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LOCAL TIMES OF SELF-INTERSECTION FOR
MULTIDIMENSIONAL BROWNIAN MOTION *

SHENG-WU HE, WEN-QIANG YANG, RONG-QIN YAO
AND JIA-GANG WANG

We will define local times of self-intersection for multidimensional Brownian
motion as generalized Wiener functionals under the framework of white noise
analysis as in H. Watanabe ([6]). By making use of the chaotic representation of
0-function and precise computation we get a deep insight into the problem. In the
section 1 multiple Wiener integrals with respect to multidimensional Brownian
motion and chaotic representations for square-integrable Wiener functionals are
given. They are indispensable, but seem not to be formulated clearly and correctly
before. The useful concepts and results of white noise analysis are illustrated in
the section 2. Section 3 is the main part of the paper. The applications to local
times are introduced in the section 4 briefly.

1. Multiple Wiener integrals

Let B = {(B,I,~ - B,d), — o0 < t < o0} be a d-dimensional Brownian mo-
tion defined on a probability space (2, %, P) such that ¥ = 0{(3,‘,' e B,d),
— oo < ¢ < 0o} We will define the multiple Wiener integrals with respect bo B.
The procedure will be sketched, and all proofs omitted, since they are completely
similar to that for one-dimensional Brownian motion (cf. [3]).

Letn=m + -+ +mn,,n207=1,...,d. Foreach f € L*(R") define

= 1
(LY fly, o t) = n! - on,! ! ;,tdf(tﬂ:{’. T tn;z,’. BRI tnﬁa)’
where 7tj, j=1,...,d, are the permutations of (#, + -+~ +n,_, +1,...,n +
U nj), 7=1,...,d, respectively, and the summation is over all permutations

{z', ..., 7"} Write
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RN Q- QLR™) = {f:fe L*(R")}.

For each f € L*(R") we can define

n () = ff(t1,~~, t)dB, ‘- dB, ‘- dB; -+ dB;,

‘n1+-~-+t,,d_l+1

12) I,

Lreeer

such that for any f € L*(R")
1.3) D LN =1, .., D,
(14) 2) El,...,,(N] =0,
3) forany g € L*(R™), m=m, + -+ +mym =0,j=1,...,d,
(15)  Ellyen, (DI, @1 = 0yl 01, @0 vmpimyevom
4) for any g € L’(R"), a, b€ R

2

(1.6) Ly ..naf +bg) =al, .., () +0l, .., (2,
5) for f(t, +,t) = filt, ", t)  fillseoininr o b, S, € LR,
(1.7) =1,...,4d,
Lypeon, () = ffldB,‘l -+ dB, ffddB"’l -+ dBY.

Thus Inl,---,nd(f) is an isometric mapping from L’ (R™ & -+ ® L*(R™) into
(LY = [*(Q, %, P). The most important result is the following chaotic repre-
sentation for square-integrable Wiener functionals:

To any ¢ € (L%) corresponds a unique sequence b, € LR ® -
®L*(R"), n,>0,j=1,...,d} such that

(1.8) p=2 X Ln(Pn)
n=0 nyteeetng=n

and

(1.9) lel=%2 2wl n!ldy..nls

n=0 ny+eeetn =n

where I,(f) = E[f]. Later we will denote (1.8) simply by ¢ ~ (@, ...,,.).

2.  White noise space

We adopt the framework of white noise analysis set by T. Hida (cf. [1] or [2]).
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Let S(R) be the Schwartz space of rapidly decreasing functions on R. Denote by
A the self-adjoint extension of the harmonic oscillator operator on L*(R):

(2.1) AfO=—f"O+Q+Of0, f€IWR.
Let H,(x), n = 0, be the Hermite polynomial of order #, and
(2.2) e,(x) = (n!2")_1/2(7[)_1/4Hn(x)e_12/2, n > 0.

Then e, € S(R), and {e,, n = 0} is an orthogonal normal basis of L°(R) and

(2.3) Ae, = 2n + 2)e,, n=0.

Put

(2.4) 1fI2, =14 2= 5 @n+ 2" |f, ep [, f € LR,
n=0

(2.5) S,(R) =DA) ={fe L’ (R :|fl;, <), p=0.

With {|-],,, » = 0} S(R) is a nuclear space. Let S'(R) be its dual. Set
26 4B ={feI®:I1E, =% @n+2” | ey <) peRr,
n=0

where <-,-> denotes the pairing between $(R) and 4'(R). Then

(2.7) SR) = N S,(R), SR = U 3,(R).

