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§1. Introduction

(Anti-)self-dual metrics are 4-dimensional Riemannian metrics whose Weyl

conformal tensor W half vanishes. The Weyl conformal tensor W of an arbitrary

metric on an oriented 4-manifold has in general the self-dual part W+ and the

anti-self-dual part W~ with respect to the Hodge star operator * and one says

that a metric is self-dual or anti-self-dual if W~ = 0 or W+ = 0, respectively.

Because of the conformal invariance of the defining equations W = 0

(anti-)self-dual metrics are, as a generalization of conformally flat metrics, an

object of great interest from conformal geometry.

The notion of (anti-)self-duality of metrics depends on a choice of orientation

so that a self-dual metric becomes anti-self-dual when we reverse the orientation.

However, we are mainly interested in anti-self-dual metrics, unless especially

mentioned.

Consider the unit sphere bundle ZM

 = U(ΩM) over an oriented Riemannian

4-manifold M. Then the vanishing of the self-dual part of the Weyl tensor gives

an integrable condition for the almost complex structure naturally defined on ZM.

So ZM becomes a 3-dimensional complex manifold having a smooth fibration over

M with fibers CP and a fixed-point free anti-holomorphic involution, called the

real structure.

The Penrose twistor theories assert that elliptic differential operators geomet-

rically arising over an anti-self-dual 4-manifold M relate to the 9-operators on

certain holomorphic vector bundles over the twistor space ZM.

Particularly, the Kodaira-Spencer complex on Z — ZM
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.1) 9 : C (Z ;ΩZ. 0 / z ) —• C (Z ,

corresponds to the elliptic complex over M

(1.2) C~(M 7) ^ C°°(M S 2 (7*)) ^ C°°(M SO

2(13+)).

The Penrose twistor theories then show that the cohomology group H (Z

®z)> ®z ~ @z($z )> °f the complex (1.1) is isomorphic to the complexification of

the second cohomology group H of (1.2) (see §3.3 in [4]).

The Kodaira-Spencer-Kuranishi theory tells us that H (Z Θz) gives the ob-

struction space for complex structure deformations on Z.

Similarly H represents the obstruction for local deformations of anti-self-

dual metrics on M. We have in fact the following ([12], [15]).

If H — 0, then the local moduli of conformal structures represented by

anti-self-dual metrics can be described as the quotient of an ε-ball in H by the

conformal transformation group C (M) whose Lie algebra is H , the space of con-

formal Killing fields.

Another important meaning of H is observed in the following connected sum

procedure ([4]).

If two anti-self-dual 4-manifolds Mv M2 have H 2 = 0, then the connected

sum Mλ # M2 admits an anti-self-dual metric of H = 0 .

Vanishing of H (ZM Θz) and hence of H is shown in terms of complex

geometry for several typical anti-self-dual 4-manifolds, for instances the standard

4-sphere S and the reversely oriented complex projective plane C P with the

Fubini-Study metric.

To determine H for an arbitrary anti-self-dual metric we will make direct

use of the definition H = Ker D D (D is the adjoint of the operator D and we

will call D the Bach operator) to treat of the elliptic operator D D in purely dif-

ferential geometric way.

In the complex (1.2) the operator D is defined as the minus sign of the

linearization of the anti-self-dual part of W (see §3 for the precise defininion

oίD).

On the other hand we see that the linearization of the self-dual part W at

an anti-self-dual metric g turns out to be the self-dual part of the linearization of

W, namely δg(W+) = (δg\V)+, and that δgW(ti), h e= C°°(M S0

2(Γ*)) has the

principal part represented in covariant derivatives

Vι Vk Ay, - Vt V, hjk - Vj Vk hu + Vj Vι hik.

This principal part can be then written as dL° dR(h) ^ C°°{M 13 0 1 3 ),
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when we consider an infinitesimal metric deformation h as a smooth section of

Ω ® Ω and introduce the left-exterior derivative dL and the right exterior

derivative dR operating on the space C°°(M Ω ® Ω ) which are thought to be a

natural generalization of the ordinary exterior derivatives.

So, dL ° dR (h) + dR° dL (h) gives, up to constant factor, the principal part of

D(h). Here d+

L : C°°(M Ω1 ® β*) -> C°°(M β + <g> β>), £ > 0 and <£ : C°°(M

β* ® β 1 ) -> C°°(M β ^ f l ^ ί ^ O are the self-dual part of dL and rf*. re-

spectively.

The operator D has then, up to constant, the principal part

δt°δR(Z) + δR°δ+

L(Z)

where δ^ and δR are the formal adjoints of dl and dR, respectively.

By the aid of the Weitzenbόck formulae for the elliptic operators d^ ° δ^ and

dR°δR we can write for an arbitrary anti-self-dual metric the Weitzenbόck formu-

la for ΰ ΰ * .

In this article we focus on Einstein anti-self-dual metrics and write the

formula of D D for the Einstein case in terms of the rough Laplacian V V =

— Σ / = 1 VjVj in the following simple form (see Proposition 5.1, §5)

(1.3) DD*Z = -££ (3V*V + 2p)(2V*V + p)Z

(p is the scalar curvature of g).

From this formula we obtain

THEOREM 1. Let M be a compact connected oriented A-manifold and g be an Ein-

stein anti-self-dual metric on M.

(i) Ifp>0, thenΉ2 = 0.

(ii) For g of p = 0 H is the space of all covariantly constant sections of S0(Ω ).

(iii) If p < 0, then H = E_2/O/3 Θ E_p / 2 where Eλ denotes the eigenspace of V V of

eigenvalue λ.

It is known that Einstein, anti-self-dual compact oriented 4-manifolds of

positive scalar curvature are only the standard 4-sphere S and CP with the

Fubini-Study metric ([11], [6]). From our theorem we have that these manifolds

have vanishing H , even though this fact was already shown by the Penrose

twistorial correspondence ([5], [4]).

The above Weitzenbόck formula can also be applied to the case of orbifolds.

An (oriented) orbifold is locally a quotient U/Γ of a neighborhood U in R by a
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finite group Γ (the isotropy group) which acts on U as (orientation preserving)

smooth transformations and a metric on an orbifold is considered locally as a Γ

invariant metric on U (for the precise definitions of these see [18], [1] and [7]) so

that one can consider an anti-self-dual metric on an orbifold.

THEOREM 2. Let (X, g) be a compact connected oriented 4 dimensional orbifold

and an Einstein anti-self-dual metric of positive scalar curvature. Then the second

cohomology group H = {0}.

There are infinitely many compact anti-self-dual, Einstein 4-orbifolds of

positive scalar curvature ([8], [9]). So, these orbifolds have H = {0}.

For Ricci flat anti-self-dual 4-manifolds dim H is computed in the following

theorem.

THEOREM 3. Let (M, g) be a compact anti-self-dual Ricci flat 4-manifold.

