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We will define local times of self-intersection for multidimensional Brownian

motion as generalized Wiener functionals under the framework of white noise

analysis as in H. Watanabe ([6]). By making use of the chaotic representation of

δ-function and precise computation we get a deep insight into the problem. In the

section 1 multiple Wiener integrals with respect to multidimensional Brownian

motion and chaotic representations for square-integrable Wiener functionals are

given. They are indispensable, but seem not to be formulated clearly and correctly

before. The useful concepts and results of white noise analysis are illustrated in

the section 2. Section 3 is the main part of the paper. The applications to local

times are introduced in the section 4 briefly.

1. Multiple Wiener integrals

Let B = {(5/,- , Bt), — °o < t < °o} be a d-dimensional Brownian mo-

tion defined on a probability space (Ω, 2F, P) such that SF = σ{(Bt,- - -, Bt),

— °o < t < °°}. We will define the multiple Wiener integrals with respect bo B.

The procedure will be sketched, and all proofs omitted, since they are completely

similar to that for one-dimensional Brownian motion (cf. [3]).

Let n = nγ + + nd, ni > 0, j = 1 , . . . , d. For each f ^ L (Rn) define

(l l) . . O = Wi! Λ Hdi πΣj(tπy, ^ , , tπf,---, t π i ) ,

where τrJ, j = 1, . . ., d, are the permutations of (nγ + + ^ ; _1 + 1, . . . , nι +

• + τij), j — 1,. . ., d, respectively, and the summation is over all permutations

{TΓ 1 , . . . , πd}. Write
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L2(Rni) ® ••• ®U(Rnd) = {f:ftΞL2(Rn)}.

For each / €= L (R ) we can define

such that for any / e L2(Rn)

(1.3) 1) /„,,...,„,(/) =/„„. . . ,»,( /) ,

(1.4) 2) £ [ / K i , . . . Λ / / ) ] = 0,

3) for any g e L?(Rm), m = m : + + md, m; > 0, j = 1 , . . . , d,

(1.5) £[/«,,.. .„,(/)/,.„...„,>)] = n,\ • • • nd\<f,

4) for any g <= L 2 ( β " ) , a, b <Ξ R

(1.6) /„,,.,„/«/ + fe) = al^.^f) + blnv...,nd(g),

5) for /( ί l f • , 0 = / i d . •. ίBl) • • • /Λ 1 + . . + ^ 1 + 1 > •, O, f, e L2(Rn'),

(1.7) y=l, . . . ,r f ,

4,,...̂ /) = //,< • < , //,< < s

Thus Inv...>nd(f) is an isometric mapping from L (R 0 ® *' ' ® Z (βW d) into

(L) = L (Ω> SF> P). The most important result is the following chaotic repre-

sentation for square-integrable Wiener functionals:

To any φ ^ (L) corresponds a unique sequence (0W ...,n

 e L (Rnι) ®

® L \ R n d ) , nJ>0J=l,...,d} such that

d 8) 0 = Σ Σ 4 l f...^(^...,w;,

and

(1.9) 110112= Σ Σ *V •••«,! 1 0 n i f . . s n ,

where I0(f) = £ [ / ] . Later we will denote (1.8) simply by φ ~ (φnit...>n).

2. White noise space

We adopt the framework of white noise analysis set by T. Hida (cf. [1] or [2]).
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Let JS(R) be the Schwartz space of rapidly decreasing functions on R. Denote by

A the self-adjoint extension of the harmonic oscillator operator on L (R):

(2.i) Af(t) = - / " ω + a + ̂ 2)/ω, f^sS(R).

Let Hn(x), n > 0, be the Hermite polynomial of order n, and

(2.2) *,(*) = {n\2nyl/\π)~ι/AHn{x)e-χ2/\ n > 0.

Then £w ^ s£(R), and {βw, w > 0} is an orthogonal normal basis of L (R) and

(2.3) Aen = (2« + 2)en, w > 0.

Put

(2.4) | / | * , = I AVI' = Σ (2w + 2)2 ' I </, O | 2 , / e L2(β),
W = 0

(2.5) J , ( J 8 = ®(A') = {/ e L2(β) : | / | ^ < 00}, /, ^ 0.

