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BOUNDARY BEHAVIOUR OF EXTREMAL

PLURISUBHARMONIC FUNCTIONS

STANLEY M. EINSTEIN-MATTHEWS*

1. Introduction

In [Mo.l], S. Momm studied the boundary behaviour of extremal plurisubhar-

monic functions by using the pluricomplex Green function gΩ of a bounded convex

domain Ω in Cn to exhaust the domain by a family of sublevel sets. Let Ω be a

bounded convex domain in C containing the origin 0 ̂  C in its interior. The

pluricomplex green function of Ω with a pole 0 €= Ω is defined by

(1.1) gΩ(z, 0) : = supw(z), z e Ω,
u

where the supremum is taken over all plurisubharmonic functions u\—* [— °°, 0[,

u < 0 on Ω, with u(z) < log || z || + 0(1) as z~*• 0. This function is plurisubhar-

monic and continuous on β\{0} if its restriction to the boundary dΩ of Ω is

identically zero. It is clear that in this definition the point 0 ^ 1 3 can be replaced

by any fixed point w ̂  Ω.

The sublevel sets

(1.2) Ωx'-= iz e Ω;gΩ(z, 0) < x), x< 0, x^ R

are convex sets by results of Lempert [Lem.l]. Next consider the supporting

functions

(1.3) Hx(z) = HΩχ(z) : = sup{Re<^, w> ;gΩ(w, 0) < x}, x < 0, x e Cw,

of {.ίy-^o, where <z, w> = z M; •= Σ J = 1 ̂ ; ̂ ; and |U || = (z, z) is a norm on

C . Consider a type of directional Lelong number defined by

(1.4) VO:=limg o ( P_"/' ( Pg]0,+co]>
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where ζ ^ S > = {z ^ Cn || z || = 1). This Lelong number is used to measure the

rate of approximation of the boundary dΩ of Ω by the boundaries {dΩx}x<Q of the

family of sublevel sets {Ωx}x<0, in the direction of the vector ζ e S. Momm

showed that this lower semi-continuous function is connected with the boundary

behaviour of the Siciak extremal plurisubharmonic functions [Si. 1]. Set H '= Ho

and consider

(1.5) VH:= sup u(z), z e Cn,
u

where the supremum is taken over all plurisubharmonic functions u < H on Cn

with

u(z) < log \\z II + 0(1) as z-* °°.

This is a continuous plurisubharmonic function and attains the value H on a com-

pact star-shaped set

(1.6) ? f f :

where the numbers ^#(ζ) €= [0, + °°]. He then proved the following results.

THEOREM 1.1 [Mo.l]. Let Ω be a bounded convex domain in C containing the

origin and with supporting function H defined in (1.4). Then there is a constant

C > 1 such that <βH < ΔΩ < OβH.

THEOREM 1.2 [Mo.l]. For Ω a bounded convex domain in Qn containing the ori-

gin and with supporting function H, the following statements are equivalent:

(i) ΔΩ (or ^JJ) is bounded.

(ii) There is a constant C > 0 with Ω c Ωx + C(— x)B, x < 0 where B : = {z e

Cn |U || < 1} is ί/iβ limί 6α« in C.

(iii) 77i£f£ is α plurisubharmonic function υ < ί ί will t (z) ^ log || z || + 0(1) as

z —• °° which coincides with H on a neighbourhood of zero.

In this article we generalize S. Momm's results to the larger class of bounded

linearly convex domains flcC" (see Section 2 for definitions) and use pluricom-

plex Green functions with a single pole w ^ Ω to exhaust the domains. We also

consider bounded linearly convex domains having pluricomplex Green functions

with finite singularities. Here one should recall that linear convexity is a notion of

convexity which is intermediate between classical convexity and pseudoconvexity
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for bounded domains in Cn. These domains are defined using the linear structure

of C and as such are not holomorphically invariant. Nevertheless, they have cer-

tain remarkable analytic and geometric properties (see [Lem. 2,4,5,6,7]). Their

complements can be represented as the union of complex hyperplanes.

First we give some relevant definitions and notations and then state the main

results of this paper. Let Ω c Qn be a bounded linearly convex domain with

boundary dΩ. Consider for Ω a pluricomplex Green function gΩ(', w) with a pole

w ^ Ω, w Φ 0 given by

(1.7) gΩ(z, w) := supu(z), z e β,
u

where the supremum is taken over all u <Ξ PSH(β), u < 0 on Ω with

u(z) < log || z — w || + 0(1), as z~* w and PSH(β) is the cone of plurisubharmo-

nic functions on Ω. This is a plurisubharmonic and continuous function when

gΩ(z, w) restricted to dΩ is identically zero. Lempert's results [Lem.2] imply that

in this case the sublevel sets Ωx '-— {z e Ω gΩ(z, w) < x), for x < 0, x e R

are linearly convex sets. Clearly Ωx c: Ω for all x < 0 and each contains the ori-

gin 0 ^ C in its interior. We define the supporting functions of the family

{Ωx)x<0 by

(1.8) Mζ, x) = hΛQ : = sup ( - log| ζ0 + z& + • • • + znζn\), x < 0, ζ e C 1 + B.
z<=Ωτ

This supporting function will be shown later to be a plurisubharmonic function

for all (ζ, x) e Cf x C. Here we take ζ - (ζ0, ζθ e C 1 + w with ζ o e C \ {0} and

ζ r G Cw. Next we generalize to the case of finite singularities. Let W — {Wj Wj ^

Ω), 1 < y < m < °° be a finite set of singularities with weights the numbers

v -= {v(Wj) '= Vj > 0}, 1 < / < m < oo . We define a pluricomplex multipole

Green function gΩ(z, W, v) by

(1.9) gΩ(z, W,v):= sup u(z), z <Ξ Ω,
u

where the supremum is taken over all u G PSH(i2), u < 0 - on Ω with

wU) < Σ;

m=i »j log II ̂  ~ Wj II + 0(1), a s ^ wr The sublevel sets of gΩ(z, W, v)

are given by Ωx -= {z ^ Ω gΩ(z, W, ι>) < x}, x < 0. It is clear that for all

x < 0, Ωx c β and £?0 = ,0 for x = 0. However, for very small values of x < 0,

the members of the family {Ωx}χ<0 may be disconnected. But since we are only in-

terested in those sublevel sets for which x is near 0 rather than near - ° ° we

can overcome this difficulty by considering

(1.10) - oo < inf(χ < 0 Ωx is connected) Φ 0.
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We call this infimum x*. For the purpose of this study, we restrict our attention

to the sublevel sets Ωx- = {z e Ω gΩ(z, W, v) < x), for which the values of x

satisfy x* < x < 0, such that iΩx}x <x<0 is a family of connected sets. For this

family of sets we define the supporting functions as in (1.8) i.e.,

(1.11) Λ ( ζ , Λ r ) = A f i , ( ζ ) : = s u p ( - l o g | ζ 0 + z 1 ζ 1 + + 2 Λ ς | ; & ( z , W,v)<x),

for all x* < x < 0, ζ e C1+n with ζ = (ζ0, ζθ where ζ ' e Cw, ζ 0 e C \ {0} and

each member of the family {Ωx} X^<X<Q contains the origin O ^ C in its interior.

A(ζ, x) is again shown to be a plurisubharmonic function in all (ζ, x). To each of

the supporting functions there is associated a directional Lelong number given by

(1.12) g f l ( 0 : = l i m

where ζ e f l * : = { z e C " ; Afl(*) < oo}.

Finally, for Ω a bounded linearly convex domain in C with supporting func-

tion hΩ we define the function V : Cn x ]0, + oo] —> R + ) a > 0 by

Va(Q •= V(ζ9 a) := sup(^(ζ) (̂  e α^, φ < hΩ),

(for definition of the class ΐ see (5.0)).

With the notations above we can now state our main results

THEOREM 1.3. Let Ω he a hounded linearly convex domain in C which contains

the origin with boundary dΩ. Let hΩχ - l i ^ C ^ R U {°°}, x < 0, he the support-

ing functions of the linearly convex sublevel sets Ωx'-~ {z ^ Ω gΩ(z) < x) of the

pluricomplex Green function gΩ of Ω with a pole at the origin. If Va : C ~* R+, a > 0,

are Siciak functions for hΩ'-— h0 with respect to the class aί£, define for all ζ G

β * : = {z e Cn Afi(a:) < °°}, the functions

by

ahΩ(O : = inf(α; 7α(ζ) = A f l(ζ)), α

: = l i m " f l V V _ " * v v e [ 0 , °o].
T /n X

Then
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where ΦΩ denotes the directional derivative in the case of the supporting functions for

the pluricomplex Green function gΩ(z, 0) at the point z — z(ζ) which minimizes | 1 +

ζ z I for a given ζ €= Ω . This is unique if the boundary dΩ is of class C and the

hyperplane ζ * z = 1 is the tangent hyperplane to dΩ at the point z.

The following theorems are corollaries of Theorem 1.3.

THEOREM 1.4. Let Ω be a bounded linearly convex domain in C containing the

origin with supporting function h defined in (1.8). Then there exists a constant C ^ 1

such that ahΩ{Q < ®ΩehΩi0 < Cahβ(ζ)f ζ e β * c Cf* = Cn.

THEOREM 1.5. For a bounded linearly convex domain Ω in Cn containing the ori-

gin and with supporting function h defined in (1.8), the following statements are

equivalent:

(i) ®β (or ahj is bounded,

(ii) There is a constant C> 0 with Ω c Ωx + C ( - x)B, u k ί B = k e C w ;

\\z\\<\},

(iii) T^ere is α plurisubharmonic function υ on Cn \Ω with v(ζ) < log || ζ || +

0(1) as ζ—>• °° , f < /zβ on α neighbourhood of the boundary dΩ of Ω and coin-

cides with hΩ on Ω c P w (C) \ #CW, where Xw is the complex hyperplane dual to

w e Ω.

The organization of the paper is as follows. Section 2 gives a quick survey of

the necessary preliminary material on linear convexity often without proofs. Sec-

tion 3 is devoted to consideration of pluricomplex Green functions having several

singularities with Lelong numbers as weights. Section 4 gives background material

on complex Monge-Ampere operators and their relationship to pluricomplex Green

functions. Section 5 introduces the Siciak and Lempert extremal functions and dis-

cusses their properties. Sections 6 and 7 are the core of the paper devoted to con-

structions leading to the proofs of our main results.

2. Linear convexity

In this section we give a brief resume of some of the important properties of

linearly convex sets which are a subclass of pseudoconvex sets, first introduced in

[Be-P.l]. Their definitions are modelled on the definition of convex sets by sup-
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porting planes. Linear convexity is a notion of convexity which is stronger than

pseudoconvexity and yet weaker than the traditional concept of convexity. Since

the concept of linear convexity is more natural in projective spaces than in Cf, we

begin by reviewing some properties of the complex projective space PW(C) of com-

plex dimension n and its dual space P W (C). We shall first consider a general

situation. Let V be a vector space of finite dimension over C and let P(V) denote

the projective space of V, defined as the set of all equivalence classes [z] of z ^

V\ {0} with the equivalence relation z ~ w if and only if z = λw for some λ ^

C \ {0}. The space P(V) has a natural quotient topology induced by the projection

Π: F\{0}-»P(V), z^ [z]. We call a subset W of P(V) of the form W : =

ϊl(U\ {0}), where U is a subspace of Vof dimension k + 1, a projective subspace

of dimension /c. FT is a hyperplane if A: = n — 1 and a projective line if /c = 1.

The natural pairing ( , > : F x F * —• C : (z, ζ) —• <z, ζ> between V and its dual

space V establishes a bijection between the hyperplanes in V and the points of

V . Thus every hyperplane U in V containing the origin has the form U '= {z G

V <z, ζ) = 0} for some ζ ^ V \ {0}} where ζ is determined up to a non-zero

multiple of a complex number. As a consequence we can identify the class [ζ] ^

P ( 7 * ) with the projection of t/\ {0} and write [ζ] = {[*] e P(V) < ,̂ ζ> = 0}.

By duality there is a one to one correspondence between the points of P(V ) and

the projective planes in P(V). For every £ c P(V) we define the dual comple-

ment £ * c P ( y * ) o f ^ b y

(2.1) £ * : = {[ζ] e P ( 7 * ) < ,̂ ζ> Φ 0, for all z e £} ,

in other words, £ is the set of all hyperplanes in P(V) which do not intersect E.

