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THE UNIQUENESS OF POSITIVE SOLUTIONS OF

PARABOLIC EQUATIONS

OF DIVERGENCE FORM ON AN UNBOUNDED DOMAIN

MASAHARU NISHIO

§1. Introduction

Let Rn+1 = Rn X R be the (n + 1)-dimensional Euclidean space (n > 1).

For X €= Rn , we write X = (x, t) with x ^ i?w and t €= 7?. We consider para-

bolic operators of the following form:

where the coefficients aυ are measurable functions with atJ = ajt and satisfy

(2) M~ι I ξ | 2 < Σ a,j(x, t) t&, ati(x, t) < M

with some positive constant M, for every ξ = (ξ1, . . . ,ξw) ^ i ? and almost all

\X, I) t= il

For an unbounded domain 42 in i?M , we put

H0(Ω, L) = {u > 0 Lu = 0 on Ω, u = 0 on d^β},

where 9̂ 42 denotes the parabolic boundary of Ω.

In this paper, we assume that for every τ ^ R, Dτ = {x ^ Rn (x, τ) ^ Ω)

is a bounded Lipschitz domain. Then H0(Ω) coincides with H0(Ω Π R X (— °°,

«)) for every a ^ R. For a bounded Lipschitz domain D in R and a continuous

function φ > 0 on (— °°, a), we put

By using a special form of the boundary Harnack principle for Ω(D, φ), we shall

show the following
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THEOREM 1. Let D be a bounded Lipschitz domain in Rn and φ > 0

a 1/2-Holder continuous function on (— °° , a) for some a ^ (— °° , °°] . If

lim inf | τ |~ φ(τ) < °°, tfrew ίforg msfcs u Φ 0 such that

/ίo(β(Z), <p),L) = {cu;c>0).

§2. Some estimates of L-parabolic measures

For a domain Ω in R and a point Cr, t) in β, we denote by ωΩ' the

L-parabolic measure at (x, t) with respect to Ω.

First we recall the Aronson estimate of the fundamental solution of L. For an

M > 0, we denote by ί£(M) the class of the parabolic operators of the form (1)

satisfying (2).

LEMMA 1 (see [1]). Let Γ(x, t y, s) be the fundamental solution of

L €= £(M). Then there exist positive constants Cv C2, γlf y2 depending only on M, n

such that for all (x, t), (y, s) e Rn+1,

Cx gn(x, t y, s) < Γ(x, t y, s) < C2grz(x, t y, s),

where gr is the fundamental solution of d/dt — γΔ.

We shall use parabolic dilations. For a > 0, we denote by τa the parabolic

dilation defined by τa(x, t) = {ax, at). We note that £(M) is invariant for ev-

ery parabolic dilation, that is, for any L ^ £(M) and a > 0, La G ίP(M), where

La(u°τa) = Lu.

For a closed ball B in R , we put

= {(x, ί) t < 0, ( - ί)"1/2x e β},

and for r > 0 and a starlike open neighborhood V of 0 in R", we put

Kr= (te, fl r ' Ί e V, Ul < r2}.

LEMMA 2. Lei V be a starlike open neighborhood ofO in R and B a closed ball

contained in V. For 0 < s < 1, there exists v > 0 such that for any L ^ T{M) and

X^ Vs,

ωx

Vι (dV, D 7X5) > v.

Proof. Take a closed ball Bγ contained in the interior of B. Put
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υ(x, t) = fn Γ(x, t y , - \)dy

and

w(x, f) =ωy? (dV1 Π

By Lemma 1,

v(x, f) > Cι I gΛx, t y, - \)dy,

so that by the maximum principle there exists a constant K > 0 such that

1 — w < Kv on Vv

By Lemma 1, we can choose (ξ, τ) ^ Vx with — 1 < τ < — s such that

v(ξ, τ) < -~.

By the Harnack inequality (see [4], p. 102), for any (x, t) ^ Vs,

w(x,t) >Cw(ξ,τ) >f,

which shows Lemma 2.

Remark 1. By using parabolic dilations, Lemma 2 implies that for r > 0 and

for 0 < s < 1,

ωx

vWr Π 7X5)) > v for ί E i ς ,

where v is the constant in Lemma 2.

The above lemma gives the following

LEMMA 3. Let V be a starlike open neighborhood of 0 in Rn and B a closed ball

contained in V. For any ε > 0, there exists s > 0 such that for any L ^ £ (M) and

Z e Vsr\T(B),

ωx

vλTiB)(dVr\T(B)) <ε.

