k + 1/2, N, χ ) , we have

me//

where H= (Z//Z) x /(Z//Z)* 2 and ξ(m) = (( l m\ , l ) .

We also have the following identity from (1.17):

Δξ(m)ΔW(Q) = W(Q)Δfξ(m/)Δ\

where Δr — ΔoiN> χ(—)) and m' Ξ H such that Qm' = m (mod /). The second

relation of (2) is verified by this fact.

(3) From the definition of T(n ) (cf. §0(c)), it is sufficient to study the

relations between W(Q), U(p) and [ J r ( « ) J ] . Here, for simplicity, we write

r ( w ) = ( ( 2 )> nk+1/2). It is easily shown that for any / e S(k + 1/2, N, χ),
\\Q n i /

f\[Δτ(ή)Δ] =f\[Δ1τ(n)Δι] (cf. [Sh 1, p. 450]).

For each ^-double coset ΔγgΔυ we put degiΔ^Δj) = the degree of Δ-jξΔγ: —

the number of left Zli-cosets contained in Δ^Δ^ Then we have

degiΔ^WΔJ degiΔ^Δ,) = degiΔ&WΔJ

and ξτ(n) = τ(n)ξ. Hence we have the identities of elements in the abstract Hecke

algebra:

Δ.rirύΔ^Δ.ξΔ, = Δ1τ(n)ξΔ1 = Δ1ξΔ1-Δ1τ(n)Δ1.

The first relation of (3) is shown by these identities.

Finally, we can show the second relation of (3) in a similar method to (1) and

(2). D
From [U3], we know that the operators W(Q) and U(p) map V(N χ) to

V(N φ) for some character φ, if k = 1.

PROPOSITION (1.21). Let p be an odd prime divisor of N and put Q = p°rdp N\

Then for any / e V(N χ), we have f\ U(p) e V(N z ( ^ ) ) α ^ / | f^(Q) e

χ( — ) ) . In particular, W(Q) gives an isomorphism from V(N χ) onto
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Proof. Put ξ = (( ) , / / 4 ) . For any v e y(JV χ) and any w' e [/(iV

.-1/4 ΛT-1 / / l / l ^ \ β.-l\ .3/2/ , / , N \

= p Σ <», « I I n , ) ξ / =P <v,u'(pz)>,

where 2 e ^ (cf. [U2, Lemma (1.9)]).

Obviously, we have u'(pz)<=U(Np;χ). Observing V(N χ) c V(Np

χ) (cf. §0(c)), we get the first assertion. See [U3] for the proof of the second asser-

tion. D

When ord2(Λ0 = 2, these operators W(Q) and U(p) also fix the Kohnen

space.

PROPOSITION (1.22). Suppose that N = 4M with an odd positive integer M. Let p

be an odd prime divisor of N and Q — p p . Then

S(k + 1/2, N, χ)κ\ U(p) Q s(k + 1/2, N, χ ( ^ ) ) ^

and the operator W(Q) gives an isomorphism from S(k + 1/2, N, χ)κ onto

S(k+1/2, N,χ(£))κ

Proof We can easily check the condition (cf. §0(d)) for Fourier coefficients.

So the first assertion is obvious.

Next, S(k + 1/2, N, χ)κ is an eigen subspace of S(k + 1/2, N, χ) with

respect to the operator [Δξk+1/2tX2(-i)Δ] (cf. §0(d) and [K, Proposition 1]). Hence it

is sufficient for the proof of the second assertion to study the relation between

W(Q) and Δξk+1/2tXtM)Δ.

Observing (1.16), we can take γQ as follows:



NEWFORMS OF HALF-INTEGRAL WEIGHT 1 5 5

o - i

SL2(Z) 3 7Q = •

(mod©,

(J J) (modM/Q),

]_ , J ) (mod 16).

-D/8)).

Then we can show the following identity:

l,X2(Q)(-~) )W(Q) (cf. (1.17)).

From this identity and Proposition (1.18), the second assertion is easily verified.

D

COROLLARY (1.23). Under the same notation and assumption as in (1.22), we

have V(N )χ)κ\ U(p) <Ξ VyN X\ )) and W(Q) gives an isomorphism from

V(N;χ)κontov(N;χ(^))κ.

Proof These assertions easily follow from (1.21), (1.22), and V(N χ)κ =

V(N χ) Π S(3/2,N,χ)κ. D

For any odd prime divisor p of N with ordp(N) — 1 (<=>p \ Mx), we define the

operator Yp on S(k + 1/2, N, χ) by the following:

/ | F , : =p~k/2+3/if I u(p)W(p), ( / e S ( i + l/2, iV, χ)).

From the above Proposition (1.20), we have the following.

PROPOSITION (1.24). Let p and q be any distinct two odd prime divisors of N such

that θΐάp(N) = ordq(N) = 1. Then for any f e S(k + 1/2, N, χ), we have the

following:

(1) /I YpYq=f\YqYp,f\ YpU(q)=χp(q) ( | ) / | U(q)Yp.
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(2) Suppose I e Π. Then

(3) If n is a positive integer prime to N, then

D

Let us find the relation that is satisfied by this operator Yp.

Let p be any odd prime divisor of N with ovάp(N) = 1. Take an element

yp ^ 5L2(Z) satisfying the condition:

(a M ί(Ϊ V ) (mOdp);

Then by using (1.19), for e a c h / e S(A + 1/2, JV, χ ) ,

p c pd

For i = 0, we have the following identity from straightforward computation and

Proposition (1.18):

J ) , P k / 2 + m ) W(p) = (-^-j χN/p(ρ)f\
(1.25)

Here, χN/p is the N/^-primary component of χ.

If i Φ 0 (mod^), a + ic and pc are relatively prime and so there exist

u, v e Z such that w(tf + tc) + z^c = 1. Hence ( ) e ΓΛN) and
\ — pc a + ici

u v \*//P(a + ic) b + id\
-pc a + ic) \\ p*c pd )1{rPz)

where x = u(b + id) + vdp.
Since x = — u (mod^), ui = 1 (modp), and χ = 1, we have
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p(a + ic) b + id\

")•(!))p r\pp'c

From these results, we have the following identity:

(1.26) Let p be any odd prime divisor of N with orάp(N) = 1. For each / :

-1/2, N, x),

M€(Z//>Z)X

-1/2

if χ , = 1,

— Σ M i l a(n)e(nz) + /> Σ κ S 1 a(pn)e(pnz), if χ# = W

Let us apply p + ί7(/>) to the both sides of the identity in (1.26).

Put g •= f\ Wip)'1 = Σ M S 1 b(n)e(nz). Then

gI δpp-k/2+3/i U(p) =pΣ b(n)e(pnz) | U(p) = ^ .

Therefore we get

r*/ 2 + 3 / l ) xP(- i)p/\

0,

p-k/2+3/\p-i)f\mp),

Thus, we obtain the following.

PROPOSITION (1.27). Letp be any odd prime divisor of N with ordt(N) = 1. For

eachf^ S(k+ 1/2, N, χ ) .

(p-l)f\Yp+Pf, ifXP = (j).
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Hence Yp is a semi-simple operator on S(k + 1/2, N, %). Moreover the adjoint

operator of Yp on S(k + 1 /2, N, χ) is given by Yr

p = \-yη XP(- D Yp.

Proof From the identity (1.26) and [U2, Lemma (1.9)], the adjoint operator

F/on S(k + 1/2, iV, χ) is given by:

ι\r;- (^i) *,(- »Z\S; WQ,) + _ Σ ^ (j) *,«,! ((J J).

(ge S(k + 1/2,N, χ)).

Observing £ | ~δ? = g | (( J ° ) , / / 2 + 1 / 4 ) and (1.25),

ue(Z/PZ)x

From this proposition, we can see that Yp is a linear automorphism

of S(k + 1/2, N, χ). Since ^(/O gives an isomorphism from S\k + 1/2,

N,χ[ )) onto S(/c + 1/2, iV, x), U(p) is also a linear isomorphism from

S(k + 1/2, N, χ) onto s(/c + 1/2, N, x ( ^ ) ) We can also see that S and V

are stable under Yp for each prime divisor p of Mx by using (1.21—23). Here, the

letters S and Vare the same meaning as in (1.1).

Finally, we can know the behavior of the spaces S '* and V '* under the oper-

ators W(φ), U(p), and Yp from Propositions (1.20) and (1.24). Thus we get the

following.

PROPOSITION (1.28). Letp be any odd prime divisor of N with orάp(N) = 1. Put

Xf = X\ )• Then we have

(1) The mapping / | - > / | Yp gives the automorphisms of S(k + 1/2, N, χ ) ,

S(k + 1/2, N, χ)κ, V(N χ), αnrf F W χ ) ^

(2) T/w mapping f ^ f\ U{p) gives the isomorphism from S(k + 1/2,

iV, χ) (re#. S(k + 1/2, iV, χ ) x , V(N χ ) , K(iV χ)*) onto S(k + 1/2, N, χ θ

+ 1/2, iV, χO^, 7(iV χ θ ,
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(3) Let K e Map(77, {± 1}) and put κr: = tc-(ty e Map(77, {± 1}). Then

the operator Yp gives automorphisms of S ' and V ' . Hence the both operators

W(p) and U(p) give isomorphisms from S0>x(k + 1/2, N, χ ) , S0'*(k + 1/2, N,

χ)κ, V*'\N, χ ) , and V0'X(N, χ)κ onto Sβ'*'(k + 1/2, N, χ θ , Sβi>ί/(A + 1/2,

N, X')κ> V0fX'(N, χ θ , and F ^ W , χOjf, respectively. D

If χp — 1, Zp .'= (——) p Yp is a hermitian involution on S(k + 1/2,

iV, χ) (cf. Proposition (1.27)).

Let us characterize the eigen subspace for this operator Zp in terms of

Fourier coefficients.

PROPOSITION (1.29). Let p be any odd prime divisor of N with ordp(N) = 1.

/ — 1 \ 1 / 2

Suppose that χp = 1. TTî n Zp '-= ( . ) />" ί^ is a hermitian involution on

+ 1/2, N, χ) and for each λ e {± 1}, ^ λ-eigen subspace of S(k + 1/2,

iV, χ) on Zp coincides with the following subspace :

Sλ := {/= Σ a(n)e(nz) e= S(/c + 1/2, iV, χ) α(n) = 0 i/(^) = - /{).

/. Take any g = Σ w > ! b(n)e(nz) e ^ Π S^. Then 6(w) = 0 if

, n) = 1. Put h = g\ U(p) e s(/c + 1/2, iV, χ ( A ) ) .

Since Λ(^) = (̂>ε) and ^ f ( χ p ) ) ^ iV, we have h = 0 from (1.10). Hence

# = 0. Therefore S, Π ,§_! = {0}.

For the proof of the assertion, it is sufficient to show that Sλ contains the

Λ-eigen subspace of S(k + 1/2, N, χ) on Zp for each i e {± 1}.

Let λ e {± 1} and take any / = Σ n > ! a(n)e(nz) e S(/c + 1 /2, iV, χ) such

t h a t / | Z, = λf. Then from (1.26),

(f) e(nz).

- \ 1/2

, ) p~ / 2 + 1 / 4 / I U(p)ίV(p), we have

, 1/2
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Hence

λf = f\Zp = λp~k/2~1/4f\ U(p)δp + Σ a(n) (~) e(nz)

— λp~k/2~1M Σ a(pn)e(nz) | δp + Σ a{n) ί- ĵ e(nz)
n>l «>1

= λ Έa(pn)e(pnz) + Σ α(n) (•—) e(nz).

Comparing the n-th Fourier coefficient of the both sides, we have

λa(n), if p I n,

λa(n) = (n\ , , .£ ,. , Λyjain), if (p, n) = 1.

Therefore, if \~) = — λ, a(n) = 0. Thus the proof is completed. D

§2. Computations of the traces

We keep to the notations in §1.

In this section, we shall compute traces by using the trace relations ([Ul,

Theorem], [U2, Theorem (4.1)]. Some assumption is necessary to use these trace

relations. Hence, from now on, we assume the following additional conditions for

the level N and the character χ:

ASSUMPTION (2.1). 2 < μ = ord2t/V) < 4 and also f (χ2) = 8 if μ = 4.

Moreover we use the following notations:

μ-1, if S = S ( k + 1 / 2 , N, χ) o r if V= V(N χ ) ,

0 , if 5 = SQc + 1 /2, N, χ)κ or if V = V(N χ)κ.

For any odd prime p and any subset Λ of 77, put

A(p) := ordp(lA) =
), i f £ 6 έ A

In this section, we shall compute the trace in the statement of Proposition

(1.15), i.e., tr(T(w2) Se'x) and t r ( f (κ 2 ) Ve'x) with four steps. See Proposition

(2.23) for the final results of this section.
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(I) Before the computation, we prepare several notations.

Let / be any subset of Π. Put N = 2uL0L2, Lo(> 0) is the //-primary part of
\T Δ TUt T1 T1 \T TT |2[(v,-l)/2] + l

N, and M = L0L2. No = Π / e / / '
For an odd prime p and integers α, b, a, β (α, β > 0 and 0 < a < β/2), put

λ°a(p, b ; a ) = \

β is even and a — β/2.

From [Ul, Theorem], [U2, Theorem (4.1)], and Assumption (2.1), we can ex-

press the trace of RjT(n ) by the trace of Hecke operators on the spaces of the

cusp forms of weight 2k. The precise assertions are as follows.

Let / and J <Ξ Π such that I Γ) J = 0 and n a positive integer such that

(n, N) = 1. We have the following formula.

