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§1. Introduction

Quantum Markov chain introduced by Accardi (cf. [1,2,3]) is one of natural

generalization of classical Markov chain. It has many interesting applications in

physics and the most important one is given by the paper of Fannes-

Nachtergaele-Werner ([4]), where an application of quantum Markov chain's tech-

nique enables us to understand the Valence bond states well.

In this note, by the terminology of quantum Markov chain we follow Accardi's

definition (cf. [1] or [3]):

Let be given a C -algebra S = B(i?) for some fixed separable Hubert space

H and d •= Θ N $ (where, ® means the C -tensor induced by the usual tensor

product of Hubert space). For each n e N, let be given a homomorphism

such that

A bilinear map 8 from SS (S)$ to 9$ is called a transition expectation if it is com-

pletely positive and identity preserving.

With above notations, quantum Markov chain (or quantum Markovian state)

is defined on d : = ®N58 as the following: a state φ on d is called Markovian

state if there exists a state φQ (initial state) on 9B and a transition expectation 8

such that

(1.1) φiJoia^Jiiβi)'

It is proved (cf. [3]) that any transition expectation 8 has the form
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(1.2) Six) = T r 2 ( Σ K*xK)

where, Tr2 means the partial trace with respect to the second factor; Kj

j = 1,2, * *. Moreover, the index j runs over a finite subset of N if H is a finite

dimensional Hubert space.

Throughout this note we restrict ourselves to the case of άim(H) = d < °°.

Since for each orthonormal basis (o.n.b.) ien)h=1 of H, B(//) can be considered as

the algebra of all d x d matrices, i.e. B(H) = Md, the further assumption is made:

For each K ^ S ® SB, we have the expression

h,h'

where | eh > < ew | means the matrix whose (/z, W) -element is equal to 1 and

elsewhere zero. In the following by the notation ® we shall denote the diagonal

subalgebra of Md (corresponding to ieh} Λ = 1 ) .

With above definitions and notations, each ί l , , d)-valued classical Mar-

kov chain {Xn}ζ=1 on a propability space (P, Ω) with initial distribution p and

transition matrix P = (p^j) can be understood as a quantum Markov chain in the

following canonical way:

i) each bounded function on {1, , d), say /, will be regarded as an element

o f ® :

//(I) 0 - 0

0 /(2) - 0
(1.4) I . : . :

Y 0 0 - fid)

ii) for each n €= N, let us define a homomorphism

(1.5) A C / ) - / θ ς ) , V/e®

iii) define

0 - 0

0 fc - 0
(1-6) 1 I M

^ 0 0 v

(1.7a) KIΛX' =0, iihΦh'

(1.7b) K n r h t h , : = 0 , V w > 2
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iv) define initial state φ0 by

(1.8) 0 o ( > : = T r ( | T ? .. T | ) .

.0 0

It is easy to check that

(1.9) 8,(x) : = Tr2(ΛΓ* KJ

where K1 • = Σ Λ | eh > < eh | ® Klh h, is a transition expectation with the proper-

ty:

(1.10)

and 0O is a state on Md. Therefore (φ0, 8^ is a quantum Markov chain and

moreover the restriction of this quantum Markov chain to the diagonal subalgebra

® is nothing but the given classical Markov chain.

From above discussion one can see that the choice of (0O, 8) is not unique. In

fact we can replace the initial density matrix

0 0

by any density matrix ω0 which has diagonal elements {plf p2," *>pd)\ Of course

there are many such density matrices. Moreover we can replace Kιhh by any Khh

which has only to possess the property:

(l l l ) Kh,hK*h(j,j)=phJ, V > = l , 2 , , d

Let denote

K0:=Σ\ehXeh\®Kh,h
h

and define

<DOκ') •— i r 2 uv 0 Ao;.

Then (Tr(ω o ), 80(')) is also a quantum Markov chain obtained from the same

classical Markov chain (p, P = (pij)) and moreover, by restricting the two quan-

tum Markov chains (Tr(α>0 ), <?0(*)) and (0O, 8X) on ®, one obtains the same clas-

sical Markov chain {p, P = (pij)).
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Now a natural problem can be asked: starting from a classical Markov chain

{p, P = (Pij)), what is the most general form of the quantum form of the quantum

Markov chains whose restriction to the diagonal subalgebra gives the classical

Markov chain? One can also ask the problem reversely: which kind of quantum

Markov chain gives, by restricting it to diagonal subalgebra, a classical Markov

chain?

Moreover, it is usually believed that some non-Markovian stochastic proces-

ses (classical) are quantum Markov chain. Then a natural question is this: which

kind of classical stochastic processes can be a quantum Markov chain? In order to

answer this question, first of all we have to understand which kind of quantum

Markov chain, by restricting it to diagonal subalgebra ®, gives a classical stochas-

tic process in the sense of 8 maps ® ® ® to ®?