It can be easily shown (see [A-P-S.l]), that if E c P(V) is an open set, then the

dual complement E c P(V ) is compact, and if it is compact, then E is open.

DEFINITION 2.1. A subset £ of P(V) is said to be linearly convex if its com-

plement P(V)\E can be represented as a union of projective hyperplanes, or

equivalently E — E.

Therefore, a linearly convex set is determined by its dual complement. Pre-

cisely, it is the dual complement of its dual complement. Here it is clear that we

should identify the hyperplanes in the space of all hyperplanes with the points of

the original space. This establishes the duality mentioned above. The dual comple-

ment is often called the projective complement. Indeed in [Ma.l], it was called le

complementaire projectif. The term dual complement was first used in this connection

in [A-P-S.l].
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If we choose [ϊ] ] ^ P ( V ) we can in a natural way (see [A-P-S.l]), define a

unique affine structure on P(V) \ [17] which is independent of the choice of [ϊ] ].

We call this [η ] the hyperplane at infinity in P(V). If we now fix a point

[η] e P(V) \ [77 ], we obtain a linear structure on P(V) \ [η ] with [η] as the

origin, by the rule [z] + [w] = 1 — . In a similar
ι(z, rj > (w, η ) (η, η >J

way by a fixed choice of [η] ^ P(V) we can define a unique affine structure on

P(V ) \ [rj] and a choice of [η ] gives P ( V ) \ lη] a linear structure with

[η*] as the origin. Next we set PW(C) : = P(C" + 1 ) and its dual P * ( C ) : =

P(C W + 1 *) . We identify C* with an open set in P n (C) : = P(C* Θ C) by mapping z

e C to the class [(z, l)] . If Ω is an open set in PW(C), we define Ω the compact

dual complement set in P w (C) as the set of all points, which viewed as hyper-

planes in PM(C), do not intersect Ω. When 0 €= Ω then every hyperplane X with

# Π f l = 0 has a representation of the form X : = {z e C* <*, ζ> - 1 =

0} so that we can identify β * with {ζ e CΓ* Cz, ζ> =£ 1, V z e β}. It can be

seen as demonstrated in [Ki.3], that the concept of dual complement defined in

PΛ(C) can be realized from a similar notion for certain subsets of C n\ {0} or of

subsets of Cn by simply adding the hyperplane at infinity and considering Cf as

an open subset of PW(C). In the former case, let Ω be a subset of C n\ {0). We

say that Ω is a homogeneous subset of C +n \ {0} if λz ^ Ω whenever z ^ Ω and

λ ^ C \ {0}. To any homogeneous subset Ω of C +n\ {0}, we define its dual com-

plement Ω to be the set of all hyperplanes X passing through the origin which

do not intersect Ω. Since any such hyperplane has the form it •= (z, ζ) = ζozo

+ ζi^i + * ' + ζnzn = 0 f° r some ζ ^ C +n \ {0} we can define

(2.2) β * : = { ζ e C 1 + w \ { 0 ) ; <ζ, z) Φ 0 for every z €= fl>.

A homogeneous set ί3 in C Λ \ {0} is called linearly convex if C n\Ω is a union

of complex hyperplanes #f passing through the origin. Observe that a dual comple-

ment Ω is always linearly convex, and we always have Ω ^ Ω. If a set £? is

linearly convex, then Ω ^> Ω . If Ω ^> Ω , then Ω is linearly convex. Thus

linearly convex sets are characterized by Ω ^ Ω , as well as by Ω = Ω

We shall write z — (z0, zr) — (z0, zlf . . . , zn) for points in C +n\ {0} with

z0 e C and / = {̂ , . . . , zn) ^ Cn. The homogeneous sets in C 1 + w \ {0}

correspond to subsets of the projective ^-space PW(C) and so we can transfer the

concepts of dual complement and linear convexity to PW(C). In the open set where

zQ Φ 0 we can use z' as the coordinates in PW(C).

Since every real hyperplane contains a complex hyperplane, it is clear that

every convex open set Ω c C is linearly convex. Recall that the complement of a
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complex hyperplane is connected. This makes linear convexity a much weaker con-

dition on open subsets Ω of C n than the usual notion of convexity.

THEOREM 2.2 [A-P-S.l]. Let flcC be a linearly convex set and assume that

Ω is connected.

(i) // Ω is compact, then it is polynomially convex.

(ii) If Ω is open, then it is a Runge domain.

DEFINITION 2.3. An open subset Ω of PW(C) is said to be weakly linearly

convex if for every z ^ dΩ there exists a complex hyperplane Xz through z not

intersecting Ω. A compact subset K of PW(C) is said to be weakly linearly convex

if it can be represented as K = Π°°=1 Ωj for some decreasing sequence of open

weakly linearly convex sets {Ω)°°=ι.

DEFINITION 2.4. An open subset Ω of PW(C) is said to be locally weakly

linearly convex if for every z €= dΩ there exists a complex hyperplane through z

that does not intersect Uz Π Ω for some neighbourhood Uz of the point z.

THEOREM 2.5 [Hό.l]. If Ω is an open set in C , then the union Γ of all the com-

plex hyperplanes ίt c C \ Ω is a closed set and C \ Γ is linearly convex. It is the

smallest linearly convex open set containing Ω. The components of Cn\Γ are weakly

linearly convex, and if Ω is weakly linearly convex, then each component of Ω is a com-

ponent of C \Γ.

PROPOSITION 2.6 [Hό.l]. Every locally weakly linearly convex open set Ω c: Cn is

pseudoconvex.

Pseudoconvexity is a local property. In general, weak linear or linear convex-

ity is not a local property. However, for sets with C boundary weak linear or

linear convexity is a local property. Recall that at any boundary point the tangent

plane is then defined and it contains a unique affine complex hyperplane which is

the only possible candidate for the plane X in the definition of weak linear con-

vexity. We call this plane $t the complex tangent plane.

PROPOSITION 2.7 [Hό.l]. Let Ω c C", n > 1, be a bounded connected open set

with a C boundary, and assume that Ω is locally weakly linearly convex in the sense

that for every z ^ dΩ there is a neighbourhood ωz such that ωz Π ίίz Π Ω = 0 , if

fflz is the complex tangent plane of dΩ at the point z then Ω is weakly linearly convex.
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Moreover, if ί£ is any affine complex line contained in C , then ϊ£ Π Ω is connected

and simply connected, and ί£ intersects dΩ transversally.

Let Ω c C be a bounded domain with C boundary dΩ and assume that Ω is

given as Ω '-— {z ^ C p(z) < 0) where p is a C function defined in a

neighbourhood Ω' of Ω p(z) = 0 and dp = [j£-,..., -^-j Φ 0 on 9β. Then the

complex tangent plane at z ^ dί? has the form

z (dΩ) : = jw; e C Σ ; = 1 ~ ^ — ^ = 0 .

We let Hess(|O, z) denote the Hessian form of p,

n dθ (z)
(2.4) Hessίp, z) := 2 Σ -Έ—*F~wfik + 2 Re

COROLLARY 2.8. L^ί Ω be a weakly linearly convex open subset of C with C

boundary dΩ. Suppose p ^ C (C ) is a defining function such that Ω = {p < 0},

p = 0 and dp Φ 0 on dΩ. Then it follows that the second differential d p(-) ' =

H e s s ( p , *) of p is a positive semi-definite quadratic form in the complex tangent plane

Tz (dΩ) = ίtz at z €Ξ dΩ. Conversely, if Ω is open, bounded and connected set and

H e s s ( p , z) is positive definite in Tz (dΩ) for every z ^ dΩ, then Ω is weakly linearly

convex.

Proof If Ω is weakly linearly convex then p > 0 in a neighbourhood of

z G dΩ in Tz (dΩ) for every z ^ dΩ, and since p(z) = 0 on dΩ, it follows that

d p is positive semi-definite. Conversely, if d p is positive definite in Tz (dΩ) at

ζ then p(ζ) > 0 if z Φ ζ e Tz

C(dΩ) and | ζ - 2 | is sufficiently small, so that the

statement follows from the preceding proposition. CH

Remark 2.9. Observe that the condition in the corollary involves the full

second differential dp — Hess(p, •) of p. Compare this with the following condi-

tion for pseudoconvexity: Ω c Cw is an open set with a C boundary dΩ. Let p ^

C2(Cn) be a defining function for Ω, where β •= k e C ^ p W < 0}, p = 0 and

φ =£ 0 on dΩ. Then £? is pseudoconvex if and only if

(2.5) Σ g T f r ^ Λ ^ 0 '
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when z ^ dΩ and Σ* = 1 ~^~ Wj = 0, w — (w) <Ξ Cn. Recall that this condition for

pseudoconvexity is holomorphically invariant. This stands in sharp contrast to the

non holomorphically invariant condition (2.4).

Note that every open set in C is linearly convex. If Ωx c: C \ and Ω2 c C 2

are open linearly convex sets, then Ωγ x <β2 c C 1 2 is a linearly convex set.

DEFINITION 2.10. A bounded domain Ω in Cn with C boundary 9<O is said to

be strictly linearly convex if its small C perturbations are linearly convex and

for each boundary point z ^ dΩ the holomorphic tangent space Tz (dΩ) to dΩ

through z is disjoint from Ω\ {z) and has precisely first-order contact with dΩ at

z, in the sense that with some constant c > 0, β(w, Γ z (dΩ)) > cβ (w, z),

w ^ Ω, where β( , *) : — dist( , •). In addition, there is a C defining function

p e C2(CW) with i? = {|θ(z) < 0} such that for all z ^ dΩ the inequality

(2-6)
d2p(z)

Λ 2

Σ
d p(z)

holds for any nonzero vector w = (wj) in the holomorphic tangent space

Tf(dΩ) to dΩ at z.

In particular, strictly convex domains are strictly linearly convex, and any

strictly linearly convex domain is strictly pseudoconvex.

The following theorems are C versions of L. Lempert's C theorems in [Lem. 7].

THEOREM 2.11. //Ω c C is a strictly linearly convex domain with a C bound-

ary dΩ and w ^ C \ Ω, then there is a complex affine hyperplane Xw through w

which is disjoint from Ω.

Proof. For the proof in the case when n = 2 see Lempert [Lem.7]. The gener-

al case for n > 2 follows from some modification of the arguments presented

there. •

THEOREM 2.12, I / f i c C is a strictly linearly convex domain with a C bound-

ary dΩ, then Ω c: Pn (C) is also a strictly linealy convex domain with C boundary

Proof. The C mapping φ : dΩ—+ dΩ which sends the point w €= dΩ to the

complex hyperplane w '-= #CW, tangent to dΩ at w is clearly a one to one mapping
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and onto dΩ . To see that dΩ is a C hypersurface we shall construct a C left

inverse of φ as follows: Let p ^ C (Cn) be a defining function of Ω. Then for

w G dΩ, φ(w) = w implies that the restriction of p to the complex hyperplane

w '-= $CW assumes its minimum in w. Strict linear convexity then implies that this

minimum is nondegenerate. Thus if fflw varies in a small neighbourhood of the

boundary dΩ , there will be a unique point φ{w ) ^ $tw c: PW(C) where the res-

triction p\tfw assumes its minimum. Furthermore, this minimum point depends con-

tinuously on $tw. Since φ ° φ = \άdΩ, dΩ is indeed C . The strict linear convexity

of dΩ follows from Lemma 5.2 in [Lem.2] see also [E-M.l]. Π

3. Pluricomplex multipole Green function

Let fibea bounded linearly convex domain in Cw, n > 1, with boundary dΩ.

In [Lem.l], and later in a more general setting in [K1.2], [Po-Sh.l], and [Za.l], the

concept of pluricomplex Green function gΩ(z, w) was introduced for every

z ^ Ω, with a logarithmic pole at a point w ^ Ω. A point ^ G f l i s said to be a

logarithmic pole of a plurisubharmonic function u defined in a neighbourhood ωw

of w; if u(z) — log || 2 — w || < 0(1) as z~^w, or equivalently if there exists a

positive number C ^ R with the property that

(3.1) log I z - u; || - C < u(z, w) < log \\z - w || + C, V^ e fl.

Let us assume that 42 contains the origin 0 ^ Cw in its interior. This means on the

one hand that the complex hyperplane at infinity is in the interior of the projec-

tive complement Ω c P W (C), and on the other hand that all the complex hyper-

planes in PW(C) that do not intersect Ω can be written as {z ^ Cn ζλzλ + +

ζnzn = 1} with a unique ( ζ l f . . ., ζw) e CM.

