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A CONSTRUCTION OF PEAK FUNCTIONS

ON LOCALLY CONVEX DOMAINS IN Cn

SANGHYUN CHO*

1. Introduction

Let i3 be a smoothly bounded pseudoconvex domain in C and let A(Ω)

denote the functions holomorphic on Ω and continuous on Ω. A point p ^ bΩ is a

peak point if there is a function/^ A(Ω) such that/(/>) = 1, and | f(z) | < 1 for

z ^ Ω — {p}. The existence of peaking functions is a qualitative converse of the

maximum principle: if / *= A(Ω), then

When Ω is strictly pseudoconvex, the situation with regard to peak functions is

fairly well understood, but in the weakly pseudoconvex case we know very little.

If β c c C is pseudoconvex and bΩ is of finite type, Bedford and Fornaess [1],

showed that there is a peak function in A(Ω). This method also works for finite

type domains in C where the Levi-form of bΩ has (n — 2)-positive eigenvalues.

We also mention the work of Bloom [2], Hakim and Sibony [10], and Range [16] on

the existence of peak functions with additional smoothness up to the boundary of

Ω, i.e., in the various subclass of A(Ω).

Recently Fornaess and McNeal [9] proposed a new method to construct peak

functions on finite type domains in C and on decoupled domains in Cn. Their

method depends on the solvability of 9-equation with L°° or Holder estimates of

the domain, and on the estimates of the Bergman kernel on and off the diagonal

near p ^ bΩ. Here we propose a method different from Fornaess and McNeaΓs.

Namely, we construct a regular bumping family of pseudoconvex domains outside

1 3
V, and use Bishop's ~τ~~χ method directly on bumped domains. This method can

be applied for the domains where the precise estimates of the Bergman kernel

function on and off the diagonal are known but the L°° or Holder estimates of the
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9-equation is not known.

The precise estimates of the Bergman kernel functions near p e bΩ are

known for instance, finite type domains in C [4,11], decoupled domains in C

[12], finite type domains in C with the Levi-form of bΩ (n — 2)-positive eigenva-

lues [6,7]. Also the existence of peaking functions are known for these domains. In

this paper we will construct a peak function for locally convex finite type domains

in Cn. We will use McNeaΓs [15] estimates of the Bergman kernel functions for

locally convex domains. We state our main theorem as follows:

THEOREM 1.1. Let Ω c: c Qn be a smoothly bounded pseudoconvex domain and

let bΩ be of finite type. Suppose p ^ bΩ and Ω is convex near p. For each small neigh-

borhood V of p, there is a peak function that peaks at p and extends holomorphically up

tobΩ\V.

We will prove Theorem 1.1 in Section 4.

2. Smooth bumping families

Let Ω be a smoothly bounded pseudoconvex domain in C with smooth defin-

ing function r and let 0 G bΩ. If g : C —» C is any smooth function with g(0) = 0,

let v(g) denote the order of vanishing of g at 0. For a vector valued G — (gv.. .,

gn), let v(G) denote the minimum order of vanishing of the g{ at 0.

DEFINITION 2.1 (DΆngelo). 0 is a point of finite 1-type if

supG

 UJ(G) =Δ(0) < oo,

where G : C —* C is a complex analytic map with G(0) — 0 Δ(0) is called the

type of 0.

DEFINITION 2.2. Let p ^ bΩ be an arbitrary point and let V be a neighbor-

hood of p. By a smooth bumping family for Ω outside V we mean a family

{β ί } 0 < ί < 1 of pseudoconvex domains with C°° defining functions {rt} with the fol-

lowing properties:

(a) Ω = Ωo,

(b) Ωtι c: Ωt2 if tι < t2, and rt(z) is smooth in z and t,

(c) for any neighborhood U of 9,0\ V there is a t0 > 0 such that Ωt\U =

Ω\Uίor all ί e [0, f0].