This shows that 0 is a regular point in Vr\ T(B) with respect to the Dirich-

let problem.
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Proof. By using parabolic dilations, we may assume that r = 1. For

L e £(M), we put

uL(x, t) = ωy

For 0 < 5 < 1 and Cr, t) e VSi we have

M l (x, ί) < ω*f (d

where v is the constant in Lemma 2. Since uL°τs(x, t) = uL(sx, s t) is a solution

of Lsw = 0, by the maximum principle,

uL°τs< (1 - y)ι^ on V^TiB),

and inductively we have for every integer k > 0,

% ° V ^ (1 - ^ ) f e % s Λ on VX\ΠB),

which implies

uL< (1 - v)k on 7 S * \ Π B ) .

This shows Lemma 3.

§3. The existence of positive solutions

A domain Ω in R is said to be spatially bounded if for every T ^ R, Dτ =

{x e Rn Cr, r) e β} is bounded. A domain β in i? w + 1 is called a (1, 1/2)-

Lipschitz domain with the Lipschitz constant m if for every boundary point

(y, s) G 3i2, there exist a coordinate system (xlf . . . ,xΛ) of Rn, a function / on

Rn~ X i? and a neighborhood [/ of (z/, 5) such that for every x , ξ e i?M~ and

every t, τ & R,

I /Cr , f) - f(ξ , τ) I < m(\x - ξ \ + \t - τ \ )

and

(3) flΠ U= {(x*,xntt) e U;xn>f(x*9 t)}.

Let D be a bounded Lipschitz domain in Rn, τ ^ R and m > 0. A point X ^ i?w +

is called a proper inner point with respect to CD, τ, m) if X €= β for every

(1, 1/2)-Lipschitz domain ,0 with the Lipschitz constant m satisfying {x ^ Rn

(x, τ) e β} = Zλ

Hereafter we shall give a special form of the boundary Harnack principle,

which is used to show the existence of a non-zero solution in H0(Ω, L).
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LEMMA 4. Let Ω be a spatially bounded (1, l/2)-Lipschitz domain in Rn

with the Lipschitz constant m. For τ ^ R, we put D = Dτ. For x0 e Rn and r0 > 0,

we assume that (r0, τ + r0) is a proper inner point with respect to (Z), r, m). Then

there exists a constant C > 0 swc/ι fftαί for any solution w > 0 o/ Z,w = 0 on Ω =

Ω Π Rn X (τ, °°) w/udi vanishes continuously on dΩ Γ\ Rn X [r, °°),

w(x, ί) < C tt(:r0, τ + 0 /or (x, t) e β ( τ + Γ o ) ,

w/ι#r£ C depends only on n, M, m, Z), x0 and r0.

Proo/. Put 7 = i(xv ...,xn);\x,\< 3m, = 1, . . . ,n}. For r > 0 and Yo e

i? , we set Kr(F0) = {Fo} + Vr (for the notation Vr, see the paragraph 2). If a

solution w > 0 of Iw = 0 on β τ vanishes continuously on dΩ Π i?w X [τ, °°),

then for any (x, f) ^ Ω τ

u(x, t) = I u(y, τ) dω%M (y),
JD x {r}

and the parabolic measure ω/ώ is absolutely continuous with respect to ω^M^0

on D X ίr}. Hence it suffices to show that

(4) ω%% (Vr(y09 τ)) < C ω # > Γ + Γ o ) (Vr(y09 τ))

for (x, t) e ,0 ( r + r o ) and sufficiently small r > 0. As β is (1, 1/2)-Lipschitz,

there exist a finite family (Uk) of open sets in Rn+ with U Uk^> dD x {τ} such

that ί/Λ associates with a coordinate system and a function satisfying (3). If

(#o> rf ί f l χ {r} \ U ί/Λ, we put Ar(y0, τ) = (y0, τ + 2r2). Otherwise we

choose another open set U in Rn+ , an associated coordinate system in Rn+ and a

function / satisfying (3). Put Ar(y0, τ) = (y*, y^ + 3rnr, τ + 2 r 2 ) , where y0 =

(y*9 yj e R"-1 x R, and

v(x, t) = ω^ω (Vr(y0, r)).

We shall show that there exists Co > 0 such that

(5) ! ; (* , /) = Co ω^V? W2v(l/o, τ))9 {x9 t) e β ( Γ ) \ F2V(z/0, r)

for every integer k > 0 with 2 + r > ίo/2. By Remark 1 and the Harnack ine-

quality, we have for some Cx > 0,

v(x, t) < 1 <\υ(Ar/2{y0J r)) <^v(Ar(y0, r)).

Similarly
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v(Ar(y0, τ)) < Cxv{A2r{y^ r )) ,

so that

v(x, t) < - ^ v(A2r(y0> τ)), (x, t) e Ωiτ) \ Vr(y0, τ).