/ O O λ \ t r { R , n n 2 ) Sj) i f k > 2

Π χ ' ( w ) π

l e l (p,ι,)=i

Σ Π λ%(p,l,n ord îV,) /2) trίtϊΓW^laTXn) S(2k,
iV ί|(M//)

where the notations are as follows: For any odd prime p, vp = ordp(N/lj) = vp

~) (άp = 0,1). Here χ 7 ^ is the ̂ -primary component of

χ . Put L2 — L2/lj. Then iV: runs over all square divisors of L2, and N2'-~

Let us simplify the formula (2.2). First, we have L!2 = Mx ΐlleΠ_j ΐι~nι). Since

) is even and ord^C/Vi) ^ 1 for a prime divisor p of M l f we have

^ = 0. Hence, Λ^ = Π / 6 / 7 - / /
2 β | , where et (I ̂  Π — I) runs over all integers

such that 0 < 2 ^ < ^ — /(/). Moreover we have

fl, i f e , > 0 ,
N2 = M, Π y / ( / )

/e/7-/ [/ ' , if βι = 0.

/ = χ^ ("A/ f o r a n y o d d p r i m e *̂ P u t χp = W '
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ap = 0,1. Hence άp = ap+J(p) (mod2). From p\Me>p\ (M/lj), (ip, 7/2) = 1,

and the above, we have λ\(p, Ijti oτάp(NJ /2) = λaP~+jfp\(P> hn ordp(N1)/2)

for any odd prime p.

Thus we obtain the following.

Let / be any subset of 77 and n a positive integer such that (#, ΛO = 1. For

simplicity, we put Cx = (~y—) Π / e / χ/(w)Π (^/ / ) a s l χ , ( — /7) and for I <Ξ Π - I,

J <Ξz Π — I, and a non-negative integer tf,

Then we have

iίk>2

if A = 1

Σ (-1)# / Σ Π
/Π/=0 (β,),eJΪ-/ /e/7-

0< 2e,^x>-J{t)

;S (2k12
ωN0M1 Π

Σ (-l)#/ Π
/Π/=0 /€/7-

(/e/7-7)

^ ] 2 i 7X») s(2A, 2 X M , Π η, (J, e,))),
\ ι<=π-i ! l

where Σ / n / β 0 is the sum extended over all subsets / of Π with / Π / = 0 and

^ = WW 0 Π / e i 7 _/ e O (cf. §0(b».

For a while, we fix / and constants et(l ^ Π — I). Put (77 — 7) ' : = {/ e 77

— 71 ^ = 0). By using this, we decompose any subset/ of 77 — 7 as follows:

Then we have ez = 0 and v/ = oτdt(N) > 2 for any / e / ' . Since /'(/) = 0 or 1,

the condition 0 < Jf{ΐ) < vx — 2et is always satisfied for any / ^ (77 — 7)'.

Hence we have the following bijection:

{/ c 77 - 7 0 < /(/) < vt - 2et for all / e 77 - 7}

~{J'Q ( 7 7 - 7 ) 0 x </^c ( 7 7 - 7 ) ^ : 0 < / " ( / ) < ^ - 2 ^ for all / e= (77-T)"}.

Moreover we have for any Jv J2 <Ξ= Π — I,
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Π η,(Jlt e,) = Π η,(J2, e,) « // = //.
leΠ-I leΠ-I

Hence the value of trace in the right hand side of the formula (2.3) does not de-

pend on J"'. Therefore

Σ (-1)# / Π λ
/n/=0 leπ-i

(2.4)

x tr([Wπ]2k T(ή) Silk, 2ωN0Mί Π η, (J, e,)))
\ \ leΠ-I f l

= Σ (-l)*rtr([WI+(π_iy,]2kT(n);s(2k,2ωN0M1 Π ?,(/',«,)))

Σ (-!)*'" Π λ^'ZdJ^ e,).
(Π-D" leUI-I)"

x

0 </"(/)< v,-2e,

We can easily compute the sum for J". The result is as follows:

Σ (-1)#/" Π λ^r^U.hn

))

(min(l,V/-2e/)

Σ (-lYλ^QJjn e
,~XMΛ-Λ, t=0

[0, otherwise.

Hence, if there is / ̂  77 — I such that et Φ 0, [vt/2], then the value of the formula

(2.4) is equal to zero. Therefore we may assume that et — 0, [i^/2] for all / ̂  Π — I.

Replacing the notations: (77 — Γ)' by / and J' by K, for any subset 7 of 77 and

positive integer n with (n, N) — 1, we have the following.

tτiRjΐ(n) S7) if A > 2

n) \ Vj) iί k =

#κ
= C2 Σ Σ (- 1 ) " Π χ , ( - //

Π / 2 1 v a Π
leΠ-I-J lej

where C2 := Cx Π ^ . ^ ί - lτn). Then C2 = (-^-) Π ^ χ , ^ ) Π^^^χ/-/ z )

by using χ2 = 1.
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(II) Since [Wr

π_J]2k and T(ή) fix the space of newforms, we can decompose

the right hand side of (2.5) into a linear combination of traces on spaces of new-

forms.

Now, we introduce some notations. Let /, / , K be subsets of Π such that / <Ξ

Π - I and K Q /. The letters st (I e /) , tt (I e Π - / - / ) , wz (/ e / ) , β and

^(^) I A^) mean integers satisfying the following conditions:

O ^ s , < [ ( ^ ~ l ) / 2 ] , for a l l / e / ;

0 < /, < [vt/2], for all / e 77- / - / ;

0 < M, < ^ - #(/), for all / e /

0 < ^ < 1, for all p\Mv

Moreover for a positive integer k, we put

trk((st), (tι) (w7), iS, (wp) = trk({s)lGl1 (t^^^.j; (^) / e / , 8̂, (wp)p]M)

2fc 5Γ(w) 5 (2fc, 2 Π £ p Π / ι !

Π Z 2 1 1 " ' 7 2 1 - ' ' ' Π / " ' ) ) .
-I-J /€/ / //e/7

Applying Proposition (A.I) to the right hand side of (2.5), we have

Sj) if k > 2 j

/n/=0 ^ j / t̂ ΓVA/i Kn ) \ Vj) if A: = lj

= C2 Σ Π χ / ( - ijn) Σ ( - l ) # i ί Σ Σ

x Σ Π (v, - Kit) - u, + 1) Σ (ω - β + 1) Σ Π (2
/ β ( ) W

= C2 Σ Π χ,(-l,n)ΣΣΣ(ω-β+ 1) Σ Π (2 - wp)
7 / 7 / / e / (5/) (/;) β (wp) p\M1

x Σ Σ (- ιyκ π (^ -
i re/ (Mί} ί e /

5 / ) , (ί,) («,), β, (wp)).

We compute the above sum extended over K and {u). The value of trk({s)j (t)

(^/), i8, ( ^ ) ) , is determined by /, / , (s,), (f,), (w^, ̂ 8, and (M;^,). In particular, it

does not depend on K. Hence we have

( - l Γ * Π ( ^ - K{ί) -Ut trkαs,), (0 («,), i8,
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= Σ trk«s,), (t,);(u,),β, (»,)) Σ ( - 1 ) # K Π (v, - K(t) - u, + 1)

= Σ trk((s), (ί,) (M/),j8, (10,)).

0£w,£y,

Combining these results and Proposition (1.15), we can express the trace of

T(n ) on S and V '* (/c ̂  {± 1} ) as follows:

ftr(f(n2) S0'*) if A:> 2|

\tr(T(n) O if ft = lj

(2.6) =2'#πΣfcIC2 Σ Π χ / ( - / 7 n ) Σ (ω-j8 + l) Σ Π (2 - wp)

x Σ Σ Σ trk«s,), it,) («,), β, (wp)),
(S/)/ e/ itj)ien-1-J (ulh<=J

where (s,), (^), (W/), and (wp) run over integers such that

0 < sι < [ ( » , - l ) /2] , for all / «= 7;

0 < tt < [^/2], for all / e 7 7 - 7 - / ;

0 < κz < vl9 for all / e / ;

10 < wp < 1, for all/>| Afle

We consider the level of the space in the trace trk((s), (t) (u), β, (wp)). If

S j ί /e i ) runs over the set ίx e Z | 0 < x < [(vι - 1) /2]}, then 2([(^ - 1) /2]

— 5/) + 1 runs over all odd integers x such that 0 < x ^ vh Similarly, if

ίz (/ G 7 7 - / - / > runs over the set k e Z | 0 < x < [vι/2]}, then 2([^/2] -

//) runs over all even integers x such that 0 < x < v,.

For simplicity, we put K '-= Π — I — J. Moreover for a given system of inte-

gers (p/)/€i7, 0 ^ Pj ^ v, (/ ^ 77), we set the following notations:

Π(ρ)odά '•= (/ e 771 p, is odd}, Π(p)eyen : = {/ e 771 ̂  is even}.

Then we have

Σ Σ Σ trk((sX (ί,) (w^iS, («;,))

= Σ tr ([ΪF/+jr]2ΛΓ(n) S°(2ft, 2β Π ̂ ^ Π I*))

and we also have
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Π=I+J+K (p,

Here, Σ / 7 = / + / + # is the sum extended over all partitions Π = I + J + K and

Έπ^r+ +K is the sum extended over all partitions Π = / + / + K such that / <Ξ

Π(p)odd and K Q Π(p)even.

From these results, we obtain the following.

f t r ( f ( w 2 ) S 0 > κ ) i ί k > :
{Z'/} \tr(fin2) V0'x) if Λ =

= 2"#77Π Xι(n) Σ ( ω - j 8 + l) Σ Π ( 2 -

A

X Σ Σ i . / + / + j r * / ( - 7

1 ) Π χ , ( - /7) Π X / ( - //

X tr ([ϊF / +J2 AΓ(n) S°(2A;, 2β Π /Λ Π /P')) .
\ P \M l&Π

Here, n is a positive integer such that (ny N) — 1 and Λ: is any element of {± 1} .

Σ/

π=I+j+κ is the same meaning as in the above.

(Ill) In the following, we shall introduce subspaces S*(2λ;, N') (0 < N' \ N)

and continue the calculation of traces of T(n ) on S and V '* (see the appendix

for the definition of S*(2Λ, NO).

In this part (III), we fix the following letters in the formula (2.7): β, (wp)plMι,

(pι)ieΠi I> a n d K Then we decompose any subset P of Π with respect to (p/) /€i7

as follows:

P = P3 + + P2 + Px + Po, where for any non-negative integer i,

Moreover for a partition ZĴ  = A + B + C, we denote

N=N(p) ' =2β II pwp II /"'and

iVO?, C) = ΛKp JB, C) : = 2^ Π ^ Π / " Π /2 Π /.
ίlΛf! 1<=Π-Π2 leA /eJ5

From Proposition (A.8), the following orthogonal direct sum decomposition

holds.

(2.8) S°(2k, N) = Θ S*(2k, N(B, Q ) I RB+C.
Π2=A+B+C
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Here, ®Π2=A+B+C *S the orthogonal direct sum extended over all partitions 772 — A

+ B + C. From Propositions (A.2), (A.3), and (A.6), it follows that each subspace

S*(2/c, N(B, O) I RB+c in the formula (2.8) is stable under the action of T(n)

(n <Ξ Z + prime to ΛO and Wι (I G 77).

We shall decompose 5 (2k, N(B, C)) into smaller subspaces by the oper-

ators Wx and 7?,.

We discuss in a little general. Let θt (I G 77) be a non-negative integer. We

put N(θ):= 2βΐlplMιp
wpni(ΞΠlθι and Π(θ)2+ : = {/ e 77| 0, > 2}. Then from

Propositions (A.2), (A.6), and (A.7), we know that S*(2k, N(θ)) is stable under

the operators Wx = W(lθι) (I G 77), 7?, = 7 ? ( j ) (/ G 77(60 2 + ) , and 7X«) (w e Z +

prime to N(θ)) and also that S (2/c, N(θ)) has a basis consisting of primitive

forms of conductor N(θ). Take a primitive form / in such a basis.

By Proposition (A.2), T(n) commutes with Wx (I e 77) and 7 ? ^ ^ (/ e

77(l9)2+) as operators on S*(2A, 7V(β)) for all » e Z + prime to 7V(β). Hence

/ | ^ (/ G 77) and / | 7?/^7?/ (/ e Π(θ)2+) are constant multiples of / by [M,

Lemma 4.6.12]. Since Wj (/ G 77) and 7?/ (Z G Π(θ)2+) induce C-linear auto-

morphisms of S (2k, N(θ)) of order 2 (Propositions (A.2) and (A.7)), it is easily

seen that f\ W, = ± f for all / G 77 and / | 7 ? ^ ^ = ± / for all / G Π(θ)2+.

Hence the following subspace is well-defined: For each r G Map(77, {± 1}), σ G

Map(77(^)2+, {+ 1}), we define

S*(τ σ)(2fc, N(θ)) : = ^ = τ(/)/for a l l / e 77,

? , ^ = σ(ΐ)f\Rι for all / G Π(θ) 2+

We remark that if Π(θ)2+ = 0 , the last condition on Π(θ)2+ has no meaning and

so this subspace depends only on r.

Then from the above argument, we get the following orthogonal direct sum de-

composition:

(2.9) S*(2k, N(θ)) = θ S*™(2k, N(θ)).
r<ΞMapO7,{±l})

cχeMapα7(0)2+){±l})

We also get that the subspace S τ>σ (2/c, N(θ)) has a basis consisting of primi-

tive forms of conductor N(θ) for any τ G Map(77, {± 1}) and σ G Map(77(^)2+,

{ ± 1 } ) .

Next we study the behavior of the subspaces S τ'σ (2/c, N(θ)) under the

twisting operator 7?̂  (q G Π(θ)2+).