The extremal function

(3.2) &,(*, M;) : = sup M U ) , z G f l ,

where the supremum is taken over all u <Ξ PSH(β), u < 0, in β, with

u(z) < log || ^ — w || + 0(1), as £—• M; is called the pluricomplex Green function

of Ω with a singularity concentrated on a single point w ^ Ω.

DEFINITION 3.1. A set E c Cw is pluripolar if for every point w ^ E there is

an open set ί/ containing w and a w ^ PSH(LO, ^ is not identically equal to

minus infinity such that E Π {/ c {̂  = — oo}
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Observe that the definition of pluripolarity is local i.e. a set is pluripolar if it

is locally pluripolar. However, it can in fact be shown that a pluripolar set is glo-

bally pluripolar in the sense that if E is pluripolar, then there exists a pluri-

subharmonic function u on C such that E c {u = — °°}.

Let Ω be an open subset of Cw, and u: Ω~^R a plurisubharmonic function.

Following Sadullaev, [Sd.l], we say that u is maximal (or extremal) if for every re-

latively compact open subset Ψ of Ω, and for each upper semi-continuous func-

tion v on Ψ such that υ e PSHCfίO and v < u on &W, we have υ < u in Ψ. We

denote the family of all maximal plurisubharmonic functions on Ω by MFSlί(Ω).

The pluricomplex Green function has important properties which are formu-

lated in the following well-known result, (see [Lem.l], [Kl.l], [De.l]),

PROPOSITION 3.2. If Ω and Ωr are linearly convex domains in Cn and w e Ω,

then the following statements hold.

(i) //z G Ω and Ω c Ω', then gΩ(z, w) > gΩXz> w).

(ii) If z G Ωy Ω c Ωf and Ω'\Ω is pluripolar, then gΩ(zy w) = gΩr(z, w),

(iii) IfR>r>0 andB(w} r) c β c B O , R), then \og(\\z - w\\/R) < gΩ(z, w)

<log( |U- w\\/r),
(iv) If Ω is bounded, then z •-*• gΩ(z, w) is a negative plurisubharmonic function with

a logarithmic pole at w e Ω.

(v) If F : Ω~* Ωr is a holomorphic mapping, then gΩr(F(z), F(w)) < gΩ(z, w), z ^

Ω,

(vi) If Ω is bounded, then z^gΩ(z, w) ^ M PSH(i2\ {0}) and is the generalized

solution of the homogeneous complex Monge-Ampere equation (ddcu) = 0 in Ω\ {0}.

(vii) // {Ω};eN is an increasing sequence of linearly convex domains in C and Ω =

U ; = 1 i2; , then gΩ(z, w) = lim^g^.Cε, α;), 0 , w & ΩJ.

(viii) // β is α bounded linearly convex domain in C , ί/î n /or each w ^ Ω and

x e 9£>, l im^^^U, M;) = 0 for z ^ β.

(ix) If Ω is a bounded linearly convex domain in C , then z>-*gΩ(z, w) is lower

semi-continuous in Ω\{w) and hence continuous.

(x) Let flcC be a bounded linearly convex domain and let w ^ Ω. Then for each

ε > 0 and for each neighbourhood Uw c Ω of w, there exists a neighbourhood Vw of w

such that Vw is a relatively compact subset of Uw and

1331 α + ε Γ ' £ & F
for all (z, x), (z, y) e (Ω\ UJ x Vw.

(xi) J / f i c C is a bounded linearly convex domain, then the pluricomplex Green func-
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tion β x β - ^ I - °°, 0[ is continuous where gΩ\dΩ X Ω = 0.

In [Le.l], P. Lelong, generalized the construction of pluricomplex Green func-

tion in C given in [K1.2], and [De.l], to bounded hyperconvex domains Ω in infi-

nite dimensional complex Banach space E. Recall that an open bounded set flc£

is hyperconvex if it is connected and there is a continuous plurisubharmonic func-

tion p: Ω—» [— °°, 0[ such that the set (z e Ω p(z) < a) is a relatively com-

pact subset of Ω, for each a ^ ] — °°, 0[. Lelong did this by considering arbit-

rary singularities {wj ^ Ω <^ E), 1 < j < rn < °° with specified weights or de-

nsities which are positive numbers {v(wj) — Vj > 0}. The pluricomplex Green

functions for bounded hyperconvex domains Ω in E were defined as the upper en-

velopes of a family of plurisubharmonic functions u ^ PSH(,Q), u < 0 in Ω with

the poles {wv . . . , wj satisfying lim inf , n _ π = v{w) '.= vi > 0. In
1 U & II *> w i II

this section, we adapt his techniques to bounded linearly convex domains Ω in Cn,

n > 1. First we introduce a finite set of singularities W — {w; ^ Ω}, for 1 <j

< m < °° with weights, the numbers v = ivduj) '-= v; > 0), 1 < j < m < °° .

Then the extremal function

(3.4) gΩ(z, W, v) : = sup u(z), z e Ω,
u

where the supremum is taken over all plurisubharmonic functions u(z), u < 0 in

Ω such that

m

(3.5) u(z) — Σ Vj log || 2 — Wj || < 0(1) as z~> Wj.
3 = 1

with the points Wj satisfying

(3.6) v(u, wj) : = v(Wj) '= v} = lim inf , π _ π < + °° and
z-+Wj

 1 U & II ^ wj II

y; > 0, 1 <j < m < + oo,

is called the pluricomplex multipole Green function or Green function of order m

if # {W} — m, relative to the finite set of singularities W = {Wj ^ Ω} with

weights, the numbers v = {v(wj) : = v} > 0}, 1 < < m < °°. If φ e PSH(β),

recall that the Lelong number of ^ at a point w €= i3 is given by

(3.7) ^ ^ : - ^ i n f
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More generally if T is a closed positive current of bidegree (p, p) defined in the

neighbourhood Uw of a point M e f l c C , n > l then the positive measure ι> =

T Λ (ddc log \\z — w \\)n~P having a finite mass and v(w) > 0 at w is the
(2π)n'p

Lelong number of T at w. If ψ ^ PSH(β), we set T— (2ττ) dd°ψ. If υ =

log || F ||, for any holomorphic mapping F, then v(w) is an integer which is the

multiplicity of the zeros of F at the points w. From condition (3.6) and definition

(3.7) we see that the weights in the definition of the pluricomplex multipole Green

function are in fact Lelong numbers.

The Lelong number v(φ, •) is a functional which applied to plurisubharmonic

functions φ measures the size of the singularities of these functions at certain

points of their domains. It also measures the densities of closed positive currents.

We say that w is a pole of φ if φ(w) = — °° and that it is a logarithmic pole of φ

if in addition v(φ, w) > 0. The study of the singularities (logarithmic poles) of

plurisubharmonic functions is of interest because the singularities represent com-

plex varieties and these can often be defined as the superlevel sets of the Lelong

numbers, see for instance [Siu.l], [Ki.2,4] and [De.2,3]. We shall see later that plur-

icomplex Green functions having several poles represent a remarkable connection

with a highly non-linear differential operator—the Complex Monge-Ampere Oper-

ator.

THEOREM 3.3. Let Ω cz Cn be a bounded linearly convex domain with C bound-

ary dΩ. Let W = {Wj ^ Ω) be a finite set of points with the w/s endowed with the

numbers v(u, w) '= Vj '-= lim inf2_>w.i π—— π- < + °° , vi > 0, u ^ PSH(β),

l < y < m < + °°, which are called weights. Then the family Af(Ω, W', v) of plur-

isubharmonic functions, u ^ PSH (Ω), u < 0 in Ω, such that

m

(3.8) u(z) < Σ Vj log |U - w || + 0(1) as z -> wjt
J = l

contains a maximal element gΩ(z, W, v), so that the restriction gΩ(z, W, V)\dΩ = 0

and gΩ(z, W, v) '-= exp gΩ(z, W, v) is uniformly continuous on Ω. Moreover, if W

consists of only a single point w €= Ω with v(w) — 1, then the pluricomplex Green

function gΩ(z, W, v) is the same as the pluricomplex Green function defined in [Lem.

1], with gΩ(',',') continuous on Ω\ {w} when gΩ\dΩ = 0.

To prove this existence theorem for pluricomplex multipole Green functions,

we use the following
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PROPOSITION 3.4 [Le.l]. The family N(Ω, W, v) of functions υ : Ω^ [— °° f 0[

defined by the conditions

(i) v e PSH(β), v < 0 iwfl, 0(2) < Σf=1 ty log || z - wj || + 0(1) as z^wp wj

e Ω, 1 < < m

(ii) V(H/) •'= 2/,-:— lim inf2̂ ^., ιι _ π < + °° , ι̂ ; > 0 aί ^

singularities W — {Wj e Ω), 1 < < m or equivalently v(u)j) •= inf̂  v(wjf η) =

( 4- \

inf, lim^o s u P » y ^ ^ r g \ r? e C" \ {0}, 0 < 0 < 2τr, 0

R(Wj) is the radius for the finite majorization of v, has the same upper envelope

gΩ{- , W', v) a5 the family M(Ω, W, v) of functions υ : β—>• [— °° , 0[ satisfying

in addition to the condition (i) above the condition

(ii)' l(z) < viz) ^ FU), ί̂ /î r̂  we set

(3.9) liz) = Σ Uj

and

(3.10)

with d[Ω] = diameter (Ω) and γΩ = dist(W[v], dΩ), where W[v\ '-= iW, v).

We now have the following,

PROPOSITION 3.5 [Le.l]. The family ΛίiΩ, W, v) has a maximal element.

Proof of Theorem 3.3. The theorem follows from Proposition 3.4, Proposition

3.5, Theoreme 2 in [Le.l] and the proof of Theoreme 4 on pages 461-465 in

[Lem.l]. Also see Proposition 7 in [Le.l]. EH

We now examine the sublevel sets for the pluricomplex Green function gΩiz, w)

of a bounded linearly convex domain Ω <= Cf given by

(3.11) Ωx = {z^ Ω ;gΩizf w) < x), x < 0.

PROPOSITION 3.6. Let fl^C be a bounded linearly convex C set and let Ωx be

defined as in (3.11). Then Ωx is bounded linearly convex C set for each x < 0.
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Proof. The proof is given in Section 4. •

For the general case of the pluricomplex multipole Green function gΩ(-, W, v)

we have the sublevel sets

(3.12) Ωx'= {z G Ω;gΩ(z, W, v) < x, for all x* < x< 0},

each containing the origin 0 G Ω in its interior.

PROPOSITION 3.7. Suppose W = {wj ^ Ω) is a finite set of singularities with

weights the numbers v = {v(Wj) — Vj > 0), 1 ^ j ^ m < °° of the pluricomplex

multipole Green function gΩ{-, PF, y). L ί̂ iOa:}lrs(:<x<o ^^ ^ family of the connected

sublevel sets of gΩ{' , FT, v) containing the origin in their interior. Then each of the

sets Ωx for x* < x < 0 is a bounded linearly convex set

Proof. Similar to that of the case of a single pole above. O

THEOREM 3.8. If Ω is a bounded linearly convex C domain in C and gΩ{', 0)

its pluricomplex Green function with a logarithmic pole at the origin, then for each

z G Ω we have

gΩ(z, 0) = infOog I σ \ 0 < | σ | < 1, there exists a holomorphic mapping

(3.13) / :Ό-*Ω such thatf(O) = 0 ,/( | σ|) = z),

whereΌ= {ζ e C | ζ | < 1 ) .

Proo/. Lempert's results, [Lem.4], on the characterization of extremal maps on

bounded linearly convex domains Ω in C imply the existence of extremal holo-

morphic mappings / : D—> Ω with /(9D) c dΩ and / transverse to dΩ such that

/(0) = 0 ,/ ( | σ|) = 2 , solving the variational problem (3.13). Also Theorem 1 of,

[Lem.4], shows that for linearly bounded convex domain Ω, the Kobayashi distance

kΩ on Ω is equal to the Caratheodory distance cΩ on the same domain. Results of

[Kl.1,2], then give

(3.14) gΩ(z, 0) = logtanh/c^Cε, 0), for all z e Ω.

The theorem follows from the definition of the Kobayashi distance (cf. [Lem.l]). EH
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4. Complex Monge-Ampere operators

In this section, following [Sib.l], we extend the definition of the complex

Monge-Ampere operators (dd •) slightly so as to include certain plurisubharmo-

nic functions which are not necessarily bounded on bounded linearly convex do-

mains Ω in Cn. For functions u e PSH(£?) ΓΊ L™0C(Ω) this extension has already

been successfully realized in [B-T.2], with interesting consequences in pluripoten-

tial theory and its applications in complex analysis. We apply the theory de-

veloped here to give an alternative description of the pluricomplex Green func-

tions having finite singularities with weights constructed in the previous section.

