A CHARACTERIZATION OF COMPLETE RIEMANNIAN MANIFOLDS MINIMALLY IMMERSED IN THE UNIT SPHERE*

QING-MING CHENG

§1. Introduction

Let M^n be an n-dimensional Riemannian manifold minimally immersed in the unit sphere $S^{n+p}(1)$ of dimension n+p. When M^n is compact, Chern, do Carmo and Kobayashi [1] proved that if the square $\|h\|^2$ of length of the second fundamental form h in M^n is not more than $\frac{n}{2-1/p}$, then either M^n is totally geodesic, or M^n is the Veronese surface in $S^4(1)$ or M^n is the Clifford torus $S^k(\sqrt{k/n}) \times S^{n-k}(\sqrt{(n-k)/n})$ in $S^{n+1}(1)$ (0 < k < n).

In this paper, we generalize the results due to Chern, do Carmo and Kobayashi [1] to complete Riemannian manifolds.

Acknowledgement. The author would like to express his gratitude to Professors K. Shiohama and H. Nakagawa for their valuable suggestions.

§2. Preliminaries

Let M^n be an n-dimensional Riemannian manifold which is minimally immersed in the unit sphere $S^{n+p}(1)$ of dimension n+p. Then the second fundamental form h of the immersion is given by $h(X, Y) = \tilde{V}_X Y - V_X Y$ and it satisfies h(X, Y) = h(Y, X), where \tilde{V} and V denote the covariant differentiations on $S^{n+p}(1)$ and M^n respectively, X and Y are vector fields on M^n . We choose a local field of orthonormal frames e_1, \ldots, e_{n+p} in $S^{n+p}(1)$ such that, restricted to M^n , the vectors e_1, \ldots, e_n are tangent to M^n . We use the following convention on the range of indices unless otherwised stated: $A, B, C, \cdots = 1, 2, \ldots, n+p$; $i,j,k,\cdots = 1,2,3,\ldots,n$; $\alpha,\beta,\cdots = n+1,\ldots,n+p$. We agree the

Received November 21, 1988.

^{*} The project Supported by NNSFC.

repeated indices under a summation sign without indication are summed over the respective range. With respect to the frame field of $S^{n+p}(1)$ chosen above, let $\omega_1, \ldots, \omega_{n+p}$ be the dual frame. Then the structure equations of $S^{n+p}(1)$ are given by

$$(2.1) d\omega_A = \sum \omega_{AB} \wedge \omega_{B}, \ \omega_{AB} + \omega_{BA} = 0,$$

$$(2.2) d\omega_{AB} = \sum \omega_{AC} \wedge \omega_{CB} - \omega_A \wedge \omega_B.$$

Restricting these forms to M^n , we have the structure equations of the immersion:

$$(2.3) \omega_{\alpha} = 0,$$

(2.4)
$$\omega_{i\alpha} = \sum h_{ii}^{\alpha} \omega_{i}, \quad h_{ij} = h_{ii},$$

(2.5)
$$d\omega_i = \sum \omega_{ij} \wedge \omega_j, \quad \omega_{ij} + \omega_{ji} = 0,$$

(2.6)
$$d\omega_{ij} = \sum \omega_{ik} \wedge \omega_{kj} - \Omega_{ij}, \quad \Omega_{ij} = \frac{1}{2} \sum R_{ijkl} \omega_k \wedge \omega_l,$$

$$(2.7) R_{ijkl} = (\delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk}) + \sum (h_{ik}^{\alpha}h_{jl}^{\alpha} - h_{il}^{\alpha}h_{jk}^{\alpha}),$$

(2.8)
$$d\omega_{\alpha\beta} = \sum \omega_{\alpha\gamma} \wedge \omega_{\gamma\beta} - \Omega_{\alpha\beta}, \quad \Omega_{\alpha\beta} = \frac{1}{2} \sum R_{\alpha\beta ij} \omega_i \wedge \omega_j,$$

$$(2.9) R_{\alpha\beta ij} = \sum \left(h_{ik}^{\alpha} h_{kj}^{\beta} - h_{ik}^{\alpha} h_{ki}^{\beta} \right).$$