Take any q G 77(^)2+ and / G S*(r'σ)(2/c, 7V(«) for τ G Map(77, {± 1})

and <7€Ξ Map(77(/9)2+, {± 1}). We put g = f\R Then ^ e S*(2/c, M ^ ) ) by
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Proposition (A.7). From Proposition (A.2), it follows that for any I ̂  Π,

g\Wι=f\RqWι =
σ(q)g, iίl = q.

Similarly, by using Propositions (A.2) and (A.7), we have for any / ̂  Π(θ)2+,

g\RιWι=f\RqRlWι =

Now we put

σ(t),

if / # ϊ ,

= τ(q)f= τ(q)g\Rq, if / = q.

, if / G 77 and IΦ q,

if / = q.

( | ) ' σ ( / ) , if / e 77(0)2+ and /# ί f

if / = ί.

Then the twisting operator Rq induces a map S τ'σ (2k, N(θ)) 3 /•-> / | R,

S p x (2/c, N(θ)). Since 7?̂  is a C-linear automorphism of S (2/c, N(θ)) of

order 2 (by Proposition (A.7)), this map gives an isomorphism from S τ'σ (2/c,

N(θ)) to S*iτvσι)(2k,

We return to the previous situation. From Proposition (A.5) and (2.9), we

have for a partition Π2 — A + B + C,

(2.10)

S*(2k, N(B, O ) I RB+C = Θ , O)\RB+C)
reMap(/7,{±l})

σeMap(773++Λ,{±l})

Moreover, it follows that each subspace S τ'σ (2/c, N(B, C)) | RB+C in the

formula (2.10) is fixed by all the operators T(n) (n e Z+ prime to N) and

Wι (I e 77) from Propositions (A.2), (A.3), and the remark after the formula (2.9).

Now, by using the above formulas, we shall modify the right hand side of the

formula (2.7). Then we have the following: For all n ^ Z+ prime to N,

Π
/e/7

Π χι(n)tr(WI+κT(ή) S°(2k, ΛO)
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= Π χ,(») Σ tr(WI+κT(n) S*(2k, N(B, O ) I RB+C) (by (2.8))
lel+K Π2=A+B + C

= Σ Σ Π χ,(n)
Π2=A+B+C τeMap(/7,{±l}) lel+K

σeMap(/73++A,{±l})

x tr(FF/+ί7X») S*(r>σ)(2/c, JV(B, O ) I i?β+c) (by (2.10))

= Σ Σ Π (r(0 Π (-)} Π τ(l) Π (~)
Π2=A+B+C τ,σ lei ^ q&B+C \Q' * leK-(B+C) leKn(B+C) \ * /

x Π χ,(») tr(Γ(») 5*(r><"(2Ar, M ΰ , C)) | RB+C) (by Propositions (A.2-3))

= Σ Σ Π jr(/) Π β) ] Π τ(0 Π
Π2=A+B+C τ,σ /e/ ' qeB+C \Q'> ieK-(B-

-W+C)

x Π χ,(«) Π (4)tr(T(w) S*(T'a)(2k, N(B, C))) (by Propositions (A.2, A.5)).

Here, we use the conditions: / ^ Π(p)odd and K <Ξ 77(p)even at the third equality.

We introduce the following notation: Put 77 = {/ ^ 771 χ ; =̂= 1} and we

decompose any supset P of 77 into two pieces as follows.

(2.11) P = Pι + P\ Pι = PΠΠ\ P° = P Π (77-77 1).

By using this notation, we can express for a partition 772 = A + B + C,

π χ,ω π (f) = π (f) π © = π (f).

Here, Z : = l£+ + £+ + {Kι

2 Π A) and F : = ll + Kι

0 + (772 - (A U Iζ1)).

Since (773+ + A) 2 Γ̂, we have for any (r, σ),

, O)

(2.12)

" a'\2k,N(B,O),

if/e/7-X,

σ'φ =
if / e (773+

^ , if/ex,

where 0/ = P/, 1, or 0 according as / e 77 — (β + C), 73, or C

Therefore
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(2.13)
Π χ,(n) tr(WI+κT(n) S°(2k, N))

lel+K

= Σ Σ C3 Π ( T ) tr(Γ(n) S™'σ'(2k,
Π2=A+B+C reMap«7,{±l»

, C)))

= Σ Σ C3 tr(Γ(n) S ' (2/c, N(B, Q) | Rx+r) (by Proposition (A.5))
Π2=A+B+C τ,σ

, C))

r(/) Π
/Gifn(jB+c)

γ~J and (rr, σ')

= Σ Σ C3tr(Γ(n)
Π2=A+B+C τ,σ

where C3 = Π / e / |r(/) U

is determined by the formula (2.12) for any (r, σ).

It is easily shown that if (r, σ) runs over the set Map (77, {+ 1}) x

Map(773+ + A, {+ 1}), then also (τ\ σf) runs over the same set. Hence we can

express (r, σ) by (τ\ o'). In fact, we easily get the following.

r'(/), if / e #3°+ + (Kl f\A)+ Ko,

σ'Q), \ίl<ΞKl + (Klr)A).

By applying this results to the formula (2.13) and also replacing the notation

(r', σ') by (r, σ), we obtain the following formula.

(2.14) For all « e Z t prime to N,

Π %,(») tr(WI+κT(n) S°(2A, iV))

= Σ Σ ( Π ζ ;) tr (Tin) S*iτ σ)(2k, N(B, O ) | Rγ),
Π2=A+B+C reMap(77,{±l}) ^lel+K '

σeMaρ(773++i4,{±l})

where X = il + < + + ( ^ C\A),Y=l} + K,1 + (Π2 - (A U X^)), and

—J , if / ^ /3 + + i!,

HlΦqeX+B+C \~^l f if ' ^ 7 3 + ,

τ(l),

m
if / e K3+ + (K2 Γ\ A) + Ko,

ui^K3\ + (κι

2 n A),

uι<Ξκn (B + o.
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(IV) In this part, we fix the letters β and (wp)plMi as the part (III) and we con-

sider that the letters (p/)/€Ξ/7, /, and K vary satisfying the conditions in the formu-

la (2.7).

Let (α/)/e77 be a system of integers satisfying the conditions 0 < at < vι for

all / ̂  77. We put N(a) = 2 UplMιp
wpϊlleΠlaι and for a non-negative integer

i, Πiadi '= {/ G 771 at = i} and Π(a)i+ '- = {I ^ Π\aι> {). Let Ψ be a subset

of Π(a)ι + Π(a)0 and (f, σ) e Map(77, {± 1}) x Map(77(α?)2+, {± 1}).

Remark The letter a{ was already used at Part I in a different meaning. We

hope that there will be no confusion.

It is easy to see that all the subspaces in the right hand side of the formula

(2.14) are of the form S*(£Λ(2fc, N(a)) | Rψ for suitable (at), Ψ, and (f, σ).

We take any (^/)/e i7, Ψ, and (f, σ) and fix them for a while. Then we shall

find all (βi)ι&Πf /, K, a partition 772 = A + B + C, and (τ, σ) e Map(77, {± 1})

X Map(773+ + Λ {± 1}) which satisfy the condition:

fc, J ί (5, O ) I Rγ — S (2k, N(ά)) I Rψ.

Here, F : = l[ + ̂  + (772 - (A U X,1)).
Obviously, this condition is equivalent to the following three conditions.

pl9 if / e (77 - 772) + A,

( l ) α, = 1, if / e 5 ,

0, i f / e C.

(ii) ?Γ=Y.

(iii) (r, σ) = (f, σ).

We shall simplify these conditions. First we have

(2.15) the condition (i) O { ^ - = ?"•' ^ ' = ^
[77(α)1 = Π1-r B, Π{a)0 = 770 ~r C.

Hence 773+ and A are determined by (or,), and B (resp. C) is a subset of Π(ά)ι

(resp. Π(ά)0). Moreover

αz, if / e 77(α)3+,

2, if / e 77(α)2 + 5 + C,

1, if / e 77(α)1 - B,

lθ, i f / e / 7 ( α ) 0 - C.
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Next, under the condition (i), we shall discuss conditions for B, C, /, and K

coming from the condition (ii).

Since Ψ ̂  Π(a)ί + Π(a)0 and (2.15),

ψ= w? + (ψ n BY + ψo° + (ψ n c)° + wl + {w n BY + stf + (ψ n o\

On the other hand, we have

Y = // + JKO1 + (B1 - (κ2 n β)1) + (c 1 - (if2 n o 1 ) + β° + c°.

From these facts, we have

(2.16)

the condition (ii)

= Ψι, K1 = Ψ1", β° + C° = Ψ°,

n 5)1 = B1 - (ψ n #)\ (isr2 n o 1 = c1 - (fn o 1 .

From this, we have B = Ψ f) Π(a)ι and C = Ψ Π Π(a)0 and hence β

and C are determined by (α;) and Ψ.

Moreover, we know from (2.15), W? = (Ψ Π (//(α)! - B)Ϋ = ψl Π

(77(α)| ~ 5 1) and ^ = Ψ1 Π (77(α)J - C1). Moreover, since K2 = K Π Π2 =

K Π (77(α)2 + β + C ) J 2 n ΰ = / ϊ n £ and ίΓ2 Π C = iί Π C. Hence if β 1

and C are given, then /x, Ko, (K Π B) , and (iί Π C) are determined by

(α,) and Ψ.

Finally, we remark that under the condition (i), the definition domain of σ is

equal to those of a.

Now combining the above results, all (/0/)/e/7, /, K, a partition Π2 = A + B

+ C, and (r, σ) satisfying the condition:

are described in the following form.

(2.17)

a,, i f / e / 7 ( α ) 3 + ,

2, if / e 77(α)2 + (Ql + Q") + (φ,1 + Qo°),

1, if / e //(α), - (Qj1 + (?"),

0, i f / e Π(a)0- (Q^ + Qo°).

r * ^=^ /71 -I— /T 1 ^ -I— AT -I— / Γ ^ -I— / Γ -4- P —I— P -I— P ^ -I— / ^

. : = /7(α)2, B : = Ql + QΪ, C : = Q,1 + Qo°.
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τ = τ, σ - = σ.

Here, the meaning of each letter is as follows.

(2.18) Ql : = Ψ° Π Π(a)\, Qo°:= Ψ° Π

d (resp. Qo) runs over all subsets of Π(ά)1 (resp. Π(a)ι

0).

Pι (resp. Po) runs over all subsets of Qx (resp. Qo).

/>ί : = Ql - (Ψι Π Ql), Pi : = Qo1 - ( f 1 Π Qo1).

A1 — Ψ1 Π (/7(α)ί - Oί), £o : = if1 n (77(α)ί - Qo).
D3+, Dlf E3+, E2, E2, and Eo run over all subsets of Π(ά)3+Odd, Π(ά)1 —

Qι, Π(ά)3+even, Π(a)°2, Π{a)\, Π(ά)°0 — Qo° respectively, where we denote

Π(a)3+>odd = U e 771 ax > 3, α, is odd} and i7(α) 3 + > e v e n = {/ e 771 α, > 3,

α ; is even}.

Now we shall calculate the following.

(2.19)

2-mUχ,(n) Σ Σ

x Π χp(- Ij) Π χ , ( - /,») tr(fF/+xT(«) S°(2A, iV))

/ y y ( 1_\ rr
- . Π = I + J + K ^ ^ κ i \ Ί ] ί l

Π2=A+B+C τ,σ \ */ / p\2Mί

x Π χ , ( - I,) Π ζ,) tr(Γ(n) S f (2k, N(B, C)) \ Rr).

Here, w, /c, 2^=/+/+^ are the same as in (2.7), ζ/ and F a r e the same as in (2.14),

and (r, σ) runs over Map(77, { + 1}) x Map(773+ + A, {± 1}).

From the above results, we can express the fromula (2.19) in terms of {a),

Ψ, and (T, σ) as follows.

(2.20) Σ Σ Σ Ξ{(aϊ,Ψ,(τ,σ))
<«,w r=ιr(«)1+ιr(α)β

x tr(Γ(Λ) S*(Γ'σ)

Here, Ξ = ^ ( ( α ^ , ?Γ, (τ, tf)) is defined by the following:

Ξ = 2~#/7 Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ
0 } Qi P? P§ D3+ Do E3+ E°2 E\ El

K, (-Γ1)" Π χp(- I,) Π χ , ( - /,) Π ζ(,
N */ ' p\2Mλ 1<=J lel+K
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and QIJ QO, P[> PO> A+> A°> ̂ 3+> ^2> ̂ 2> a n d ^o° r u n o v e r t n e s a m e subsets as

in (2.18) respectively. Moreover /, K, A, B, and C are defined by (2.17), / .'= Π

- (1+ K), and for such / , K, A, B, and C, ζ, (/ e / + K) is defined by (2.14).

Next, we must calculate the value of Ξ. First, we have

Π χ , ( - 1) Π χ , ( - 1) = χ ( - 1) Π χ , < - 1) = Π
I2M ίe/ (/+X '

because χ is an even character modulo N. Also ![,£;%,(//) = Π i e / i (-f) and

71 = Q7(α)3+,odd - Dl) + (Π(a)l,even - O + (Π(a)\ - E\) + ((Π(a)\ - Ql) ~

A1) + ((π(a)l - Ql) - £o

x) + (ψ1 n Qί) + ( r 1 n Q1,).
For simplicity, we put %2Mχ — ̂ p\2Mx Xp a n ^ divide the variables D3+ and E3+

as follows: Z)3+ = D3+ + Dl+, E3+ = £3°+ + £3+.

