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THE hA-VECTOR OF A GORENSTEIN
CODIMENSION THREE DOMAIN

E. DE NEGRI anp G. VALLA

Let k be an infinite field and A a standard G-algebra. This means that there
exists a positive integer # such that A = R/I where R is the polynomial ring
R:=kl[X,..., X,] and I is an homogeneous ideal of R. Thus the additive group
of A has a direct sum decomposition A = @D A, where A,A; € A,,,;. Hence, for
every t = 0, A, is a finite-dimensional vector space over k. The Hilbert Function
of A is defined by

H,(t) := dim,(4,), t=0.
The generating function of this numerical function is the formal power series

P,(2) = X H,(Oz.

t=0
As a consequence of the Hilbert-Serre theorem we can write
P, = h,(2)/Q — 2)°

where h,(z) € Z[z] is a polynomial with integer coefficients such that %,(1) # 0.
Moreover d is the Krull dimension of the ring A.

The polynomial k,(2) is called the h-polynomial of A; if h,(2) =1+ a,z +
e+ aszs with a; # 0, then we say that the vector (1, a,,..., a,) is the h-vector
of A. It is clear that the h-vector of A together with its Krull dimension deter-
mines the Hilbert Function of A and conversely.

A classical result of Macaulay gives an explicit numerical characterization of
the admissible numerical functions, i.e. of the functions H : N— N which are the
Hilbert Function of some standard G-algebra A. This result proved in [M] has
been recently revisited by Stanley in [S]. One can easily find similar characteriza-
tions for reduced or Cohen-Macaulay G-algebras (see [GMR] and [S)).
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The problem is much more difficult if one deals with Cohen-Macaulay integ-
ral domains. Only in the codimension two case we have a complete answer given
by Peskine and Gruson in [GP] using deep geometric methods.

If we come to the Gorenstein case, very little is known. In [S] Stanley used the
structure theorem of Buchsbaum and Eisenbud for codimension three Gorenstein
ideals in order to give a complete characterization of the corresponding A-vector.
It is then natural to ask for other restrictions on the h-vector of a Gorenstein
codimension three G-algebra A if we assume moreover that A is an integral do-
main.

In this paper we answer this question by using a lifting theorem recently
proved in [HTV], which asserts that every codimension three homogeneous Goren-
stein ideal with degree matrix verifying certain numerical conditions can be lifted
to a codimension three Gorenstein prime ideal (see Lemma 3).

Let us fix some notations. If 2(2) € Z[z] we define its difference 4h(z) by
Ah(2) := h(2) 1A — 2).

If #(2) is a multiple of 1 — z then we define its sum 2/4(2) by

Zhid i= 2.
If we have h(z) = 2_, a,2', then it is clear that Ah(z) = 370 b,z' where
b,=a,—a,_, 1=0,...,s+1.
Moreover if 2(2) is a multiple of 1 — z then 2h(2) := 2., ¢,z where

i
Ci=zd,, i=0,...,3_1.
j=0

We say that the polynomial h(z) = X;_a,;z' € Zlz] is s-symmetric if a; =
a,_; for every 1 = 0,..., s, while we say that it is s-antisymmetric if a, = — a,_,
for every 1 =0,...,s.

It is easy to see that if A(2) is s-symmetric then Ah(2) is (s +1)-
antisymmetric, while if 2(2) is a multiple of 1 — z and is s-antisymmetric then
2h(2) is (s — 1) -symmetric.

Let now I be a codimension three homogeneous Gorenstein ideal of the
polynomial ring R = k[X,,..., X,]. By the structure theorem of Buchsbaum and
Eisenbud [BE], there exists an integer g = 1 such that [ is minimally generated by
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the 2g-pfaffians of a (2g +1) X (2g + 1) skew-symmetric matrix (F;) with
homogeneous entries. We denote by p, the pfaffian of the skew-symmetric matrix
which is obtained from (F,j) by deleting the i-th row and the i-th column. Then
I= (..., 0040 Let ay,..., @y, be the degrees of these pfaffians. Since R/I
is Gorenstein, it has a self-dual free homogeneous resolution as an R-module:

2641 2g+1
0—R(= )= & R(—b)— & R(—a) = R—R/I—0.
We may assume that
2<5a,2¢a, £+ <
Since the resolution is self-dual we get
,=c—a; 1=1,...,2¢g+1.