Let flcC be a bounded linearly convex domain with a boundary dΩ. Recall that

the operator (dd° Ύ for a C function u ^ PSHGQ) is given in a local coordinate

patch by

(4.1) (ddcu)n = de

Here we set d° = i(d - 9), d = 9 + 9 , with dd° = 2idd , i = yF^Ί . We let

C™Pq)(Ω), p, q e N denote the space of smooth differential forms on Ω of bidegree

(p, q) and S){p>q)(Ω) the subspace of smooth differential forms in C™Pq)(Ω) which

have compact supports in Ω. The space of currents of bidimension (p, q) or bideg-

ree (n — p, n — q) is the dual of the space $)iPιq)(Ω) and will be denoted through-

out by %>Q)(Ω).

DEFINITION 4.1. Let T be a current of bidimension (p, p) in Ω. We say that T

is a positive current if for all differential forms alf. . ., ap in ®(1;0)(i2), the dis-

tribution

(4.2) Γ Λ ώ j Λ ^ Λ . . . Λ iap A ap,

is a positive measure. The current T is said to be a closed current if dT = 0. It is

easy to check that positive currents have order zero. If a ^ Cn Ξ R n, we denote

by || a || the norm of a. If T is a current of dimension k, with measure coefficients,

we define the Borel measure of T by

(4.3) || T\\(U) : = sup{| T(φ) |, φ e »,(£/), | φ(χ) \ < 1, for x e [/},

where U is an open set.

For any Borel set E c Ω, we set || T\\(E) to be the mass of T concentrated on

the set E. Let β = ( / I Z T / 2 ) 9 9 || z f be the standard Kahler form on C". If T is a
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positive current of bidimension (p, p) in Ω, define the trace measure of T by the

equation

(4.4) σ(T, Ω) '•= στ'.= TA f

It is a well-known result that there exists a positive constant C which does

not depend on n and p such that for every open set U c Ω we have

(4.5) C~Vr(u) < 1 T\\(U) < Cστ(U).

If A is a closed subset of Ω, we say that a current T of bidimension (p, p) defined

in Ω\A has a locally finite mass in every neighbourhood of A, if for every com-

pact set K c Ω we have || T\\(K\A) < °°. Let PSH(β) Π C°°(Ω) denote the cone

of C°° plurisubharmonic functions on Ω and PSH+(42) the subcone of those posi-

tive plurisubharmonic functions in PSH(β). If φ is a bounded function in Ω and

£ is a subset of Ω we set

(4.6) || φ \\JE) : = sup | φ{z) |, and || φ L := sup

LEMMA 4.2 [Sib.l]. L<?ί flcC fr<? an open set, M c: Ω a closed set and T a

closed positive current of bidimension (1,1) in Ω\M. Then for every compact set

K c Ω, there exists a constant C(K, Ω) such that for every v ^ PSH+(i?), v — 0 in

a neighbourhood of M we have

(4.7) f TA dvΛdcv < C(K, Ω)(b-ά) \\T\\(Ω\M) \\v\L

where a, b are arbitrary constants such that a < b.

Let flbe a bounded strictly linearly convex domain with C boundary dΩ,
2 .

Suppose p is a strictly plurisubharmonic function of class C in a neighbourhood

Ωr of Ω satisfying Ω — {z G Ωr p(z) < 0). Let K be a compact subset of β. Set

(4.8) % ' = sup{^ u psh and continuous, u < 1 in Ω, u < 0, on K).

Then we have the following,

PROPOSITION 4.3 [Sib.l]. Let K be a compact subset of an open strictly linearly

convex set Ω c C . Let T be a closed positive current on Ω\K. Then the current UKT

has a locally bounded mass in every neighbourhood of K.
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Let Ω be an open set in Cn and M be a closed subset of Ω. We impose the fol-

lowing convexity condition (C) on M:

(C) For every x ^ M there exists a strictly pseudoconvex neighbourhood ω of

x, ω c: c β, such that .r is not contained in the holomorphically convex envelope

of dω Π M. That is to say, for any x ^ M there exists a strictly pseudoconvex

neighbourhood α> of .r, a function <p ̂  PSH(<β) Π C°°(£?) such that,

(i) φ(x) > 1

(ii) φ < 0 on a neighbourhood V of dω Π M

We will now see that given a closed subset M of fl c C" satisfying the condi-

tion (C) and a plurisubharmonic function u in β of class C in Ω\M, for every

compact subset ί c f l w e have I {dd°u)n < °°.

THEOREM 4.4 [Sib.l]. L<?£ ί2 c Cn be an open set and M a closed subset of Ω

satisfying the convexity condition (C). Let T be a closed positive current of bidegree

(n — 1, n — 1) in Ω and u a plurisubharmonic function, negative in Ω, locally

bounded in Ω\M. Then for all compact sets K c Ω, we have

(4.14) Γ U | Γ Λ 0 < o o .
Jκ

From Theorem 4.4 we obtain the following

COROLLARY 4.5. Let K be a compact subset of Ω c Cn. Then there exists a

compact set X c Ω\M and a constant C > 0 such that for all u e PSH(β) Π

(4.15) Γ (ddcu)n < C[\\u\\JX)]n.
JK\M

It is clear from the above corollary that if T is a closed positive current of

bidimension (p, p) in a bounded linearly convex domain ficC and u ^

PSH(β) Π L~0C(Ω\M) f o r M c f l a closed set, then for any compact set K c β

and a positive constant C we obtain the inequality

|ΓΛ (ΛΊIOΛM) <C[|UL(Z)]?||r||(JΏ,

where X is as in the corollary and 1 < q < n.

The Theorem 4.4 enables us to define the operator {dd° Ύ for the subcone

P8HCG, M) : = PSH(β) Π L"0C(Ω\M) of plurisubharmonic functions in the cone

PSH(β) which are locally uniformly bounded outside every neighbourhood of the
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closed set M.

Let T be a closed positive current of bidimension (p, p) in Ω, and let ult. . .,

uq e PSH(β) Π L™0C(Ω\M). If 0 is a test form of bidegree (n - q, n — q) we

define the closed positive current dd°u1 A A dd uq A T by the formula

Λ Λ
c w β A T A φ = J u γ d d c u 2 A Λ d d \ Λ T Λ

The definiton is by induction on q. This definition is similar to the one given in

[B-T.2], the main difference being that in [B-T.2] the functions Uj are assumed to

be locally uniformly bounded, whereas here the Theorem 4.4 gives sense to the

left hand side of the formula above.

PROPOSITION 4.6 [Sib.l]. Let (u[), . . . ,(uq) be a decreasing sequence of pluri-

subharmonic functions c PSH(ί2) Π Ll0C(Ω\M). Suppose that for every k, 1 <

k < q

limwi = uke P S H ( β ) Π Llc(Ω\M).

Let T be a closed positive current of bidimension (p, p) on Ω. Then

(4.16) lim ddcu[ A Λ ddcu\ AT= ddcux A Λ ddcuq A T.

That is, the convergence is in the sense of the weak convergence of currents.

Now we let Ω be a bounded linearly convex domain in C with a given fixed

point w ^ Ω. In the theory developed above we let the closed set M = {w} and

define P S H ( β , w) : = PSH(β) Π Llc(Ω\{w}) and

Cc

TO(β, w) = {φ e C~(Ω) supp W^) c Ω\{w}}.

Then it is clear that C™(Ω, w) if and only if φ is a test function in C™(Ω) which

is constant in a neighbourhood Uw of w.

THEOREM 4.7 [Kl.l], T îe sj?αce C™(Ω, w) is dense in C°C(Ω), the space of con-

tinuous functions with compact support in Ω.

PROPOSITION 4.8. Let Ω e Cn be a linearly convex domain and let u e PSH(42, w).

Then there exists a positive Borel measure μ on Ω such that, for any decreasing sequ-

ence {Uj}jeN c PSH(i?) Π L™0C(Ω) convergent to u at each point of Ω, the sequence of

Radon measures {(ddcUj)n}jeN is weak -convergent to μ.
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Proof. Follows from Proposition 4.6 and the Chern-Levine-Nirenberg Ine-

quality [C-L-N.l]. Also See [Kl.l]. D

Recall that if u <Ξ PSH(β) Π L™OC(Ω), then the measure μ from Proposition

4.8 coincides with (ddcu)n this is why for u ^ P S H ( β , w) we define {dd°u)n =

μ.

C O R O L L A R Y 4 . 9 . L e t w e C * a n d R e R , R > 0 . // u = l o g ( | | z~w \\/R) for

all z e Cn, then

(ddcu)n = X

δw is the Dime delta function at w.

Proof See [Kl.l], [De.l]. D

The following property is similar to the comparison theorem in [B-T.2].

LEMMA 4.10. Let flcC" be a bounded hyperconvex domain. Let w ^ Ω and

u, v e PSHCO) Π C°(Ω\{w}). Suppose that

Pu : = {u = - oo} = pv := {v = - oo} = {w}

are the pluripolar sets of u and υ and X\mz^dΩ(u(z) — v(z)) — 0 and u < v in

Ω\{w). Then

f(ddcv)n< f(ddcu)\
JQ JQ

Proof See [Kl.l].

THEOREM 4.11. Let Ω be a bounded hyperconvex domain in C , w ^ Ω, and let

u, v e PSH(β) Π C°(Ω, [- oo, + oo[) be such that

Pu : = {u = - oo} = pυ := {v = - oo} = {w}f

u < v in Ω\ {w}, and

(4.17) limsup|~f = 1.

V <
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Proof, (cf. [K1.1], [De.2]). D

Let Ω c Cn be a bounded hyperconvex domain and w ^ Ω. Consider the

problem of finding a function u : Ω\ iw) —* [— °°, °°[ which satisfies the follow-

ing conditions:

(4.18)

U<Ξ PSH(β) Π C°(Ω\{w})

(ddcu)n = 0, in Ω\{w)

(ddcu)n = (2π)X in fl
log || ^ — M; || = 0(1), as 2—> w

u(z) —* 0 as z—» 9 β .

THEOREM 4.12. L<?£ Ω be a bounded hyperconvex domain in Cn. Then the func-

tion u(z) — gΩ(z, w) is a unique solution to the problem (4.18).

Proof See [De.l], [Kl.l], [Lem.l], [E-M.l]. •

Just as in the case of the pluricomplex Green function with a single pole w ^

Ω, we extend the definition of the complex Monge-Ampere operator (dd°-)n slight-

ly. We take for the closed set M c f l above, the set

W[v] = {wJ e Ω viwj) =vί>0),l<j<rn<oo

of finite singularities of the pluricomplex multipole Green function gΩ(z9 W, v)

for any z ^ Ω, where Ω is a bounded linearly convex domain and the points Wj

have weights, the numbers v — iv{w) = Vj > 0), 1 < j < m. We set M = W[v\

and define as above PSH02, W, v) : = PSH(β) Π L^oc^X ^ [ ^ ) together with

Cίf l , W, v) := {̂ ) e CΓ(fl) suppWφ) c β \ W[v]}.

Then as before φ ^ C™(Ω\ WYvY) if and only if φ is a test function in C™(Ω),

which is constant in the neighbourhood of W[v] c β.

THEOREM 4.13. The space C™(Ω, W, v) is dense in C°C(Ω).

Proof The proof follows from a modification of the arguments for the case of

a single pole (cf. [Kl.l]). Consider a family iVη}η>0 of neighbourhoods of W[v]

decreasing to W[v\ as η \ 0. Take φ ^ C°(Ω) and ε > 0. Since φ is uniformly

continuous in Ω, we can find η > 0 such that | <p(z) — φ(w) | < ε if z, w

G Ω and |U — M; || < 17. If 9 β =5̂= 0, then by taking η sufficiently small, if neces-
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sary, we can suppose that 0 < η < dist(supp φ, dΩ). Now define

\φ(υ), z^Vηiv^ W[v]
φΛz) = \

[φ{{\- η\\z-υV)z), * ^ Ω\Vη.

Clearly φ G C°C(Ω) and if z ^ supp φη, then distCε, supp φ) < η.