Then we have

(2.21) . ^ f ^ Σ Σ Σ Σ ^ f ^ ί Π χ/y Π

x π ( π (I)) π ( π (1)) π (^i

x Π τ([) Π σ(/) x C4,

where

- Dl) + ((Π(a)\ - Q1,) - D\) + {{Π(a)\ - Ql)
1 n Qί» + (QO

X - (Ψ1 n ρo

x)) + ρί1 + ρo°.

xΣ Π (i) Π

x Σ Π r(0 Σ Π r(/) Σ Π r(/) Σ Π (—p ) Σ Π
U34. ife/l3+ U2 *=ί>2 βO < f e β O * 1 ' e * 1 * 0 e-ί 0

We can easily calculate the value of C4 as follows:

— Π v ΓT
4 — t c A 11

C 5 : = Π (l + r(0) Π
O " °

x Π
/e/7(«);+ e v e n+J7(α)2
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Splitting the summand of (2.21) into the factors depending on prime numbers

in the variables Qlf Qo, D3+, D3+1 and Dx, we have

Ξ:=2-*ΠC5ΣΣ Π \κ(l) {^) χ2Mι{ί)τ(ί) Π β)} Π

x Σ π {icω^pχ^ωσω π β

x Σ π Uωί^ 'χ^ωrω π β)}

xΣ Π Uo^Vx^OM/) Π (j)),

where Φ : = (771 - ΪP*1) + ?F0.

We can easily calculate the each term of the above formula.

Thus we obtain the following.

(2.22) Ξ=Ξ((al), Ψ, (r, σ)) = Π £",((«,), Ψ, (τ, σ)),
pen

where

2 x Ξp(.(.a,), Ψ, (τ, σ))

l + τ(p), if p e /7(α)3+,e

κ(p) (=±) χ2Mι(p)τ(p)IlίSφ (£), if

χ2Mι(P)σ(p) npφqsφ ( | ) , if /»

if ί e /7(α)J Π

1 + ( : ^ L ) r ( ί ) , if p e /7(α)i Π

2, i f ί l

and Φ = (771 - F 1) + ?f0, Qf = ?f0 Π

if i> e 77(α);+,even + /7(α)J
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From (2.7), (2.19), (2,20), and (2.22), we obtain the following final result.

PROPOSITION (2.23). We assume that 2 < μ — ord2(Λ0 ^ 4 and also f(χ2) = 8

if μ — 4. Let n be a positive integer prime to N and K an element of

{ ± 1 } . Then we have

ίtr(Γ (n) 5β'x) if ft >

Ur(f(w2) O if ft = 1
O)

= Σ (ω - β + 1) Σ Π (2 - «ϋ

5((α ;), 8Γ, (r, σ)) t r(r( W ) S*(r'σ) (2ft, 2* Π j>"' Π /"')
1

where ω is the same as in (2.7), /7(α) f = {/^/7| α7 = ί}(/= 0,1),/7(α) 2 +

= {/ e 771 at > 2}. Ξ((at)f Ψ, (r, σ)) αr^ ίΛβ constants explicitly determined by

the formula (2.22).

(2) Ξ((at), Ψ', (τ, σ)) rfo^5 noί depend on β and (wp).

(3) 77ιβ vα/ίtg of Ξ((at), Ψ, (r, σ)) t5 ^ i ^ r 0 orl.By using the formula (2.22), w

can explicitly find (a,), ?F, anrf (r, a) swc/i that Ξ({a)y Ψy (τ, σ)) = 1. D

We have some comments on this proposition. The subspaces in the right-hand

side of (2.23) (1), S*(r'<J)(2/c, 2%lMip
wp ϊlleΠlaι) \ Rv\ are orthogonal with each

other (cf. Proposition (A.8)) and these subspaces are spanned by primitive forms.

Moreover, the multiplicities for these subspaces in the right-hand side of the for-

mula of (2.23) are at most 1 if we consider only Kohnen spaces 5 >κ(k + 1/2, N,

χ)K and V0>X(N, χ)κ and if Mγ = 1.

Hence in such a case, from the above proposition and the theory of newforms

of integral weight, we can deduce that 5 >κ(k + 1/2, N, χ)κ and V >K(N, χ)κ

have an orthogonal C-basis consisting of common eigenforms for all operators

Tin ) ((n, N) = 1) which are uniquely determined up to multiplication with

non-zero scalars.

Actually, we also have similar and more exact results for Kohnen spaces in

general cases. See Theorems (3.10—11) for precise statements of results. In next

§3, we shall consider only Kohnen spaces and investigate in detail.

§3. The space of newforms and the strong multiplicity one theorem

We keep to the notations in §1 and §2. In this and next sections, we shall
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0>κ(k + 1/2 JV χ) and V0>K(consider only Kohnen spaces S0>κ(k + 1/2, JV, χ)κ and V0>K(N, χ)κ.

( M \
In this case, we can write N — AM and χ = (—^ I with an odd positive

integer M and a squarefree positive divisor Mo of M (cf. §0(d)). Then we decom-

pose

(3.1) Mo = mjn2+ and χ = χ Y + , 0 < mx | Mlf 0 < m2 + | M 2 +, χ 1 =

2+ =

The characters χ , χ + are defined with modulo 4MX, 4M 2 + respectively.

Under the above notation, for a positive divisor d of ML and any K ^ {± 1} ,

we put

(3.2)

S0'κ(/c + 1/2, 4dM2+, χ)jr : = S 0 X(/c + 1/2, 4dM2 +, χ 2 + ) ^ | Uim,), if A > 2,

V , if k — 1,

where κf — K (—L). We can easily check the well-definedness of this definition

by using Proposition (1.28).

For any K ^ {+ 1} , we define the space of "oldforms" by:

@0'κ(/c+ 1/2, N, χ)κ

' Σ {S0'*(k + l/2yN/py χ)κ + S0>x(k + 1/2, N/p, χ)κ\ U(p2))Mk>2,

>, X)κ + V0>κ(N/p, χ)κ I U(p2)}, if A = 1,

where ΣP\M, is the sum extended over all prime divisors/* of Mt.

Then we denote by ©"'"(A; + 1/2, N, χ)κ the orthogonal complement of

<S0 x(k + l/2,N,χ)κ in the space Se'"(k + 1/2, N, χ)κ (if Λ > 2) resp.

7 β x(iV, χ ) x (if k = 1).

We have the following:

(3.3) For any K ^ {± 1} , the mapping / ^ /1 Uim^ gives an isomorphism

from (B0>x\k + 1/2, N, χ2+)κ onto @0>κ(A: + 1/2, N, χ)κ, where κf = /c

/. From the definitions, we can see

<5e'"(k + 1/2, N, χ)κ = e^'ik + 1/2, N, χ2+)κ\ U(mλ).

By using this fact and Proposition (1.28), it is sufficient to prove the inclusion:
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©0'κ'(/c + 1/2, N, χ2+)κ\ UirnJ c @0'κ(/c + 1/2, N, χ)κ.

Take any / e @0'κ'(/c + 1/2, JV, χ2+)κ and £ e ®0'κ'(/c + 1/2, N, χ2+)κ.

Then by using Lemma (3.4) (see below), 0 = </, g) = {m^)~k+ι/2{f\ U(fn^,

g\ Ubfij)}. The proof is completed. EH

LEMMA (3.4). Let p be a prime divisor of M1 such that χp = 1. For any Fl9 F2

eS(*+l/2, N, χ),

<FX I U(p), F21 C/(^)> = pk~U2 <FV F2>.

Proof By using Proposition (1.18), [U2, Lemma (1.9)], and Proposition (1.27)

in order,

U(p)> = < ^ I U(p) W(p)2, F21 C/(ί) W(pΫ>

, F21 t/(/») ίF(^)> = pk-z'\Fλ I F,, F21 Yp>

- pk~3/2<Flf F21 YpYp = pk~1/2<Flf F2>.
D

From (3.3), we can extend the definition as follows: For a positive divisor d

of Mι and any K ^ {± 1} , we put

(3.5) © (/c + 1/2, 4dM2+, χ)κ-= ® (Λ + 1/2,

where /cr = fc

Now we shall define a hermitian involution w^ on S(k + 1/2, N, χ ) .

Let /> be an odd prime divisor of iV with ovdp(N) = !(<=>/) I M ^ . From
-j \ k+1/2 / ̂  \

. ) V y ί / Yp ^ s a hermitian involution on

S(k +1/2, N, χ2+).

Then we define an operator on S(k + 1/2, N, χ) = 5(/c + 1/2, N,

χ2+) I t/K) by:

-i \ k + 1/2

p) ψ
From Lemma (3.4), it is easily shown that this operator w^ is a hermitian involu-

tion on S(k+ 1/2, N, χ ) .

Moreover if (p, m^) — 1, we can simplify w^ as follows:
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(3.7) f\Wt = p-™(^)k™(mf*)f\γp, fe SVc + 1/2, N,χ),

by using Proposition (1.20) (1).

We shall also use the operator Tk+1/2>N>X(4) on S(k + 1/2, N, χ)κ (cf. §0(d)

and [K]). This operator has the following properties:

PROPOSITION (3.8). Let N = AM with an odd positive integer M and χ an even

character modulo N such that χ = 1. Then T k+l/2Nx{4) is a hermitian operator on

S(k + 1/2, N, χ)κ. Moreover for any f'= Σn^aifOeinz) e S(k + 1/2, N, χ)κ,

we have the following.

(i) f\fk+1/2JlΛU)

Σ la(in) + χM{2) (ε(~0

1) n) 2I'-Ia(n) + 22*"1a(n/A)

where ε = χ2(~ 1) and χM is the M-primary component of χ.

(2) If n is a positive integer prime to N,

f\ Th+i/2,N,χ(n)Tk+ι/2ιNtX(4c) = / | Tk+1/2tN>x(4)Tk+1/2>N>x(n2).

(3) If p is an odd prime divisor of N,

f\ U(p)fk+i/2,N,x(J>)(4)=f\ Tk+1/2,N,x(4)U(p).

(4) Suppose I e Π. Then

f\Rιfk+u2,N,M) =f\ T t + 1 W 4 ) * /

(5) Let m be an odd positive integer.

f\ Tk+ι/2tNtX(4) = / | fk+1/2>Nm>x(4).

(6) For any K e {+ I} 7 7 , f f c + 1 / 2 ^ > χ (4) /ύgs ί/ιg subspaces U(N χ ) ,

S0>κ(k + 1/2, iV, χ), , and V0'\N, χ)κ.

Proof See [K, §3] for proofs of the hermitian property and the assertion (1).

The assertion (2) follows from straightforward computation in the abstract Hecke

algebra. The assertions (3), (4), and (5) are easily verified by checking the coinci-

dence of the Fourier coefficients of the both sides (cf. (1)). From (1), we have for

any (p, t) e Ωι(N, χ ) , h\p tz) | Tk+ι/2ιN>x(4) = 3p(2)h\p tz).

Hence Tk+ι/2>N>χ{4) fixes U(N χ ) . Since Tk+1/2tNtX(4) is hermitian, V(N χ)κ



180 MASARUUEDA

is also fixed. The rest of the assertion (6) follows from the assertion (4). •

Now we can state the main results of this paper.

THEOREM (3.9). Let p be a prime divisor p of N with ord^ (N) = 1 and K e

{±1}Π. The operators U(p2),wp, and T k+ι/2tNtXU) fix ©0>κ(A; + 1/2, N, χ)κ.

Moreover we have U(p2) = - pk'lψp on &0'x(k + 1 /2, N, χ)κ. D

THEOREM (3.10). Let the notations be the same as above and let fc €= ί ± 1} .

Then, in particular, we suppose that ord2(Λ0 — 2.

(1) We have the following direct sum decomposition:

+ 1/2 N y)* ifk > 2 ] « v , 9

>*'*> J \= ® ®0'x(k + l/2f4dM2+,χ)κ\U(e2),

where 0 o < g ( i is the sum extended over all pairs (e, d) of positive divisors of Mι such
ed\Mί

that ed\ Mv

(2) Let n be a posisive integer prime to N. Then Tk+1/2Nχ(n ) fixes the space

© ' (k + 1/2, N, χ)κ and the trace is given by the following:

u2,N,χ(n) @0'*(/c + 1 /2, N, χ)κ)

Σ 5((α,), Ψ, (τ, σ)) tr(r(») S*(r'σ)(2/c, Mx Π /α') | Rv) ,
((cti) ,Ψ,(T,(7))GP IGΠ '

where the notations are as follows: Σ((α/)fy,(Tf(T))ep w ί/i£ 5wm extended over all elements

of the following set:

(a), Ψ, (r, σ)) (ty) = {θί)ι&π is a system of integers

such that 0 < at < vι'= ord^ΛO for any I e 77,

^ 77(α)0 + 77(α) l f r e Map(77, ί ± 1 » , σ e Map(/7(α)2 +, {± 1})J

77(α), = {/ e 77| ax = i}(i = 0,1), 77(α)2+ = {/ e 771 α, > 2}, ^((α,), W, (r, σ))

αr^ ί^ constants explicitly determined by the formula (2.22) which are either 0 or 1

(cf Proposition (2.23)). D

THEOREM (3.11) Lβί £/*<? notations be the same as in Theorem (3.10).

(1) The space © >κ(k + 1/2, N, χ)κ has an orthogonal C-basis consisting of

common eigenforms for all operators Tk+1/2Nx(p ) (p : prime, p X M) and U(p2) (p :

prime, p \ M), which are uniquely determined up to multiplication with non-zero complex
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numbers. If f is such an eigenform and λp the eigenvalue of f with respect to

Tk+i/2,N,χ(P ) (p X M) resp. U(p ) (p | M), then there exist a positive divisor Mf of

M2+ and a primitive form {of conductor MxM
r) F e S (2k, MxM

r), which is uniquely

determined and satisfies the following: For a prime p,

F\ T(p) = λpF if (p, M) = l,andF\ U(p) = λpF ifp \ M,.