Then,

(i) dim H = 5 when (M, g) is a Ricci flat Kdhler K3 complex surface or a flat

Kάhler complex 2-torus,

(ii) dim H = 3 when (M, g) is a Ricci flat Kdhler Enriques surface or a flat Kdhler

hyper elliptic surface satisfying Θ(KM) = ΰ,

(iii) dim H = 2 when (M, g) is a Z2 X Z2-quotient of a Ricci flat Kdhler K3 sur-

face and

(iv) dimH = 1 for a hyperelliptic surface with ΰ(K^) = 6, k = 3,4,6 and

6 {KM) ΦΰforallO < i < k.

Another application of the Weitzenbόck formula is to ALE (asymptotically

locally Euclidean) hyperkahler 4-manifolds.

For these manifolds the reader refers to [16]. They are all anti-self-dual and

Ricci flat, since they are Kahler and of zero scalar curvature and further they

have a triple of covariantly constant complex structures so that the holomorphical-

ly trivial canonical line bundle KM is flat.

THEOREM 4. Let (M, g) be an ALE hyperkahler A-manifold. Then H 2 =

Ker D vanishes. Here D is defined over the space Wk (M S0(Ω )) of sections of

L finite derivatives up to order k, k > 2.

These theorems will be shown in §5.

By using the conformal compactification at infinity we get from each ALE
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hyperkahler 4-manifold (M, g) a compact oriented anti-self-dual orbifold

(M, g) of one singular point x^. Notice that the conformal compactification of the

Euclidean space R is just the inverse of the stereographic projection from 5 and

the stereographic projection is orientation reversing so that the above derived

orbifold has the natural orientation induced via the orientation reversing confor-

mal compactification from the orientation of M and thus we should rather say the

metric is self-dual with respect to this orientation.

An ALE hyperkahler 4-manifold (M, g) has an associated finite subgroup Γ

of SU(2) in such a way that (M, g) is asymptotically isometric to C /Γ.

The Eguchi-Hanson 4-space (MEG, g) is just an ALE hyperkahler

4-manifold with Γ= Z2, the center of SU(2) so that the conformal compactifica-

tion MEG has one singular point x^ with the isotropy group Z 2 which is in the cen-

ter of SO(4) = SU(2)'SU(2).

Finally we remark on self-dual metrics on a 4-manifold which is given by the

generalized connected sum of copies of orbifolds MEG.

The generalized connected sum MEG #x<χ MEG at the singular points is a

4-manifold which is obtained by gluing the corresponding boundaries of MEG\D

and its copy (D is an orbifold ball centered at x^ so D is a Z2-quotient of an

ordinary ball in R 4 and_then dZMs S 3 / Z 2 = RP 3 ).

It is known that MEG # MEG is diffeomorphic to the ordinary connected sum

C P # C P as an oriented manifold.

Since from Theorem 4 MEG has H = 0 and there exists an orientation re-

versing isometry of R commuting with the isotropy action of Z , we can apply the

orbifold connected sum theorem given in [14] so that we get

THEOREM 5. The generalized connected sum MEG # MEG admits a self-dual met-

ric ofΉ2 = {0}.

Remark. A self-dual metric thus derived on MEG # MEG = C P # C P is just

one of the self-dual metrics obtained by Poon [17] (see also §1 in [4]).

§2. 4-dimensional Weyl conformal tensor

2.1. Throughout this article M will denote a compact connected oriented C°°

4-manifold with a Riemannian metric g and {el9. . ., e4) will denote an orthonor-

mal frame field with the dual frame field iθ , . . . , θ }.

We denote by R = Rmι, Ric = Rik and by p the Riemannian curvature ten-

sor, the Ricci tensor and the scalar curvature, respectively.
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In this section we indicate several geometric properties of the 4-dimensional

Weyl conformal tensor.

We denote the Weyl conformal tensor W in the following way

R= W+K+ G,

namely

(2-1) Rust = Wijst + Kϋst + Gιjst

where

(2.2) Kijst = \ (Bi8 δjt - Bit δjs + δis Bjt - δit Bjs),

and

_ 1
(2.3) Gust ~~ Ύo p(δis δjt δit δjs)

[Bts is the tracefree Ricci tensor, Bis — Ris — ~τ δis).

2.2. We denote by Ωp the bundle of ̂ -forms on M, p = 0,1, . . ., 4 and by

Ω ® Ω the tensor product of the bundles Ω and Ω . Further we denote by

S2(ΩP) the symmetric product of ΩP and by Λ2(ΩP) the skew symmetric product

oίΩP.

By using the metric g we identify Ω ® Ω with the endomorphism bundle

E n d ( β ' ) and we have the trace operator tr : ΩP ® Ωp = End(fl') -» Ω°.

The bundle SQ(Ω ), the tracefree symmetric product of Ω , is the subbundle

of S2(ΩP) whose trace is zero.

Note that for φ = (φijst) e Ω2 (g) Ω2

gives the trace of φ.

Because of the symmetry of indices the Riemannian curvature tensor R

(RijSt) is regarded as a self-adjoint endomorphism

ij

and also as a symmetric bilinear form on Ω
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Ω2 x Ω2-+Ω°; (θ* A θ\ θs A θ') •-> Rijst.

If we consider (Rϋst) as an endomorphism of Ω , then the Weyl conformal

2 1
tensor W is a tracefree self-adjoint endomorphism of Ω and G is ~τκ p IdΩ2,

where IdΩ2 is the identity transformation of Ω .

Since W satisfies Σ / = 1 Wisit = 0 and the first Bianchi identity (Wijst + Wistj

+ Witjs = 0), we get the following formulae

W = W
YV isis v v jtjt

(2.4)
Wm, + W%,, = 0

for all indices i, 7, 5, £ distinct each other.

The Hodge star operator * on 2-forms is an involutive endomorphism of Ω .

The bundle Ω splits then into the eigen-subbundles Ω — Ω φ Ω~ of eigenva-

lues ± 1. We say a 2-form of Ω self-dual or anti-self-dual, respectively.

Remark that σ* = θ1 A θ2 + θ3 A θ\ σ2

+ = θ1 A θ3 + θ" A θ2 and σ3

+ =

θ Λ θ + θ A θ give a locally defined orthogonal frame field of Ω . Note | <7f |

= 2, t = 1,2,3.

From (2.4) it is easily checked that W and * commute as endomorphisms of

Ω , namely

*°W= W°*.

On the other hand K satisfies

*°K= -K**,

because (Bis) is trace zero.

Therefore W^maps Ω± into itself and K maps Ω into Ω~ and Ω into Ω .

According to the splitting Ω — Ω ® Ω the Rίemannian curvature tensor R

thus has the block decomposition

DEFINITION 2.1. A Riemannian metric g is self-dual, or anti-self-dual, when

W , or W vanishes over M.