Then, the second fundamental form h can be written as

$$(2.10) h(e_i, e_j) = \sum h_{ij}^{\alpha} e_{\alpha}.$$

We denote the square of the length of h by $||h||^2$. Then $||h||^2$ is intrinsic and given by $||h||^2 = n(n-1) - R$, where R is the scalar curvature. If we define h_{ijk}^{α} by

(2.11)
$$\sum h_{ijk}^{\alpha} \omega_k = dh_{ij}^{\alpha} + \sum h_{jk}^{\alpha} \omega_{ki} + \sum h_{ik}^{\alpha} \omega_{kj} + \sum h_{ij}^{\beta} \omega_{\beta\alpha},$$

then, from (2.2), (2.3) and (2.4), we have $h_{ijk}^{\alpha} = h_{ikj}^{\alpha}$.

In this paper, we denote the image of the immersion by M^n for simplicity.

LEMMA 1 (cf. [2]). Let M^n be a Riemannian manifold minimally immersed in $S^{n+p}(1)$. Then for any unit vector v on M^n ,

(2.12)
$$\operatorname{Ric}(v, v) \ge \frac{n-1}{n} (n - ||h||^2),$$

where Ric(v, v) denotes the Ricci curvature in the v direction.

LEMMA 2 (cf. [3]). Let M^n be a complete Riemannian manifold with Ricci curvature bounded from below. Let f be a C^2 -function bounded from above on M^n , then for all $\varepsilon > 0$, there exists a point x in M^n such that at x,

$$(2.13) f(x) > \sup f - \varepsilon,$$

$$(2.15) \Delta f < \varepsilon.$$

§3. Main results

Theorem 1. Let M^n be an n-dimensional complete Riemannian manifold minimally immersed in the unit sphere $S^{n+p}(1)$ of dimension n+p. Then either M^n is totally geodesic and M^n is globally isometric to $S^n(1)$, or $\inf R \leq n(n-1)$

$$\frac{n}{2-1/p}.$$

Proof. Following the computation in [1], we have

(3.1)
$$\frac{1}{2} \Delta \|h\|^2 = \sum (h_{ijk}^{\alpha})^2 - K_N - L_N + n \|h\|^2.$$

Because

(3.2)
$$\sum_{i} \left(\sum_{k} \left(h_{ik}^{\alpha} h_{kj}^{\beta} - h_{jk}^{\alpha} h_{ki}^{\beta} \right) \right)^{2} \leq 2 \sum_{i} \left(h_{ij}^{\alpha} \right)^{2} \sum_{i} \left(h_{ij}^{\beta} \right)^{2},$$

we get

(3.3)
$$K_{N} = \sum_{k} \left(\sum_{i} \left(h_{ik}^{\alpha} h_{kj}^{\beta} - h_{jk}^{\alpha} h_{ki}^{\beta} \right) \right)^{2}$$

$$\leq 2 \sum_{\alpha + \beta} \sum_{ij} \left(h_{ij}^{\alpha} \right)^{2} \sum_{ij} \left(h_{ij}^{\beta} \right)^{2} = 2 \| h \|^{4} - 2 \sum_{i} \left(\sum_{ij} \left(h_{ij}^{\alpha} \right)^{2} \right)^{2}.$$

(3.1) and (3.3) imply

(3.4)
$$\frac{1}{2} \Delta \|h\|^2 \ge \|h\|^2 \left[n - \left(2 - \frac{1}{p}\right) \|h\|^2\right].$$

1) If $\inf R \le n(n-1) - \frac{n}{2-1/p}$, then Theorem 1 is true.