Moreover λp — ± p for any prime divisor p of Mv

(2) (The strong multiplicity one theorem.) Let f, g be non-zero elements of® 'κ(k

+ 1 / 2 , N, χ)K. If f and g are common eigenforms of Tk+ι/2tN>x(p ) with the same

eigenvalue for all prime numbers p prime to some integer A , then C / — Cg. EH

Remark. We have λp — 0 for all p r i m e s p d iv iding M2+. On the o t h e r hand,

t h e r e ex i s t s a case t h a t F \ U(p) Φ 0 for a cer ta in p r i m e p \ M2+. There fore we

c a n n o t claim t h a t F | U(p) = λpF for any pr ime p \ M2+ in genera l cases . We shal l

discuss this topic in the next section.

Proof of Theorem (3.9). Observing (3.3), the definition (3.6), and Proposition

(3.8) (3), we see that it is enough to check these statements for the case of mx = 1.

From (3.8) ((3), (5), and (6)), T(4) = f Λ + 1 / 2 ^ χ (4) fixes the space of old forms

@0'κ = ©0'κ(/c + 1/2, N, χ)κ. Since f(4) is hermitian, @0'* = @0>κ(/c + 1/2, N,

χ)κ is also fixed by T(4).

Now we shall check the statement for U(p) and w^ only for the case of

k > 2, since the proof for the case of k = 1 is completely similar to that.
A fly

For wp, it is also enough to show that w^ fixes © ' . Hence it is sufficient to

prove that for any prime divisor q of Mί9 Yp maps S >κ(k + 1/2, N/q, χ)κ and

Sΰ'\k + 1/2, N/q, χ)κ\ U(q2) to @0'κ

If qΦp, Yp is an automorphism of S0>κ(k + 1/2, N/q, χ)κ (from (1.28)

(3)). Moreover from (1.20) (1) ,/ | U(q2) Yp = f\ YpU(q2) for any / e S(k + 1/2,

N, χ ) . Hence we get the assertion for q Φ p.

Next suppose q — p. Take any / = Σ w > ! a(n)e(nz) ^ 5 >κ(k + 1/2, N/p,

χ)κ ( c S(k + 1/2, N, χ ) ) . From (1.25-26), we have

1 \ -k-l/2 I -. \ -1/2 / \

- / ) χ(p)f\ W(p)δp + {-f) pιn Σ a(n) (f) e(nz)

Here, we note that χ(p) is meaningful because χp = 1.

S i n c e / e S(k+ 1/2, N/p, χ),f\ W(p) = f\ δp and then
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n>\

( -1 \

-y) fk+ι/2>N/p>χ >χ(p2) - f\ U(p2)}

(cf. [Sh 1, Theorem (1.7)]). This shows f\ Yp e @0'κ.

Next applying Yp on both sides of (3.12) and observing Yp

get

(3.13)

= ( . ) p, we

=/ | T
k+ι/2,N/p

Jp2)Yp -

This shows/ | U(p2) Yp e @0>κ.

We must show the relation between U(p ) and ŵ ,. We use the trace operator

Trζ/P : S(k + 1/2, iV, χ) -+ S(Λ + 1/2, iV//>, χ ) (adjoint to the inclusion map).

See Appendix 2 for its definition and properties.

TrN

N/p maps S0tX(k + 1/2, N, χ)κ to S0l)ί(A; + 1/2, N/p, χ)κ (cf. Proposi-

tion (A. 10)). Let / e © β ' κ . Since / is orthogonal to S0*(k + 1/2, N/p, χ)κ,

A system of representatives for Δ0(N, χ)\Δ0(N/p, χ) is formed by the

elements

such that

) and γ* (/ ^ Z/^Z), where we choose an element

(J J
_

0

(modJV//.),

(mod/,).

Hence, 0 = / | TrN

N/p = (p + 1 ) ' 1 (/+ Σ i e Z / ί Z / | r* ( \ [)*).

On the other hand, we have from (1.19),

k/2-3/i Σ /i r ; ( \ ί )* == P

k

/ / 2 - 3 / 4 / .

We already proved that J^ is an automorphism of © >κ. By replacing/ w i t h / |

- /
/2"3/4

/l ^ =p-k/2+3/4
f\ U{p)W(pΫU(p). The last assertion is easily shown

from this and Proposition (1.18). D
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Proof of Theorem (3.10). From (1.20) (3) and (1.8), we can see that © 0 > κ =

©0'κ(/c + 1/2, N, χ)κ is fixed by the operators T(n) = Tk+U2>N>χ(n)((n, N) = 1).

Since these operators are hermitian, we have © ' = © ' (k + 1/2, N, %)κ is

also fixed by the operators Tk+1/2Nχ(n ) for all n ^ Z + with (n, N) = 1.

Now we assume w t = 1 for a while and we shall give a proof for this case,

first. The general cases are dealt with after that.

We shall prove the statements (1) and (2) by using induction with respect to

the number of prime divisors of Mx ( =
 : a).

Suppose 0 = 0. Since then © 'κ = {0}, (1) is trivial and (2) is just the Prop-

osition (2.23).

Next we suppose that a > 0 and that the assertions (1) and (2) hold good if

the number of prime divisors of M1 ^ a — 1 (the assumption of induction).

For any positive divisor d of Mγ with d < Mlf © >κ(k + 1/2, 4dM2+, χ)κ

has a C-basis $d consisting of common eigenforms for all operators

Tic+ι/2ΛdM2+,χ(n ) ( w E Z+ prime to 4rfM2+). From the assumption of induction, the

system of eigenvalues for each element in %d corresponds to a primitive form of

weight 2k, trivial character, and conductor of the form dMf (0 < Mf \ M2+). By

using the strong multiplicity one theorem of weight 2k (cf. [M, Theorem 4.6.19]),

we have 58rfi J_ %di for any distinct divisors dλ and d2.

Moreover for any d(0 < d | Mv d Φ Mx) and / ^ SBd, any element of the

space sέ(f) = Σ0<e\iMl/d) C / | U(e ) has the same eigenvalues as those of / for

all operators Tk+ι/2M>x(n) ((w, ΛO = 1) (cf. (1.20) (3)). Hence the spaces d(f)

(/ e Srf) are orthogonal to each other, from the strong multiplicity one theorem of

weight 2k (cf. [M, Theorem 4.6.19]) and the later half of the assertion of induction.

From these results and the assumption of induction, we get

0<ed\Mλ

0<d<M,

= Θ { Σ <S0 "(k + 1/2, 4dM2+,χ)κ | U(e2)}
Q<d\Mλ

 l0<e|(M1/rf) j

dΦM1

= Θ f θ Σ Cf\U(e2)}.
0<d\M1 /&% 0<e\(M1/d) }

f
0<d\M1 /&% 0<e\(M1/d)

Therefore it is sufficient to prove that the elements f\ U(e ) (0 < e \ {Mι/d)) are

linearly independent for each / ^ 3&d.

Let d be a positive divisor of Mx with d Φ Mγ and / an element of %d. Then

we can take a prime p such that d\ (Mx/p). Applying the assumption of induction

to (M1/p), we can see that the elements f\ U(e'), 0 < e' \ {Mι/pd) are linearly
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independent.

We need to decompose the space </| U(e') O < ef | M1/(/?rf)>c with re-

spect to prime divisors of M1/(pd). If Mι/(pd) = 1, the decomposition is trivial.

Suppose Mι/(pd) Φ 1. Denote the set of all prime divisors of Mί/(pd) by

9 = {?!,...,&}. For any 5 (1 < 5 < /), put

From (3.12-13), we have the following:

(3.14) Let q e ^ and A any element of S0'*(/c + 1/2, Λ/7?, χ ) * (resp.

ϊ , χ)#) if /c > 2 (resp. /c = 1). Then

q2) q2)h\Yq=cq{h\Tk+1/2fN/qJq2)-h\U(q2)},

h I U(q2) Yq = h\ Tk+1/2tN/qJq2) Yq - cqq
2k~X

-k-l/2
\ -k+3/2

where cq = \—ξ-j Q

Since / is an eigenform of T k+1/2tN/q>χ(q ) for any q e #>, F ? preserves the

space </, / | {/(# ) > c from the above. By using (1.20) (1), we also see that all

operators Yq.(l < i < s) fix the space sίr

s.

Since these Yq (q €= $*) commute with each other, we have the decomposition

into common eigen subspaces.

(3.15) Let 5 be an integer such that 1 < s < t. We have

d's(ps) = [x e d'a x I Yq = p,(ί) { ( ^ ) ί ) x for all <? e {ίlf... ,qs}}.

Then we claim: dimc^s(/3$) = 1 for all s = 1 , . . . ,t and (Os e M a p ί ί ^ , . . . ,qs},

{ ± 1 } ) .

We inductively prove this claim.

Let 5 be an integer with 1 < s < t. Assume that the above claims for all

50 (s0 < s - 1) hold good. Then d's = Θ p ^ k d ί f t ^ ) Θ sd'^ip^) \ U(qs)
2}.

Here, ps_x runs over Map({qv . . ., ^ . J , {± D ) . We can take an element g such

that ^-iCPs-i) = Cg by the assumption of induction. In particular, if s = 1, we

take g = f.

Since U(qsΫ commutes with all Yqs(q e {qlf. . .,^s-1}) (cf. Proposition(1.20)

K — 1\ 1 1 / 2

—^-)Q\ h for any ? e {qlf.. . ^ ^ J and any h <Ξ

^'s-i(Ps-0 ® s&'s-ι(Ps-i) I t/(^s) Moreover we can see t h a t / and g have the same
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eigenvalue λ on Tk+1/2tN/Q χiqs) from Proposition (1.8) and Proposition (1.20) (3).

Now applying (3.14) to qs e 9 and g,

cqλ cqy q ) \

~ % ~ c<,sλ I

Since the characteristic polynomial of this matrix is X — ( ) qs, there are two

^ Qs '

distinct eigen subspaces of d's_1ips_1) ® d's_1ips_1) \ Uiqs) with respect to YQs

and both of them are one-dimensional. Thus, the proof of the claim is completed. Π

In either case, we get from (1.24) (1) and the above,

d' = <f\ U(e2);0 < e\ (M1/d)>c = Θ {dip) + dip) \ U(p2)},
P

where p (in the direct sum) runs over MapO?\ {+ 1}), 9 — the set of all prime

divisors of Mλ/(pd) and for any p e Map(^, {± D),

dip) = [x e d x I Yq = piq) { ( ^ ) ?} x for any q e ^J.

Since dimc«rf(p) = 1, we can take a basis ^ = Σw>γapin)e(n>ε) of dip) for

eachp e {± if\

Suppose that gp and gp \ Uip ) are linearly dependent. Then we may put that

gp I Uip ) — agp with 0 Φ a ^ C. gp and / have the same eigenvalue λp on

T ( P )• T n e n

(3.16)

(λp-a- χip) ( ( ~ ^ n) pk~ι) apin) = p2k~ι a pin / p2) for all n e Z+

(cf. [Sh 1,(1.7)]).

We have the following lemma.

LEMMA (3.17). Let d be a positive divisor of Mγ such that χp = 1 for any prime

p dividing d. Then for each non-zero element f — Σ w > xain)einz) €= Sik + 1/2,

N, χ), there exists n ^ Z+ such that in, d) = 1 and ain) Φ 0.

Proo/. We use an induction on the number r of prime divisors of d. If d — 1,

the assertion is trivial.

Suppose r > 0. We choose and fix a prime divisor p of rf. We consider f\ R(-)
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e S(k+ 1/2, pN, χ ) . Let us suppose f\ R (-) = O ^ f l W = 0 for all n <Ξ Z+

prime to p. Then since >̂2 \p'\(χ( )) X N, we have / = 0 (cf. Proposition (1.10))

which is a contradiction. Hence / | R / \ Φ 0. Applying the assumption of the

induction to d/p and f\ R (-) . there exists n €= Z+ such that (/?, d//>) — 1 and

<z(w)(-r) ^ 0. Such n is also prime to p and tfte) =£ 0. Then proof of Lemma is

completed. Π

From the above, we can take rϊ e Z + such that («', Mx) = 1 and ap(n') Φ 0.

Since ^ is a common eigenform of F9 (q ^ ^ ) , we get ( — ) = p(^) ( ) for all

g e f (cf. Proposition (1.29)). Then

(3.18) λp = a

Substituting this into (3.16),

(319) χ(p) (^y-)k ( ( y ) - (j)) ap(n) = pkap(n/p2) for all n e Z+

Set n = >̂ w'. By using aap{rί) — ap(p rΐ) and 0p(wO # 0, we have

(3.20) α =

From (3.18) and this,

(3.21) \λp\ =pk +pk~ι >2pk~ι/\

We note that λp is an eigenvalue of / and so λp is an eigenvalue of a primitive

form of weight 2k, trivial character, and conductor dM' (0 < Mf \ M2+) from the

assumption of induction. Hence (3.21) contradicts Deligne's theorem. Thus we see

that gp and gp \ U(p ) are linearly independent and the elements f\ U(e ), 0 < e

(Mx/d), are also linearly independent. This prove the assertion (1).