Moreover, \\ φ — φη \\Ω < ε. Consequently,

SF = {φ G C°(Ω) φ is constant in neighbourhood Vη of RTi/|}

is dense in C°(Ω). The theorem then follows since for any compact set K c Ω, if

u G C°(Ω) then using a family of smooth C°° regularizing kernels (pj)J>0 and set-

ting z/; = u*pj G C°°(Ω) we see that u*p,-^ u uniformly as \ 0. This is easi-

ly shown by taking K c β compact. Fix ; 0 > 0 such that if;o c Ω where

K,= {z^ Cn;dist(z,K) < ; } , ; > 0.

Let 0 < j < j 0 . Then we have

j - u)(z) = (py*M - w)0z) = J p.(z - w){u{w) - u(z))(z)dV(w),

where dKis the Lebesgue measure on Cn. Therefore,

|| u*p} — u \\κ < sup sup I u(w) — u(z) .

The right-hand side tends to zero as j \ 0, because u is continuous on Kj. Π

Important properties of the extremal function gΩ{', W, v) are stated in the

following

THEOREM 4.14. Let flcC be a bounded hyperconvex domain. Let W[v] =

iwj ^ Ω v = y(w ; ) * = ^ > 0 } , l ^ y ^ m < 0 < + ° o , freα /wife seί o/ stn^-

ularities with weights which are positive numbers. If the pluricomplex multipole Green

function is given by:

(4.19) gΩ(z, W, v) = sup u(z) z e Ω,
u

where the supremum is taken over all u G PSH(β) u < 0, in Ω, with u(z) <

Σ^=i V; log || z — Wj || + 0(1), as z-+ Wj ffrew

(i) & e PSH_(β, W,ι>), where PSH_(β, W, v) is the subcone of PSHCΩ, W »

of functions which are negative in Ω.

(ii) (ddcgΩ(z, W,v))n = 0,inΩ\ W[v\.
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(iii) (ddcgΩ(z, W, v))n — (2π)n ΣJ1X i^dw. in Ω where δw is the Dime delta func-

tion at Wj.

(iv) & ( , W, v) e C°(fl, W, v) ifgΩ( , Wy v)\dΩ = O

(v) gΩ(', W, v) = expg^O, W, v) is uniformly continuous on Ω.

Proof, (i) follows trivially from the definition of the pluricomplex multipole

Green function, (ii) and (iii) follow from Proposition 8 in [Le.l]. (iv) and (v) follow

from Proposition 5 and Theoreme 2 in [Le.l]. Π

Similar to Lemma 4.10 and Theorem 4.11 we have the following results for

the case of pluricomplex multipole Green functions.

PROPOSITION 4.15. Let β c C " be a bounded hyperconvex domain. Let W[v] —

{w) e Ω viw) = v} > 0} and u, υ e PSH(β) Π C°(Ω\ W[v\). Suppose that

Pu : = { w = - ( » } = p υ : = {z; - - cχ>} = J 7 [ y ]

αrg ί/ie pluripolar sets of u and v, \imz_dΩ(u(z) — v(z)) = 0 αnrf u < v in Ω\ W[v].

Then

f (ddcv)n < f {ddcu)n.

Proof. Given ε > 0, let {Vg}e>0 be a family of neighbourhoods of W[v] de-

creasing to W[v] as ε \ 0. Choose K large such that {u < — K) c c Ω\ W[v\.

Let ux — maxte, — K — 1} and vλ — maxίz;, — K). Let φ e C™(Ω, [0, 1]) be

such that φ — 1 in the neighbourhood of {u < —if}, u — ux and z; = t^ in the

neighbourhood oί Ω\ Vε. Then

j φ(ddcu)n = J φ(ddcu^)n

and

I φ(ddcv)n — I φ(ddcυ^)n

JΩ\Wlv] JΩ\Wlv]

by Proposition 4.8 or Proposition 4.10. Therefore,

f (ddcv)n = f
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f (ddcu)n= f {ddc

Uι)
n.

and

Also uι < v1 in Ω\ W[v] and u — uv v = vι in the neighbourhood of dΩ. So the

result follows from an application of the comparison principle for bounded plur-

isubharmonic functions (see [Kl.l] Theorem 3.7.1). CH

THEOREM 4.16. Let Ω be a bounded hyperconvex domain in Cn. Let W[v] = {w}

€= Ω v(Wj) = Vj > 0). Suppose uy v e PSH(β) Π C°(fl\ W U ) 50 that

Pu' = {u= - ex)} =Pυ:= {v= -™) = W[v],

u < v in Ω\ W[_v\, and

(4.20) limsup ~r^r = 1.

Then (ddcu)n(W[v]) < (ddcv)H(W[v\).

Proof. Take a sufficiently small neighbourhood V of W[v] such that F c: cz Ω

and assume that u, υ extend continuously to dΩ so that u < υ < 0 m Ω\ WVv\.

Choose ε > 0 such that

/ 1 \

inf {u(z) — v(z)}.
ε

Then for any rj ^ ]0, ε[ we have ^px— ^ v on 9β. The condition (4.20) implies

that for each η e ]0, ε[ we can find a 9 > 0 so that JΪ(w, J ) c i 3 , V zi;

and w/f < 1 + η on B(w, δ) \ W[v\. Define

' U W[v\.

Then the set Ψη is a relatively compact neighbourhood of W(v] in β.

Moreover, ^ηe]o,ε[^v = ^ t ^ Therefore, if 77 ^ ]0, ε[, we have

l—-ttdcu)\W[v\)< f {ddcγ^-)n < f (ddcv)n = (ddcv

by either Proposition 4.6 or Proposition 4.8. Now letting η \ 0 we obtain the de-

sired result. •
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Let E—» PW(C) denote the tautological line bundle on the complex projective
n+lspace PW(C), which is the space of all complex lines ί ? c C through the origin.

The total space E of the bundle E is the set of all pairs (%, z) e PW(C) x C n + 1

with z ^ X. We identify E with the space obtained from C by blowing up the

origin. The blow up map will be written as σ : £ ^ C w . In fact, let Ξ c C +n x

PW(C) be the set of points ((z0,..., zn), (ζ 0 , . . ., ζw)) satisfying the equations;

*,ζ, = *,ζ,, 0 < ι , j < n n>\.

Observe that ((z0,. . ., zn), (λz0,. . ., λzn)) ^ 51, for all (zQ,. . ., zn) Φ 0 and Λ ^

C \ {0}. That is to say, given w ^ C w, w Φ 0, i? contains the point correspond-

ing to w and the line through w. Since {0} x PW(C) c: 5, we see that j? contains

the points corresponding to zero and all the lines through zero. So that, in this

way we obtain all the points contained in Ξ. Let σ:Ξ—•» C n denote the restric-

tion of the projection of C1+n x P n (C) on &+n to Ξ. If we set % = σ~\θ), then

°ίί0 is biholomorphic to PΛ(C) and σ maps Ξ\°U0 bijectively onto C 1 + w \ {0}. We

call Ξ the blow up of C at the origin. So we can identify Ξ with E. Let co be the

hermitian metric on E and h : E—*R be given by h '= \\ ω || . Using the new met-

ric h we define the unit disk bundle BΛ c E and its boundary the unit circle bun-

dle Sh c E. Notice that BΛ is just the blow up of the unit ball B ,̂ or the indicatrix

at the point p ^ Ω with respect to the infinitesimal Kobayashi metric at p ^ Ω,

(see [Lem.l]). In [Lem.5], Lempert showed that B^ is a strictly convex circular do-

main and the exponential map suitably normalized to be defined on B ,̂ is a

homeomorphism Ψp:Bp—*Ω between the indicatrix and the domain, called the

circular representation. He constructed the circular representation by first show-

ing that given a point p ^ Ω and a complex line ί£ C TpΩ, there is a unique

Kobayashi extremal disk containing the point p and with £ as its tangent space at

p. The family of all extremal disks through p forms a foliation 3>p of Ω which we

call the Lempert foliation. The indicatrix B ,̂ is also foliated by the family of disks

obtained by intersecting it with the family of complex lines in TpΩ containing the

origin. Denote this foliation by 9. The circular representation is now constructed

by sending the leaf M of ?F determined by the line £ c: TPΩ biholomorphically to

the extremal disk determined by T. Because the Kobayashi metric is a biholomor-

phic invariant, the circular representation is then also a biholomorphic invariant

of the domain Ω with the given fixed point p ^ Ω. Denote the affine coordinates

on PW(C) by w = (wlt. . ., wn), and the fibre coordinate ζ on E is defined by z —

(ζ, ζwu. . ., C,wn) where z = (z09. . ., zn) are the linear coordinates on Cw + 1. Next

let Ωp denote the space obtained from Ω by blowing up the point p e Ω. Without

loss of generality, we assume that p is the origin, and thus identify Ωp with an
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open subset °U of E and the blow up of p is identified with PW(C). The Lempert

foliation on Ω then lifts naturally to a nonsίngular foliation $F on Ωp whose leaves

are transverse to PW(C). The circular representation also lifts to a map Ψp : B ,̂ —•

Ωp which we again refer to as the circular representation. Let Kp : Ω~*R denote

the Kobayashi distance from the point p and yp the real-valued function on Ω de-

fined by

(4.21) γp{s) = : t a n h 2 ( ^ ( s ) ) .

The function \og(γp) is smooth away from p and can be extended to a smooth

function on Cn+ so that Ω = {z ^ Cn+ γp(z) < 1).

THEOREM 4.17 ([Pa.l], [Lem.l]). Let Ω be a strictly linearly convex domain in

C with smooth boundary dΩ. Let p be a given fixed point in Ω. Then

(i) The circular representation Wp: Bp—> Ω is a C map on all of Bp and after iden-

tifying the tangent space to TpΩ at 0 with TpΩ itself, we have Ψp* = id τ Ω. In par-

ticular, Ψp is the identity on PW(C) c Bh

(ii) The map Ψp : Bh —> Ωp is a C diffeomorphism which is holomorphic on the fibres

o/BΛ —» PW(C) and maps the fibres to the leaves M of the Lempert foliation $F.

(iii) γp extends to a C function on Ωp satisfying h = γp ° Ψp. The function u —

log(γp) is the solution of the degenerate complex Monge-Ampere equation

u e PSH(fl)

(ddcu)n = 0 inΩ\{0)

u(z) = log || z || + 0(1) asz->0

u{z) = 0 for z e dΩ

and 3"p is its Monge-Ampere foliation, i.e. the tangent bundle of ?Fp is given by

T%p = { l E Γ f i ; X\A = 0)

where A — ddlog(γp) and J is its contraction with X. The function u = log(^) is

called the potential of the domain Ω with the given fixed point p ^ Ω.

Proof of Proposition 3.6. Without loss of generality we can assume that

w = 0 is the origin. Theorem 4.17, then establishes the existence of a C°° dif-

feomorphism ΨQ:B0\{0}-+ Ω\{0) (see [Lem.l]), where Bn\{0) = {z ^ Cn O

< || z II < 1} such that u0 = log || ΨQ \\ satisfies
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u0 <= PSH(β)

uo(z) = 0 if z e 9fl

K0(*) = log|M| + 0(1) a s ^ - 0 .

The existence of the C°° function uQ implies that the sublevel sets iΩx}x<0 are

smooth. Next we show that these sublevel sets are linearly convex. Take a point

z G dΩx = {uo(z) — x}, x < 0, the boundary of the sublevel sets Ωx = b e f l ;

wo(2) < x, x < 0}. Lempert [Lem.4J, has shown that there exists a unique extrem-

al mapping / from the closed unit disk D in C into the set Ωx with ξ = exp x

such that/(O) = 0, f(ξ) = z and/ is an embedding. In particular,/ is transverse

to dΩx. There exists an inverse mapping F : Ωχ —*D to / (cf. [Lem.2]), with the

following properties:

(1) The fibres F (f), for all ζ €= D are hypersurface restricted to the neighbour-

hood of Ωx.

(2) \F(z) I < 1 if z e Ωx\f(dΌ),

(3) dF Φ 0 on βy. We claim that F (ξ) is a complex tangent hyperplane to dΩx

at the point z. Since f = F{z) the fact that /(ξ) = z implies that z lies on the

complex hyperplane F (ξ). To verify the claim it is therefore enough to show

that no other point w ^ Ωx can lie on F~ (ξ). Now for any w e Ωx there exists a

holomorphic mapping g : D—^ .G^ such that ^(0) = 0 and g(co) = w with ω =

exp MO(^) ^ ξ. Now we apply Schwartz's lemma to F ° g : D—* D to give ξ > ω

> I F(g(ω)) I = I F(ω) \ and ξ = F(M ), that is to say, w e F " 1 ^ ) . This can hap-

pen only iί F ° g = idD. Hence by property (2) and the uniqueness of the extremal

mapping / this holds only if / = g, i.e. w — z. Thus F (ξ) is indeed the complex

tangent hyperplane to dΩx, i.e. a complex hyperplane which does not intersect Ωx.