Remark. Notice that if

(1.12) 8(3) (8)®) c ®

then we can consider the initial density matrix ω0 as a diagonal one since its

non-diagonal elements don't play any rule in this case.

In this note we give the answer of above questions. Our main results are

stated in the next section.

§2. The main results

In the section 1, we opened the problems and gave their motivations. Now we

shall state the answer of the problems. The proof of our main results is the con-

tents of the next section.

PROPOSITION (2.1). A transition expectation 8 maps ® <8)® to ® if and only if for

each r, r'', h ^ {1, , d) with r Φ rf, the matrix Σ ; KihγKihγ, has only zero di-

agonal elements.

DEFINITION (2.2). We say that an {1, , d}-valued classical stochastic pro-

cess {Xn)n=0 on probability space (P, Ω) is the quantum Markov chain (φ0, 8) if

8 satisfies (1.12) and the joint distributions are the same, i.e. for each n ^ N,

= *Ί. •.
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= φ(\ eι% > < β j <g> I eh > < eh\ ® ••• ®\e,n > < ej)

= φ o ( g ( \ e i < ) > < e i ΰ \ ® g ( \ e i ι > < e i ι \ ®

<n > < «ί.l ® 1)) 0).

Now we can state the results which replies the question: which kind of clas-

sical stochastic process can be a quantum Markov chain?

THEOREM (2.3). Let {Xn}ζ=1 be an {1, , d)-valued classical stochastic process

on a probability space (P, Ω). Then it is a quantum Markov chain if and only if there

exist a probability measure p0 on {1, , d) and a 3-indices cubic matrix (Tjik)

with the following properties:

(2.2a) TjXk> 0, V ; , ί , * e { l , , d)

(2.2b) ΣTjtiιk = l, V e {1,.. , Λ
ik

(2.2c)

such that the joint distribution is given by:

i\X0

 = ι0, Xι = %ι,'' ' , Xn — ίM)

= y i) (i)T T T T

THEOREM (2.4). L#£ {-X Ĵ̂ LQ 6β an {1, , d)-valued classical stochastic process

on a probability space (P, 42). 77ten iί t5 a quantum Markov chain if and only if there

exists an {1, , d) -valued classical Markov chain {(Zn, Yn)}n=1 on a probability

space (P', Ω') with the properties:

i) the transition probability

(2.3a) £(,.<>.(*'..'> : = P'((Zn, Yn) = (/', Γ) I (Zn_lf Yn_x) = (j, i))

is independent of i

ii) there exists a probability distribution p0 on {1, * * , d) and the initial distribu-

tion of {(Zn, Yn))n=o is given by

(2.3b) F((Z0, Yo) = 0", 0) = Σpo(k)Tkij
k

{where (Tijk) is determined by the process {Xn}ζ=Q as stated in Theorem (2.3)) such

that

(9 A\ T>(Y — i Y — i Y — i λ — T*'(V — i V — i V — i }\ΔΛ) J Γ V A Q — ί 0, Λ γ — ll9 , Λ n — ln) — Γ \ΪQ — l0, ϊγ — llt , ϊn — l n ) .
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COROLLARY. // the quantum Markov chain (φOf 8) on ® N M d has the property

that 8 maps ® ® ® to ®. Then the classical stochastic process, obtained by restricting

(0O, 8) to the diagonal subalgebra S), is stochastically equivalent to the second compo-

nent of an {1,* * *, d) -valued classical Markov chain {(Zn, Yn)}n=0 which has the

properties i), ii) in Theorem (2.4).

This Corollary is a direct conclusion of Theorems (2.3) and (2.4).

DEFINITION (2.5). We say that the quantum Markov chain (0O, 8) is a classic-

al Markov chain on the diagonal subalgebra ® if (1.12) is valid and

(2.5) 8(a®b) = a 8(1 ® 6 ) , V α, b e ®.

THEOREM (2.6). The quantum Markov chain (φQ, 8) is a classical Markov chain

on the diagonal subalgebra if and only if the operators {Kj} (see (1.2)) have the form:

(2.6) K, = Σ\ek><eh\®KiM, Vj=l,- ,d

sarily diagonal) d x d matrix, i.e.

Remark. The formula (2.6) means that each Kj is a block-diagonal (not neces-

7,1,1 0 - 0

(2.7) ' ° *'•" "' °

0 0

where, each KjlA (I — 1, , d) is a d X J matrix.

§3. The proof of the main results

This section is devoted to prove our results stated in the preceding section.