By using Lemma 3 for ε = 1/Cι and for B = {(x*, xn) e Rn | x* | 2 + (,rw +

2m) < m 2 / ( l + m )}, there exists 0 < s < 1 such that

<\ ^ ^ e ^ ( 1 0 \ ({Kl + T(B))

for every F G i?w + 1. Hence for every F<E 9β ( Γ ) \ K2y(z/0, r) and (x, t) e Vsr

On the other hand, for every (x, t) e dV2r(y0, τ) which is not included in any

V^dO with Y ^ dΩτ \ V2r(y0, τ), the Harnack inequality gives

υ(x,t) <C2v(A2r(y0, τ))

with some constant C2 > 0. Therefore by the maximum principle, we have

, t) < Co v{A2r{y,, τ)), (x, t) e β ( Γ ) \ V2r(y0, τ)

for Co = max(C1/ι>, C2), which shows (5) for k = 1. Thus inductively we have

(5) for every integer /c > 0.

Furthermore we have

(6) v(AtV2/2(y0, τ)) < C3 v(x0, τ + /0)

by the Harnack inequality, where C3 > 0 is a constant depending only on n, M,

mf D, x0 and t0. Combining (5) and (6), we obtain (4), which shows Lemma 4.

This gives the following

LEMMA 5. In the same situation as in Lemma 4, we have

u(x, t) < C u(x0, τ + r0) ω(^!lr0) (Dτ+To x {τ + τ0})

for every (x, f) G Ω °, where C > 0 is the constant in Lemma 4.
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Using the above two lemmas, we obtain the Harnack inequality of the follow-

ing form.

PROPOSITION 1. Let Ω be a spatially bounded (1, 1 /2)-Lipschitz domain in

R , τ ^ R and K a compact subset of Ω . Then there exists a constant C > 0

such that for every L ^ £(M) and every solution u > 0 of Lu = 0 on Ω which

vanishes continuously on dΩ Π R x [r, °°),

max u < Cmin u.
K K

In [2], E.B. Fabes, N. Garofalo and S. Salsa show a similar Harnack inequality

in the case Ω is a Lipschitz cylinder.

We shall prove the existence of non-zero u e H0(Ω, L) by using Lemma 5

and Proposition 1.

PROPOSITION 2. Let Ω be a spatially bounded (1, 1 /2) -Lipschitz domain in

R . Then there exists a non-zero positive solution u of Lu = 0 on Ω such that u

vanishes continuously on dΩ.

Proof Let Yo = (y0, s0) G f l b e fixed. For τ < s0, we put

uτ{x, t) = —% r .
ω & (Dτ x {r})

Then uτ(Y0) = 1. Therefore by Proposition 1, for every t0 < s0, the sequence

{uτ} τ<tQ is uniformly bounded and hence equicontinuous on every compact set in

Ω °. Then there exist a decreasing sequence iτk}™=ι tending to — oo and a solu-

tion u of Lu = 0 on Ω such that

lim uTk = u (compact uniformly).
k—*°o

Using Lemma 5 for uτ and letting k tend to the infinity, we see that u vanishes

continuously on dΩ, so that u €= H0(Ω, L). This completes the proof.

§4. The uniqueness of positive solutions

Let D be a bounded Lipschitz domain in R and φ a strictly positive

1/2-Hόlder continuous function on R.
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Remark 2. Ω(D, φ) is a (1, 1/2)-Lipschitz domain with Lipschitz constant

max(c, m(X + c)d(0, dD)), where c is the Lipschitz constant of D, m is the

1 /2-Hόlder constant and d(0, 3D) is the distance from 0 to dD.

The following lemma is a kind of boundary Harnack principle.

LEMMA 6. For a bounded Lipschitz domain D in R and a 1 /2-Hόlder con-

tinuous function φ > 0 on R, we put Ω = Ω(D, φ). Let r0 > 0, τ €Ξ R and A be a

non-empty subdomain of D with i c ΰ , Then there exists a constant C > 0 indepen-

dent of τ such that

sup u < C inf u
φ(τ)Dx{τ) φ(τ)Δx{τ\

for every solution u > 0 of Lu = 0 on Ω τ τ°φ τ which vanishes continuously on

dΩΠ Rn x [ r - τ0φ(τ)2, «>).

Proof Let x0 ^ Δ be fixed. Put t0 = (ro~
1/2 + m)~2, where m is the

1/2-Hόlder constant of φ. Then there exists 0 < T < τ0φ(τ)2 such that

ψ{τ-T)2 v

Applying Lemma 4 to τ0 = to/2 and using the parabolic dilation τφ(τ_τ), we have

for any solution u > 0 of Lu = 0 on Ω τ τ°φ τ which vanishes continuously on

dΩ Γi Rn x [ r - τoφ(τ)\ oo),

sup u(xy T) < C1 uyφyu — -w) x0, τ — TΓ) < CγC2 inf u(x, r ) ,

which shows Lemma 6.