With {\-\2iP, p>0) ώ(R) is a nuclear space. Let sS'(R) be its dual. Set

(2.6) ΛP(R) = ί / e J ' ( Λ ) : | / | ^ = Σ (2« + 2)2P \<f, en> |2 < 00}, p e β ,

1 ' n=0 j

where (•,*) denotes the pairing between sS(R) and sSr(R). Then

(2.7) ^ ( Λ ) = Π j&p(R), ώ'(R) = U ^ ( β ) .

By Minlos theorem there exists a unique probability measure μ on S W C R ) ) , the

σ-field generated by cylinder sets, such that

(2.8) f ei<x'ξ>μ(dx) =

The measure μ is called the white noise measure, and the probability space

Cc/3'CR), 9 ( J ' ( β ) ) , μ) is called the white noise space. Define

(2.9) (Ωd9 &d, μd) =

It will be our fundamental probability space, and denote by (L ' ) the L -space on

it. Set

(2.10) X((x) = <xjy ξ>, x= (xv...,xd) e Ωdf ξtΞ£(R)J= 1 d.

For each j , ξ—* X% is an isometric mapping from s3(R) into (L ' ), and can be ex-

tended as an isometric mapping from L (R) into (L ' ), i.e., Xe is well defined for
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ξ<BL2(R). Put

Ml. t<0,

and

(2.11) B J i x ) = < x , , f t > , - o o < ί < o o , y = l d .

Then ff = {(B,, ... , Bt), ~ °° < t < °°} is a d-dimensional Brownian motion,

and $d = σ{(B], ••-, Bf), - °° < t <<»}. Let φ ~ (φni,...,n)
 e (L2J). For /> >

0, define

(2.12) (J% = [φ ~ (φni,...,n) e α " ) : II 0 | , =

CO

Denote by (&$ ) _ p the dual of (sS ) p . Define

With {|| ||2)/), p ^ 0} (J£ ) is a nuclear space, and its dual

P>0

Each element of ĜS ) is called a test functional, and each element of (ώ ) is cal-

led a generalized Wiener functional or Hida distribution.

For ξ — ( ? ! , . . . , ζd) ^ sS (R), exponential functional

(2.13) 8(ξ)(x) = e x p ( Σ ( < x ; , ξ ; > ~ ^ l ί j z ) } ^ (n ...n ? Γ % ^ ' ' ' ® ? Γ

is a test functional. For any Φ ^ (ώ ) the 5-transform of Φ is defined as

(2.14) (SΦ)(ξ) = « Φ , δ ( © » , f €= ^ " ( R ) ,

where « * , * » denotes the pairing between {s& ) and (s3 ) . If Φ ^ (L ' ), then

(2.15) (5Φ)(?) = f Φ(x+ ξ)μd(dx).
JΩd

A functional ί/ on s3 (R) is called a [/-functional. If

1) for each ξ = (ξ^. . . , ξd) ^ ώ (R) the mapping
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has analytic continuation, denoted by u(zv * , zd ξlf * * *, ξd), on C

2) for any n = nγ + + ndi n, > 0, j = 1, . . . ,d,

is multilinear in {ξv , ξd);

3) there exist constants C : > 0, C2 > 0, /) ^ R such that for all (zv' *,

zrf) e C w and (f l f••-,?,) e rf

exp C2 Σ U ; I Ί f; l^f.
1 ; = 1 J

Potthoff-Streit characterization theorem states that a functional on ώ (R) is the

S-transform of a Hida distribution if and only if it is a [/-functional (cf. [5], only

the case of d = 1 is discussed there). Every Hida distribution is uniquely deter-

mined by its S-transform. In particular, if

(2.16) U(ξ) - Σ Σ </„,...„, ίf"1 ® <g> Cd>
n=0 Wj+ >+nd=n

and for some p > 0

(2.17) Σ Σ »!! •••«„! I ( A - ' ) ® " / ^ . . , , ^
«=0 n1+' +nd=n

where /n p...,n - e L2(iRWl) <g) ® Z 2 ( β W d ) , then there exists Φ e ( j " ) ^ such

that (SΦ)(ξ) = C/(?), and the expression in (2.17) is just equal to || Φ \\2

2>_p. In

this case, we also denote Φ ~ (fn ,..n ).