The basic step is to make transition expectation in more clear form. From (1.3),

one knows that for each b ^ Md,

(3.1) 8(\eiXem\®b) = Σ Ύτ2(K*(\ et><em\® b)Kj)
j

= Σh Σ^Tr2((k, >< < v Γ ® J θ ( | e, >< ej ®W(| e» >< eΓ| Θ^,J)

= A Σ^ I eκ > < ev I I et >< em \ \ eh >< er\ Tr(Σ K,*χybKiΛJ

= Σ\er,><er\Ίr(ΣK*ybKi,m,r).
Y,Y' j
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Since {| ef > < em | e Md : i, m e {1, , d}} is a basis of Md, we find that

for any a = (a(i, m)) e Md,

(3.2) 8(a ®b) = Σ a(i, m) [Σ \er,Xer\ Tr(Σ i ^ W ^ L

i,m r,rF j

By (3.2) and the fact that 8 is identity preserving, one obtains that

(3.3) Tr(Σ K*iybKjXr) = δryf Vi e-N.

Proo/ 0/ Proposition (2.1). For any | 0, > < £m |, | βΓ > < em, |, (3.1) shows

that

(3.4) g(U, > < emI ® I eΓ > < em,|) = Σ I ef >< er\Tr(ΣK*iy

If 8 maps ® ® ® to ®, then for any m, i

(3.5) «(k><^|®|e<><βJ) = Σ|^><

= Σ \er >< erI T r ( Σ KjfmtrK*m,r• \ e, >< e, I).

Therefore for any r Φ r'

(3.6) Tr ( Σ Kjrm,rK*my -\e{>< e{ |) = Σ K ^ A y (i, i) = 0.

This shows that 8 maps ® ® ® to ® only if for any rn, r Φ r\ the matrix

Σ ; KjtmrKhmy has only zero diagonal elements.

On the other hand, if for any rn, r Φ r\ the matrix Σ,jKjttntrKjtmy has only

zero diagonal elements, (3.4), (3.5) and (3.6) guarantee that 8(\em> <em\®b)

e ® for each J e i Since {\em>< em | } m e N is a basis of ®, it is obvious that

8 (a ® W ^ 8 for each α, b ^ ®. These arguments complete the proof.

Proo/ o/ Theorem (2.3). If classical stochastic process {Xn}n=0 on a probabil-

ity space (P, Ω) is a quantum Markov chain, then by definition, there exists a

pair (0O, (?) such that (1.12) and (2.1) are valid.

First of all, let see the initial distribution. By (1.3) and (2.1), for any i0 ^

ί i , - , < * > ,

(3.7) P(X0 = i0) = φo(8(\ \ >< eioI ® 1) = φo(Σ \ er, >< er|) ΣTr(X; )

By (1.12), we know that (3.7) is equal to
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(3.8) φo(Σ\er><er\)-Σ ^ J

Denote

(3.9) 0O( ) : = T r ( ω o )

with the density matrix ω0 = (o)kj), (3.8) becomes

(3.10) Σ ωr, Σ Tr (*,,,„,*,*,,) = Σ ωr,r Σ Σ ( i , , , / ^ (A, A).

Define

(3.11a) po(r) '= ωrιr9 V r e {l, , d)

and

(3.11b) ΓΓfίfJfc : = Σ (Kjti,rK*i>r)(k, ft), V r , i, A e {1, , <β.

Then p0 is a probability measure on {1, *, d} and (2.2a,b,c) are satisfied.

Our second step is to compute the joint distribution. In order to do this we

must know the explicit form of the matrix

(3.12) 8{\eio><eiQ\®i(\eh><eh\®

By the formulae (3.1) and (1.12), we find that (3.12) is equal to

(3.1-3) Σ k o > < ero I Σ A
r
 J

Applying again the formulae (3.1) and (1.12), we are able to rewrite (3.13) as

(3.13a) Σ k o >< euI Σ Tr<**„,„ Σ I *„ >< ^ I Σ T r ( ^ , n

eh I ® ® «(| ê ., >< ^ I ®«(| «,, >< e,J ® D)

= Σ | ί , , X e r , | Σ TrϋC,(r l f rx) Σ
oi h h

ί ( I βίχ > < ̂  I ® ® * ( | ^ > < ̂  I ® ί ( I ̂  > < ^ I ® D ) •)).