From the additivity of the Poincaré series, we can write
2g+1 2g+1
P, (2) = Pplz) — Z PR(—a,-)(z) + Z Prisy (2) = Pyr_py(2) =
i=1 1=1

28+1 _ay 28+1 _b, c
11— 2"+ 22—z

1-2"

Since dim(R/I) = n — 3, we have

f(2)
hy(z) = ———
a% a-2°
where

f:=1~— zgl 2" +2§12b’ -2

1=1

is a multiple of (1 — 2)°. This means that its derivative vanishes at 1 so that
2g+1 28+1
— 2 a+ 2b—c=0.
1=1 1=1

Using the fact that b, = ¢ — a,, we get

2g+1

o

c= a,.

1

0g | =

i

This proves that the degrees of a minimal set of homogeneous generators of a
Gorenstein codimension three ideal completely determine the numerical characters
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of the resolution.
We consider the matrix (%,;;) where we let

u,'=b—a;, t,;j=1,...,2¢g+1

This matrix is then uniquely determined by I and is called the degree matviz of I.
It is clear that (u,,) is a symmetric matrix and

deg(F,) =b,—a,=u; i,j=1,...,2¢g+1.

Since the resolution is minimal, this implies that F,; = 0 if #;; < 0.

The degree matrix of I verifies the following conditions:
(@) ; Zugfor it <sandj <t
(b) u,; + ug, = u,, + ug, for every i, j, s and £
(¢) u;; > 0 for all ¢ and j such that ¢ +j = 2g + 3.

The first two conditions are obvious. As for (c), if #,4,,5_, < 0, then by (a)
#; < 0 for every 1 = » and j = 2g + 3 — 7. This implies that F;; = 0 for the
same indexes. But then p, = 0, a contradiction to the minimality of the resolution.

We remark that condition a) above can be visualized by observing that it has
the following meaning: the entries of the matrix do not decrease if we move up or
left inside the matrix.

Further if ¢ £ b, = ¢ — a, then a, < 0, a contradiction. Hence we certainly
have

c>b,> b, = b =2 by,
Vv v Y,

Aogyr = oy 2" 2 @, 2a,22.

The converse of the above result is also true: we insert here a proof for the
sake of completeness.

Lemma 1. Let2 < a; <+ < a,,, be integers such that for some integer ¢ we
have cg = Zfifl a, Forevery t=1,...,2¢+t 1, let b,:= ¢ — a, If the matrix
(u;) := (b, — a;), which certainly verifies conditions (a) and (b), also verifies the

above condition (c), then theve exists a codimension three Goremstein ideal I in R =
kKIX, Y, Z] such that R/ has a minimal free resolution

2g+1 2g+1
0—R(—c— @ R(—b)— D R(—a) > R—R/I—0.
1=1

i=1

In particular I has degree matrix (u,;).
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Proof. In the polynomial ring k[X, Y, Z] let I be the ideal generated by the
2g X 2g pfaffians of the skew-symmetric matrix (F,;) where

[Fi,ZgH—i = X Tasn i=1,..., g,
Fipprio, = — X"#0 i=g+1,..., 2g,
Fopproy = Y0000 i=1.,g,
VFopprs = — YU j=g 42, 2g+1,
Frogrsy =255 =2, .,g+1,
Frogray = — 2" i=g+2,...,2g+1,
L0 otherwise.

We remark that since the matrix (u;,) verifies the condition ¢) all the exponents
above are positive integers.

Furthermore, in order to get a homogeneous matrix, we assign degree #,; to
the zero on the 7-th row and j-th column. It is easy to see that

b = szlzlue,zua-x, Drgr = Xzf-xui.zgn—e, Dosr = szg-lul',21+2-i +f(X,Y, 2

where f(X, Y, Z) € (X, Z). This means that [ is a codimension three ideal
which is Gorenstein since it is generated by the pfaffians of a skew-symmetric
matrix.
Moreover, since the determinant of a skew-symmetric matrix is the square of
the pfaffian, we have
deg(p,) = Z“; i = Z,*,-(cz 2a) _ gc—2a,=a,

1#i

The conclusion then follows since we have seen that the degrees of a minimal set
of homogeneous generators of a codimension three Gorenstein ideal completely de-
termine the other numerical characters of the resolution.

If we assume now that the codimension three Gorenstein ideal is prime, then
we have a stronger condition on the degree matrix. This is the content of the fol-
lowing result proved in [HTV], Lemma 5.1.