3. Local times of self-intersection

Let / be a bounded Borel function on R . Then it is well-known by (2.15)

that for any 0 < s < t

[Sf(Bt - Bs)](ξ) = [Γ/_d:/](j^ ξ(r)dr),

where {Tt , ί > 0} is the transition semigroup of d-dimensional Brownian mo-
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tion:

(3.1)

, yd)

Let δa, a — (av , ad), be the <5-function at point a. From (3.1) we have formal-

ly

(3.2) [Sδa(B, - Bs)](ξ) =

ι

{2π{t-S)Y

It is not difficult to see that the right hand of (3.2) is a [/-functional. In fact, by

the formula of the generating function for Hermite polynomials we have

- w^y (X ξ ' ( S o

- s)Γ"> exp{- ̂ J " | (j[' ξ,(r)dr - a))

J ^

* '̂ Σ Σ Π ^
n=0 nι+...+nd=n

ί ί;
S) > >

w h e r e x> =
= ^ - P u t

, (β), (β) / A

Ψnv.-,nSS< ') =
~d/2 ~Σf=lxf

(3.3)
^J

—rf/4 -Σf=1 xf/2

i e

Note that {#wCr), n > 0} is uniformly bounded: C = supWtX | en(x) \ < °°. Now for

any p > 0 we have

(3.4) I (A ) Ψnι,...,nM>

LI 1
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where n = nλ + + nd, and

Σ >r̂  I / Λ —p\ ®« , (a) / A 12

non+ +n n " ' ' ' ' ^ ^»,. Λ / S . '> I2

< C2[2(t - s)Γ'π~d/2 Σ Σ 2"2"*

= C 2[2(ί- s ) ] ^ " " 7 2 Σ 2"2"*C';j_1 < 00.
w=0

According to (2.16) and (2.17), we obtain the following

LEMMA 1. For any 0 < s < t , p > 0 and a ^ Rd

δa(Bt - Bs) - ( ^ . . . . n / s , t)) e (Λd)_p

is a Hida distribution.

THEOREM 1. IfaΦO, then for any t > 0, p > 0

a Γ

is a Hida distribution.

Proof Noting that

—d/4 ί /r% \—d/2 —\cι\ /4UΛ ^

a = π sup {(2w) e } <

(3.4) can be modified as

-P\ ®n Λa) / A |2 / iO2>r>12r ι-2«/> τ-r

Then we have

II δa(Bt - BS) i t , < c 2 c : Σ
w = 0

Γ ιiδ β(β β-β β)i 2 >
*^0<u<v<t

Hence G ^ O ) e W')- , . D

THEOREM 2. For αwy t > 0



58 SHENG-WU HE, WEN-QIANG YANG, RONG-QIN YAO AND JIA-GANG WANG

(3.5)

[δ(Bυ-Bu) - Σ Σ Init...,nd(φniι...fnd(u,v))]dudυ

is a Hida distribution, called local times of self-intersection for d-dimensional Brow-

nian motion, where δ = δ0.

Proof At first, observe that let p > 0

(3.6) ) ~ 2 P

Σ
fc=0

Since sup^ ek(x) = O(/c ^), take /> large enough such that

(3.7)

Then by (3.6) and (3.7) we get

(3,8) I (A"*) χ . . . . Λ , ( s , 0 'ή s,ί)

-s)

1

noting that H2lc+1(0) = 0, H2k(0) = ( - 1)* - ^ p , A > 0, for any k > 0,

/ϊλ

2(0) < fc!2*. Let α > 0, from (3.8) we have

(3.9) δ(B, - Bs) - £ n + Σ^_κ 4I....Λί(<....,.ί(5, t))

n=d-l 2,-(p+a)

= Σ Σ n1l---nd\\(A-ip+aYnφnv...,nd(s,t))
n d l W + + n nn=d—l Wj + +nd=n

< Σ Σ nx\ ••• ̂ rf!2 I (A

< Σ Σ 2'2na(2πyd(t-s)n

n-d~\ n-L + +nd=n

Σ
n-d-1
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Take a large enough such that 2 a>Jt < 1. Then