By using the symbol introduced in (3.11b), the right hand side of (3.13a) becomes

(3.13b) Σ k 0 > < «r. I Trψlψrχ Σ Ύr(K*Xr8(\ eh >< eh I ®
r r h

e.><et \®S(\e, >< e, |
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Repeating above discussion, we find that (3.13) is equal to

(3.14) Σ \ e r > < e r \ T r { r T r t r ••• Tr , r Tr , r.^ ' ' y o ro ' ^o^O'^i r\'ι\>r2 rn-i'ln-i'rn rn>ιn>r

ro,rv'-;rn,r

Introducing new indices:

(3.15) j -= rOf ; 0 : = rlt- , j n _ λ : = rn,jn'-= r

(3.14) can be rewrited as

(3.14a) Σ \e}>< e} \ Tjλ^JHλχ>H TJn_2tin_ιJn_TJn_vlnJn.
jjo,jV' jn

By acting the initial state φo(') = Tr(ω 0 •) to (3.14a), one obtains (2.2d) with

po(j) '= ωo(j, j).

Now let be given a classical stochastic process {Xn}ζ=1 with the properties

(2.2a,b,c,d), we have to construct a quantum Markov chain {0O, 8} such that (1.12)

and (2.1) are satisfied.

Taking the initial density matrix ω0 as

/Pod) o - o
0 po(2) - 0

0 0 - po(d

φo(') : — Tr(ω o ) is, clearly, a state on Md.

Define

(3.16) K'= Σ\ehXer\<8)Khr
h,r

(3.17) K* '= WTj>iΛejf V ^ J v ^ ^

We have

(3.18a) KuKΪr = 0, Vi, Φ / e {1, , d}

and

(3.18b) KijK*M> *) = Γ ; ^ v ^ i ^ fc e U, , Λ

Thus, a quantum Markov chain (0O, (?) is obtained and these end the proof of

Theorem (2.3).

Proof of Theorem (2.4). Let classical stochastic process {Xn}ζ=0 on a probabil-

ity space (P, Ω) be a quantum Markov chain. Then by Theorem (2.3), we know
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t h a t ^ o , (Tjik) satisfy (2.2a,b,c,d).

Define a probability measure p(',') on {1,* , d} by

(3.19) p(J,i)- =Σpa(r)Tr,u

r

and a transition matrix (pu,i),(r,ir)^ by

(3.20) Pv,iur,n := T)χy> V;, ι, j ' 9 V G {1, , rf}.

Then with a canonical way we can construct a probability space (P', £ ' ) and an

{1, , d} -valued Markov chain {(Zn, Fw)}~=1 with the initial distribution:

(3.21) P'((Z0, Yo) = (/, 0 ) =/>(/, 0 = ΣpoωTkJJ
k

and the transition probability:

(3.22) P'((Zn, Yn) = (/', ίθ I U . - ! , ̂ - i ) = 0", 0) -ίo.o.o',,') = ^ . r j '

Thus by a simple computation we know that the joint distribution P'(Y0

 = iQ,'' ' ,

Yx — ij is given by the right hand side of (2.2d) and this implies (2.4).

On the other hand, let be given an {1, , d) -valued Markov chain

{(Zw, Yn)}ζ=ί on a probability space (P', β θ . If it has the properties i) and ii) in

Theorem (2.4), then following conclusions are obvious:

1) p0 is a probability measure on {1, * , d} and p0, (Tjik) satisfy (2.2a,b,c);

2) the joint distribution of {Yn}ζ=1 is given by the right hand side of (2.2d).

These end the proof.

Proof of Theorem (2.6). For any m G {1, , d], (3.5) shows that

(3.23) 8 (\em >< em \ ® 1) = Σ \er >< er \ T r ( Σ Kjfm>rK*m>r).
r j

On the other hand, (2.5) makes sure that

(3.24) ${\em><em\®\) = \em><ej.

Comparing (3.23) and (3.24), we have

(3.25) Ύr(ΣKlmXm,r) = δm,r
j

and this gives that

(3.26) Kjm>r = 0, V m Φ r G {1,2, , d)

i.e. Kj has the special form as (2.6).
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If any Ki (j <Ξ {1, , d}) has the form (2.6), we shall prove that

1) for each a, b <= ®, S(a ® ft) = α «(l ® ft)

2) for each i e g , 8(1 ® 6) G ®.

It is clear that with 1), the condition 2) is equivalent to

2)' for each flje®, <£(α ® ί ) e » .

The formula (3.5) shows, since any Kj has the form (2.6), that

(3.27) 8(1 ® ft) = Σ \er >< er\ Tr(Σ KjrrbKjrr), Vft e ®

and this belongs to ®. Moreover

(3.28) $ (a <g> b) = Σ aim, m) [\em><em\ T r ( Σ K*mMbKLmJ]
m j

:i,D 0 - 0

0 a(2,2) - 0

0 0 ••• aid, d)

,i) 0 - 0

L; o oOJ\j o oj U

= a-8(l ® ft).

This finishes the proof.
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