Notice that K = 0 if and only if B = 0, in other words, g is Einstein.
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§3. Left- and right-exterior derivatives

3.1. We define the left-exterior derivative and the right-exterior derivative, re-

spectively;

(3.1) dL : C°°(ΩP <g> Ωq) - C°°(ΩP+1 <g> Ωq),

(3.2) dR : C°°(ΩP <g> Ωq) -> C°°(ΩP ® β « + 1 )

which are natural generalization of the ordinary exterior derivatives

(3.3) d:C°°(Ωp) — C°°(Ωp+ι).

More generally, if we are given a vector bundle E with a connection F, then

we can define the operators dL, dR for ^-valued ^-forms by using F and the

Levi-Civita connection of g as

dL : C°°(ΩP (8) E) — C°°(β'+ I <g> £ )

and

rfβ : C~ ( £ (8) β ' ) - C°°(£ Θ β ί + 1 ) .

The operators (3.1), (3.2) are those for the case of E = Ωq with the connec-

tion given by the Levi-Civita connection.

Although the ordinary exterior derivative does not depend on the metric g,

our exterior derivatives depend on the metric.

For example, for φ = Σ φijs{θl Λ θ1) <8> θs G C°°(β2 ® β 1 )

(3.4) dL φ = Σ (F,0y4, + Γy0w, + ϊ 7 , ^ ) W Λ βy Λ eΛ) ® 0s,

and

(3.5) dRφ=Σ (Vsφijt - Vtφijs){θ* A θj) Θ (θs Λ β'),

respectively. Here Viφjks is the covariant derivative of φjks to the direction of e{.

The second Bianchi identity

(3.6) VhRiist + VtRihst + V,Rhl$t = 0

can read as dL R = 0 when we consider R as a section of Ω ® Ω .

3.2. Denote by p+ the projection β 2 —> ί2+, 0 >-> g" (^ + * 0). We have then

the operator
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d+ =p+°d:C~(Ω1)-^ C°°(i2+),

and moreover the following operators

(3.7) dl = p+*dL : CiSJ1 ® Ωp) — C°°α2+ 0 β*)

and

(3.8) 4 = p+*dR : C " ( β * ® β 1 ) -> C°°(ΩP <g> β + ) .

In subsequent sections we shall frequently encounter the operator

d^dR: C^iSoΩ1) - C~(Ω+ Θ Ω+)

and its left-right symmetric dual operator dR ° d^ which are both crucial in ex-

pressing the linearization of the self-dual part of the Weyl conformal tensor, as

explained at §4.

LEMMA 3.1. Let (p+, p+) : Ω2 ® Ω2 —» Ω+ ® Ω+ denote the natural projection.

Then the operators (p+,p+)°(dL ° dR) and (p+,p+)°(dR ° dL) : C^iSfe1) ->

C°°(Ω ® Ω ) coincide with the operators dL°dR — (p+°dL) °(p+° dR) and dR°dL —

(P+ ° dR) ° (i>+ ° dL), respectively.

For proving this lemma we make use of the following

OBSERVATION. For ω e C°°(Ω+) (respectively, ω G C°°(Ω~)) the left-covariant

derivative Vω sits in C°°(Ω ® Ω+) (respectively in C°°(Ω ® β " ) ) .

This observation stems from the fact that the group SO(4) factors through

the two groups 50(3) , S0(3)~ acting on the self-dual (anti-self-dual) subbun-

dles Ω+ and Ω~.

For ω ^ C°°(β+) we put ωυ = ω(ei1 e). Then, ω12 = ω3 4, ω13 = α>42 and ω 1 4

= α>23. The (ijk) -component F/ω;Λ of Fω, that is, (Vetω)(ejf ek), is given by the

covariant derivative rules as

V^jk = e{(ωjk) - Γ?j ωak - Γa

ιk ωja,

where Γif is the connection coefficient of the metric g relative to the orthonormal

frame field {et}. Then V{ω12 is

V{ωγ2 = βi(ωl2) - Γa ω32 - Γ^ ω42 - Γf2 ω 1 3 - Γ*2 ω 1 4 .

On the other hand
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V{ωu = ^ ( ω 3 4 ) - Γ-3 ωu - Γ,2

3 ω 2 4 - Γ/4 ω31 - Γ?A ω 3 2 .

Thus, from Γ^— — Γ[a we have Ff ω 1 2 — F, ω34. Similarly we have V^13 = Ff ω4 2,

V{ωu = F^gg so that Fω is a section of Ωι (8) β + .

Here we adopted the Einstein convention that repeated latin indices are sum-

med even the summation symbol is omitted. In what follows we also follow this

convention.

This observation even holds for bundles tensored with Ω±. In fact, if φ e

( Γ K Φ ' β 1 ) ® β*) (respectively, φ e C°°(ί/ ® fl*)), then F?) e f ® ^ 1

® fl*) (respectively, ^ e C^Cfl^1 ® β1")).

The lemma is now clearly seen, since for h ^ C°°(S0 Ω ), dL(dR h) is

dL(dzh + d~Rh) = dtdth + d~Ld+

Rh + dld'Rh + d~LdRh

and from the above observation the last two terms are in C°°(β ®Ω ), and

dl4h e C°°(β" <8>ί2+). So (ί+, p+)°(dL°dR) = dL

+°4.

3.3. The bundle Ω ® ΩQ carries the inner product inherited from the met-

ric g. Then with respect to this inner product the operators dL, dR, dL and dR

have their formal adjoints δL, δR, δ~£ and δR, respectively.

For φ = φijs ^ C°°(Ω ® Ω ) for example, we have

δ L 0 = ( δ L 0 ) i s , (δLφ)is = - VaφaίS

and

δRφ = (δRφ)ij9 (δRφ)ij = - Vaφija.

Remark. The Ricci tensor Ric = (Ris) satisfies from the second Bianchi

identity

(3.9) <5*Ric = Y dRρ

and

(3.10) dtfRic = - δLR.

Moreover, when the scalar curvature p is constant, by applying (2.1) and that

V B = FRic one has

(3.11) δRB = 0 and dRB = - 2δLW.

The left(right)-exterior derivatives are implicitly treated in [2] where Bour-
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guignon actually gives the Weitzenbόck formulae of the operator dL δL + δL dL for

sections of Ωι ® Ω1 and of Ω2 <g> Ω2.

3.4. It is a standard fact that for an arbitrary metric the self-dual part of

the de Rham complex is elliptic:

(3.12) 0 -> C°°(Ω°) -^ C°°(Ωι) £ C°°(Ω+) -> 0

Tensoring this complex with the bundle i2+, we obtain the sequence composed

of certain operators, for instance, left-exterior derivatives:

(3.13) C*(fl+) ^ C"(Ωι ® Ω+) % C~(Ω+ ® Ω+)

PROPOSITION 3.2. Suppose that a metric g is anti-self-dual. Then the components

of dL dLφ, φ = φst G C°°(Ω ) are

(3 1 4 ) i dL φ)mj = 0 (t =

{i, j , k} is a permutation of {2,3,4}. Therefore, if g is further has zero scalar

curvature, the sequence (3.13) forms an elliptic complex.