-BJ-dΣ Σ Inι,..,nSΦ dudv<
0<u<v<t

Hence, the integral in the right hand of (3.5) exists in (ώ ) _ { p + a ) as Bochner integ-

ral, i.e., Gd(t) ^ (5 ) _ ( ί + α ) is a Hida distribution. Π

From (3.5) we have

(3.10) G^t) = f δ(Bv - Bu)dudv,

(3.11) G2(t) = f {δ(Bv - Bu) - [2π(v - u)Yι)dudv,

(3.12) G3(t) = f {δ(Bv - Bu) - [2π(v - u)Y3/2}dudυ,

(3 13) C,(β = f lί(B, - B . ) ^

<3.U,

/ o \5/2/ x7/2

(27r) (z; - u)

Σ Γ (Bί-B'jdB^dudυ,
; = 1 ^ M

 J

For <i >: 2, the integral

Jθ<u<v<t

has no meaning even in generalized sense, and must be renormalized according to

(3.5). The renormalization parts in G4(t) and G5(t) in Watanabe ([6]) are mistaken,

caused by his small error in computation.

LEMMA 2. Set

id) , A

an (f) f



60 SHENG-Wϋ HE, WEN-QIANG YANG, RONG-QIN YAO AND JIA-GANG WANG

Then as n—+ °°, for t > 0 we have

(3.15)
(d) I A j

an it) '

3nz

2t2

r. d=l,

2 '

d>3.

Proo/. By Fubini theorem on interchanging the order of integration, we have

(3.16) ^ d ) ( 0 = J
0<u<v<t
0<r<s<t

(υ — u) (s — r)
dudvdrds

I
0<u<v<t,0<r<s<t,

r<u<soru<r<v

(v Λ 5 — u V r)
/ \n + d/2 s \n

(v — u) (s - r)

dudvdrds

(s — u)2n

0<r<u<s<v<t (y — u)n+d/2(s — r)H+d

f T— dudvdrds
0<r<u<v<s<t (s ~ r)n+d/2

dudvdrds

dudv(3.17) fl^ft) = Γ (s - r)~{n+d/2)drds f (v - z/)w

= {{n-d/2 + ϊ)(n-d/2 + 2)Yι J is - r) drds

- d/2 + ! ) («- d/2 + 2)],

where

(3.18) Cr = fΰ<r<s<ι(s-rY drds —

Γ/6, d= 1,

f/2, d=2,

™, d>3.

Below we consider only the case of d — 1 or 2.

(3.19) α Λ l ( 0 = 2 1
yO<M<S<y

- u)2

s» (t; - «)"
dudvds

r_dr_
Λ (c - r ) W
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Λ i-/ \n—d/2+l / \2n

= {n + d/2 - I)" 1 fo< [(S \U)

 n+d/2 ~ — L

( * Γ J ? .«/,-,]

= (n + d/2 - lΓ'tO*) - O*)] (0 ̂  O # ^ C ^ )

(3.20) Of) = Γ (t, - uVin+d/2)dudv Γ (s - u)n

J0<u<υ<t Ju

-d/2+ιds

?\= CΓ(n-d/2

(5 - uΫnM ) M _ Γ (5 — w) Γ' c?w
β " 1 2 ' ~Λ<«<^ ( n+i,i=Γduds ) s , _ r + d/2

= U + d/2 + I)"1 f s'd+sds =

Thus fl^ίβ = o(l), αli^ί) = o(l), and by (3.19), (3.20) we have

(3.21) a^(t) =\c{

t

d\l + 0(1)), d= 1, 2.
ft

At last, (3.15) follows from (3.16), (3.17), (3.18) and (3.21). •

In Lemma 2 one needs only that 2ft is an integer.