Next we prove the assertion (2). All positive divisors d of M1 are uniquely

expressed asrf = UplMip
wp, wp = 0,1. Then from Proposition (1.20) (3), (1.28),

and the assertion (1), we have for all n €= Z+ prime to N,
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itr(f(«2) S0'x(k + 1/2, N, χ)κ), if k > 2

\tτ(T(n2);V0 x(N,χ)κ), if k = 1

= < B Σ J J (2 - wt)tr(T(n2) @0'*(/c + 1 / 2 , 4 UplMι p
w> M2+, χ )^

wp=0,l

From the assumption of induction, we can express the trace tr(T(n )

6 0 > κ (k + 1/2, 4 Π ί | M i / ί i l ί 2 + , χ ) κ ) with the formula in the assertion (2) for any

^P\M1 P P ^ Mv Then it is easily seen that the range P of the sums in that ex-

pression formula does not depend on (tVp)p\Mι Moreover we can check that the

coefficients Ξda^, Ψ, (τ, σ)) in that expression formula also do not depend on

(wp)plMi. In fact, observing the definition (2.22) of the values of Ξ((a{), Ψ,

(τ, σ)), it is possible that only the value of χ2d(p) m a Y depend on (wP)p\Mί, where

But its value does not depend on (wp)plM either. Because we have χ2d — χ2

= χ2M from the assumption m1 = 1.

Thus we can take tr(T(n) @0'κ(/c + 1/2, TV, χ)κ) out of the formula of

Proposition (2.23) (1) by using these above facts. That is the assertion (2).

Now we shall deal with the general cases.

By using Proposition (1.28) (3) and the definition (3.5), the assertion (1) for

the general cases is easily deduced from those for the case of mι — 1.

Next we consider the assertion (2). It follows from (1.20) (3) and (3.3) that for

each n ^ Z + prime to N,

t r ( 7 V ) ©0'κ(/c + 1/2, N, χ)κ) = t r ( 7 V ) @0'κ'\k + 1/2, N, χ2+)κ),

where κf' — K ί—L

We already proved that the latter trace is expressed with the formula in the

assertion (2). In that expression, the range P of the sums does not depend on tcr

and x . Therefore, for the proof, it is enough to show that all coefficients Ξ({a),

Ψ, (r, σ)), determined by the formula (2.22), for K' and χ + coincide with those

for K and χ.

We easily check it in case by case, by observing the fact: For any p ^ Π,

l(P) = (χx+)2Ml(p) = x(p)(xz+)2Ml(P) =

Thus we completed the proof of Theorem (3.10). •
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Proof of Theorem (3.11). For any p e Π and any / = Έn>ιa(n)e(nz) e

©0'κ(/c + 1/2, iV, χ)κ, we see that /1 R2

p = / a n d hence α(w) = 0 if p \n. There-

fore / | C/(̂  ) = 0 for any prime p dividing M2+. Thus the operators T(p ) —

Tk+ι/2>N)X(p2) {p : prime, p X M) and ί/(/) (p : prime, /> | M) fix the space @0'κ =

@0>κ(λ; + 1/2, iV, χ)κ and commute with each other (cf. (3.8-10)). Moreover all

these operators are hermitian on © >κ. Form these facts, © >κ has an orthogonal

C-basis consisting of common eigenforms for all operators Tip )(p X M) and

U(p2)(p\M).
Then from Theorem (3.10), the strong multiplicity one theorem of integral

weight ([M, Theorem 4.6.19]), and the following fact: The subspace 5 τ'σ (2k, Mι

Π/€/7/α/) I RΨ in the right-hand side of (3.10) (2) are orthogonal with each other

(cf. Proposition (A.8)), the uniqueness property (stated in (1)) of such common

eigenforms and also the assertion (2) follow.

Let / be any element of such a basis consisting of common eigenforms. Set its

eigenvalues as follows: f\ T(p ) = λpf (p: prime, p X M) resp. f\ U(p ) = λpf (p:

prime, p | M). We know that λp — 0 if p \ M2+ and also λp = ± p ~ if p \ Mx

(cf. Theorem (3.9)). Moreover the system of eigenvalues {λp \p X N} corresponds

to a certain primitive form F of weight 2k, character trivial, and conductor

MxM
f (0 < M' I M2+). This follows from Theorem (3.10).

Now we shall prove that λ2 and λp (any p \ Mλ) also become the eigenvalues of

F with respect to Hecke operators.

First, we claim the following: There exists a fundamental discriminant D such

that ε ( - IΫD = | D \ > 0 and a(\ D |) Φ 0. Here we put ε = χ 2 ( - 1) for sim-

plicity.

This claim follows from [Sh 1, Theorem 1.7], Proposition (3.8) (1), and the de-

finition of Kohnen space.

We take such a fundamental discriminant D. Then a formal computation as

like [Sh 1, p.452] shows that

(3.22) Σ a(\D\n)n~s

= a(\ D I) Π (l - χM(p) (f) p " - ) Π (l - λpP~s +

where χM- (—j is considered as a character modulo MD.

Put
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ε ( ~ 1)kD> i f Z ) = ! (mod4)

(- IΫD/4, ύD = 0(mod4).

Then Πs a squarefree positive integer.

We also define a cusp form St(f) = Σn>ιAt(n)e(nz) by:

(3.23) Σ At(n)n~s = Σ a(tn)n~s L(S - k + 1, X ' ( ( ~ ^ *)) ,

where χ ( ) is considered as a character modulo 4Mt.

Then S,(/) e 5(2fc, 2M) (cf. [C, Theorem 4.3] if /c > 2 and [C, Corollary

4.10] if k = 1). Now we divide into two cases.

Case 1. We suppose that D = I(mod4). Then

(3.24)

Σ At(n)n~s = ait) Π ( l - λpp~s + U£)'p2k~ι-2s) * (i -
n>l & \1VI / '

where ck>χ(2) = χM(2) (ψj.

Hence St(f) ^ S(2/c, 2M) is a common eigenform of all operators Tip) (p:

prime, p X 2M) and U(p) (p: prime, p | M) and its eigenvalue is λp for each odd

prime p.

The primitive form F ^ S (2k, MxM
f) has the same eigenvalues λp with

respect to all operators T(p)(p X 2M). From this and the standard theory of new-

forms of integral weight, we have the following expression:

(3.25) St(f) = Σ ' aeF(ez), ae e C.
e

Here, Σg is the sum extended over all positive divisors e of 2M2+/M'.

For simplicity, we put F(z) = Έn^^Medίz) and for each prime p, μp is the

eigenvalue of F with respect to Tip) (p X MγW) resp. U(p) (p \ MγM').

From (3.25), we have At(ή)= Σ'eaec(n/e) for all n e Z+. Hence from (3.24),

(3.26) ait) Π (l - λpP~
s + [if)2p2k~l~2SY (1 " ckΛ{2)2k'ι's)

Π (1 -
p

Here 1MM' is the trivial character modulo MxM
f.
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We can easily deduce from this identity that λ2 = μ2 and λp = μp for any

prime divisor p of Mv

Case 2. We suppose that D = 0 (mod 4). Then At(n) = 0 for each odd inte-

ger n €Ξ Z + because of the definition of Kohnen space. On the other hand, we get

for each n ^ Z+ that At(2n) = Σ0<d\na(\ D\n2/d2)χM(d)(ψ}dk~\ because

χ - ί J = χ M ί—j as characters modulo MD.

Therefore

a(\D\)U(l-λpP-s+(-§) p2k~ι-η = Σ.

By the same method as in the case 1, we can deduce from this identity that λ2 and

λp (any p | Mx) also become the eigenvalues of F with respect to Hecke operators

in this case.

Thus we completed the proof of Theorem (3.11). •

§4. A more elaborate decomposition

We keep to the notations in §l-§3. We shall also consider only Kohnen

spaces in this section.

As we proved in Theorems (3.10) and (3.11), ©0'*(/c + 1/2, N, χ)κ may

have an eigenform corresponding to a primitive form F & S (2/c, MYM')

(Mr\ M2+ and M' < M 2 + ). Then, under a certain assumption (cf. (4.1)), we shall

define a subspace of © (k + 1/2, N, χ)κ which corresponds to only primitive

forms of conductor M — MγM2Jr, and give a more elaborate decomposition of

Kohnen spaces. The author believes that there exists a similar decomposition with-

out any assumptions. But we cannot prove it yet. We shall discuss this topic at the

end of this section.

Now we assume the following in this section.

ASSUMPTION (4.1). The conductor of χ divides 4M l 5 i.e., χ = χ 1 = ί—Lj

(cf. (3.1) for the notations).

We prepare some notations. For any tc €= {± 1} and any / €= 77, we define
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operators by e* '= ~κ {Rι + κ(ΐ)R) ^ Άc and e*π '•=

Let (^/)/e/7 be a system of integers such that 0 < a{ < vι ' = ord/CΛO for all

77. For simplicity, put M2

(f : = Π / e / 7 /"', N(a) =N4M1M2

(f, 7) - 77(α)0, £ =

, and F = 77(α)2+ (cf. §2(IV) for the definitions of /7(α), and 77(α)ί+ (0 < i

). We note that every positive divisor of M2+ is of the form M2°l for some

We choose and fix Λ: £= {±1} until the end of this section. Then © ' =

<5MF(k + 1/2, N(a), χ)κ is well-defined. Here K \F e {± 1}F is the restriction

of /c to F. Put

(4 2) B = B{a):= Θ © 0 ' κ l F α + l/2,TV(α),χ)Jί/(α2),
0<β|/ i)

where /̂  : = Π/ e £ ) / (cf. the beginning of §1).

From Theorem (3.10), we know

( 4 3 ) B <- ί SMF(k + 1 /2, 7V(α) • /„, χ ) , if k > 2,

\v^F(N{a) lD,χ)κ if k = 1,

and also have that © ' has a C-basis ίS consisting of common eigenforms for all

operators T(n) = 7 k+1/2,Nia),χ(n)(n G Z+, (w, M α ) ) = 1) and U(p2)(p^E)

(cf. (3.11)). Hence we can write as follows:

(4.4) β = Θ β / f β , : = Θ Cf\U(a2).
fe% 0<a\lD

We shall consider the hermitian involution w^ on S(k + 1/2, N(a) lD,

χ) for each p ^ D + E (cf. (3.6)). Then we can claim the following: For each

f ^ 31, the space Bf can be decomposed into common eigen subspaces with respect

(4.5) Bf=® Bf(p), Bf(p) •= {geBf;g\wp = p(p)g for all p e 7) + £},

where p runs over { + 1 } in the direct sum.

Moreover we have dimc Bf(p) < 1 for each / e 31 and p e {± 1} + , and

also have an equivalence relation:

(4.6) dimc Bf(p) = l<=>f\wp = p(p)f for all p e F.
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Proof of the claim. We can prove the following fact in the same way as the

proof of Theorem (3.10):

Bf = Θ B'f(p'), B'f{p') : = {g €= Bf £ | w, = p ' ψ ) * for all p ^ D)
pfe{±l)D

(cf. the claim after (3.15)).

Next we consider any prime p in E. Since / is a common eigenform of U{p )

(p e E), we g e t / | w, = ± / from Theorem (3.9).

Each operator U(q )(q ^ D) commutes with any Yp (p G £ ) on the space

S(k + 1/2, iV(α) lD, χ) (cf. (1.24) (1)). Hence we have for any p e £ and

a(0 < a I )

( Λ \ k + l/2 / ... \

=£) [ψ)f\U(β*)Yt=f\*tU(ai)

(cf. (3.7)). Therefore any element of Bf is a common eigenform for w^ (p e E)

with the same eigenvalues as / The claim follows from these results. O

From (4.3), we know that B is contained in S(k + 1/2, N, χ)κ (if k > 2)

resp. V(iV χ)κ (if ft = 1). Applying the operator eκ

π to the both sides, we see

that

κ _ [S(ft + 1/2, N, χ)κ I 4 = 5M(ft + 1/2, N, χ)κ, if ft > 2,
e Π - \ { κ _ 0,x _

Each generator / | U(a )eκ

π{f ^ ®, 0 < a \ lD) of B \ 4 is a common eigenform for

T(^ )((w, ΛO — 1) with the same eigenvalues a s / The system of eigenvalues of/

corresponds to a primitive form in S (2ft, MλM
f) (0 < Mr \ M2+ ) (cf. Theorem

(3.10)). Then it follows that B \ e*π Q ©0'*(ft + 1/2, Nf χ)κ from Theorem (3.10)

and the strong multiplicity one theorem of weight 2ft (cf. [M, Theorem 4.6.19]).

We shall closely study B \ 4 We fix / ^ SB and p ^ {+ 1} for a while.

Take any g — Σ w > ! b(n)e(nz) ^ Bf(p). Then from Proposition (1.29), we can see

that

(4.7) 6(n) = 0 if ( - ) = - ( ( ~ 1 ) Mή p(q) for some q^D

Suppose that there exists q e D + E such that κ(q) = — ί

Then for such a prime ^, we get that b(ή) = 0 if ( —) = /c(^). Hence
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g I Π < - 2~#ω+E) Σ bin) Π {( | ) 2 + Λ:(?) ( | )} eθ«) = 0.

Since Uil ) (/ ̂  D) commutes with Rq iq ^ F) (cf. (1.20)), each operator

e* (q ̂  F) trivially acts on B and so g | 4 ~ 0

Thus we proved that

-β/(/°) I 4 = ίθ} unless K — ( H -p on Z) + E.

Moreover Bf(p) | 4 is contained in a common eigen subspace for Tin )((n, N) = 1)

with the same eigenvalues as /

Put /r = the restriction of Λ y Lj to Z) + E (G {± 1} + ) and ( * )

is the following condition for any element h G $:

(*) h\wp = icip)h foYcittptΞE,

where w^ (^ ^ £) is the hermitian involution on 5(/c + 1/2, Niά), χ).

Remark. For p & E, wp on 5(/c + 1/2, N(a), χ) becomes the restriction of

those on Sik + 1/2, Niά) ΊD, χ) (see the definition of w^).

Then from the above, we have a decomposition

B I βπ — u3 Bfifc) I 0jy.

Here / in the direct sum runs over all elements of 58 satisfying the condition (*) .