Lemma 2. Let IS R=k[X,, ..., X, be a codimension three homogeneous
Gorenstein prime ideal with degree matrix (u,). If g 2 2, then

Uppgeay > 0, 1= 3,...,8 T 1
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Proof. If #,5,,4, < O for some ¢ such that 3 < ¢< g+ 1, then #,, < 0 for
every 1 = tand j = 2g + 4 — {, so that F,; = O for the same indexes (here, as be-
fore, F,; are the entries of the skew-symmetric matrix in the resolution of R /I).
This implies that the 2(g + 2 — #-pfaffian obtained from the matrix (F;,) by de-
leting the first £ — 1 and the last £ — 2 rows and columns, is a common factor of
b, and p,. A contradiction.

We remark here that if we have u,,,,,;, > 0 for 1 =3,..., g + 1 then, by
the symmetry of the matrix (%,;), we also have #,,,,,; > 0 for i=g+3,.. .,
2¢ + 1. Thus on the diagonal where 7 + 7 = 2g + 4 all the entries of the matrix
(u,;) are positive integers except, possibly, for #,,, 44

Further it is clear that, if g 2 2, then a degree matrix such that #;,,,4_; > 0
for t=3,..., g + 1 verifies also condition ¢) above, namely %, ,,,5_; > O for ev-
ery t = 2,...,2g + 1. This because we can express this condition by saying that
all the entries on the (2g + 4)-diagonal are positive and remark that for every
element of the (2g + 3)-diagonal we can find an element on the (2g + 4)-
diagonal which is right or below the given element and is different from #,,, ,.,.

The following less trivial result is the lifting theorem we referred to in the in-

troduction.

Let IS R = kl[X,,..., X,] be an homogeneous ideal. We say that the ideal [
can be lifted to an ideal J € S = k[X,,..., X,,], m = n, if there exist r = m — n
linear forms [y,..., {, € S such that:

a) Iy,..., I, form a regular sequence mod J.

b) In the canonical isomorphism
S/l,...,1)S=R

the ideal (J + (Iy,...,1,)8)/(,,..., 1,)S corresponds to I.
It is clear that if the ideal I can be lifted to the ideal J, then

Pey(2) = (1 —2)"7"Ps,(2).
In particular they share the same %4-polynomial.
Lemma 3. Let IS R =k[X,, ..., X,] be a codimension three homogeneous

Gorenstein ideal. Let us assume that either g =1 or g 2 2 and the degree matrix
(u,;) of I satisfies the condition

ui,2g+4—i > 0
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for every 1t =3,. .., + 1. Then I can be lifted to a codimension three Gorenstein
prime ideal ] S S = k[X,,..., X,], for some integer m = n.

A proof of this crucial result can be found in [HTV], Lemma 5.5.

Now let h(z) =1+ 3z+ h,e” + -+ - + hz’ be a polynomial in Z[z] such

that &, # 0. The integer
. t+2
ai=mm{t]ht¢< 9 >}

is called the initial degree of k(2). It is clear that 2 < g < s -+ 1. In the following,
for a rational number ¢, we denote by [g] its integer part.

LEMMA 4. If the polynomial h(z) is s-symmetric, then

2sagE}+L

Proof. 1f 2a—2>s, then s—a+2<a This implies & =

s—a+2

—a+4
<S a > hence, by the symmetry,

| (8)=r=(757")

It follows that s — @ + 4 = a. If s is odd, this is a contradiction. If s is even, say
s = 2t then a = t + 2, hence

<”1> e (57)

a contradiction. Hence a < + -l- 1 and the conclusion follows.

[\

In the following we will often use the trivial inequalities:
—1<2[5] <
S < IIERE

Given a polynomial h(z) =1+ 3z+ hy2" + + - - + h2’ € Zlz] such that
hg # 0, we denote by a its initial degree and also we let
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S$+2 ‘ 2 2
2qz2 =h(@0—2"=4%0.
t=0

We can now prove the main result of this paper.

THEOREM 5. Given the polynomial h(z) =1+ 3z + h222 +--+nse
Z1z] with hy # 0, there exists a codimension three Gorvenstein G-domain which has
h(2) as h-polynomial if and only if the following conditions are satisfied :

a) h(2) is s-symmetric.

S
b) q, < 0 for every t such that a < t < [E] + 1.