Proof. Apply the Ricci identity to dL dL φ. We have then

WΦ* - WΦs, = - (RastjΦa, + RatuΦJ

Substitute the formula (2.1) i? l i s ί = Wijst + Kijst + Gijst into the curvature terms

and use the fact that W = 0 and B = Bis is tracefree. Then the components be-

come (d^dLφ)1212 = 0, (dιdLφ)1213 = 1/12 pφu and (dιdLφ)m4 = 1/12 pφl3.

Other components are similarly calculated so that the proposition is obtained.

3.5. Weίtzenbδck formulae for dL δL. Denote by δ the formal adjoint of

d . Then

PROPOSITION 3.3. The Weitzenbόck formula for d+ δ+ C°°(Ω+) —• C°°(Ω+) is

given in the form

(3.15) d+δ+φ = -^V*Vφ-2W+(φ) + | p 0 , 0 ^ C°°(Ω+).

Note W+ :Ω+-^ Ω+ has the components W+(φ)la = W^lbφιb9 a = 2,3,4.

This formula says that the positive scalar curvature implies that the space
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H+(M) = Ker <5+ of self-dual harmonic 2-forms on M vanishes provided g is

anti-self-dual.

Although the formula is well known, we shall verify it, since verifying it is

useful to showing other Weitzenbόck formulae.

Proof. Since (dδ+φ)iJ = ~ V{Vaφai + VjVaφai,

(d+δ+φ)12=-^VaVaφ12

From the Ricci identity the last term, which we denote for brevity by 9Kφ)l2, is

represented in terms of curvature terms as

(3 16) W12 ! < <*«113 + RaU2) Φat + (Kus + Ku2) Φla

~ (^βlU + ^al23) Φa3 ~ (Ra314 + ^323) ΦlJ •

Substitute (2.1) and make use of the fact that Waiaj = 0. Then this reduces to

from which the formula follows.

NOTATION. Here we use the notation W*jab, for instance, W*2ab = ~κ (W12ab +

Consider now the following operator d\ δ} : C°°(Ω+ (g) Ωι) -* C~(i3+ <8> Ωι).

Then,

PROPOSITION 3.4. For φ e C"'(Ω+® Ωι)

Ψ+Λ(φ) +\ J2PΦ + J2P(ΦV Λ g) +

(3.17)

+ ±φΘB + ±(φv ΛB)+ +^((φQB)v Λg)+.

Here Ψ+Λ(φ) = - 2Ψ+(φ) + ψ^φ) is given by

W+(φ)Us=ΣW1

+

21aφlas,
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and φ ^ C°°(Ω) is the contraction of φ, namely, φ{ — φaia. Further (0 Λ B) is

the Ω+®Ωι-part of 0 V Λ B e C°°(Ω2 <g> Ω1), (0 V Λ B)ijs = φ? BJS ~ φ^ Bιs,

andφQB e C°°(Ω+ ® β1) i5 ^ew by (φΘ 5) ί j 5 = 0 ϋ β β s β .

Proo/. One has from a calculation W£<5̂  0) t 7 s = — ViVaφajs + VjVaφais so that

dL δL φ has the component

(dlδtφ)l2s = 2 { ~ V ^ V " ^ + VPaΦaU ~ VPaΦais + VPaΦaΰ •

Since φ — φ,js is self-dual with respect to i, j , one gets

(dtδ+

Lφ)Us = - 2" VaVaφ12s

+ \ (IV,, F3] + [F4, V2])φus - \ aVlt FJ

and further from the Ricci identity

(3.18) U+

Lδ+

Lφ)us = - \ VaVaφl2

where

and

^ ( 0 ) l 2 , = ~ l {(*βί13 + ^β,42) 014. - (^514 + ^ 2 3 ) 0 i J .

Here ^(0) reduces to — 2K/ +(0) + -^p0, similarly as before.

To get (3.17) one decomposes 91 (φ) into terms involving WtjklJ KiJkι and

Gijkh respectively: Άι(φ) = ^ ( 0 ) + X\φ) + 9\φ).

From a straight computation, ̂  (0) = ~ότp0 + Ύή p(Φ Λ g") .

The term involving β ί ; is similarly computed as
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X\φ) = \ (ΦQB) + \ (ΦW Λ BY + \ ((φQB)v Λ g)\

Putting these terms together one obtains Proposition 3.4.

COROLLARY 3.5. // the metric g is anti-self-dual, then for φ^ C°°(Ω+ (

Ω ) having 0 = 0

(3.19)

| B + I ((00BY Λ gΫ.

If g is further Einstein, i.e., B — 0, (3.19) reduces to

Next we consider the Weitzenbόck formula for d^di operating on C°°(Ω+ '

Ω+).

To state the formula we prepare the Nomizu-Kulkarni product

® : (Ωι <g> Ω1) x ( β 1 (8) β 1 ) -> β 2 Θ Ω2

(3.20)
( ® t = KQjt ~ hitqjs ~ hjtqis - hjsqit, hy q e Ω ®Ω.

Notice that h®q<Ξ S (Ω ) when A and ? are in S (Ω).

PROPOSITION 3.6. For Z e C°°(Ω+ ® β + )

dtdtZ = ̂ V*VZ+«W{Z) +\
(3.21)

+\ρZ

Here Ψ(Z) = - 2Ψ+(Z) + < ( Z ) , Ψ+(Z)12st = Σa W+la Zlast, and

— — (W+ 7 — W+ 7
\ γ γ 13as ^ΊAat γ y Uas ^I

\nι X 1/1/ / J
rrl3at^l4sa r r Uat ^IZsa' *

Moreover we denote by Z^', % (Z) ^ C°°(Ω &) Ω ) as Z?s = Zaias and 38 (Z)is
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Proof. We calculate dlδ"[ Z for (i, j) = (1,2).

(dlδl Z)l2st = 2" {- v<ya

 zi2st - ([ Vi> FJ + [F 2 , F 3])Z 1 3 5 f

+ ( [F 1 ? F 3 ] + [F 4 ,F 2 ])Z 1 4 s ί }

From the Ricci identity we can write this as

(3.22) (d+

Lδ+

L Z)l2st = \ { - VaVaZ12st) + Λ(Z)l2st + &(Z)l2st

where

ofKZ) = — (R+ Z + R+ Z
^ ' 12sί 13<zl tZ4sί 13<z4 lost

and

όD+(7\ — (ϊ?+ 7 /?+ 7

For the term 9l(Z) we get similarly as before the following

Φ(7) = — 9nW+ (7) -\ n7

Now decompose 91 (Z) into terms 9ί (Z) = 1¥2 (Z) + $f2 (Z) + §2 (Z)

involving Wi]St, Ktjst and Gtjst, respectively.