The following theorem can be found in [5].
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THEOREM 2.3. Let p be a point of finite 1-type in the boundary of a pseudoconvex

domain Ω in C with smooth defining function r(z). Then for each neighborhood V of

p, there exists a smooth 1-parameter family of pseudoconvex domains {Ωt}0<t<t, each

defined by Ωt — {z r(z, t) < 0), where r(z, t) has the following properties:

(a) r(z, t) is smooth in z near bΩ, and in t for 0 ^ t < t0,

(b) r(z, f) = r(z) forz<έ V,

(c) | £ (z, t) < 0,

(d) r(z, 0) = r(z),
dr

(e) for z in V, -QT < 0.

DEFINITION 2.4. Suppose Ω> p e bΩ, V be as Theorem 2.3. Then we say

iΩt}0<t<to a bumping family of Ω with front V.

THEOREM 2.5. Let Ω c c C 6β α smoothly bounded pseudoconvex domain and

let bΩ be of finite 1-type. Assume p ^ 6.G αwrf V is a small neighborhood of p. Then

there is a 1-parameter family of a smooth bumping family {Ωt} outside V.

Proof Choose a neighborhood U of p such that 7 c c [/. Since bΩ is com-

pact, we can choose points zu...,zN^bΩ and εlt..., εN > 0 such that

(1) Ω is pseudoconvex and bΩ is of finite type,

(2) U f ^ B U , , ε,/2) ^bΩ\U,

(3) 7 Π £ ( * „ εt) = 0 , / = 1 , 2 , . . . , J V ,

(4) -BU,-, ε f ), is contained in a neighborhood V{ where Theorem 2.3 can be

applicable, i — 1,2,..., iV.

Set Vj = JB(zf, Sj ), z = 1,2,. . ., N, for the convenience. Consider a bumping fami-

ly of Ω with front Vv Since the type condition is stable under small

C°°-perturbations of bΩ, we will get a family iΩt^0^ti<aι of smooth pseudoconvex

domains satisfying (l)-(4) for the domains Ωtί (instead of Ω) provided ax is suffi-

ciently small. For each Ωtί, 0 < tx < av we consider a bumping family of Ωti with

front V2 and call it {Ωht)Q<t2<a2. Again {Ωtit}0<t2<(X2 will satisfy (l)-(4) provided

a2 is sufficiently small. Continuing in this manner, we will get a bumping family of

pseudoconvex domains {Ωtit2 tN) outside V. Obviously we can regard this family

as a 1-parameter family of pseudoconvex domains. •

3. Estimates on the Bergman kernel

In this section, we estimate the Bergman kernel function on a locally convex
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domains in C . For the estimates of the kernel on the other domains, one can refer

[4,6,7,11,12].

Let β c c C be smoothly bounded and convex in some neighborhood U of

p €= bΩ. Suppose that p is a point of finite type T in the sense of DΆngelo [8]. In

[13], McNeal showed that T is actually the maximum order of contact of bΩ with

complex lines at p. The convexity of bΩ in U is independent of the choice of the

local defining function. Furthermore we may assume that the defining function r

for U Π bΩ has the property that all the sets iz r(z) < η) Π U are convex for

η in some range — η0 < η < η0, η0 > 0. Let Sn = {ζ ^ C* | ζ | = 1). Then

each element of 5 , together with the point q near p determines a complex line in

Cf. If ζ ^ Sn and η0 < η < η0, we denote the distance from q to the level set iz r(z)

= ϊ]} along the complex line determined by ζ by δη(q, ζ). Assume p = 0 ^ bΩ.

PROPOSITION 3.1 (15, Proposition 2.1). After perhaps shrinking U, for every q ^

Ω Π U and every ε > 0 sufficiently close to 0, there exist coordinates (zv . . . , zn)

centered at q, positive numbers τx{q, ε) , . . ., τn(q, ε), and points pv . . ., pn ^ {z r(z)

= ε + r(q)}such that in the coordinates (zίf..., zn), the defining function r satisfies

(i) for 1 < / < n,

(ii)t/i<>.

r,(ί, ε)'

(iii) if i > j, I-5T (A) I = 0.

define the poly disc

Pε(q) = {2 e ί / ; | * J < Γ ^ ? , e ) , . . . , | z w | < r n ( ί , ε ) } ,

α constant c > 0, independent ofq^ΩΓ) U, such that cPε(q)

Let us introduce a quantitative estimate on the weights r ^ , ε). Let £; = ,r;