¢) It does wot happen that q,<0,q,=0 and q, <0 with a<t<ov<vy
s
< |=
< 3]+

Proof. Let us assume first that %(z2) is the h-polynomial of a Gorenstein
G-domain A. Then it is well known that 4(z) is s-symmetric (see [S], Theorem
4.1). Let

28+1 28+1
0—R(—c)— @ R(—b)— D R(—a)—R—R/I—0

i=1 i=1
be a graded free resolution of A = R /I, where we assume that
a,<a, < Sa,,.

As we have seen before we have

1 2g+1 .
— a, b=c—a,1=1,...,2¢+1
g i=1
and
h(Z) = __f_(f)_3
1-2
where we let
28+1

f(z)~1—Zz”‘+Zz

1=1
Since

h(z)=< Zza’+2ngz —z><2<t+2>zt>,

1=1 t=0 2
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and
a, = min{a,, bi}z‘=l,“,2g+1!

we have

Since, as we have seen before,
c>a,b, 1=1,...,2¢+1,

we also have

c=s+3.
Now
j:: g2 ' =h)1 —2)°"= 1-Z5 za;t‘§fﬂl k4 = 2f).
From this we get
(%) =1+ #ml|b,<tt — #mla,<th, t=0...,s+2.

121

To better visualize our argument, we recall that, no matter I is prime or not, we

have:
c>b =2 b, =2 by 22 by,
V V Vv
Aogyy = Ay 27" 2 A =2

We need also to remark that
c—b=a,<a,<by, b

so that

ler=[32 =[50 s [ =5 <o

We prove now that condition b) holds.
Let ¢t be an integer such that

S

aété[z]—l—l.

Then, by the above inequality, @ < ¢ < b,. We have two possibilities: either
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P< by or by < L
In the first case since @ = a; < t < b,,,,, we immediately get
mlb, <8 =0,
and
{mla, <t 2{1}.

This implies by (%)

g, <1—1=0,

as wanted.

In the second case we have by, < ¢t < by, and we can find an integer # such
that

2<r<2g+1, b,<t<b,,.
Hence
Aogyay < b, <t <h,_,
and we get
m|b, <ty ={r,r+1,...,2g+ 1)},
mla, <t 21{1,2,...,2¢+3— 7.
From () we get
g, <1+ QR2¢g+1—-r+1)~Q2g+3—r=0.
This proves b).
We remark that, up to this point, we did not use the primality assumption.
Let us come to the last statement. By contradiction, let

qt<0) qv:(), qr<0

wma£t<v<r£E]+L

Under this assumption we claim that
bagir S VS Gygyy < by

The first inequality comes from the fact that g, < 0 and g, = 0, hence we need at
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least one b,’s to get a positive contribution in the sum in (% ). The second inequal-
ity follows from the same argument due to the fact that ¢, = 0 and g, < 0.
The claim implies that we can find an integer d such that

by v <b,
In the case g = 1, we have
by £ v =< a,<b,
hence d = 2 and either
Aogrs—g = @3 = 0 < b, = b,
or
by =05 v<a;=a,,.,

If g = 2, we use the full power of the primality assumption, which, after Lem-

ma 2 and the subsequent remark, can be read in the following picture:

by=2b,2 by =22 by Z by by = 2 by
\% \ Vv \%
Aoy = """ 2 Qpug 2 0gpp = Gy 2 Z a, 2Za,za

Looking at these inequalities, we see that:
ifd# g+ 1, then

Aogrs—a = Apgra—arn < Dap1 S U Sby,
ifd=g+1anda,, < v, then
Argiz—a = Agiz < 0 < by,
ifd=g+*1and v <a,,,, then
bar1 = bgs S v < ag,,

Hence we have to skip out these two possibilities:
1) Gogisa SV <Dy
In this case we have

mlb, <v)={d+1,...,2¢+1)

and
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mla, <vy2{1,2,...,2¢6+3—d}.
Hence by (%) we get
=¢,<1+Q2g+1—W+D+1D—-Qg+3—ad=—1,
a contradiction.
1) by S0 < @y,
In this case ¢ = @, < @y, hence a,,, > % From this we get

+2
G <bsv<r< |3l +1< 25 < <a,,

This is absurd because we have no a,’s between v and 7 so that we cannot pass
from g, = 0 to g, < 0.
We will prove now the converse. We have a polynomial

W) =1+43z+ hz + - + hs' € Zl2],

such that ., # 0 and A(2) verifies conditions a), b) and c¢) in the theorem. We let

c:=s+3 ai=min{t|h,#E (t;2>}

and
s+2 : 2 5
2qz =hz1—2"=A4"h@7).
=0

We have by b)

4, <0 if astg[—;—]+1=[cgg]+1=[cgl].