PER PeR

By Minlos theorem there exists a unique probability measure y on B(J'(R)), the
o-field generated by cylinder sets, such that

i{z,6> _ _ l 2
(2.8) L’(m e puldy) = exp{ 5 |E|2}, ¢ e S(R).
The measure g is called the white noise measure, and the probability space
(S (R), B(S'(R)), ) is called the white noise space. Define
(2.9) (24, Fay ta) = (S (R), BWS'(R)), p)°.

It will be our fundamental probability space, and denote by (L% the Lz—space on
it. Set

(2100 X/(@ =4z, &, x=(x,...,z) €EQ,E€SR),j=1,...,d.

For each j, §— X! is an isometric mapping from S(R) into (L*%, and can be ex-
tended as an isometric mapping from L*(R) into (L*%), i, X; is well defined for
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ge L*(R). Put

f - {1(0’”, t>0,
l,a, t<0,
and
(2.11) Bl(@) =, fy, —<t<oco,j=1,...,d.
Then B = {(Btl, e, Bf), — oo < t< o} is a d-dimensional Brownian motion,

and F, = o{(B,,++, B)), — 0 <t < o}, Let ¢ ~ (9, ...,,) € (L**). For p =
0, define

212) WY, = {8~ @) € CI:GL, =

i 2 AR 4" ®n¢n1,"',nd IZ <o }

N=0 ny+e e tng=n
Denote by (S%)_, the dual of (8%),. Define
» »
W)= n 9,

$>0
With {"'"2,»» p =0} (3% is a nuclear space, and its dual
Y = U 9,
»>0
Each element of () is called a test functional, and each element of (B % is cal-

led a generalized Wiener functional or Hida distribution.
For € = (§,..., &) € S"(R), exponential functional

a 1 1 n "

(213) @@ = exp{Z ((xj, £ —‘18,|Z>} ~ <_|_*'§1® Q- QF d)»

e} 2 n,! n,!
x=(x, ", x) € RQ,

is a test functional. For any @ € (J%)™ the S-transform of @ is defined as

(2.14) (SP) (&) = KO, &Y, &€ S'R),

where <{+,-> denotes the pairing between ($%) and (8™ 1If @ € (I*%), then
(2.15) (S0) (&) =fg O + &) py(dr).

A functional U on S*(R) is called a U-functional. If
1) for each § = (§,..., &) € S (R) the mapping
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(21’...’ /ld) — U(ZI‘EU' e /Idsd)

has analytic continuation, denoted by #u(z,,-* -, 2,5 &, "+, &), on C”;
2) foranyn=mn+ - +n,n 20,;=1,...d,

. _ 1 e . L o\ m=Uteeetig)
Unl,...,nd(glr ) gd) - nl! e nd! jlz=:l j;zr-:l ( 1)
an
DETEED) “7—_—Tu(0a"'y0;$1}+”'+Ez}a"'v€lf+"'+§l;‘)
f<eee<tf <ot 07z, -+ 0%, ! ‘

is multilinear in (&, "+, &,);
3) there exist constants C, > 0, C, > 0, p € R such that for all (z, ",
z) € C"and (&, "+, &) € S (R)

d
|%(11»"‘, 2 6,0, &) | < Clexp{(/}z}llz}_ |2| 3 li.p}'

Potthoff-Streit characterization theorem states that a functional on J°(R) is the
S-transform of a Hida distribution if and only if it is a U-functional (cf. [5], only
the case of d = 1 is discussed there). Every Hida distribution is uniquely deter-
mined by its S-transform. In particular, if

(2.16) ve =3 I pooomp @ - ®E™D

n=0 ny+esetnyg=n

and for some p = 0

Ms

(2.17) ml e LA fy o s < o0,

Il

n=0 ny+eectny=n

where f, ..., € LY*(R™) ® - - - @L*(R™), then there exists ® € (J)_, such
that (S®) (&) = U(E), and the expression in (2.17) is just equal to | @";_p. In
this case, we also denote @ ~ (fnp---yn,,)‘

3. Local times of self-intersection

Let f be a bounded Borel function on R’ Then it is well-known by (2.15)
that for any 0 < s < ¢

(578, - B)I® = 1A ¢»av)