D

5. Siciak and Lempert extremal functions

Let !£ represent the class of all functions u which are plurisubharmonic (psh)

on Cn and satisfy the condition:

(5.0) u(z) <log(l + ||z||) + 0(1), a s | M H + oo.

This is the space of plurisubharmonic functions of logarithmic growth. Since

Mir) '-= sup||2 | |= i ? u(z) is a convex, increasing function of /?, we see easily that ί£

consists of plurisubharmonic functions of minimal growth. Of particular interest is

the subclass
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(5.1) ί£+ = {u e <e-f u{z) = log \\z || + 0 ( 1 ) } .

For E c C a bounded set, we define the ^-extremal psh function of E by setting

(5.2) VE(z) : = supίtK*) υ e #, and y(ζ) < 0, for all ζ e £ } ,

and letting

(5.3) F / ( Z ) : = lii

be the upper semi-continuous regularization of VE. This function has been studied

extensively in [Si.1,2], [Za.l] and [Sd.l]. The function VE is in general not smooth

on Cn\E when n > 1. It is a theorem in [Si.l], that either VE = + °°, in which

case the set E is pluripolar or else VE is psh and

(5.4) V*(z) < l o g ( l +IUII) + 0(1), as 11*11—+ «>.

If VE is continuous on C , then VE = VE &. £. lί n = 1, VE is exactly the gener-

alized Green function for C\E with a pole at infinity and the definition is, essen-

tially, given by the Perron method for its construction. In particular, VE is harmo-

nic in C\E and smooth. However, when n > 1, there are some significant differ-

ences. In general the function VE need not be continuous in the exterior of E. But,

it is a result of [B-T.2], that the ίP+-extremal function VE satisfies the

homogeneous complex Monge-Ampere equation, (dd VE) — 0, in a generalized

sense on Cn\E when E is a compact set. Thus for non pluripolar sets E,

(5.5) λE:= (ddcV*)n,

is a positive Borel measure supported on E.

The class ί£ is closely related to the study of polynomials in ^-complex vari-

ables. For a compact set K c C , we have

(5.6) Vκ(z) = s u p f ^ l o g \p(z) \ ; d = deg(p), \\p\\κ < l ) .

Now observe that if E = B(w, R) -= {z ^ C" \\ z — w || < R] is a ball of centre

w and radius R, where || || is any norm on Qn then VE — log (|| z — w \\/R) (see

[Si.l]).

Let Ψ : Cn —* [— °°, + °°[ be any function defined on Cn which may take

the value — °° but not + °°. Then for such functions we define the subclass $£ψ

of the class ί£ by



94 STANLEY M EINSTEIN-MATTHEWS

and

(5.8) #;:= iv(z);ve<e+, υ<Ψ).

Now set Vψ = sup{f (z) υ e j ^ } and Vψ = sup iv(z) t> G #£}. The functions

ŷ r and Vψ will be called ^-extremal and <SPy-extremal functions associated to Ψ

respectively.

Let the i?r-extremal function for a bounded linearly convex domain ficC

be given as VΩΨ(z) = supίf (z) f G 3? ,̂ υ < 0 on 42} and its upper semi-

continuous regularization VΩΨ{z) = lim supζ_^ VΩtΨ(ζ). We also call the subclass

%Ω,Ψ = (v(z) VΪΞ <£ψ, v < 0 , o n Ω } ,

Siciak class of plurisubharmonic functions with respect to Ψ and the set Ω. VΩΨ

and its upper semi-continuous regularization VΩΨ are the Siciak extremal func-

tions of Ω with respect to Ψ. More generally, we fix Ψ ^ PSH(C ) Π C°(C ) and

introduce the Siciak extremal functions V : C" x ]0, oo[-^ R + : = { χ G R ; χ > 0 )

with respect to Ψ given by

(5.9) FαU) := Viz, a) '= sup u(z), z^C\ a e ]0, oo[?

where the supremum is taken over all plurisubharmonic functions u with w €: a!£

and u < Ψ.

THEOREM 5.1 [Mo.l], [Si.l]. Let u e #, ^ ^ w < gr.

log+(|| 2 ||/R) + max ΪΓ(ζ), z^C\ R

Fix i? > 0. By the hypothesis we have wGz) < max,|2n<^ Ψ{z) =' M

on i?B = {z G Cw IU || < i?}. Furthermore, u~ M ^ X. So that u - M is

dominated by the pluricomplex Green function of C \ i ? B with logarithmic pole at

infinity, i.e. u(z) - M< log+(|| z \\/R), z ^ C. ϋ

The Siciak extremal psh function Vw attains the value Ψ on the set Eψ =

{z G Cn Vφ(z) = Ψ(z)}. Next we give a description of what will become known

as Lempert extremal psh function of bounded linearly convex domains Ω in C .

First let u e C3(Ω) be such that

(5.10) {ddcu)k~ι Φ 0, and (ddcu)k = 0.

If we integrate the form {dd°u) , then by Frobenius Theorem we obtain a folia-
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tion 2Fn_k+ι of Ω, by complex manifolds of dimension n — k + 1 which have the

du
property that u is harmonic and -*— is holomorphic on each leaf M of ?F (see [B-K.

1]). Conversely, if we are given a foliation &* and if we can find a function u such

di/C
that -β— is holomorphic on each leaf of 2F for 1 < j < n, then (5.10) holds. The

mapping

du(z) du(z)

uzυ uzv

which can be thought of as the complex Gauss map of the hypersurface {u =

c}, is holomorphic on the leaves of %F. If γu is a local diffeomorphism, then γu

* *

pushes 2r forward to a new foliation 2r and u to a new function u . It is easily

checked that the gradient of u is holomorphic on 2F and that u satisfies (5.10),

even when it is not necessarily plurisubharmonic. This duality map was intro-

duced in [Lem.2] to transform an exterior Dirichlet problem to an interior one.

Let Ω be a bounded linearly convex domain with boundary dΩ. Consider its

pluricomplex Green function gΩ(' , w) having a logarithmic pole at w ^ Ω. This

function is plurisubharmonic and continuous when its restriction to dΩ is identi-

cally zero. It follows that

gΩ(z, w) = log \\z — w || + 0(1), as z —* w

(ddcgΩ(z, w)Y = O o n f l \ W .

If there exists a bounded plurisubharmonic exhaustion function φ of Ω i.e., φ €=

C°(Ω) Π PSHCO, W, v) with φ < 0 and {φ < - c) c c Ω for all c > 0 then it

follows that gΩ(z, w) is continuous for all (z, w) e Ω x Ω, z Φ w, and gΩ(z, w)

= 0 for z e dΩ, (see [De.l]). In fact, gΩ(z, w) satisfies (ddcgΩ(zf w)Y = (2π)nδw

where δw is the Dirac function at w. Note that here, we cannot define gΩ(', w) in

terms of the Perron-Bremermann envelope W(z) — supίf (z) υ ^ 81 (φ, μ)} of

the Perron-Bremermann family

P S H ( β ) (ddcv)n > μ, l im s u p ι ( ζ ) <φ(z),z<ΞdΩ

where φ ^ C(dΩ, R + ) . To be precise, not as the Perron-Bremermann envelope

of 9(0, (2π)nδw), since M(0, (2π)"δw) = 0, (see [B-T.l]). In the case that Ω is a

strictly convex and smoothly bounded domain, L. Lempert [Lem.l], has shown that

gΩ(', w) G C°°(Ω\ {w}). This was done using foliation $F of the domain Ω whose
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leaves correspond to the extremal disks for the Kobayashi metric. In the strongly

pseudoconvex case, gΩ(zf w) £ C2(Ώ\ {w}), (see [B-De.l]). In [Lem.2], L. Lempert

established that there is a close connection between the pluricomplex Green func-

tion gΩ(' , w) and the i?-extremal function VΩ. If as before we identify C with

PW(C) — PW_!(C), i.e. the ^-dimensional complex projective space with a hyper-

plane at infinity removed, then given a strictly linearly convex domain ficCw

containing the origin, we let Ω denote the dual complement domain inside the

dual projective space P n ( C ) \ ^ f w where $ΐw is the complex hyperplane dual to

w G Ω.

The complex Gauss map TgΩ{.,w) of the pluricomplex Green function gΩ( , w)

extends the complex Gauss mapping of dΩ to dΩ . This mapping gives a non holo-

morphic diffeomorphism between Ω\ iw) and Pn (C) \ {#CW U β } , such that

(5.12) gΩ(z, w) = - VΩΛrgΩiz<w)(z)^

The i?-extremal function

(5.13) VΩ*(z) = supίwte) u G £, u < 0 on £ * } ,

is called the Lempert extremal function of Ω . To be precise, we define £w to be

the set of all psh functions win a neighbourhood Ψ of (z = w) such that u(z) =

log || z — w || + 0(1), and (dcfuY = 0 on {z Φ w). Further we require that for

some small δ > 0 the set \u < — -^-| is linearly convex. We also consider £„ the

family of psh functions outside a compact set such that U(z) = log || z \\ + 0(1),

and (dd°U)n — 0 with \U < -*\ for small δ > 0, linearly convex. Then Lempert's

result above can be interpreted as saying that the complex Gauss map establishes

a correspondence between ί£w and %!„.

We generalize this to the case of finite singularities. Let W = {Wj ε fl, 1 < j

< m < °°} be a finite set of singularities with weights the numbers v —

(vivo) •= Vj > 0, 1 < j < m < + ° ° } . Let gΩ(- , W, v) denote the pluricomplex

multipole Green function of the bounded linearly convex domain Ω c C contain-

ing the origin. We set wγ = 0 the origin and let lH!w — f̂0,. . ., $WfH be the com-

plex hyperplanes dual to the distinct points wι — 0, w2, . . . , wm G W c: Ω. Next

let Ω denote the dual complement of Ω inside the dual projective space P w (C) \

{XWι U . . . U fflWn), then the complex Gauss map TgΩ(-,w,υ) °f the pluricomplex

multipole Green function gΩ{', W, v) extends as before the complex Gauss map-

ping of dΩ to dΩ . This mapping gives a non holomorphic diffeomorphism be-

tween Ω\ W[v] and P w * (C)\ {flWι U . . . U β * } with
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(5.14) gΩ(z, W,v) = - VΩ*(rgΩiz,w,v)(z)).

Analogous to the earlier situation, we let £w[v] be the family of psh functions

u in the neighbourhood of W[v] such that u(z) = Σ™=1 v} log \\ z — Wj\\ + 0(1),

and (dd u) = 0 for z £ W[v\. Moreover, we can assume that for a small positive

5 the set \u < -*\ is linearly convex. Let £M be the family of psh functions U

outside {U ;

m

= 1 ^. U β*} with U(z) = log || z || + 0(1), (Λίct/)w = 0 also with

| ί 7 < -̂ -j linearly convex for δ < 0 small. Then the complex Gauss map again

establishes a correspondence between £WM and #«,.

We can consider the space ϋ? in greater generality (see [B-T.3]), where we let

M be a complex manifold, and D c M a subvariety of pure dimension 1 (a di-

visor). For w ^ D we let Z7W be an open set containing w such that there exists a

holomorphic function /z on Uw with f/̂  Π D — {h = 0} and grad(/z) ^ 0 on the

regular points of Uw Π i), (see [B-T.3]). We can now define

(5.15) ϋ?(M, /)) : = { « e P S H ( M \ Z ) ) ; « ^ l o g | A | + 0(1)}.

Note that any υ e %(M, D) can in this situation be written on the open set Uw as

1
v = log zJ for some ϋ e PSH(t/J Π Llc(Uw). We now let Λf = PW(C)

and the hyperplane at infinity chosen so that Cn = PW(C) \P W _!(C). We wish to

consider the case of functions with logarithmic decrease at isolated singularities.