Since A°h(2) is (¢ — 1)-symmetric, we immediately get

c—1

q, <0 if c—l—[ ]ﬁtéc-—l—a.

But

2= %%

v

hence
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-5 = 5]

so that we finally get
(b") ¢, <0, if a<t<c—1-—a.

Now let
< i 3 ot 3
S ke =A%) = AT ¢) = h@) (1 — 2",
i=0 t=0

We have already remarked that this polynomial is c-antisymmetric. We have some
strong informations on its coefficients.

1. k,=1,k = —1.

2. k,=0ifjell,a—11Ulc—a+1,c—1]

This is easy to see since, by the definition of @, for every t=10,...,a — 1
1+ 2
we have h; = ( 9 ) hence

i+ 2 1+1
h,— h,_, = — =:+1
i ( 2 ) < 2 ) ’
¢ =hi—h_ =" —h)=i+1-i=1
and finally
=1, k=¢q,—¢q_;,=1—1=0foreveryi=1,...,a—1.
The c-antisymmetry of 4°%(z) gives the conclusion.
3.k, <0,k,_,>0.
This is also clear since k, = q, — ¢q,-; = ¢, — 1. It follows that k, < O be-

cause ¢, < 0 by assumption.

Now the crucial remark is that by using the c-antisymmetry of 2._, k;z', we
can write in a unique way

Mo

» »
. b,
kd=1—-2X2"+2z"—2
i=1 =1

I

0
where p, @, and b, are positive integers such that
b;=c¢—a,foreveryi and a;#* b, for every,j.

We may assume that
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so that

Since

3 . 2 a; 2 b; c
Ah(z) =1— 22"+ 22"~z

i=1 i=1

is a multiple of (1 — 2)3, its derivative vanishes at 1, so that

By using the fact that b, = ¢ — a,, we get

4. p—Dec=22%2"_ a,
By 1, 2 and 3 above we also get
5.a,=a,b,=c—a anda, b, € la,c—al forevery i=1,..., p.

Since

sk2 . 1= M+ - N T

3 g = nE T omf T o s(1-2 DS,
i=0 =1 t=1

we also have

6., =1+ #mlb, <ty — #mla,<t}, t=0...,c— 1.
We collect some other properties of the integers involved in our computation.

7.0 = 2.
This follows immediately from 4, since a; = 2 for every t.

8. a, < b,, hence a, < b,.
If not we have, by 5, @, < b, < a,, hence
{ml|a, <b)= {1},
and
{m|b, <b)2 0,

so that, by 6,
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¢, =1+1—-1=1
Since
b,=c—a,<c—a, =b,
we have
a,<b,<b,<b—1=c—a—1.
Hence we get
a<b,<c—a-—1, andq,,le,

a contradiction to b’).

9.¢,<0.
By 8 we have
a, = a,<b,
hence
ml|a, <a,) 21,2}
and

{m|b,<a,)=0.

By 6, this means

as wanted.

10. If p is even, then ¢ is even.
This follows immediately from 4.

S
11. q, < [5] +1.

S

Otherwise ¢ — b, > [2

] + 1, hence

h<c-[3]—1=s+2-[5].

But, by 8, a, < b,, hence
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5] +1<a<s-1<5-[3],

a contradiction.

12. Let us assume that there exists an integer f such that @, < ¢ < b,, and ¢,
We claim that this has the following consequences:

12a. ¢, = O for some integer f such that @, < t < [%] + 1.
If we have
s
[§]+2£t£bz—1:c—a2—1
then we get
a<c-1-t<c—1- 5] —2=s-[3] <[3] +1.

Since 0 = ¢, = ¢._,-, and by 9 ¢,, < 0, we must have

g, <c—1-t< |3 +1

and the conclusion follows.
Thank to this last property we may then define the following integer:

ni=min{tla, <1< |5] +1,4 =0

12b. v < ¢ — n < b,.

Since n < [%] + 1 we have
2n£2[§]+2ss+2:c—1<c.