(d)

where {7,", t > 0} is the transition semigroup of d-dimensional Brownian mo-
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tion:

31 [T AW =
1 2
ff(yl,"' Ya) Wexp{ 2(t— 5 2 Z @y, — ) }dyl T dy,

Let §,, a= (a,, ", a,), be the d-function at point @ From (3.1) we have formal-
ly

(3.2) [S6,(B,~ B)1(§) =
mexp{ Z(t—s) ( f&(r)dr)}

It is not difficult to see that the right hand of (3.2) is a U-functional. In fact, by
the formula of the generating function for Hermite polynomials we have

f g dr

exp{ 2(1‘ (f &dr— )} %%H(I)<m)

[2x(t — 17" exp{— 2(1‘%3)2 (_/: &(ndr— a7>2]

= 2rt— 91T S 3 H{ i@ (=) )

a N
where x; = WI_ET Put

@ - gy, L (%) o
Drgreeen, (8, D) = [20(t = )] e jI=Il ) H, (z) =)
(3.3)

_ - _gd g2, 4 1 1 )®n,»
— d/Z d/4 ~zi, x2/2 (s, 1]
[2(t — 9] ¢ e, @) ()

Note that {e,(x), n = 0} is uniformly bounded: C = sup,, | e,(x) | < . Now for
any p > 0 we have

B4 @R L 0L <2 gl L D]

< 9o(t — 5] ﬁ( : en,( )> l(st}

7=1

d
< CRT2(t— )] ' H ni
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where n = n; + - -+ + n, and

S O% mlend @ LG DL

n=0 ny+eetng=n

<CU2t— )RSy o

n=0 nyteeetnz=n
=C2(t— )] P Z 27l < oo,
n=0
According to (2.16) and (2.17), we obtain the following

LEMMA 1. Foramy0<s<t, p>0anda € R’
8,(B,— B) ~ (... (s, D) € (&),

is a Hida distribution.
THEOREM 1. Ifa@ # 0, then foramy t =2 0, p > 0
Qm:f 3,(B, — B, dudv € (8°)_,
o<u<v<t
1s a Hida distrvibution.

Proof. Noting that

“sup {(u) ™%~y < o,
u>0

C,=m

(3.4) can be modified as

x‘,,_.

| (A—P) ®n(/);:‘)“.,”d(s’ t) |Z S CZC;Z—ZnP

R

J
Then we have
10.B, = By |-, < C°C, 227 Cluy,
f I6,(B, — B |l,_,dudv < oo.
0<u<v<t

Hence G, () € (J%)_,.

THEOREM 2. For amyt =0

57
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(3.5)
-2
c0= [ 6B,~B)~% T L., )]dudo

n=0ny+eeetng=n
O<u<v<t

is a Hida distribution, called local times of self-intersection for d-dimensional Brow-
nian motion, where 0 = 0.

Proof. At first, observe that let p > 0
(3.6) A1 15 = Z @2k +2)7 [y, e
< kZ=IO(2k +277(¢— 9" sup e; ()
Since sup, e;(x) = O(k_%), take p large enough such that
(3.7) é 2k + 2™ sup el(@) < 1.

Then by (3.6) and (3.7) we get

-p\ ®n 2 _ _ —d a Hn,(O) ' ~p (st) o
B8 Uy, 0 = (22— 917 T (F27) |47 et |
1 - n—
< PRIl @m™t— )",
. (Zk)
noting that H,,,,(0) =0, H,(0) = (— D" , k>0 for any k=0,
H(0) < k12" Let a > 0, from (3.8) we have
d-2
69 0B -B)-F T L@ )
n=0 ny+-cc+ny=n 2,—(p+a)
=| 2 2 L@y, (s, D)
n=d—1 ni+ec+ng=n 2,~(p+a)

=3 % ol @, (s ) [
=d

IA
AMg
™
S

27 AT T, (s D) [

IN
L

Z 2—2na(2n_)—d(t _ S)n—d

~1 nyteeetng=n

- 2 27t k="

n—d-—1

Il
—_
Do
A
~
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Take « large enough such that 27%/¢ < 1. Then

dudy < oo,

2,—(p+a)

J o |om-80-5 S bt

=0 ny+eeetng=n

0<Zu<o<t
Hence, the integral in the right hand of (3.5) exists in (Jd)_(pw) as Bochner integ-
ral, ie., G,( € (S%)_(ysa) is a Hida distribution. ]
From (3.5) we have
(3.10) G0 = [ (B, — B,)dud,
0<u<v <t