Let flcC be a bounded linearly convex domain containing a point w Φ 0, and

let Ωw be Ω with the point w blown up. Let P ^ ί C ) be the fibre over w. Consider

(5.16) <e(Ωw, P n - ^ O ) = iu e P S H ( β w \ P w - i ( O )

logdisUw, Pw_i(C)) + C},

where C is a positive constant. If we choose £ as above, we can study the plur-

icomplex Green function of a bounded domain with logarithmic singularity at the

point w. For Ω a bounded convex domain in Cn this has been studied in depth in

[Lem.l], and the case of hyperconvex domain Ω in [K1.2], and [De.l]. It is known

that in both cases there exists a unique psh function (the pluricomplex Green func-

tion), uw on Ω that is continuous up to the boundary, vanishes there and satisfies

uw(z) = log || z — w || + 0(1), as z — w —• 0

(ddcuw)
n = 0 on Ωw.

Recall that the first condition is just that uw belongs to
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(5.17) %+Φw, Pn

= log d is t i l , P ^ O ) + C).

In analogy with the previous situation we let Ωw[u] be Ω with the singularities wlt

. . . , wm blown up in succession and we let XWι,. . ., XWm be the fibres over the

points wlf.. ., M;W, then we define

(5.18)
u(z) < Σ Vjlogdistbϋj, Xw) + C>,

with a positive constant C. So as above we have that

= Σ;

w=i Vj log II z — Wj II + 0(1), as z —• wi

(ddcvwbΆr = oon

Here again, Vw[v] belongs to the restricted class

«X i \ύύ Γ/Γ/ΓDI » ^ «̂ t «ι / l M ^— Γ O Π V i l ύ m r , , ] \ vJ

wU) = Σ Vj\ogdist(wjf $CW) + C),

with a positive constant C.

6. Duality of functions and supporting functions

A function / : C n\ {0} —• [~ °°, + °°] is called logarithmically homogene-

ous if

(6.1) f(λz) = -log Ml + / ω , ^ C l + w \ { 0 } , K C \ ( 0 ) .

A stronger version of this condition of logarithmic homogeneity is the following,

f(λz) = — Clog | /ί | + / ( £ ) , where C is a positive constant.

For such functions, following [Ki.3], we define the dual function/:

(6.2) /(ζ) = sup ( - log | ζ z | - /(z) /(z) < + oo), ζ e C l + f ί \ {0}.
z

Here ζ 2: = ζozo + + ζnzn is the inner product, and we define log 0 = — 00

so that /(ζ) = + 00 if there is a z such that ζ z = 0 and /(z) < + 00. The dif-
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ference — log | ζ z\ — f(z) is well-defined if f(z) < + °°. It is clear t h a t / is

also homogeneous.

Given / defined in C +n \ {0} we can define a function F in C* by setting

F(z') — f(z1/z0,. . ., zn/z0), z' ^ Cn. Conversely, if F is defined in CΓ, we define

a homogeneous function / in C n\ {0} by

x /z0, ...,zn /z0) - log || z01, z e C 1 + B \ {0}, z0 Φ 0

The transform (6.2) then takes the form

HO = sup(- log I 1 + ζ' z'\ - F(z') F(z') < + «>), ζ' e C".

In particular, if F is a function of || z' || — r, then the transform becomes

F(p) = s u p ( - log(l - pr) - F(r) F W < + oo), p = || ζ^ || > 0.

The radial function F(r) = - g-logd — r2) is self-dual, i.e. F(p) = - ^ (1 —

p ). Returning to C +n\ ίθ), we see that the function

= [ ^log (lUoll2 - IU1I2), z e C1+n\{θ}, I k I > I k

has this property.

Now let flbe a homogeneous set in C + w \{0). We define a function d, the

distance to the complement of Ω, by

(6.3) d(z) = dΩ(z) = inf(|| * - w\\;w <έΩ), z e C 1 + w\{0}.

The function — log d is homogeneous, and it is precisely less than + °° in the in-

terior of Ω. Analogously we define a function δ by

(6.4) <5(ζ) = dΩ*(ζ) = infill ζ - α | | ; α £ β * ) , ζ e β*°, ζ e C 1 + κ \ { 0 } ,

where £? is the dual complement of Ω and β ° is its interior.

THEOREM 6.1 [Ki.3]. Let f be any function on C1+n\ {0}, let f be the transform

defined by (6.2), and denote by Ω the set of all points where f < + °°, by δ the dis-

tance to the complement of Ω . Then f is Lipschitz continuous in the interior of Ω

more precisely

limsup T ^Ίΰn> C G Ω*°> Θ^Cι+n.
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THEOREM 6.2 [Ki.3]. Let f be a homogeneous function on C w\{0} which is

bounded from below on the unit sphere. Then f is plurisubharmonic in the open set {ζ

δ(Q > 0}, where δ is the distance to the points where f is + °°.

Examples of functions in duality are

, Λ , , , M = \- (1-c) log\\ z\\-clog d(z), z<ΞΩ;

and

- (1 — c) log || ζ || — c log
(6.6) φc(ζ) =

oo

where 0 < c < 1, Ω is any homogeneous subset of C + w \ {0}, Ω its dual comple-

ment, and d and δ are defined by (6.3) and (6.4) respectively.

We shall call f0 = cΩ the indicator function of the set Ω. Its restriction to the

unit sphere is the indicator function in that usual sense. We call fQ — 1Ω the sup-

porting function of Ω. The supporting function of Ω is given explicitly by

THEOREM 6.3 [Ki.3]. Let Ω be a non-empty subset of C1+n\ {0}. Thenf0 — φv

i.e. the supporting function of Ω islΩ — — log dΩ*.

If Ω is empty, its supporting function is identically — °° , whereas φx(0 = ~

l o g II ζ II.
Let Ω be a bounded linearly convex domain in Cn. To Ω we associate a sup-

porting function

(6.7) ho(Q = sup(- log 11 + ζ z I), ζ e c " .
zeΩ

We know that for a homogeneous set Ω of all z e C +n \ {0} such that z0 Φ 0

and z' /zQ ^ Ωo where Ωo is a subset of C , the supporting function of Ω is given

by

?f i(ζ) - - l o g δ ( 0 = s u p ( - l o g | ζ 2 | - l o g | | z I I ) , ζ e C 1 + n \ ( 0 } .

Now we modify cΩ a little and define

hΩ(Q = s u p ( - log I ζ • * I - log || z01|), ζ E C 1 + w \ {0},
Ω

so that if Ωo is bounded, then hΩ and 7β differ at most by an additive constant M.
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EXAMPLE 6.4. If Ω is the ball with centre the origin and radius r e R, r >

0, i.e., Ω = rB = {z <= C \\z || < r} then

- l o g ( l - r l l ζ l l ) , if II ζ IK 7 ;
MO =

+ °°> if II ζ II > 7 .

Since the ball is bounded, O e β , then there exists Rlt R2 e R + with 0 < i?L

< i?2 < + 00 s u c h that

(6.8) - log(l -Rjζ ||) < M O ^ ~ log(l " R2II ζ ID

Here we adopt the convention that — log s = + °°, if 5 < 0.

THEOREM 6.5 [Ki.3]. A closed linearly convex set can be recovered from its sup-

porting function Indeed, if Ω is a non-empty set with these properties, then cΩ > 1 >

cΩ — M, with M a constant so that Ω is the set where "cΩ is finite.

Let gΩ( , 0) be the pluricomplex Green function in a bounded linearly convex

domain Ω with a logarithmic pole at the origin 0 ^ C , and 0 €= Ω°. Since the

pluricomplex Green function of the ball i?B = {z ^ Cn ;\\ z\\ < R ^ R+} is

gRB(z, 0) = logfll z\\/R) (cf. Proposition 3.2), we have

(6.9) log(|| z \\/R2) < gΩ(z, 0) < log(|| z | | / ^ ) , for z e Ω.

Let

®Rex= & G Ω;gΩ(z9 0) < Rex, Rex < 0}, x e C,

be the sublevel sets of the pluricomplex Green function g"β( , 0). The supporting

functions associated to the sublevel sets ί^Re^Re^o a r e given by

(6.10) hΩ (ζ) = u(ζtx) = s u p ( - l o g | l + ζ- z\\gΩ{z, 0) <Rex),

where (ζ, x) e Cw x C, Re x < 0.

THEOREM 6.6. Let Ω be a bounded linearly convex domain in C and

gΩ(zf 0) = supU* e PSH(β) u < 0, w(z) < log+ |U|| + 0(1) as z->0, V^

6̂  its pluricomplex Green function with a logarithmic pole at the origin. Let

K ( 0 = w(ζ, J?) = sup ( - log I 1 + ζ z I &,(*, 0) < Re x),
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where (ζ, x) ^ Cn X C and Re x < 0, fr<? t/ie associated supporting functions for

^Re^Rex<o Then the functions u(ζ, x) are plurisubharmonic functions in all the

variables (ζ, x) e Cw x C with Re x < 0. Moreover, u(ζ, x) = w(ζ, Rex)

w(ζ, 0) = l im x T o w(ζ, x) = AΛ(ζ).

To prove the plurisubharmonicity of w(ζ, x) for all (ζ, x) with Rex

< 0, we first, use Theorem 3.8, to represent w(ζ, x) as follows,

(6.11) w(ζ, x) = sup [ s u p ( - l o g | 1 + ζ f(σ) | log | σ \ < Re x)],

with (ζ, x) G Cn x C and Re x < 0, where the supremum is taken over all holo-

morphic mappings / : D—* ΩRex with /(0) = 0. Clearly, w(ζ, x) is a continuous

function of ζ €= C . Now for / an extremal function solving the variational prob-

lem (6.11), we obtain

(6.12) w(ζ, x) = s u p ( - l o g | 1 + ζ - f(σ) | ; l o g | σ | < R e x ) ,

where Re x < 0 and gQ(f(σ), 0) = log | σ\. Thus sup(— log | 1 + ζ f(σ) \

log I σ I < Re x < 0) is equal to + °° if ζ cuts ΩRex and is less than + °° if ζ

does not cut ΩRex or ζ G ΩRex, the dual complement of ΩRex. Since gΩ(f(σ), 0),

Re x < 0, is an extremal psh function, it follows that u(ζ, x) is plurisubharmonic

all variables where it is less than + °°. In particular, it is clear that in this case

hΩκei e P S H ( β R e x ) . Results in [Ki.3] then imply that hΩ^i is more or less

— log dΩ* the interior distance function in ΩRex and hence plurisubharmonic in

all (ζ, x) e Cn x C. The last statements are clear. D

In the general case of finite singularities with the pluricomplex multipole

Green function gΩ(z, W, v) we have

THEOREM 6.7. Let Ω be a bounded linearly convex domain in CΓ and gΩ{z, W, ι>)

be its pluricomplex multipole Green function defined in (3.4), (3.5) and (3.6). Let

ΩRex= iz^ Ω;gΩ(z, W, v) < Rex, R e x < 0}, x e C,

be the sublevel sets of the pluricomplex multipole Green function gΩ(z, Wy v). Let

hΩ (ζ) = κ(ζ, x) = sup (- log | l + ζ z\;gΩ(z, W, v) <Rex), (ζ, i ) e C " x C,

with Re x < 0, be the associated supporting functions for {£?R e x}R e i r < 0. Then the func-

tions u(ζ, x) are plurisubharmonic in all the variables (ζ, x) €Ξ C x C with Rex

< 0. Furthermore, u(ζ, x) = u(ζ, Rex) and u(ζ, 0) = lim^io w(ζ, x) = hΩ(ζ).
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Proof. We reduce the proof to the case of one pole in Theorem 6.6 by fixing

wι = 0 and considering extremal mappings through w1 — 0 and any one of the

distinct poles wjf 2 < j < m. Then in each case Theorem 6.6 gives the required

result. O

Now set u(ζ, x) — u(ζ, Rex) which is independent of Im x. In we re-label

Re x as x, then we have

Rxe
xB c Ωx c R2e

xB, x < 0,

which in turn implies that

(6.13) - log( l - R,ex || ζ ||) < u(ζ, x) < - log( l - R2e' II ζ II).

The partial Fenchel (Legendre) transform of u(-, x) with respect to x is given by

(6.14) w(ζ, α) = sup(αx — w(ζ, x)),

where α e ]0, + oo] and ζ e Cw.

We know from Kiselman's minimum principle for psh functions [Ki.l], that

(6.15) - «(ζ, a) = inf(«(ζ, x) - αc) ζ e Cw,

is plurisubharmonic in the open set where it is less than + °°. But (6.13) gives

inf ( - log(l - R2e
x || ζ ||) - αx) < - «(ζ, α) <

(6.16)

< inf (- log(l - R/1| ζ ||) - ax) a e ]o, + oo], ζ e C*.