From a simple computation the third term c§2 (Z) becomes

Here (h®q)+ = (p+,p+)(h®q) for A, j e C " 0 ^ 1 ® β 1 ) .

To compute $ί\(Z) we make use of the fact that Bis is tracefree and Z is

self-dual in s, t to get

Note that the term Ψ(Z) in Proposition 3.6 contains only the self-dual Weyl

conformal tensor.

The tensor product Ω+ 0 Ω+ has the natural decomposition

Ω+ (8) Ω+ = S2ΛΩ+) Θ Λ2(Ω+) Θ RΦ
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where Φ is the global section of S (Ω ) defined locally by Σ f l oa ® σa associated

to the canonical orthogonal frame {a*, σ2

+, σ%} of Ω

COROLLARY 3.7. For Z <= C°°(SQ (Ω+))

If the metric g is anti-self-dual and the scalar curvature p is positive, then

K e r φ : C°°(S2

0(Ω+)) — C°°(Ωι Θ Ω+)} = {0}.

The proof is obviously seen, since % (Z) is tracefree and symmetric for Z G

S0(Ω ) and from the following lemma.

LEMMA 3.8. The metric tensor g satisfies

(h®g)+ = 0

for each h e S0(Ω ).

Proof The component (A ® g) 1 2 1 2 is

X {(A®g)12i2 + 2(A®g") 1 2 3 4 + (A®^3434}

and hence (A ® ^ ) 1 2 1 2 — 0, since A is tracefree.

Moreover,

(A

= j (/Ϊ2 3 - Λ32 + Au - A41) = 0.

These computations complete the proof of the lemma.

COROLLARY 3.9. For Z e C°°(Λ2(Ω+))

(3.24) dtδ+

LZ = \v*VZ+Ψ(Z) +\pZ,

Therefore,
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: <T(/I2(i2+)) - C°(Ωι <g> Ω+)} = {0},

when the metric is anti-self-dual and of positive scalar curvature.

Proof It suffices from (3.21) and the above lemma to show

) + = 2Z, ($*(Z)®g)+ = 0and (Z v ® B)+ = 0.

The first two of these are obtained as follows.

We have for q e Λ2{Ωι)

(3.25)

and

(3.26) |

Put q = Z v . Then from (3.26) ( Z v ® g)ΐ213 = 2Z 1 2 1 3 which implies the first

formula. The second one follows from that B is tracefree.

The last formula is similarly seen, since Z v G Λ2(Ω ) satisfies Z ^ = Z34, Z ^

42 and Z 1 4 — z 2 3 .

The operator d+

Lδ+

L operating on fΦ e C°°(S2(i3+)), / e C°°(M) has the fol-

lowing Weitzenbόck formula.

COROLLARY 3.10. Let g be an arbitrary metric on M. Then

(3.27) d+

Lδ+

L(fΦ) =\v*VfΦ-fW\

So, fΦ in Ker δL must be cΦ, where c is a constant.

Proof Since Φ v = 3g, (g® g)+ = Φ and 2B*(Φ) = - B, the last three

terms of (3.21) reduce to -jp(fΦ). Moreover Ψ+(Φ) = W+ and K^CΦ) =

W+. So the term Ψ(Φ) = - W+. Because Φ is parallel, we derive (3.27).

Suppose fΦ satisfies δL (/Φ) = 0. Then by taking the inner product

(dtδ+

L(fΦ)JΦ) we have

0 = ~ f { ( F * F / , / ) | Φ | 2
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Since W and hence W+ is tracefree, (W+, Φ) = 0 and then / | Vf\2dvx = 0,
JM

This means that/ is constant.

§4. The linearization of the self-dual Weyl conformal tensor

4.1. The aim of this section is to calculate the linearization of the self-dual

part of the Weyl conformal tensor W.

The tensor W= Wig) is considered, same as before, as W ^ C°°(S0(Ω ))

having the splitting form W = W+ + W~ e C"(S*(β + ) Θ S0

2(β~)).

For each h e C^iSliΩ1)) the Frechet differential of W+ at a metric g to the

direction h is given by

(4.1)

where gt, \ t\ < ε, is a one parameter family of metrics with g0 = £, -jrft = h.
ai t=0

PROPOSITION 4.1. If g is anti-self-dual, i.e., W+ = 0 for g, then

(4.2) δWg(h) = (δWg(h))\

This means that the linearization of W is exactly the self-dual part of the

linearization of W, provided g is anti-self-dual.

Since W+(g) = (p+,p+)W(g), (δWg

+)(h) is given by (δ(p+, p+))(h)W(g) +

(p+, p+)δWg(h) and the first term vanishes because g is anti-self-dual so that the

proposition is obtained (see also [12]).

PROPOSITION 4.2. The linearization of the self-dual part of the Weyl conformal

tensor is written in terms of the left- and right exterior derivatives as

(4.3) (δ\Vg(h))+ = - \ {(dUΐ h + d

C~(S2

0(Ω1)).

Proof. We have in Appendix [12]

(4.4) {δWg{h)Ϋ = (U(h))+

0 + (V(h))l h e C^iS'iΩ1)),

where U, V : CiS^Ω1)) -* C°°(Ω2 ® Ω2) are the operators defined by U(h) =

(Uiisι), V(h) = (Viist), respectively
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(4.5) Um = \ (Vs Vfhit - V, Vjhis - Vs V,hlt + V, V{his),

(4.6) Viist = \ (Rsj ft,, - Rtj his - Rsi hit + RH his).

By using the left- and right exterior derivatives we can write U(h) as

U(h) = -\dRdLhy

since

dLh=(Vihis-Vihis)fi Λfj®fs

and

dR(dLh) = {F s(F, /*;, - Vjh,,) ~ Vt{V{hjs - F;Λis)}(/' Λ fs) ® (fs Λ/ ')

The symmetrization of U(h) then becomes

2" ( - "2 dRdL A - 2" dLdR h) = ~ ~l \dRdL A + dLdR h).

Thus the 5 (Ω )-component of U(h) is — ~τ (dRdL h + dLdR h), whose tracefree

part - -£ (dRdl h + dldR h)0 gives U(h)l.

The term V(h) has the form V(h) = - ~τ (Ric @ h) by the Nomizu-Kulkarni

product (3.20). Since (g®h)l = 0 for a tracefree h from Lemma 3.8, we have

V(/Oo = ~ -4 (B © A)o, from which (4.3) is obtained.

4.2. The Bach operator. We define an operator

(4.7) D : CiSlω1)) - C~(S0

2(β+))

by

Z)(ft) = - (δWg(h))+.

Moreover we define operators ® and S : C°°(S0(Ω )) —* C (S0(Ω )) as

®(A)=j(dX+A + dXA)Of

(4.8)

8 (ft) = 4-
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so that

D(h) =S(h) + #(*).

Notice that in his paper ([19]) C. Taubes uses Lg for the linearization δWg .