3.11) G, = f< _ (6B, ~ B) — [22(v — )] dudv,

(3.12)  G,(H = f< ) {6(B,— B) — [27(v — w1~ """} dudbv,
1
27w — )]

1 L »
————— > [ (B, - B)aB}dudv,
@Cm) (v — w) =1

(3.14) G, = f {5(3,, - B,) — 1

T
0<u<v<t [277-'(1) - u)]

@13 Gw= [ [sB,-B)-

0<u<v<t

1 i f ’ (B! — B")dB"}dudv
(27r)5/2(v _ u)7/2 i r u 7 ,

For d = 2, the integral

0(B, — B,) dudv
t

0<u<v<

has no meaning even in generalized sense, and must be renormalized according to
(3.5). The renormalization parts in G,(f) and G4;($ in Watanabe ([6]) are mistaken,
caused by his small error in computation.

LEMMA 2.  Set

a:ld) (t) —

—(n+l) ®2n 2
(v—u) V72 1, ,dudv| .
0<u<v=<t 2
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Then as n— o, fort > 0 we have

2t
~— d= )

3n*

(3.15) a1 op
~—, d=2,
=co, dx3.

Proof. By Fubini theorem on interchanging the order of integration, we have

1 1 2n
(3.16) al(® = f : | L Lo 7 e

n+d/2 n+d/2
- - 7,
0<Su<v<t v u) (S )
0<r<s<t
2n
(wWAs—uVy
- f (v — )" (s — P2 dudvdrds
0<u<v<t,0<r<s<t,
r<uU<S or u<r<v
on
(s —u
=2 < n+d/2 n+d/2 dudvdrds
<r<u<s<v<t (y — y) (s — 7
—d/2
(v—w"
+ 2 ———— dudvdrds

b<reu<vcs<t (g — p)"H"?

= 2(ay () + as D).
(317) a2 = f (s — r)_(“dmdrdsf (v — )" dudv
0<r<s <t r<u<v<s

=[n—d/2+Dm—d/2+ 21" f (s — N %drds

0<r<s <t

=CVNm—d/2+1)n—d/2+ 2],

where

£/6, d=1,
3.18 c = — ) Pdrds = § 2 _
( ) ¢ 0<r<s<t (s ) s t/2, d=2,

co, d=3
Below we consider only the case of d = 1 or 2.

(s —w” u dr

3.19 al @ =2 -—dudvdsf
( ) n ( ) 0<u<s<v <t (v — u)n+d/2 0 (s —_— )n+d/2
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—d/2+1 2;
w)" (s—w”

)n+d/ZSn+d/2—1

=m+d/2-1D" f ] dudvds

[(s
0<u<s<v<t (v —

=m+d/2—1) ag® — am®]. 0 <a® <ab®.)

u)n+d/2 (U ~u

(3.20) ;‘i)l(t) = -£< ) (v — u)—<n+d/2)dudvf (s — )" % gs
<u<v<t '
=CPm—d/2+ 2)“.
(s — u)
@
nalf) = o<u<s<t g"t2-1 ~ rvany duds f n+d/2
_ 1 (S _ u)n—d/2+1 (s _ u)Zn
=m+d/2—1) o< u<s <t [ sn+a/z—1 - Sn+d/2_l(t _ u)sn+d/2—l] duds

(d)

=m+d/2— 1)_1[“:31(0 - dr(g)zzg)} 0 < a0 < a;?;l ®.

t
@ _ —n+d/2-D) Y
A () = f ds f (s —
0

=m+d/2+1)" f s%s = o(1).

0

()

Thus a,15,(® = 0(1), an,() = 0(1), and by (3.19), (3.20) we have

(3.21) a (8) = i—z C"(1+0Q), d=1,2.

At last, (3.15) follows from (3.16), (3.17), (3.18) and (3.21). ]
In Lemma 2 one needs only that 2z is an integer.

THEOREM 3. Foranyt > 0 and a € R

GPM e W, d=1,2.