+ ixj+n for 1 < j < n denote the underlying real coordinates. For each 2 < i < n,

an application of Taylor's theorem gives

r *(0,...,:r,,0..., 0) = r(q) + Σ βi(ί)x* + O(\x{r Γ
+1)

A:=2
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Since each Tt(qf ε) is the maximum distance in Rezj direction to the level surface

{z r(z) = r(q) + ε}, we have that

ε + r(q) = r(q) + Σ ak(q)τt(q, *)" + β{\ *,(«. e) Γ+1).
k=2

For 2 < k < T, define

A[(q) = \ak(q) \

and for ε > 0, set

(3.1) σ<(ί, ε) = min{(e/Ai(ί))« 2 < k < T).

Then it was shown in [15] that, for each 2 < z < w,

(3.2) a{(qf ε) ^ r,-(i, ε) ^ a ?(^, ε).

From the construction in Proposition 3.1, τx{q, ε) is the distance from q to bDqε

where bDqε = {z ^ U r(z) = ε + r(q)}. Hence R e ^ is the normal direction and

τ ^ ^ , ε) ~ ε independent of q €= ί7.

In these setting, McNeal got the following estimates for the Bergman kernel

function.

THEOREM 3.2. Suppose Ω c c C is smoothly bounded and pseudoconvex. Let

p ^ bΩ be a point of finite type T and assume there is some neighborhood U of p so

that Ω is convex in U. There exists a neighborhood F e e U so that if q €= V f) Ω,

(3.3) KΩ(q, q)*ή τ,(q, δ)'2,

where δ = | r(q) |.

Suppose that qι, q2 ^ U C\ Ω. Define

M{q\ q2) = infίε > 0 q2 e P.fo1)},

where P ε ( ^ ) is constructed from the coordinates about q as in Proposition 3.1.

Set δ = M(q\ q2). Then

M(q\ q2) « I ffί - ίfl + Σ Σ Aΐiq1) \ q) - q] |',
ί=2 /=2

where the coordinates of q and # are measured in the coordinates associated to

q and δ by Proposition 3.1. In the following, we let D{ denote the differential

operator -g— where z{ is one of the coordinates constructed in Proposition 3.1
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associated to q\ For multi-indices a and β, DaDβ = D?1. . .D^D^1. . ,Dβ

n

n with

the convention that the holomorphic derivatives act on the first n variables of the

kernel function and the anti-holomorphic derivatives act on the last ^-variables.

THEOREM 3.3. Let ί 3 c c C be a smoothly bounded, pseudoconvex domain. Sup-

pose that near p €Ξ bΩ, Ω is convex and that p is a point of finite type T. There exists

a neighborhood U of p so that, for all multi-indices α, β, there exists a constant Caβ

such that for all q , q ^ U Π Ω,

' 2 ' a t '
t'βi(3.4) I DaϊfKΩ{q\ Q2) I ̂  Caβ Π r,V, δ)

i = l

where δ = (| r(qι) \ + \ r(q2) \ + M(q\ q2)).

LEMMA 3.4. Let Ω and p ^ bΩ be as in Theorem 3.3. Then there exist a neigh-

borhood U of p and a constant C so that

I K(z, q)/K(q, q)\<C

for all z, q ^ U.

Proof Take a = β = 0 in (3.4). Then we have

\KQ(z,q) I < C Π τ,(ί, (5)"2,
i = l

where δx = (| rU) | + | r ( ί ) I + M{q\ q2)). Also from (3.3) we have KQ(q, q) ~

ΐf^Tiiq, δ 2 )" 2 , for δ2 = | r(^) |. From (3.1), (3.2) and from the definition of τf,

one can see that Tj(q, δ) is an increasing function for δ. So | KΩ(z, q)/KΩ(q, q) \

< C for some C> 0. Π

4. Construction of peak functions

Suppose that ί 3 c c C is a smoothly bounded pseudoconvex domain and p €=

W2 is a point of finite 1-type. Then Catlin's theorem [3] says that there are ε > 0

and a neighborhood U in which 9-Neumann problem satisfies a subelliptic esti-

mate of order ε > 0 on (0,l)-forms. For each w ^ U c Ω, define the function

u ί \
h»{z) ~ KΩ(w,w)'

We will estimate KΩ(z, w) for z outside a certain neighborhood of w and will
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show that I hw(z) \ is quite small outside that neighborhood. For the convenience

in notation, we denote by C the various constants that follows.