2) If
$$\inf R > n(n-1) - \frac{n}{2-1/p}$$
, then $R > n(n-1) - \frac{n}{2-1/p}$. We

have

(3.5)
$$||h||^2 = n(n-1) - R < \frac{n}{2 - 1/p}.$$

Hence, $\|\mathbf{h}\|^2$ is bounded. According to Lemma 1, we know that the Ricci curvature of \mathbf{M}^n is bounded from below. In fact, from (2.12) and (3.5), we have, for any unit vector \mathbf{v} ,

$$\operatorname{Ric}(v, v) \ge \frac{n-1}{n} (n - ||h||^2) \ge (n-1) \left[1 - \frac{1}{2 - 1/p}\right].$$

We define $f = \|h\|^2$, $F = (f + a)^{1/2}$ (where a > 0 is any positive constant number). F is bounded because $\|h\|^2$ is bounded.

$$dF = \frac{1}{2} (f+a)^{-1/2} df,$$

$$\Delta F = \frac{1}{2} \left[-\frac{1}{2} (f+a)^{-3/2} \| df \|^2 + (f+a)^{-1/2} \Delta f \right]$$

$$= \frac{1}{2} \left[-2 \| dF \|^2 + \Delta f \right] (f+a)^{-1/2} = \frac{1}{2F} \left[-2 \| dF \|^2 + \Delta f \right].$$

Hence, $F\Delta F = -\|dF\|^2 + \frac{1}{2}\Delta f$, namely,

(3.6)
$$\frac{1}{2} \Delta f = F \Delta F + \| dF \|^2.$$

Applying the Lemma 2 to F, we have for all $\varepsilon > 0$, there exists a point x in M^n such that at x,

$$(3.8) \Delta F(x) < \varepsilon,$$

$$(3.9) F(x) > \sup F - \varepsilon.$$

(3.6), (3.7) and (3.8) imply

(3.10)
$$\frac{1}{2} \Delta f < \varepsilon^2 + F \varepsilon = \varepsilon (\varepsilon + F) \quad \text{(by } F > 0\text{)}.$$

We take a sequence $\{\varepsilon_m\}$ such that $\varepsilon_m \to 0$ $(m \to \infty)$ and for all m, there exists a point x_m in M^n such that (3.7), (3.8) and (3.9) hold good. Hence, $\varepsilon_m(\varepsilon_m + F(x_m)) \to 0$ $(m \to \infty)$ because F is bounded.

On the other hand, from (3.9),

$$F(x_m) > \sup F - \varepsilon_m$$
.

Since F is bounded, $\{F(x_m)\}$ is a bounded sequence, and we get

$$F(x_m) \to F_0$$

if necessary, we can choose subsequence. Hence,

$$F_0 \geq \sup F$$
.

According to the definition of supremum, we have

$$(3.11) F_0 = \sup F.$$

From the definition of F, we get

(3.12)
$$f(x_m) \to f_0 = \sup f \text{ (by } F_0 = \sup F).$$

From (3.4) and (3.10), we obtain

$$f[n-(2-1/p)f] \leq \frac{1}{2}\Delta f < \varepsilon^2 + \varepsilon F$$
,

$$f(x_m)[n-(2-1/p)f(x_m)] < \varepsilon_m^2 + \varepsilon_m F(x_m) \le \varepsilon_m^2 + \varepsilon_m F_0.$$

Let $m \to \infty$, we have $\varepsilon_m \to 0$, $f(x_m) \to f_0$. Hence,

$$f_0[n-(2-1/p)f_0] \leq 0.$$

- 1) If $f_0 = 0$, we have $f = ||h||^2 = 0$. Hence M^n is totally geodesic, and we know that M^n is globally isometric to $S^n(1)$.
 - 2) If $f_0 > 0$, we have

$$n-(2-1/p)f_0 \le 0, \quad f_0 \ge \frac{n}{2-1/p}$$

that is, $\sup \|h\|^2 \ge \frac{n}{2 - 1/p}$. From (2.15),

$$\inf R \le n(n-1) - \frac{n}{2 - 1/p}.$$

This completes the proof of Theorem 1.