PROPOSITION 4.3. The formal adjoint D of D has the form

(4.9) D*(Z) = ®*(Z) + 58* (Z), Z = (Zijst) e C°°(S0

2(i3+)),

where % is given by ® (Z) = (<5LδΛ + δRδL)Z, in other words

(4.10) (£>*£)„ = ^ VqZms + Vq VpZpiqs

and the operator 58 : SQ(Ω ) —• S 0 (ί3 ) w αs defined in Proposition 3.6, §3.5.

/. From (4.4)

jΓ (ft, D*Z)dz; = f (Dh, Z)dv = -f (U(h)+

0, Z)dυ - f (V(h)+

0, Z).

The inner product (U(h)*, Z) = (ί/(A), Z) is

(£/(/*)0

+, Z) - | (F,FΛι " WA* ~ VsVihjt + VMhJZ^

and this reduces to (VsVjhit — VsVihjt)Zijst so that one has the integral

(U(h)+

0, Z)dv = f (hitVjVsZiist - hitV,VsZi}st)

(4-11)

= 2 j htoVMZ,,,,.

For the sake of symmetry one may write this as

(4.12) f (U(h)l, Z)dv = - j his( V,Vt + V, V,)Z,tts dv

from which one gets (4.10).

Similarly one has

(4.13) - jΓ (V(h)o, Z)dυ = j hisBjtZlits dv,

which is just the inner product of h and $ (Z).
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The tracefree symmetric tensor D W is called the Bach tensor for a Rieman-

nian 4-manifold (M, g).

Consider the functional

(4.14) g^ f\ Wig) \2dυg.

This functional is conformally invariant.

PROPOSITION 4.4 (Lemma 1 in [3]). Let g be a metric on a A-manifold M. Then

g is a critical point of the functional (4.14) if and only if the Bach tensor vanishes

(i.e.,D*W=0).

Proof For W= Wφt we set Wϋ = Wijstf
s Λ / ' so that W= (Wtj) is re-

garded as an End(TM)-valued 2-form.

From the Chern-Weil theorem and the property of the Weyl tensor the first

Pontrjagin number of M is given, up to a universal constant, by the integral

Σu Wu A W,t.

Decompose Wo ~ W* + W~. Then the integrand gives rise to

- Σ (Wj A W+ + W~ A W~) = - (I W+ |2 - I W~ Γ) dvg.

ij

W\ dυg — \ (\W \ + W~ \) dυg and from the argument just

above, a metric g is critical to the functional (4.14) if and only if it is critical to[ \ w +
the functional / | W* 2dvg.

Let gt be a one parameter family of metrics with g0 = g and -jr gt \ ί = 0 = h

which is in C°°(S0(Ω )).

Consider the first variation ~π I (W + (gt), W+{gt))s dve \t=0. Because the
ai JM ** &t

integral is conformally invariant the volume form dυg of gt is assumed for all t to

coincide with dvg.

So,

ifM\W+(gt)\ltdvg\t=0
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= 2f((δWg(h))\ W+(g))gdvg + 2f(δ(p+tp+)g(h)(W+(g)), W+(g))gdυg

+ J H(W+{g), W+(g))dυg

where H(W + (g), W+(g)) = ~ (W + (g), W+(g))gt\t=0 is the ^-derivative at t =

0 of the g^-inner product of the ^-self-dual part of the Weyl conformal tensor W

of the metric g.

We show first that the second term vanishes. Let (p+)t be the projection

y (id + *^) : Ω —* Ωg(. Since the star operators are involutive, ^g

o(δ^g)(h) +

(δ*g)(h)° *g = 0, where (δ*g)(h) denotes the derivation ~n * ί f | ί = 0 of the star

operators * ^ in the direction h. This implies that (δ*g)(h) and hence

δ(p+)g(h) maps Ωg into Ω~. We have then

Thus, the inner product (<5(/>+, P+)g(h) (W (g)), W (g)) vanishes, because

We compute the third integrand H(W , W ).

For every point q in M we choose a local coordinate {x{} around q such that

Sij^Q) — δjj and h{j(q) is diagonal, that is, htj = h^t] at the point. Then

zi(ur+ W+) -— V σ

ik pi1 crruσsv W+ W+ I

reduces to - 4 Σ^^ih, + h, + hr + hs)(W+(g)ijrsΫ'.
It follows from (2.4) that H(W , W+) is zero. Therefore we get the formula

d ΓlW+\2dvg\t^ = 2 f«δWg(h))+, WHg))gdvgdt

which turns out from simple computations to be

f (D(h), W+)dvg = f (h, D*(W+))dυg

so that g is critical to the functional (4.14) if and only if g satisfies the equation

D*(W+) = 0 .

On the other hand, we consider the functional g—* J | W~(g) \2dvg. Then it
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follows that a critical point of this functional is just critical to (4.14) by a way

similar to the self-dual Weyl conformal tensor case. So, the equation D W+ = 0

is equivalent to the equation D*W~ = 0 and then to D*W= D*(W+ + W~) = 0.

§5. The Weitzenbδck formula for Einstein metrics

5.1. We assume throughout this section that a metric g of M is anti-

self-dual and moreover Einstein.

From the formulae (4.8), (4.9) in §4 the linearization operator D and its for-

mal adjoint D then become as D = ® and D = ® , respectively.

Since ® is of second order, we associate the forth order operator ®® to the

two-fold of the rough Laplacian V V.

We state the following formula whose proof is one of the main subject of this

section and will be given later.

PROPOSITION 5.1. (Weitzenbόck formula). Let g be an anti-self-dual, Einstein

metric. Then the Weitzenbόck formula reads as

(5.1) D D *Z = ^ (3 V * V + 2p) (2 V * V + p) Z

forZ ^ C (S0(Ω )) (p is the scalar curvature).

As an immediate consequence of this formula we have

THEOREM 5.2 (Theorem 1, §1). Let (M, g) be a compact oriented 4-manifold

with an Einstein anti-self-dual metric.

(i) // the scalar curvature p > 0, then Ker D = {0}.

(iί) // p = 0, D Z = 0 if and only if VZ — 0, i.e., Z is covariantly constant.

(iii) For p < 0 Ker D is the linear span of the eigenspaces E_2/3.p and E_ι/2,p,

where Eλ = {Z V*VZ= λZ).

5.2. The orbifold case. For 4 dimensional orbifolds we can apply the Weit-

zenbόck formula, same as in the smooth case.

THEOREM 5.3 (Theorem 2, §1). Let (X, g) be a compact connected oriented 4

dimensional orbifold with an anti-self-dual positive Ricci Einstein metric. Then the

second cohomology group H = {0}.
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Remark that weighted complex projective planes CP2

p>qtr with the orientation

reversed, for suitable integers p, q, r, admit an Einstein, self-dual orbifold metric

of positive scalar curvature ([8]).