Let L be the adjoint operator of L ^ £(M). Then for any solution w of

L u = 0, ι>Cr, /) = w(r, — t) is a solution of Lυ = 0 for some L ^ £(M), so

that the analogous assertions to Lemma 6 hold. This yields Lemma 7, which plays

an important role to show the uniqueness.

LEMMA 7. For a bounded Lipschitz domain D in Rn and a 1/2-Hόlder con-

tinuous function φ > 0 on R, we put Ω = Ω(D, φ). Let τ0 > 0, τ e R and A be a

non-empty subdomain of D with A C D. Then there exists a constant C > 0 indepen-

dent of τ such that
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ω*ά\φ(τ) D x {r}) < Cω%2 (φ(τ) Δ x {r})

for every {x,t)<ΞΩ^τ°ψ{τ*.

Proof. Let G(x, t y, s) be the Green function of L with respect to Ω(D, φ).

Then for (x,t) e Ω(D, φ),

ω%ω = G(x, t y, τ) dy on φ{τ)D x {τ},

where dy denotes the w-dimensional Lebesgue measure. For (x, t) e Ωτ+τ°φτ ,

G(x, t , ) is a solution of the adjoint operator L of L on fl Π i? x

(~ °°, /). Applying Lemma 6 to L , we obtain

sup G(x, t y, τ) < C inf G(x, t y, τ),
yeψ(τ)D yeφ(τ)Δ

which shows our lemma.

We shall show our main theorem, which implies the preceding assertion in the

paragraph 1.

THEOREM 2. Let D be a bounded Lipschitz domain in Rn and φ > 0 a locally

1 /2-Holder continuous function on (— °° , a) with a €= (~ °° , °°] . Suppose that

there exist m > 0, r0 > 0 and a sequence {tk}™=1 tending to — oo as /c—• oo

such that

(7) liminfUJ"172^*) < oo

k^oo

and that for every k = 1,2,. . . ,

(8) \φ(t)-φ(s)\<m\t-s\U2

for t, s G [ίA, ίA + τoφ(tk) ]. 77κm ί/ι̂ r̂  msίs u Φ 0 such that

H0(Ω(D, φ),L) = {cu;c>0}.

Proof By Proposition 1 and Remark 2, H0(Ω(D, φ), L) Φ {0} . Hence it

suffices to show that there exist C > 0 and h e H0(Ω(D, <p), L) with Ad^) = 1

for fixed Yo e β(Z), φ) such that u> C h for every ft e H0(Ω(D, <p), L) with

M(KO) (see [3], p.253).

Let u e HQ(Ω(D, <p), L) with « (F 0 ) = 1 and put ί3 = fl(D, φ). Taking a

subsequence of U*}Γ=i a n d replacing τ 0 by smaller one if necessary, we may
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assume that

tk

.2 ^ ΐk

} ^ 2

for every positive integer k. Put

1 k Lk ' 2

Let 4 be a non-empty subdomain of Z) and take x0 ^ 4. Then by Lemmas 6 and 7,

we have for every positive integer k and every (x, t) ^ Ω tk+τ°φ{tk) ]

u(x, t) = I u(y, Tk) dω%H) (y)
Jφ(Tk)Dx{Tk}

> \ u(y,Tk) dω%'il) (y)
Jφ(Tk)Δx{Tk)

> ( inf uj aftίl (φ(Tk) Δ x {Tk})

> C;1 u(φ(Tk) x0, Tk) ω%il> (φ(Tk)D x {Tk}),

where Cx > 0 is a constant independent of &, u and Cr, /). On the other hand, by

Lemma 5, there exists a constant C2 > 0 such that

1 = «(Fo) < C2u(φ(Tk)xQ, Tk) ωX) (φ(Γ,) Z) x {Tk}),

so that

M > Lλ C2 nk on &J ,

where

P x (ΓJ)

Similarly to Proposition 2, we can take a subsequence of {hn}ζ=ι which converges

a certain h G H0(Ω, L) with MF 0) = 1, which shows

w > Cx C2 h on

This completes the proof.

Remark 3. The assumptions (7), (8) in Theorem 2 can be replaced by

I φ(t) — φ(s) \ < m\ t — s\ /2
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for t, s e [tk — τQφ(tk)
2, tk + τ0φ(tk)

2].

Applying Theorem 1 to φa(t) = (— t)a (t < 0), we have

COROLLARY. Let — oo < α < 1 /2. For a bounded Lipschitz domain D in R ,

put

Ωa = {(x,t);t<0, (-tyaχ(ΞD}.

Then every non-zero elements in H0(Ωa, L) are mutually proportional.

EXAMPLE. Let D be a bounded Lipschitz domain in R and put Ω = D X R.

Then

= {ce~λtf(x) ;c>0},

where λ is the first eigenvalue of — Δ (Laplacian) and / is the eigenfunction.
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