On the other hand
c—b,=a,<n,

as desired.
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12¢. ¢, < 0ifd € [a,,n—11 U [c~n, b, —1],q,=0ifd € [n, c —n —1].
Since

a<a,<n<|5]+1

and ¢,, < 0 by 9, g, = 0 by assumption, condition ¢) implies that
. s
4, =0, it n<d<|3]+1.
From the (¢ — 1)-symmetry of A°4(2), we get
_ s
g, =0, if ¢—2— [E] <d<c¢c—1-—n

From this we get that ¢, = 0 for # £ d < ¢ — n — 1 since

2= [ == gl <[g] 2

Moreover, by the true definition of # and the condition b), it is clear that
g, < if @, <d<n—1 and we get the conclusion by the (¢ — 1)-symmetry of
An(2).

12d. Forevery 1 = 2,...,p
a, b, € la,, n]l U [c—n, b,l.
We know by 8 that @, < b, hence, if i = 2, we have
a,<a; <a,<b,

But by 12¢ we have g, = *** = ¢q,_,_, = 0 hence, by 6, we cannot have any a,’s
or b;'s in the interval [# + 1, ¢ — 1 — n]. This gives the conclusion for the a,'s.
On the other hand, if 7 =2 2 we have by 8

a, < b <0,
and we get the conclusion as before.

13. If p = 4 then for every » = 3,. .., [%] + 1 we have

b7 > Apy3—re

If not there exists ¥ &€ [3, [g] + 1] such that b, < @,,,_, and we have
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m|b, <b}2{r,r+1,...,p

and
mla, <b)<c{1,2,....,p+2—1.
We get by 6
qb721+(p—7+1)-—(p+2-7’)=0.
Since

a<b <b =c¢—a,

by b) we get g,, = 0 so that
mla,<b)=1{1,2,...,p+2— 1.
This implies

Apirr < b, < @pisye

Since g,, = 0 and, by 8,
a, < b, <b,

we have the assumption as in 12. Then by 12c we get

b, € [n, c—n—1],
while by 12d

b, € la,, n]l U [c — n, b,].
This implies
b, = n.

Since by 12¢

G-n-1=0, ¢, <0,
we must have ¢ — # =a; for some 7. But we have

Aproy <N < Ayis
hence by 12d we get

C— M= Qyg,
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It follows that a,,,_, = a,. Since » < [g] +1 we get < g + 1 which

implies » < p + 2 — 7 Finally we get
U = pipy < Qpysy = 4y,

a contradiction. This proves 13.
14. Conclusion. We have two possibilities: either p is odd, say p = 2g + 1, or p is
even, say p = 2g.
p=2g+1.

In this case we have [%] + 1= g+ 1. Hence, if g = 2, we may apply 13 to
get

b, > ayp3, = Qygrsyy ¥=3,...,8+ 1L

If p = 3, we certainly have by 8

b, > a,.
In any case we have integers
250, L S Ay,
such that by 4,
2g+1
cg = El a,.

Now, if g = 1, we have b, > a,, while, if g = 2, we have
b, > Gy4sypy r=3,..., 8+ 1.

As remarked after Lemma 2, this implies that, in any case, the matrix (u,,- = b,
— a,), verifies the conditions a) , b) and c¢) in Lemma 1. Hence we can find a
codimension three Gorenstein ideal I S R = k[X, Y, Z], such that R/I has
minimal free resolution

2241 2+1
0—R(—=c— @ R(—b)— ® R(—a) > R—R/I—0.
i=1 i=1

This means that
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28+1 _a; 2g+1 _b; c
1—-22 2+ 2. 2t —2

h(z) = .
1-2)

is the k-polynomial of R/ By Lemma 3 we get the conclusion.
p=2¢g
Under this assumption we have by 10 that ¢ is even, say
c=2f.
We also have
a,b,+f, i=1,...,p

otherwise, for example, 2a; = 2f = ¢ = a; + b, hence a; = b,.
Also it is clear that

a, < f
otherwise f < a, would imply
b,=2f—a, < a,

a contradiction to 8.
Let

= max{i| q, < f}.