THEOREM 3. For any t > 0 and a ^ R

d {t) G (L , α — 1, z.

r. From (3.3) we have

where x, = / o / =F~ and the first term is considered as zero when a = 0 and; y2(f — ^)

d = 2. Hence,
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= Σ Σ
n=n0 n1 + > +nd=n

/
0<u<v<t

2 , ^Πj^j' , x(w+d)/2
> = 1 (V — U)

< C(l + Σ Σ (2πΓd Π (nP"1/6fli;
^ « = 1 w1+ +wd=» ; = 1

< c( l + Σ Σ ^~2 Π < ]

dudv

< c(i + Σ Σ π w ̂ VΣ

< c(l +Σ n " 7 7 6 ) "
n=l 7

< oo,

where

1, fl = 0 and rf = 2,

0, otherwise

and C is a constant depending on only d and ί, but may vary in different express-

ions. Thus G?{t) e α2 '") for d - 1,2. D

Based on Lemma 2, it is plausible to reason that Theorem 3 does not hold for

d>3.

THEOREM 4. For any bounded Borel function f and t > 0

f f(a)G[a\t)da, d = l ,
(3.22) I f(Bυ-Bjdudυ=

/ f(ά)G{

2

a\t)da, d = 2.
JR2

(3.22) is the so-called Tanaka's formula.

/. We only give the proof for d = 2. We show the S-transforms of the

two sides of (3.22) are the same. Let ξ = (ξv ξ2) e j£(R) x d(R). Then

2

Γ Γ
= I I

jR2Jo<

= Γ
J0

τ τ e x P
— u)

ί 1
I 2(ϋ —

— I ξXr)dr) \dudvda

0<u<v<t
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On the other hand,

\s( f f(Bv - BJdudv)] (ξ) = f [S(f(Bv - Bu)] (ξ)dudv

— I [ T™uf] ί / ξ(r) drjdudv.

Hence (3.22) follows. •

Even for d > 3 the Tanaka's formula (3.22) holds, but the integrals in the

right side of (3.22) should be understood in the sense of the Bochner integral in

(Sd)_p for any p > 0.

4. Local times

Compared with the results and proofs in the above section, we can easily

obtain the following results:

1) For any d > 1, t > 0

Ld(t) - j [ ' [δ(Bu) ~ Σon+Σ+n ^ Inι,...,nd{ψnv...,nd{0, «))] du e ω V .

Naturally, Ld(t) may be considered as the local times at 0.

2) For any t > 0, L^t) <Ξ (L ' ). In fact, note that

it

= I 2n+ VJ u~n

d> 2.

So even for d — 2, L2(t), t > 0, are impossible to be ordinary Wiener functionals.

3) If a Φ 0, then for any t > 0, p > 0

is a Hida distribution. Ld (t) may also be considered as the local time at α.

4) For any / > 0, a e jβ, I//

xX<u,v<t

(L ' ). In fact, noting that

2t2

~~ n + 2 '

r («)
it seems that for a Φ 0, L2 (/) may not be ordinary Wiener functionals.

For the case of rf = 1 we can give another treatment. Kubo has established
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the following generalized Ito's formula (cf. [4]): for all / e J3'(R), 0 < s < t,

(4.1) f(Bt) -f(Bs) = C d*f'(Bu)du + \ ff"(Bu)du.
JS & JS

Take f(u) = ul(aoo)(u) = (u — a) , then / ' — l(βi0O), / " = <5β. Substituting them

into (4.1) yields

(4.2) (β, - aΫ - (Bs - aΫ = Γ d*l{aσ3)(Bu)du + \ Γ δa(Bu)du.

Since l{aoo)(Bu) is adapted, letting s—^ 0 in (4.2) yields

i f ( ί ) = Γ WBJdu - 2[(J?( - α)+ - (- aΫ - f l(a^(Bu)dBu] e (L2'1).

This is just the ordinary definition of local times for one-dimensional Brownian

motion. Obviously, we provide indeed a white noise analysis treatment of local

times for one-dimensional Brownian motion. This approach applies also to local

times of self-intersection for one-dimensional Brownian motion. In fact, by using

(4.1) it is easy to get

Γ δa(Bv- BJdudv
J0<u<v<t

= 2\f (Bt-Bu- aΫdu - ( - aΫt- f l^iB, - Bu)dudBv] e (L2Λ).
L-Λ) J0<u<v<t ' -I
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