We calculate

(6.17) I (a) : = inf(- log(l - i ? / || ζ ||) - ax),
X<0

for all α e ]0, + oo], ζ e Cw and i? e R. Consider -^ ( - log(l - βex) - ax)

Bex

with β = R || ζ ||. Setting — a = 0 we obtain
1 -β/

, Q + α)gjggιiζir
- <xr = log .

a
The net result of this calculation is that
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Ida) = •

+ 00 if a < 0 ;

0 if α = 0 ;

log-

or if R || ζ 1 > 1

- log(l - R I ζ ||) if R || ζ || < 1 and a > y^-" ζ "
1 - } g | | ζ | |

or | ζ || > ^ we have - w(ζ, α) < αlog || ζ || + ^Thus for II ζ 1 > ^ Y

where ϋ^ = log —. As a result we have that — w(ζ, α) e α # for all
aa

ζ e C w and all a e ]0, + 00]. On the other hand from (6.15) and (6.16) we see

t h a t - « ( ζ , α) <hΩ(ζ).

THEOREM 6.8. Let Ω be a bounded linearly convex domain in Cn. Let hΩ be its

supporting function. Consider the function V : C x ] 0 , + ° ° ] —• R + defined by

Va(ζ) : = F(ζ, a) : = sup(φ(ζ) p e α ^ , ^ < hΩ).

Then - ϋ(-, a) e αί? αw^ Vα(ζ) = - «(ζ, α) .

We have already noted before the statement of the theorem that

— u(- , a) ^ αr«S?. Since — w(ζ, α) < hΩ(Q, we deduce that — w(ζ, α) is a

candidate competing in the definition of Va(Q hence we get from this that

— u(ζ, od ^ Va(ζ). Applying Zaharyuta's two-constants theorem for analytic

functions in [Za.1,2], it is proved as in Momm's [Mo.l] that x •-» supζeΩ*(Va(Q

— hx(Q) is convex function of x < 0, from which we obtain the reverse inequal-

ity and together with the previous inequality we deduce that — u(ζ, a) =

VJζ).) D

In the general case of finite singularities, we consider the balls {B(wjf

Rj)}j=1 in Ω with centres the singularities wγ = 0, w2,. . ., wm and radii Rlf. . .,

Rm. Let Rλ = infj Rj and R2 = sup;- R^ work for all the points w1 = 0, w2,. . ., wm

so that as before we have

(6.18) j) c Ωx c R2e
xB(Wj)t x < 0, 1 < j < m.

From this inclusion of sets we deduce that
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(6.19) - log(l - R,ex || ζ - ωy ||) < w(ζ, x) < - log(l - i ? 2 / || ζ - ω, | |),

where ω ; ^ f̂W/ and the ftw. are the complex hyperplanes dual to the singularities

w1 = 0, w2,. . ., wm. The Fenchel (Legendre) transform of w(ζ, x) with respect to

x is given as

(6.20) w(ζ, α) = sup(αx — w(ζ, x))

where α G ]0, + oo] a n ( i ζ G C".

Again as in the previous case, we know from Kiselman's minimum principle

for psh functions that

(6.21) - w(ζ, a) = inf(w(ζ, x) - ax) ζ e Cw,

is plurisubharmonic in the open set where it is less than + °°. But (6.19) gives

- inf ( - logU - R2e
x \\ ζ - ωy ||) - ax) < - «(ζ, a) <

(Ό.ZZ)

< in f(- logd - Rxe
x || ζ - ω, ||) - or) a e ]0, + oo], ζ e CM,

where the ω} ^ # ^ . and tfίWj are the complex hyperplanes dual to the singularities

wx = 0, w 2 , . . . , wm e FT c β. As before for Z? e R we calculate

(6.23) I (a) = in f(- log(l - / ? / || ζ - ωi ||) - αx | | ) ,

for all a ^ ]0, + °°], ζ — ω ; e Cw. The result even in this case leads to the

same conclusion as in Theorem 6.8.

7. Relation between DΩ and ahQ

In this final section we prove our main results by investigating the relation-

ship between the function ahβ and the directional derivative jdΩ in the case of the

pluricomplex Green function gΩ(z, 0) with a pole at the origin.

THEOREM 7.1. Let Ω be a bounded linearly convex domain in C which contains

the origin and with boundary dΩ. Let hΩx ' = hx : C —+ R U {°°}, x < 0, be the sup-

porting functions of the linearly convex sublevel sets Ωx>— {z €= Ω gΩ(z) < x) of

the pluricomplex Green function gΩ of Ω with a pole at the origin. If Va : C"—> R+,

a > 0, are the Siciak functions with respect to the class aί£, define for all ζ ^ Ω '- =

feeC"; hΩ(z) < oo} the functions ahΩ : C x ]0, + °°] -^ R + ^
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ahQ(Q : = inf(α; Va(Q = hΩ(ζ)), a e ]0, + oo],

and

».(P =- •••» * ( 0 _ - * ( P

 S [0. -)•

# denotes the directional derivative in the case of the supporting functions for

the pluήcomplex green function at the point z — z(Q which minimizes | 1 + ζ ' z \ for

a given ζ ̂  Ω . This is unique if the boundary dΩ is of class C and the hyperplane

ζ z = 1 is the tangent hyperplane to dΩ at the point z.

Proof. Let Ωχy x < 0 be the sublevel sets of a bounded linearly convex do-

main Ω. Let hΩ and hΩ be the supporting functions of Ω and Ωx respectively. Con-

sider the directional derivative:

M f t ) Γ * ( f t ) e 10,00]g f l ( f t ) l i m Γ
x]Q X

in the direction of the vector b ̂  Ω c C " = Qn. Consider the drop in the level

of the supporting function from x = 0 to x < 0. At the point z — z(ζ) which mini-

mises hΩ(Q = sup(— log I 1 + ζ z |) we have | 1 + ζ z \ — e~hΩ(0. For this

z = z(Q we have:

(i) M O = -log\l + ζ z\,z*ΞCn,

(ii) ΛΛχ(ζ) = — log I 1 + ζ za I, za e 9 β χ is the point with a = \\ z — za ||. For

the given ζ ^ Ω c C = C corresponding to the point z = z(ζ) we also have

at the area of contact that Va(ζ) = M O = ^ ( 0 a n c i t n a t α * f l ( 0 ^ a- T n e r e "

verse inequality is clear from Theorem 6.8 for the unique choice of ζ ̂  Ω .
II r II //β(ζ)

Hence αΛ (ζ) = — ^ ~ 7 n — To complete the proof we let dΩ be of class C and let

β have an outward normal vector JV at z0 ̂  9i3. Then the real tangent plane at z0

is given by ReiV (z — z0) = 0. The complex tangent plane is 1 + ζ0 z = 0

equivalently N (z — z0) = 0. Hence ζ0 = N . Next let Ω have an

N'zo

exterior normal vector v at the point ζ0 ̂  9 β . The real tangent plane at this

point is given by the equation Re jp (ζ ~ ζ0) = 0. The complex tangent plane has

the equation 1 + z0 ζ = 0 or equivalently v (ζ — ζ0) = 0. From which we
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deduce that zQ — - 1 * v. A complex hyperplane which is paralled to 1 + ζ0 z — 0

and passes through a point zλ — z0 + AN with Re λ > 0 and | λ | small is disjoint

from Ω, (rather Re λ > A(lm λ) ), where A is a positive constant. Such a

hyperplane has the equation 1 + yζo

mz = 0 where y = Λ — χr . M ~ 1 + ^ C o ' ^

= 1 - — — . So y ζ0 e β * for these z/. Thus Re v(y — 1) ζ0 < 0 for these y

and y ζ0 = c(N z0), c > 0. Hence Λf = θζ"0, v = tz0, with ί = c(9, θ = ,

ί = = ^ . So that

II to II ô ^ ô ô

and we see that v is determined by z0 and N. Similarly

I k ζΌll » C I
Since the boundary dΩ is C 1 it follows from Theorem 2.12 that the boundary

dΩ is also C and hence the points z0 and ζ0 correspond uniquely. Thus ζ ^ Cw

for which z — z{Q minimizes is unique. Observe also that since ζ0 = N
N-z0

we can choose a point w ^ CΓ on the exterior normal iV to get ζ — = — N.
N'W

Let ε > 0 be given sufficiently small such that

iV «; - («0 + εΛO N - zo N- ε

Then

' + °°, as ε \ 0,

and

/ N \

Also we have = ^ Ω . However, when ε = 0 we see that
— z0 - N — ε ' ' — z0 N

dΩ . Now from C. O. Kiselman's Theorem 6.3 in [Ki.3] we have hΩ(ζ) =
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( N \ COS Ύ
_ j — _ j O g — ε where

- z Q ' N - ε ' \zo N\
γ is the angle between the exterior normal vector v at ζ0 and the vector joining ζ0

and ζ. One also sees that dΩ* ( —) = 0 . Π
\ - z0 N'

Remark 7.2. Let Ωx> x < 0 be the sublevel sets of bounded convex domain Ω.

Let HΩ and HΩχ be the supporting functions of Ω and Ωx respectively. Momm de-

fined a type of directional Lelong number as follows:

ΔΩ(b) = l i m

H ° { b ) ~ ^ { b )

 g ] 0 > + oo], ft e S = {z e= C";\\z\\ = 1),

which measures the rate of approximation of dΩ by dΩχ, x < 0, in the direction

of the vector S ^ S . We shall compare the drop in the level of the supporting

functions from x = 0 to X < 0 in this case with the case of bounded linearly con-

vex domains Ω with linearly convex sublevel sets Ωχy x < 0. Now consider the

case of linearly convex domains Ω with sublevel sets Ωχ1 x < 0 and their support-

ing functions hΩ and hΩ respectively. The type of directional Lelong number
A ( ζ ) X

$)Ω(Q = limx,o

ae_χ in this case. So ΔΩ(Q = 2>Ωekoi0, ζ <= β * c Cw* = C",

where α = |U ~~ ̂  IL ̂  e dΩx.
The following two theorems are corollaries of Theorem 7.1. Using the fact

from the Remark 7.2 that ΔΩ — %ΩehΩ one can apply Momm's results to obtain

THEOREM 7.3. Let Ω be a bounded linearly convex domain in Cn containing the

origin with supporting function h defined in (1.8). Then there exists a constant C > 1

such thatahΩ(ζ) < ®ΩehΩ(Q < CαA f l(ζ), ζ e ^ *

THEOREM 7.4. For a bounded linearly convex domain Ω in CΓ containing the ori-

gin and with supporting function h defined in (1.8), the following statements are

equivalent:

(i) ®β is bounded on the sphere S which is the boundary of the ball with centre the

hypersurface at infinity dual to the origin containing Ω .

(ii) ahβ is bounded on the sphere S which is the boundary of the ball with centre the

hypersurface at infinity dual to the origin containing Ω .

(iii) There exists a constant C > 0 with

ficfi^ C(- x)B, x<0
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where B = {z e Cn \\z || < 1}.

(iv) 77i£r£ w α pluήsubharmonic function v on Cn \Ω with v(Q < log || ζ || +

0(1) as ζ—• °°, v < hΩ on a neighbourhood of the boundary dΩ of Ω and coin-

cides with hΩ on Ω c P n (C) \ #CQf where $€Q is the complex hyperplane dual to the

origin 0 €Ξ Ω.

Remark 7.5. Notice that as in Momm's paper on bounded convex domains, we

get a relation between the derivative ®β and the function ahβ in the set where the

Siciak extremal function agrees with the supporting function of the bounded

linearly convex domain Ω. However, there is one thing which makes the linearly

convex case less agreeable: in Momm's case it is enough to consider a = 1, the

other sets are simply homothetic images of this special case. This is because

aφiQ < HΩ(0 * ψ(0 < HΩ(£) ^ φ(aQ < HΩ(ζ)> and ζ ~ φ(aQ e ί£ ^

φ G Ϊ . Hence we use the simple fact that HΩ is positively homogeneous. But hΩ

does not admit such a simple trick. As a result we are forced to consider Va for

each a separately.

In any case, we have that

(7.1)

and

(7.2)

where ζ0 is the point on dΩ that corresponds to z0 e dΩ assuming that dΩ is C

smooth. Perhaps, it would be preferable to consider

and

ah(ζ) = inf (a; Wa(ζ) = hΩ(ζ)/ά).
COO

In this case hΩ/a \ cΩ* as a \ 0.

In conclusion, we note that there is a clear analogy between the linearly con-

vex case and Momm's results for bounded convex domains, but it is as yet not

satisfactory, because it seems difficult to study the function ahQ to get information

about 2)Ω, which was Momm's objective.
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