Then 2 < 1 < 2g. If h < 2g, then

a, < f<a,
so that

byy=2f—a,,<f<2f—a,=b,

If h = 2g, then a,, < f, so that ¢ — b,, < f which implies

Ay < [ < by,

We let

a, 1<j<h
a,=1f Jj=h+1
a_, h+2<;<2g+1

and
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b, 1<j<h
b=1f j=h+1
b, h+2<j<2+1

Then it is clear that we have
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— — . — r = — - —_
a=aiSa,=a, < L4, =0, <, =<, =0, S @y = Aoy

and

by=bizb=b;z  2b,=b,> b= f>b T b2 2, =

By 4 with p = 2g and ¢ = 2f, we have
28
(Zg_ l)fz Zau
1=1

hence

28+1

N
o

¢=lm+f=@g—nf+f:wg=@-

i=1 :
Further

bj=c—a; 1=1,...,2g + 1.
Now let g = 1; then p = 2 and ~2 = 2 hence

a, <a, < f<b,<b,
so that
b, =b,> f= a,.
If g = 2 we claim that

b;>a;g+4_,, 7’:3,...,g+ 1.

’
28+1°

Let us assume by contradiction that b, < aj,,,_, for some 7 with 3 < 7 < g + 1.

Then it is clear that

4 4
br < a2g+4—r

since we can only have equality for r = h + 1= 2g + 4 — 7. But this would

mean ¥ = 2g + 4 — 7, so that » = g + 2, which is absurd.
Since
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eri= 8-

we have

BSVS[%]-I—I.

We have three possibilities: either b, > f or b, = f or b, < f.
If b, > f then b, = b, and a;,,,_, > b, > f. This implies

7 —
Aogrs—r = QAogiz—yp

Hence

b, < aZg+3—w
a contradiction to 13.

If b, = f, then

by =b,</f
and

f < a;g+4—r!
hence

/ —
Argra—r = Qogys—p
This implies
br < f < Aog43-r

which again contradicts 13.
Finally if b, < fthen b, = b,_, and ¥ = h + 2 = 4. We have either

b,=b,_, < ay,<f
or
b, =b,, < f< a4,
In any case we get
by < @agiamy = Aogis—r-n-

Since
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337—13[%]-0—1,

we have again a contradiction to 13.

The conclusion now follows as in the case p = 2g + 1 by considering the in-
tegers ay, @, ..., Gy,y instead of @y, @,,. .., Gypyy.

Let us consider the 7-symmetric polynomial
nz) =1+3z+ 42" +52° +52" +42° +32° + 2.

This is the A-polynomial of the codimension three Gorenstein G-algebra R/I
where

I=Z,vZ,Y'—-XZ, X'y, X"

is the ideal of R = k[X, Y, Z] generated by the pfaffians of the skew-symmetric
matrix

0 0 0 X°vY
0 o x' Y z
o —-X* 0 Z o
-X* -y -Z 0 o0
-Y —Z 0 0 0
S .
But we have a = 2, s = 7 so that [§]+1=4‘ Since clearly

Ahz) =h)QA—2°'=1+z—-2"-2'"-2"—7+"+2,

the given polynomial cannot be the A-polynomial of a codimension three Goren-
stein domain.

Given the polynomial
h(iz) =1+3z+62°+102° + 132 + 142° + 142° + 132"+ 102° + 62° + 32" + 2"

we now explicitly construct a Gorenstein codimension three ideal whose
h-polynomial is 4(2).
S
We have a = 4, and s = 11 so that [5] + 1 =6. We get

Ahz) =1—-2 =2+ =22 +2"+ 2 -z
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Hence we let
a,=a,=4,a,=5,a,=8
and
by,=1"5,=10,b,=9, b, = 6.
Since we have p = 4, we must consider
ai=a,=4,a;=5,a,=7 a;,=8
and
by =0b,=10, b; =09, b; =17, b; = 6.

If we let u,; := b, — a; we get the matrix

6 6 5 3 2
6 6 5 3 2
554 2 1
332 0 -1
221 —1 -2

The ideal generated by the pfaffians of the skew-symmetric matrix

0 0 0o Xx°y?
0 o x° vz
0 —X° 0 Z* 0
-x*=-v* =z 0 o0
-y -z 0 0 0

is the ideal
1=z, Yz, v°'— X2, X°Y*, X°).
It is clear that R/I has h(2) as h-polynomial. Since g = 2 and #,;; = 1 > 0, the
degree matrix of I verifies the assumptions as in Lemma 3. Hence we can find a
codimension three Gorenstein prime ideal whose A-polynomial is 4(z).
If we are given a sequence
1,2, ¢,...,c)

of non negative integers, we say that it is admissible if the corresponding numeric-
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al function is admissible in the sense we defined before.
By using the classical theorem of Macaulay as in [S], it is easy to see that
(1, 2, ¢,,...,¢,) is admissible if and only if for some integer @ = 2 we have