The operator 4 is injective on Bfiκ). In fact, let us assume g\ 4 = 0 for

g— Σin>ιbiή)einz) e Bfiκ). Then δ(n) = 0 for all w e Z + prime to ΐlqeD+EQ

(cf. (4.7)). From this and Lemma (3.17), we have g = 0.

Now we define a subspace of © '* by:

©S F = @"ΐF(£ + 1/2, Mα), χ)*

: = {g e (BMFik + 1 /2, iV(α), χ ) x ^ | w^ = £(/>)g for all p ^ E),

This space is generated by the set {f ^ % ;/satisfies the condition ( * ) } .

Hence we have:

(4.8) For any n ^ Z+ prime to N,

triTin) ;B\eκ

π)= Σ triΐin) Bfiic)) = Σ tr(f in) Cf)

= trifin) <S%£F(k + 1/2, Mα), χ)^).
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We gave the expression of tr(T(n2) ;@ 0 ' κ F )(fe, N(ά)) = 1) in terms of

primitive forms of weight 2k (cf. Theorem (3.10)). Let us find primitive forms of

weight 2k which correspond to the subspace © ^

Take a n y / e $ satisfying (*) . From Theorem (3.9),/| U(p2) = ~ pk~ι£<φ)f

for all p ^ E. Let g be the primitive form of weight 2k which corresponds to/(cf.

(3.10-11)). So g\ U(p) = - pk~lic(p)g(p e £ ) . By using {M, Corollary 4.6.18],

we have g \ W(p) — ic(p)g for all p ^ E. Hence ©£f

(jB corresponds to all such g"'s.

From the expression of tr(Γ(w ) © '* ) and Proposition (A.2) (3), we can

deduce the following expression:

(4.9) For any n ^ Z+ prime to N(a),

tr(7V) ©~Γ/α + 1/2, N(a), χ)κ)

Σ Π ^ ( ( A ) , ϊ7*7, (r'f σθ)

x tr^Γ(«) S™'σ '(2ft, MJE Π Γ ) | it

where the notations are as follows: Σ((jg))8r',(r',σ'))ep' is the sum extended over all

elements of the following set:

), ?P"', (τ\ σθ) (A) = (j3/),eF is a system of integers

such that 0 < βt < α ; for any / ̂  F,

SΓ' c F(β)0 + F(β)lf τf e Map(F, {± 1}), σ̂  e Map(F(j8)2+> {± 1})

). = {/ e F\ ft = ί} for i = 0,1 and F(β)2+ = {/ e F | ft > 2}. /£ = Π / e £ /.

Each Ξq((βt), W, (τ', σ')) is the constant determined by (2.22). f e {± I}7 7 is

the following extension of τf: f 7(/) = Γ7(/), /c(/) Π ί e r ( —), or 1 according to

1&F, E, or D. Finally,

/ e S*(2ft, Mx/£ Π /^z)

O \ΔK, MxlE Π̂  / y •- j y I ̂  = f ( / ) y for a Π ; e ^

/li?,^, = σ'(l)f\Rι for all /€

We extend each ft (/ e F) to 77 as follows: ft = ft, 1, or 0 according to / ^

F , E, or D. Then we have Π(β)2+ = F(β)2+. Finally replacing fΛ, σr with r, σ,

and combining (4.8) with (4.9), we can obtain an expression of Xx(T(n ) B

I %)((w, ΛO = 1) in terms of primitive forms of weight 2k.
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(4.10) For n e Z + prime to TV,

tr(f(n);B\ex

π)

= Σ Π -g (1 + τ{q)) Π y f 1 + τ(q)ίc(q) Π

X Π £,((ft), ?F, (r |F, σ))tr(7X«) S*(Γ'σ)(2/c, MLM2

(f) | 7? r),

where Σ( ( j 9 ) f r f ( r f i T))ep^ is the sum extended over all elements of the following set:

((ft), W', (r, o)) (ft) = (ft)/ e F is a system of integers

such that 0 < ft < αz for a n y / e f , ?Γ c F(0) o + F(j8)lf

r e Map(77, {± 1}), σ e Map(77(0)2+, {+ 1})

-Map(F(0) 2 + , {±1})

is the restriction of τ to F, ^ ( ( f t ) , ΪP"', (r |F, σ)) {q e F) are the same as in

(4.9) and S*(r'σ)(2λ;, MXM^) are the same as in §2(111) (or Proposition (2.23)).

We claim that the coefficient of tr(T(ή) 5*(r'σ)(2/c, M^M®) \ Rψ) in (4.10)

equals to those in Theorem (3.10) (2) for any (ft), Ψ', (τ, σ), i.e.,

(4.11) π | ( l + r(ϊ» π | ( l + T(Ϊ)/C(Ϊ) Π (4)) Π ^((ft), ?Γ/, (r|F, σ))
qeD Δ q<=E Δ N l(=Ψ' \ * / / « e F

= Ξ(φ,)leΠ, Ψ', iτ,σ)).

Here, the right-hand side is the constant with respect to © ' (/c + 1/2, JV, x)^

determined by (2.22).

This claim is easily verified in case by case from the facts: χ = χ 2 M l,

771 = 0, and 77° = 77.

Observing 77(0)0 = 7) + F(β)0 and 77(0)! = £ + F(β)lt we can see the fol-

lowing from (4.11).

(4.12) The expression (4.10) of t r ( f (n2) B \ eκ

π) ((n, N) = 1) is a part of the ex-

pression (3.11) (2) of t r ( 7 V ) (B0'\k + 1/2, N, χ)κ).

Now we can state a more elaborate decomposition.

Put

fiβ'x = Mβ'x(k + l / 2 , N , χ ) κ : = Σ B { a ) \ e*π.

Here, (a) in the sum runs over all systems of integers such that 0 ̂  <xι <i vι (I ̂  77)

and (α,)/e;7 ^ (^/)/e/y We denote by Ή0 'κ = ̂ '\k + 1/2, TV, χ ) ^ the orthogon-

al complement of ??0>κ(A: + 1/2, TV, χ ) * in ©0κ(/c + 1/2, TV, χ)κ.

Obviously, 9l0'κ and 9ΐ0'κ are stable under the action of T(n 2)((n, TV) = 1).
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THEOREM (4.13). Let the notations be the same as above and let K e {± 1} .

Then, in particular, we suppose that orά2(N) — 2. Under the assumption (4.1), we

have the following.

(1) For any n e Z + prime to N,

= Σ Σ Ξdvil fl^I + J, (τ, σ))
I+J+K=Π(v)2 τeMap(/7,{±l})

σeMap(77-(/+/),{±l})

x tr(r(ιt) 5*(r'σ)(2/c, Mx Π / Π /
\ ^ / € / 1<=Π-U+J)

where Πiv)2 — il e Π\ v{ — 2}, ΣI+/+κ=πω)2 is the sum extended over all partitions

Πiv)2 = I + J+ K, v(I, J)ι = 0, 1, or i γ ( : = ord/ΛO) according to I e / , /, or

77 — (/ + / ) , Ξ((v(I, J)t), 1 + J, (τ, σ)) are ί^ constants determined by (2.22).

(2) L£ί 3B fo? ί^ orthogonal basis of @0>κ(A: + 1/2, iV, x)^ w^tcλ is sίated in

Theorem (3.11) (1). L<?£ S o (rβs/>. ®x) be the set of all f e 38 î /itc/i correspond to primi-

tive forms e 5°(2A;, Λ/) ( r ^ . <έS°(2k, M)) in the sense of Theorem (3.11) (1).

Then % (resp. 5BX) generates the space 9?0'κ(A: + 1/2, iV, χ ) ^ ( r ^ . 3R0'κ(/c + 1/2,

N, χ)κ).

(3) L ί̂ / be any element of ®0 and λp the eigenvalue of f with respect to

Tk+ι/2,N,χ(fi ) (P' prime, p X M) resp. U(p ) (p: prime, p\M). Then the primitive form

F, which corresponds to f in the sense of Theorem (3.11) (1), satisfies F\ Tip) — λpF

resp. FI U(p) = λpF for all primes p with p X M resp. p \ M.

Proof Let % be the same C-basis of ©0>κ(A: + 1/2, N, χ)κ as in the above

statement (2) and P the same set of parameters as in Theorem (3.10) (2). For any

(#/)/εi7> B a I eκ

π is stable under the action of all operators Tin )iiny N) = 1).

It follows from Theorem (3.11) (2) that B(a) \ eκ

π is genarated by the set 38 Π

iB(a) I 4 ) . Similarly, we can see that 9i0'*, $ 0 ' * are generated by 38 Π ^ 0 ' κ , 38 Π

$1 ' respectively.

Let us find U to|)*(yj){# Π iBia) \ eκ

π)}.

For any iip)> Ψ, (r, σ)) e P, we denote by SB^.y,^)) the subset of 38

which corresponds to the space S τ'σ i2k, Mί Π ί e Π lPι) \ Rψ in the sense of

Theorem (3.11).

Then from (4.12), there exist only two possible cases: $((P[)tφt(τ,σ)) — B a \ e*π,

or 38((P|),p,(Γι(7)) Π iB a I eκ

π) = 0 and whether the former case occurs or not de-

pends only on the parameter ((p/), IP", (r, σ)).

We define the subset of P of P by:
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((Pi), W, (r, σ)) e P ; ((p,), gr, (r, σ)) does not satisfy'

(at least) one of the following three conditions:

(i) ft = vt on 77(p)2+ (ii) ¥ = 77(p)0 + 77(p)x

l(iii) ^ = 2 on 77(p)0 + Π(p)1

Take a system (α/)ze/z ^ (vι)ieπ and a parameter ((p/), ?F, (τ, σ)) ^ P such

that S((Pl)y,(r,σ)) £ 5 ( α ) I 4 f o r t h i s (α/)((Pl)fy,(r,σ)) £ 4
Then ((ft), Ψ, (r, σ)) e P*. In fact, suppose that ((ft), W, (r, α))

satisfies the above conditions (i) and (ii). We get from (4.10) that pι < aι for all

/ e Π and ίP*^ 77(α)2+. Hence by using the condition (i), (pz = ) α; = vι for all

/ e 77(p)2+ and so 77(p)2+ c 77(α)2+. From the condition (ii), Π(ά)2+ Ώ Ψ= 77 -

77(p)2+ 3 77 - 77(α)2+. This means 77 = 77(α)2+.

Since (a) Φ (v), there exists / e 77 - 77(p)2+ ( c 77(α)2+) such that 2 < α,

< ^ . Hence the condition (iii) is not satisfied.

The contrary is also true. Take any ((p/), Ψ, (r, σ)) ^ P . Put at = p/ ?

2,1, or 0. according to / e 77(p)2+, ?Γ, 77(p)x - ?Γ, or 77(p)0 - W. Then (α,) ^

(y7). Put βt = plt 1, or 0 according to / e 77(p)2+, ?Γ Π i7(p) l f or Ψ Π 77(p)0.

Let P r / be the same set of parameters as in (4.10) and we define (j8/)/e/7 by

the above (βt) in the same manner as in (4.10). Then ((βt)leπ(a)2s Φ'> (r> σ )) e ^ ^

and 08,) = (pz). Hence «((P|),r,(ri<τ)) e B(a) \ eκ

π.

Thus we get that 3R0>κ is generated by U ({Pι)>ΨΛTtσ))<=P* S((P|),r,(r,σ)) Hence 9ΐ0'* is

generated by U ((p)>gr>(τ>σ))ep_p*S8((p)>8rf(Γ>(7)). The assertion (1) is easily deduced from

this.

Next we have for any ((p,), Ψ, (r, σ)) e ? ,

S*(τ'σ)(2/c, MJL Π /P/) I 7?^ c s°(2k, M, Π /P/ Π I2) .

Since

((ft), 3Γ, (r, σ)) e p * « Π / P / Π /2 ^ M 2 +,
l(=Π-Ψ lew

we have the assertion (2).

The assertion (3) can be proved by the same method as in Theorem (3.11) (1).

α

We shall discuss on an extension of this theorem to general cases. The key

point of this proof is the expression formulae (4.10-12) and they come from Prop-

osition (1.29). We needed the assumption (4.1) in order to use this proposition.

Now we give an example for a speculation of general cases.
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EXAMPLE (4.14). Let p be an odd prime and K e {± 1}. Then we have an

isomorphism of restricted Hecke algebras (cf. Theorem (3.11) (1) and [Ul §3]):

+ 1/2, 4p\ (^)) - A(2k9 p2) Θ S°(2k, p) Θ S(2k, 1),

where A(2k, p ) is a certain Hecke-submodule of S (2k, p ). •

The following question for this example is very natural: Can the part of

S°(2k, p) Θ S(2k, 1) be constructed with S^k + 1/2, 4p, (ty) and twisting

operators as the space like B \ eκ

π ?

We can affirmatively answer this question by using the following proposition.

PROPOSITION (4.15). Let p be an odd prime. If a non-zero element f — Σw> i

a(ή)e(nz) e S\k + 1/2, 4p, (^-Jj is orthogonal to the space igipz) g e S(k +

In \
1/2, 4)κ}f there exists n+ (resp. n_) ^ Z + such that \~^~) = 1 and a(n+) Φ 0

(resp. {^A = -land a(n_) Φ 0). D

We shall prove this proposition and more general results in the forthcoming

paper [U5]. The method of the proofs is completely different from those of Prop-

osition (1.29).

From the above example (4.14) and some numerical examples (cf. [U4]), it

seems that, in every case, there exists an elaborate decomposition of © >κ(k +

1/2, N, χ)κ like Theorem (4.13).

We hope to get such an elaborate decomposition by proving the generalization

of Proposition (4.15).

Appendix 1

In this appendix, we collect several properties and notations on cusp forms of

integral weight, which are used in the previous sections. We state almost results

with no proof, because we can prove them by straightforward calculations and the

standard theory of newforms of integral weight.