5.3. The Ricci flat case. Anti-self-dual Ricci flat 4-manifolds (M, g) are

completely classified in [10] as that those manifolds are covered either by a Ricci

flat Kahler K3 surface or by a flat Kahler complex 2-torus. More precisely, such

a 4-manifold which is covered by a K3 surface is one of the following; i-1) a Ricci

flat Kahler K3 surface, i-2) a Ricci flat Kahler Enriques surface (the quotient of a

Ricci flat Kahler K3 surface by a free Z2-actionn), i-3) a Z2 X Z2-quotient of a

Ricci flat Kahler K3 surface. A flat Kahler complex 2-torus, and a flat Kahler

hyperelliptic surface, i.e., a finite holomorphic quotient of a flat Kahler complex

2-torus are other examples of anti-self-dual flat 4-manifold.

THEOREM 5.4 (Theohem 3, §1). Let (M, g) be a compact anti-self-dual RiceΊ

flat 4-manifold. Then the dimension dim H is given in the following way.

(i) dim H = 5 when (M, g) is a Ricci flat Kahler K3 complex surface or a flat

Kahler complex 2-torus,

(ii) dim H = 3 when (M, g) is a Ricci flat Kahler Enriques surface or a flat Kahler

hyperelliptic surface satisfying Θ(KM) = ϋ,

(iii) dim H = 2 when (M, g) is a Z2 X Z2-quotient of a Ricci flat Kahler K3 sur-

face and

(iv) dim H 2 = 1 for a hyperelliptic surface with ΰ(K£) = Θ and Θ(Kι

M) Φ ϋ, i < k,

k = 3,4,6.

Proof It is sufficient from ii) of Theorem 5.2 to compute the dimension of the

space of covariantly constant sections Z of S0(Ω ).

4-manifolds (M, g) we are now considering are all Kahler except a Z2 x

Z2-quotient of a K3 surface. So, first we may assume

(5.2) S2

0(Ω+) =

where Φ denotes the covariantly constant section of S0(Ω ) derived from the

Kahler structure ([13]). This real bundle isomorphism is invariant with respect to

the covariant differentiation.

On the other hand, it is observed in [13] that on a compact Kahler complex

surface with zero scalar curvature a section φ of KMy m > 0 is holomorphic if

and only if φ is covariantly constant.

By making use of these facts we see that for a 4-manifold (M, g) having
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Θ(KM) = Θ, namely for a 4-manifold of i-1) or of ii-1) listed above, S0(Ω+) has

five linearly independent, covariant constant sections. So H = R .

Similarly for (M, g) of Θ{K2

M) = 6 but Θ(KM) Φ Θ, i.e., of i-2) or of ii-2),

the space of covariantly constant sections of S0(Ω+) has exactly dimension three.

For hyperelliptic surface for which KM is a torsion bundle of order 3, 4 or 6

it is seen from (5.2) that covariantly constant sections of S0(Ω+) are of form

cΦ, c ^ R , This shows (iv).

Finally consider a Z2 X Z2-quotient (M, g) of a Ricci flat Kahler K3 surface.

We can also regard this manifold as a quotient of a Ricci flat Kahler Enriques

surface (M, g) by a free Z2-isometric action.

Let 5 : M—• M be a deck transformation yielding the Z2-action. So 5 is an in-

volutive, orientation preserving isometry which freely acts. It is shown in [10] that

5 is not holomorphic.

It suffices to show that the space of s-invariant, covariantly constant sections

of SQ(Ω+) on (M, g) has dimension two.

Since b+(M) = 1 and the pull back 2-form 5 θ of the Kahler form θ is cova-

riantly constant, s θ = ~ θ and hence s must be an anti-holomorphic dif-

feomorphism of M.

Consider the section φ of K^ given by φ = dz Λ dz for a ^-unitary frame

of (l,0)-forms {dz , dz}. Then we can write the pull back as 5 φ — cφ.

Since 5 is involutive, | c \ — 1.

* 1 2 1 -
Operate s now on the section Φ = -j θ — y φ ' φ. Then from the above

arguments 5 (Φ) = Φ, in other words, Φ is s-invariant.

Since ϋ(K ) = 6 for an Enriques surface, K2 admits a globally defined holo-

morphic (and hence covariantly constant) section. We may identify this section

with φ . So, the real part Ψλ and the imaginary part Ψ2 of φ give exactly cova-

riantly constant sections other than Φ.

The pull back sections s Ψlf s Ψ2 are also covariantly constant so that they

are written by linear combinations of ¥if i = 1,2.

Since s φ = cφ, the 2 X 2 matrix consisting of coefficients of 5 Ψ{ with re-

spect to Ψ{ has trace zero and determinant ~ 1. This matrix then must have

eigenvalues + 1 , — 1. Therefore dim H = 2 which completes the proof.

5.4. Now we will show Proposition 5.1. From (4.8) and Proposition 4.3 we

have for the operator DD*Z = ® ®*Z, Z e C°°(S2

0(Ω+))
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(5.3) 2) ®*Z = \ ((dUt + dUΐ) (δtδ$ + δRδ^)Z)0

+ (d+

Rdΐδ+

Lδ+

RZ)0 + (dRd+

LδRδ+

LZ)0},

where Xo denotes the trace free component of X e 5 (Ω+).

From the left-right symmetry it suffices for proving the proposition to write

down the last two terms with respect to the rough Laplacian.

For this we introduce the operator SF by

(5.4) &(φ) = dl(δRψ) - δR{dtψ), φ e C°°(Ωι ® Ω+).

As we shall see in Proposition 5.5. S? turns out to be a bundle homomorphism

from Ωι ® Ω+ to Ω+ ® fl1.

So, the last two terms become

(5.5) = i(d+

R(d+

Lδ+

L)δ+Z)0 + ((d+

Rδ+

R) (d+

Lδ+

L)Z)a

We apply the Weitzenbόck formula (3.23) to Z and make use of the fact that

Z is tracefree. Then

(5.6) dϊδlZ=^V*VZ + jpZ.

Noticing d^δ^ Z is tracefree and (5.6) holds also for the right-

exterior-derivative, we get

(d+

Rδ+

R)(dϊδ+

L)Z= ( | F * F +\p(5.7)

which gives the second term of the right hand side of (5.5), because (5.7) is

tracefree.

That δRZ*Ξ C°°(Ω+ ®Ωι) is tracefree, namely (δRZ)w = 0, together with

(3.19) yields

(5.8) d+

Lδ+

L(δ+

RZ) = \V*V (δ+

RZ) +^βδ+

RZ

(here we applied that B — 0) in such a way that the first term is calculated as
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(5.9)

What to do next is to derive an explicit formula for the commutator operator

Set φ = δ+

LZ.φ = (φist) is in C°°(Ωι <g> Ω+).

By the definition &{φ) is the left self-dual part of dLδRφ - δRdLψ.