,=i+1, 0<i<a-—1,
and
i <c¢, a—1<:<t—1.
Let
W) =14+ 3z+ hz' + - + hz' € ZlZ]

be a s-symmetric polynomial. If, as before, @ is the initial degree of 4(z) and we
let
t+2

= g2 = A2 = h(2)( — 2)°,

the following conditions are equivalent:

a) q, <0 for every 1 € [a, [%] + 1].

b) The sequence (1,2, h, — 3,..., h[%] - h[%] ) is admissible.
This can be easily proved in the following way.
Since a is the initial degree of A(z), it is clear that
q; =1, 1€ [0, a— 11,

and
hiy—h_,=24¢q, =1
j=0
The result follows easily if we can prove that

hE T g = 09 A = 0

2

But if s = 2t + 1, then h[%]_,_l = h[%], hence
sy~ R T REe TR T IR T T A
If s = 21, then h[%] a= h[%]ﬂ, hence

his] = g1 = hpg1a —hpg) T apg)a T T () T Rpg1) T4
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and
20y ~ ki) = T gy
In both cases the conclusion follows.
We will say that an admissible sequence (1, 2, ¢,, .. ., ¢,) is of decreasing

type if for some integer b € [a, t + 1], we have

o = 1+1, 1€1[0,a~— 1]
! a i€la—1,0-1]

and for 1 € [b — 1, t — 1] either ¢; = 0 or ¢;;; < ¢;.

ProposiTiON 6.  The polynomial
W@ =1+3z+he" + - +hs

verifies the conditions a), b) and c) as in Theovem 5, if and only if h(2) is s-symmetric

and the sequence

Q, 2, h,—3,..., h[%] - h[ ]_1)

s
2
1s admissible of decreasing type.

Proof. As before we have
g =1, t€[0,a—1],

and

Hence

—h_,=1+1, i€[1,a— 1]

Let us assume that the given polynomial verifies the conditions as in Theorem 5.
Then the sequence (1,2, h, —3,..., h[%] - h[%]_l) is admissible by the

preceding remark and we need only to prove that it is of decreasing type.
We have two possibilities.

Case 1. q, = 0, for every 1 € [a, [%} + 1].
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. . s
In this case k, — h,_, = a for every i € [a -1, [f“ and the sequence
@, 2, h,—3,..., h[ 1~ h[%]_l) is of decreasing type.

S
2

Case 2. q; <0 for some i € [a, [%] + 1].

In this case let b be the least integer with this property. Then we have
hooy = haey = hg = hgoy = 2 = hyy — hyy = a,
and

hy— hy_y=a+gq, <a.

Now, if for some i € [b, [%] — 1] we have b, — h,_y >0 and A,y — h, = h; — h,_,,

then ¢;,, = 0. By condition c) this implies g, = 0 for every j € [l + 1, [—;—] + 1].

In turn, this implies

O <h =iy =hen = h =00 = hpgy = b = Apgpa ~ hpg)

2
Now if s = 2¢, then h[%] a= h[%]ﬂ, hence
hisy = hig-o = By~ B
which implies
P B =R T A T 0
If s =2t+ 1, then h[%] = h[%] +1» Which implies
P T B = gy T by T 0

In both cases we get the conclusion.

Conversely, let us assume that the sequence (1, 2, b, — 3,.. ., h[%] — h[%]_l)
is admissible of decreasing type. If, by contradiction, we have

:<0, ¢=0, ¢,<0,

witha <t<p<r< [%] 41, then

hy=hy <h_y—=h_ < hyy = hyp, = a.

Also
hy=hyy=hyy = by
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Since

we get
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b£t<v<r£[%]+1,
b—1£v~1£[%]—1.

Since the sequence is of decreasing type this means that

0= hv—l - hv—Z'

Hence we get

0=

hv—lv—hv—z2 Zhr—l_hr~2:hr_hr—-l_qr>hr—hr—l20

a contradiction.

We remark that because of the above proposition, one can see a strong analo-

gy of our result with the characterization of the h-polynomial of a perfect

codimension two ideal as given by Grouson and Peskine in [GP].

They proved that

1+ 22+ h2"+ - +hs

is the h-polynomial of a codimension two standard Cohen-Macaulay G-domain if

and only if 2(2) is admissible of decreasing type.
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