In this appendix, we keep to the notations of §0 (a) and (b) and we fix the fol-

lowing notations: k, N β Z+. Moreover, we simply write T(ή) = T2kN(n) and

W(Q) = [W(Q)]2k, etc., if the subcripts are obvious and any confusion does not
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occur.

PROPOSITION (A.I). Let A, B be finite sets consisting of prime numbers such that

A Π B = 0 and also let ap (p ^ A), bq (q £ B) be any non-negative integers. Then

for a positive integer n prime to ΐlpeAp
 p ΐlq<=B Q

 q, we have the following identity.

tή[WA]2kT(n) ;S[2k, Π pap Π q"*
^ \ peA qeB

= Σ Σ Π (ft, - u, + l)

0<tp<[ap/2] 0<uq

q<bq

x tr([WA]2kT(n) S° ilk, Π pap~2tf Π ?"•)) .

PROPOSITION (A.2) ([Sa], [Atkin-Li]). Let χ be a primitive character modulo

f(χ) such that χ = 1 and M a positive divisor of N such that (M, N/M) = 1. For

any f ^ S(2k, N), we have the following.

(1) If n is a positive integer prime to iVf(χ),

= χ ( n ) f \ R x T ( n ) .

(2) //w is α positive integer prime to N,

f\ T(n)W(M) =f\ W(M)Άn).

(3) Suppose (M, f(χ)) = 1. Then

f\ RXW(M) =χ(M)f\ W(M)RX.

(A) Let M' be a positive divisor of N such that (M', N/M') = 1 and (M, M') = 1.

Then

f I W(Λf) W(M') = f I W(MM'), f I W(M) W{M) = /.

D

PROPOSITION (A.3). Let p be an odd prime and M a positive integer prime to p.

For any f ^ S(2k, pM), we have

f \ R ( τ ) e S ( 2 k , p 2 M ) a n d f \ R ( j ) W<φ2) = ( ^ ) τ
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PROPOSITION (A.4). Let M be a positive divisor of N such that (M, N/M) = 1,

n a positive integer prime to N, and φ a primitive character modulo r such that r is

odd, r I N, and 0 = 1 . For anyf, g ^ S(2k, N), we have the following.

(1) </| W(M,g> = <f9g\

(2) <f\T(n),g> = <f,g\T(n)>.

(3) <f\Rφ, g> = <f,g\Rφ>.

•
PROPOSITION (A.5). L<?ί χ be a primitive character modulo r. If f\ Rχ — 0 /or/ ^

5 (2A:, ΛO, then f — 0. 7n oί/î r words, a twisting operator Rχ induces a C-linear iso-

morphism from S°(2/c, ΛO onto S°(2k, ΛO | J?χ.

Proc/. By [M, Theorem 4.6.8]. D

Let Ω be a finite set consisting of odd prime numbers and Ω = {2} U Ω and

also let ap (p €Ξ β) be non-negative integers. Then we shall define a subspace

S*(2Λ, Π , e ^ / 0 of S\2k, ΐlpeΩ~pa>).

We put Ω2 : = {̂> e i2 | α^ = 2}. We simply write RA — Yίp^A R i-\ ^or any

subset A of Ω2. In particular, i?0 = 1. For a partition Ω2 — A + 5 + C, we de-

note

iV:= Π / > and M 5 , C) : = Π pap ΐl p2 ϊl p = Π />α# Π />.
ίeβ pGΩ-Ω2 peA p&β peΩ-(B+C) p(=B

Then we know for any partition Ω2 = A + B + C, S (2k, N(B, C)) | RB+c —

S°(2k, N) (see [Atkin-Li, p.228, Theorem 4.1, and Corollary 4.1]). We take the

sum of these subspaces S (2k, N(B, C)) | RB+C over all partitions Ω2 = A + B

+ C such that Ω2 Φ A, and put

S\2k, ΛO : = Σ S°(2k, N(B, O ) | RB+C.
Ω2=A+B+C

Ω2ΦA

Then we define S (2k, ΛO by the orthogonal complement of the subspace S (2k,

ΛO in S (2k, ΛO with respect to the Petersson inner product.

PROPOSITION (A.6). The notations being as above, the following assertions hold.

(1) S2(2k, N)= Σ S*(2k, N(B, O ) IR B + C .
Ω2=A+B+C

Ω2ΦA
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(2) S (2k, N) is fixed by the operator T(n) for all positive integer n such that

(n, N) = 1. In particular, S (2k, ΛO is spanned by primitive forms of conductor N.

(3) S*(2/c, N) is also fixed by the operator W(pap) for all p e Ω.

Proof (sketch). (1) We use an induction with respect to # Ω2. (2), (3) Since

Tin) and Wipap) are self-adjoint operators, it is sufficient to show that S (2/c,

ΛO is fixed by those operators. We use Proposition (A.2) for Tin) and Wip p)

(pέB+O, and (A.3) for W(pap) (p e B + C). D

PROPOSITION (A.7). The notations are the same as above. Put Ω2+ : = {p e Ω \ ap

> 2} and Rp •= R / \ /or αny£ ^ Ω2+. Then each Rp (p ^ Ω2+) induces a C- linear

automorphism of S (2 k, N) of order 2.

Proof It is sufficient to show the following two facts:

(1) S*(2A, N)\RPQ S*i2k, N) for all p e β 2 + .

(2) / | i ? ^ = / for all / e= S*(2/c, ΛO and all /> e Ω2+.

We prove these facts.

(1) We denote the subspace of old forms in S(2k, N) by S\2k, N). Then

S*i2k, N) is the orthogonal complement of S\2k, N) Θ S2(2k, N) in Si2k, N).

Since Rp (p ^ β 2 + ) is a self-adjoint operator, it is sufficient for the proof to show

that Sι(2k, ΛO Θ S2(2k, ΛO is stable under Rp.

(i) First we discuss the space of old forms S (2k, ΛO. Take systems of inte-

gers iβq)qea and (sq)q(ΞΩ such that 0 < βq < aq (q e Ω), (βq)q(=Ω ̂  iotq)q<zQ, and

Q<sq<aq- βq(q<Ξ Ω).

For a positive integer m, put δ(m) = ( j . It is easy to show that for any

/ S ° ( 2 * Π V θ °

Π ^ ' ) Rp =
7

gqSq), if (p, ΐlq^qSg) — 1,

0, otherwise.

Hence it is sufficient to consider only the case of (p, ΐlq(=Qq q) = 1. In this case,

the level of f\ Rp is at most pm™ 2>βp) ΐlpφqegqβ9. Therefore if this number is less

than N, f\ Rp is an old form and so is f\ δ(Πq(EΩ~qs<!) Rp.

Next we see

because i(Xg)qe£f ^ iβq)Q&Ω a n ^ otp ^ 2. Moreover in this case, we have sq = 0 for



202 MASARU UEDA

all tf e Ω and then / 1 3 ( 1 1 ^ / ' ) # , = f\Rp<= S2(2/c, ΛO.

Combining these results, we have S\2k, N) \ Rp c S1(2/c, ΛO Θ S2(2/c, ΛO.

(ii) We consider S2(2k, ΛO. We use an induction with respect to # Ω2. If

# Ω2 = 0, S2(2k, ΛO = {0}. In this case, the assertion is trivial. Next we discuss

the case of # Ω2 = a > 0. We put the following assumption of the induction: If

#Ω2<a-l1 S2(2k, N)\RP^ S1(2k, N) Θ S2(2/c, ΛO for all p e β2 +.

Then combining this assumption and the previous part (i) of this proof, we get

the following: If #Ω2 < a - 1, S*(2/c, ΛO | i?^ £ S*(2/c, ΛO for all /> e β2 +.

By (1) of Proposition (A.6), it is sufficient to show that S*(2/c, ΛfCB,

O ) I RB+CRP ^ 51(2/c, ΛO θ S2(2/c, ΛO for any p e β 2 + and any partition of

β 2 = A + B + C with Ω2 Φ A.

Suppose either p ^ A or ap > 3. In this case, we can use the assumption of

the induction because of # A < #Ω2 = a. Hence S (2/c, iVCB, O) \ RB+CRP =

S*(2A:, # ( β , O ) I i?/>i?^+c c S*(2A:, iV(β, C)) | i? β + c <= S2(2A;, ΛO.

Next suppose p <B B + C. Then α, = 2 and S*(2k, N(B, C)) | RB+C \ Rp =

S*(2k, N(B, O ) I R{B+c)-{p} I i ? Λ Take any / = Σ w > ιa(n)s(nz) e S*(2Λ,

iV(β, O) I R^o-iP) ^ S(2k, pβUPΦq^qaq)y where /3 = 1 or 0 according a s ^ δ

or C. Hence / e S1(2/c, ΛO. We put #(*) = Σn^aiprύeinz). Then ^ ( ^ ) =

/ ω -f\RpRp(z) e S(2A, ΛO. From [M, Theorem 4.6.4], ^ e S(2A, JV//>) and

g(pz) e SX(2A:, ΛO. Hence / | i ? ^ ^ ) = /U) - g(pz) G 5^2^, ΛO. Therefore

S*(2A, iV(J3, O ) I i? β + c I Rp c S1(2/c, ΛO.

Combining these results, we have S2(2/c, ΛO I ̂  ^ S1(2A:, ΛO θ S2(2/c,

Λ/) for any p ^ i32+

(2) Take any p e i?2+ and any / = Σw> .aMeinz) e S*(2A, ΛO . We put

^(2) : = Σn>Mpn)e(nz). Then f\RpRp(z) = f(z) - gfφz). Since #(/*) =

/(z) - f\RpRp(z) e S(2Λ, ΛO, we have ^ e S(2/c, iV/^) from [M, Theorem

4.6.4]. Hence g(pz) belongs to the space of old forms of level N. On the other

hand, g(pz) = f(z) -f\RpRp(z) e S*(2/c, ΛO ^ S°(2/c, ΛO as we showed in

the previous part of this proof. Therefore / — f\ RpRp — 0. D

PROPOSITION (A.8). The notations being as above, the following orthogonal direct

sum decomposition holds.

S°(2k, N)= θ S*(2k, N(B, O ) I RB+C.
Ω2=A+B+C

Here, ®Ω2=A+B+C ^S ^ e orthogonal direct sum extended over all partitions Ω2 — A + B

+ C.
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Proof. By the strong multiplicity one theorem [M, Theorem 4.6.19]. •

Appendix 2

In this appendix, we give the definition and properties of the trace operator.

Let k, N, m ^ Z + with 4 | N and χ an even character modulo N with χ = 1.

We define the trace operator TrT : S(k + 1 /2, Nm, χ) -» S(k + 1 /2,

# , χ) by:

Σ /I?, / e S(fc + 1/2, M», χ).
ξedo(Mw,χ)\do(tf,χ)

Then we have the following properties.

PROPOSITION (A.9). The notations are the same as above,

(1) For anyf e S(k + 1 /2, Λ̂ m, χ) α;^ ̂ S ( H 1 /2, JV, χ), w ^ ί

</,#> = <f\Trϋm,g>,

i. e., the adjoint operator of TrN is the inclusion map: S(/c + 1/2, N, χ) —* S(k +

1/2, MM, χ).

(2) FWm χ) | TrN

N

m c F(iV χ) .

(3) Suppose that orά2(N) = 2 and m is odd.

S(k + 1 /2, TVm, χ ) ^ | Γr^ m c 5(ft + l /2, N, χ)κ.

Proof. (1) follows from straightforward computation.

(2) We easily see U(N χ) £Ξ [/(iVm χ) from the definition. Hence from (1),

0 = (υ, u) = (v I Γr^m, w> for any v e ^(JVm χ) and w e t/ (N χ ) .

(3) Put ξ = (( * J ) , χ 2 ( - D"+1/2e((2/c + 1 )/8)), Δ = 40V, χ), and 4'

= 4CM», χ). Then S(k + 1/2, TVm, χ)^ (resp. S(k + 1/2, Λ̂ , χ)κ) is the

α-eigen subspace with respect to the hermitian operator QNm = [zl^Zl'] (resp. QN

= [ΔξΔ]), a = ( - l ) [ α + 1 ) / 2 ] 2 | / 2 χ 2 ( - 1) (cf. §0(d)). Moreover, we can choose the

set {ξζv v ^ Z/4Z} as a common system of representatives for A \A^A and

For any / e S(A + 1 /2, iVm, χ ) κ and ̂  e S(/c + 1 /2, JV, χ),

< / | Γ r Γ Q w , ^> = </l TrT, g\QN> = <f,g\ QN> = <f,g\ QNm>

TrN

N

m,
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Hence (f\ Trζm) QN = a(f\ TrN

N

m) and s o / | Trζm e S(k + 1/2, N, χ)κ. D

Let us prove the claim which are used in §3. For the letter iV, we define the

letters Mίf M2+, and 77 in the same manner as in §1.

PROPOSITION (A. 10). Notations are the same as above. Suppose that ord2(Λ0 = 2.

Let K €= {± 1} and p a prime divisor of Mι with χp — 1. Then χ can be defined

with modulo N/p and we have the following:

S0'κ(k + 1/2, N, χ)κ\ Tr£/P <= S0'κ(k + 1/2, N/p, χ)κ,

Proof. For any / e= 77, / e S(ft + 1/2, N, χ), and ? e S ( H l / 2 ,

, χ).

</| 7 V ^ / f ^> = </| Γr^, ^17?,) = </, g\Rι> = <f\Rlt g) = <f\RtTr^ g>,

(cf. [U2, Proposition (1.10)]).

Hence f\ TrN/p R{ — f\ RtTrN/p. The assertions are deduced from this fact

and Proposition (A.9). •
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