THEOREM 2. Let M^n be an n-dimensional complete Riemannian manifold minimally immersed in the unit sphere $S^{n+p}(1)$ of dimension n+p. If n>1, p>1, then either M^n is totally geodesic and M^n is globally isometric to $S^n(1)$, or M^n is the

Veronese surface in $S^4(1)$ or $\inf R < n(n-1) - \frac{n}{2-1/p}$.

Proof. According to the proof of Theorem 1, we know

$$||h||^2 = 0$$
 or $\sup ||h||^2 \ge \frac{n}{2 - 1/p}$.

- 1) If $||h||^2 = 0$, then M^n is totally geodesic and M^n is globally isometric to $S^n(1)$ from Theorem 1.
 - 2) If $\sup \|h\|^2 \ge \frac{n}{2-1/p}$, then we have

$$\inf R = n(n-1) - \sup \|h\|^2 \le n(n-1) - \frac{n}{2 - 1/p}.$$

When $\inf R < n(n-1) - \frac{n}{2-1/p}$, we know that Theorem 2 holds.

When inf $R = n(n-1) - \frac{n}{2-1/p}$, we have

$$\sup \|h\|^2 = \frac{n}{2 - 1/p}.$$

Hence,

$$\|h\|^2 \leq \frac{n}{2-1/p}.$$

According to Lemma 1, we get, for any unit vector v in M^n ,

$$\operatorname{Ric}(v, v) \ge \frac{n-1}{n} \left[n - \frac{n}{2 - 1/p} \right]$$

$$\ge (n-1) \left[1 - \frac{1}{2 - 1/p} \right] > 0 \quad \text{(by } p > 1, \ n > 1).$$

From Myers' Theorem, we know that M^n is compact. Main theorem, Corollary and theorem 3 in [1] yield p = n = 2 and M^n is the Veronese surface in $S^4(1)$. This completes the proof of Theorem 2.

THEOREM 3. Let M^n be an n-dimensional connected complete Riemannian manifold immersed in the unit sphere $S^{n+1}(1)$ of dimension n+1. If there is a point p in M^n and a unit vector v such that Ric(v, v)(p) = 0, then either M^n is totally geodesic and M^n is globally isometric to $S^n(1)$, or M^n is locally the Clifford torus $S^k(\sqrt{k/n}) \times S^{n-k}(\sqrt{(n-k)/n})$ in $S^{n+1}(1)(0 < k < n)$, or $\inf R < n(n-2)$.

Proof. According to Theorem 1, we know that either M^n is totally geodesic and M^n is globally isometric to $S^n(1)$, or $\inf R \le n(n-1) - n = n(n-2)$ (from p = 1).

- 1) If M^n is totally geodesic or $\inf R < n(n-2)$, then Theorem 3 is true.
- 2) If $\inf R = n(n-2)$, then $\sup \|h\|^2 = n$. Hence, $\|h\|^2 \le n$. When $\|h\|^2$ get its maximum in M^n , that is, there is a point p in M^n such that $\|h(p)\|^2 = \sup \|h\|^2$, we have $\|h\|^2 = n$ from E. Hopf's Theorem. Theorem 2 of [1] implies that Theorem 3 is true. When $\|h\|^2 < n$, we will show that it is impossible. In fact, if $\|h\|^2 < n$, we have

$$Ric(v, v) \ge (n-1)\left(1 - \frac{\|h\|^2}{n}\right) > 0.$$

This is a contradiction.

REFERENCES

- S.S. Chern, M. do Carmo and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional analysis and related fields, (1970), 60-75.
- [2] P.F. Leung, Minimal submanifolds in a sphere, Math. Z. 183 (1983), 86-75.
- [3] S.T. Yan, Harmonic functions on complete Riemannian manifolds, Comm. Pure and Appl. Math. 28 (1975), 201-228.

Institute of Mathematics Fudan University Shanghai, P.R. China