One has then

(δRφ)iS = ~Vaφias

and

(dLδRφ),,s = ~ V, Vaφjas + V,Vaφlas.

On the other hand,

So,

(5.10) (dLδ+

Rφ - δ+

RdLΦ)iJS = VVai V^φjas + [VJf Va]φias

which reduces to

( 5 U ) jΦsij + Bttφjss- Btjφits

+ RtaijΨtas ~~ RtsaiΨjat ~ ^tsjaΦiaf

Here we used the identity, φjίS — φijs = φsij, coming from the first Bianchi identi-

ty of Z.

Since B = 0, the left self-dual part 2F(φ) of dLδRφ - δRdLφ has the follow-

ing form, for simplicity for (z, j) — (1,2);

( 5 1 2 ) ^(0)12, = \

Rts2aΦlat

We apply (2.1) into the curvature terms and make use of (2.4). Then 2P(φ)ι2s

= -y^ pφsi2 which gives without loss of generality

PROPOSITION 5.5. For φ e CΓί.Q1 0 β + ) satisfying φjis + φisj + φsji = 0
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(5.13)

Since (δLZ)siJ — (δRZ)ijs, we have then

" 12

So,

(5.14) a

Together with formulas (5.7) and (5.8) this implies

PROPOSITION 5.6. For Z e C~(S2

0 (Ω+))

( 1 1 \2

2"" * ~^~ ~ΛP) Z

(5.15)

5.5. Only dR(V VδRZ) is the term which yet remains to be calculated in

the formula (5.15).

We will associate this term to the two-fold rough Laplacian term (V V) Z.

Set φ = δR Z e C°°CQ+ Θ β 1 ) . Then, from the Ricci identity,

— V V (V ώ ) = — V V (V ώ ) + S H- /? ΓT7 r/j )
κ s v α ^ v aΨijt' v a v s^ vaΨijt' ' o ϋ s ί ' nas^ vaΨijt'

where

We apply again the Ricci identity on Vs Vaφtjt. So

- v s v a v a ψ i i t = -vavavsψiit

+ VaίRbisaΦbjt + RbjsaΨibt + RbtsaΦφ)

+ $„„ + £ „ Fβ0tf(,

namely,

(5.16) - F s F β Vaφiit =~VaVa Vsφiit + i?αsVaφ i j t + 2SHί/ + Γ t f ί f

where
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(5.17) T,lst = {(VaRbi$a)φbil + (VaRbisa)φ,bt + (VaRbtsa)φm}.

Therefore, from the first Bianchi identity

(dsV*Vφ)m =-(VsVaVaφ,,t - F,VaVaψijs)

is given as

(5 18) (dsV*Vφ)m = (V*VdRφ)ijst + f (dRφ)ijsl

+ BasVaφiit - BatVaφυs + 2{Sm - Sm) + (Tiist - Tφs).

For this we set further

Co 19^ S — S = Na) + P ( 1 )

where

N%t= ~ RabstVaΦijb

and

P ( 1 ) = j? u (j) 4- j? u (I)
1 ijst •ίVbisay aΨbjt • ίVb)sa v aΨibt

and

/c on) T — T = Ni2) + Pi2)

Vϋ ώ U / -1 t sί ^ ijts iyιijst * Γijst

where

and

- VaRbita-φbjs ~ VaRbjta-ψibs.

Since Bts = 0, we have

W ; F * F 0 ) m 2 ={V*Vd'Rφ),,12 + f id+

Rφ)im

( 5 2 1 )

 + α, + a, + a) + a)

Now we calculate the last four terms.
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As same as before, we substitute (2.1) into these terms and make use of the

fact that W+ = 0 and B = 0. Then

ASSERTION 1. (i) N{% + N^ = — ~Ξp(dRφ)ijl2 and (ii) N™2 + NyL = 0

On the other hand, we can write (Pίju +Piju) as the parts W(φ)ijl2,

K(φ)in2 and G(φ)ijl2 each of which contains Wijstt Kijst and Gijst, respectively;

Pirn + PlJL = W(φ),m + K(φ),m + G{φ)m

where we see K{φ) — 0 from B — 0.

ASSERTION 2.

iJl2 = 0 αn̂ i (ii) G(φ)ijl2 = f W;0) l /

That W{φ) — 0 follows from W — 0 by a simple computation.

For G{φ) we have

G ( φ ) m 2 = G311αVαφ322 + G4nαVαφ422 - G322αVαφ131 - G422αVαφul

+ G3l3αVαφ324 + G323αVαφιu - G4UαVαφ423 - G424αVαφU3.

It suffices to show (ii) for (ij) = (12) and (13). From the first Bianchi

identity of Z it follows that

G(φ)ί212= g- W*0)l212

Similarly, G(φ)13ί2 is computed

= -&

and then

since (5^0 = δR5RZ— 0 and this is because from Proposition 3.2 dRdRφ, φ

C°°(M β + ) has no S (ί2+)-component. This shows Assertion 2.

Next we calculate the last term (Ptjl2 + Pi,^ -
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ASSERTION 3.

When (ij) = (12), this term becomes

p ( 2 ) J_ p ( 2 ) _ rr p / i Γ7 n /
*1212 ' ^1234 ~~ Vdahlia ' Ψb22 ""• Va^b21a ' Ψlb2

a bl4d r 623 a. b2ba Sr 163»

which turns out to be zero, because W+ = 0 and p is constant.

Similarly, P 1 3 1 2 + P 1 3 3 4 = 0 is easily shown so that Assertion 3 is proven.

Therefore the last four terms in (5.21) reduce completely to zero so that we

have

PROPOSITION 5.6.

(5.22) (dRV*VδRZ)0 = (V*Vd^Z) + τ p(dRδRZ)

The following proposition gives then the final form of the Weitzenbόck formu-

la for the Bach operator in (5.1).

PROPOSITION 5.7.

(5.23) R L L R R L R L 0~

±Z

5.6. The ALE hyperkahler case. Let (M, g) be an ALE hyperkahler

4-manifold. We assert KerDD* = {0} for (M,g).

Let Cζ{M S0(Ω+)) be the space of smooth sections of S0(Ω ) having a

compact support. We denote by Wk the completion of C0°°(M S0(Ω )) in terms of

the LA-norm with respect to the metric g. Here k is a certain integer ^ 2.

Let Z e ( f t . From the completion we may assume Z^ C™(M S0(Ω+)).

Since g is Ricci flat, we have from Proposition 5.1 that

DD*Z=j(V*VΫZ
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so that if Z G KerZ)Z)*, then by integration

(5.24) Γ ((F*!7)2Z, Z)dv=0.

Since Z has a compact support, the partial integral gives us

\V*VZ\2dυ= 0

which implies V V Z — 0 and hence

(5.25) f (V*VZ, Z)dvg= f\VZ\2dvg = 0

from which Z must be covariantly constant, whereas the support of Z is compact.

Hence we get Theorem 4 in §1.
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