Proof. From (3.3) we have

n

@ exp(— 211 -sz) ¢ e, (.ZL']) Lo
Gy (@) ~< f (27[)21/4 ’ jgl \/I‘EJT (v—u)(n+d)/2 dudv)’

0<u<v<t

a; . . .
where x; = WVT—J—-TT and the first term is considered as zero when @ = 0 and

d = 2. Hence,
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(@ 2
G~ @ 1
i Z f e 2 (1) 1(%1 2
= IIe A ——— dudy
n=ng Nyt tng=n ( 7l')d/2 jop B (v — u)(n+d)/2 )

0<u<v=<t

o0 d

< C(l +> = el @)™ a:,'i)z(t))
n=1ny+ecc+ny=n j=1

< C(l + 3 n I n,_m>
n=1nyteest+ny=n 7=1
oo d

< c<1 +> = no#' ,‘1>
n=1nytece+n,=n =1
o d

< C(l + = n_7/6> < oo,
n=1

where

_{l,aZOandd=2,
0 0, otherwise

and C is a constant depending on only d and {, but may vary in different express-
ions. Thus G(m ® e WL ford=1,2. ]

Based on Lemma 2, it is plausible to reason that Theorem 3 does not hold for
d=3.

THEOREM 4. For any bounded Borel function f and t > 0

ff(a)Gi”)(t)da, d=1,
r

(3.22) f(B, — B)dudy =
vst [ r@6 (hda, d=2.
RZ

0<u<

(3.22) is the so-called Tanaka's formula.

Proof. We only give the proof for d = 2. We show the S-transforms of the
two sides of (3.22) are the same. Let § = (§,, &) € S(R) X S(R). Then

[S([r@6;" waa)| @ = [ r@rs6" 1)1 da

B -/;ez -[;<u<,,<, 27r{v((3 u) EXP { 2(1;{— u) = Z < _/;v 5,(7’)d7’>2}dudvda

= 2A( [ erar)dudv.

0<u<v=<t
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On the other hand,
[s(f_,.._ /B~ Boawas)|© = [ (SGB,~ B)I@duds

= , [Tﬁ)uf] (f: &(ﬂdr)dudv.

0<u<v <

Hence (3.22) follows. O

Even for d = 3 the Tanaka's formula (3.22) holds, but the integrals in the

right side of (3.22) should be understood in the sense of the Bochner integral in
(8% _, for any p > 0.

4. Local times

Compared with the results and proofs in the above section, we can easily
obtain the following results:
1) Foranyd=1,t=0

Lo = [ 5By =5 S L0 W) du e 59*

n=0 nytee+n,=n

Naturally, L,(#) may be considered as the local times at 0.
2) For any ¢ > 0, L,() € (L*"). In fact, note that

4t
t 2 R =
f u—(n+l/2)1(3i1]1du| — {2% + 1’ d 1:
° Lo d=2.

So even for d = 2, L,(#), t > 0, are impossible to be ordinary Wiener functionals.
3)If @ # 0, then for any t =0, p > 0

L0 = [ 8.Bdu e (3,

is a Hida distribution. L(da)(t) may also be considered as the local time at @.

4) For any t > 0, a € R, L;a) (® € (L*Y). In fact, noting that
low low

-£Su,v$t \/E ’ \/5

it seems that for @ # 0, L(Za)(t) may not be ordinary Wiener functionals.
For the case of d = 1 we can give another treatment. Kubo has established

242

dudv = m,
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the following generalized Ito’s formula (cf. [4]): for all f € S(R), 0 < s <,
t 1 t
(4.1) 7B) = 7B = [ 35f Bydu+ 4 [ 1 B

Take f(u) = ul,.,(w) = (u — a)", then f' =1, f” = 0, Substituting them
into (4.1) yields

t 1 t
42 B-a' - B -0 = [ 011, Bdu+ [ 6,B)du.
Since 1, ., (B,) is adapted, letting s — 0 in (4.2) yields
(a) ! ! 2,1
LW = [ 0,Bdu=20B,~ " ~ (=" = [ 1,.,B)B]I € L.
N 0

This is just the ordinary definition of local times for one-dimensional Brownian
motion. Obviously, we provide indeed a white noise analysis treatment of local
times for one-dimensional Brownian motion. This approach applies also to local
times of self-intersection for one-dimensional Brownian motion. In fact, by using
(4.1) it 1s easy to get

[ 6,B,— B)dudv
0<u<v<t

t
—_— _ . + o +,__ _ 2,1
=9 U; (B,—B,—a) du—(—a)'t j; <tl(a,m)(jfi'v Bu)dudBv] e (Y.

<u<v<
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