Let 7Γ be a projection onto bΩ and set p — π(w). For η > 0, let B(p, η)

denote the euclidean ball centered at p of radius η. Let ζ ^ C (C ) be a function

with the property that ζ = 1 on Ω\B(p, η) and ζ = 0 on B\p, ~j, and let N

denote the 9-Neumann operator on (0,l)-forms. The following theorem was proved

in [14].

PROPOSITION 4.1. Let Ω, U, and ε > 0 be as above. Let s, t ̂  R+. // a is a

smooth (0,l)-form in the domain of the Kohn Laplacian and suppα c B\p, ~^J then

there is a constant Cst > 0 so that

Let φ G C~(O,1) be a non-negative radial function with j φ = 1. For M;

[/, set

, /x _/ί(«/)rai

i/^«/\

Then from the Kohn's formula,

KΩ(z, w) = φw(z) - d*Ndφw(z).

Assume s u p p ^ c B\p, -Q-J. Then from the Proposition 4.1 with 5 = r + 1, we

have

If t > n ~\- 1, Sobolev's lemma gives

|| φ. t<(-i, = sup{| (φm f) I / e Co", II / lϊr_x < D

for some C > 0. If we choose r > w + 1, another application of Sobolev's lemma

shows

sup, I ζ(z)Ka(z, w)\<C\\ ζ(-)K0( , w) \\r.
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Hence

supj ζ(z)KΩ(z, w) I < Cη-

Now set ϊj = δ(w)^2(2n+4)'. If we combine Theorem 3.2 and Theorem 3.3, we have

proved the following:

PROPOSITION 4.2. Let Ω and η be as above. There exists a constant C > 0, inde-

pendent of w G t/, so that

I *„(*) I < Cδ(w)

forw e U andz^ Ω\B(π(w), η).

Now we denote by JV the interior normal to the boundary of Ω at p. In [15],

McNeal showed that the sharp subelliptic estimates of 9-equation holds near p ^

bΩ. So we may take ε — -ψ. Set η — -KTR—_ι_ j \ T

LEMMA 4.3. For every q on N, let \ q — p \ = d. There exists a constant C > 0

such that for every point q on N sufficiently close to p, there exist a neighborhood Up of

p and a holomorphic function h = hq on Ω such that

(1) \h I < C on Ω,

(2) h(q) = 1,

(3) \h(z) I < CdforztΞ Ω\UP,

(4) \Dh\<^

Proof Define hq(z) = UΓ(z, q)/K(q, q). Property (2) is clear. From Proposi-

tion 4.2, we have | hq(z) \ < Cd for z e Ω\B{π(q), dv). This proves (3) with

£/, = B(p, dη). Lemma 3.4 gives \ h\ < C for z ^ Up = B(π(q), dη). This fact

together (3) gives (1). Also from the estimated of Theorem 3.2 and Theorem 3.3,

C
we have | Dh \ < ~τ. LJ

We now ready to prove Theorem 1.1.

Proof of Theorem 1.1. We may assume that p = 0. Let the type of p is equal

to T and choose a neighborhood U oί p such that the subelliptic estimates for

9-equation of order -ψ hold on U and Proposition 3.1, Theorem 3.2 and Theorem
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3.3 hold on U. We denote by N the interior normal to the boundary of Ω Άtp. For

each neighborhood V da JJ of p, choose a neighborhood Vv V1 c c V c c U, so

that V̂  (Ί Ω is convex. Next we consider a 1-parameter family of a smooth bump-

ing family iΩt}o^t<to outside Vv We may assume that Vλ Γ\ Ω = Vλ Γ\ Ωt for all

t>.0, after perhaps shrinking Vj, and fl\^c c Ωt \ V for all 0 < t < t0.

Now fix 0 < ti < ί0 and consider the pseudoconvex domain Ωt. Since the type

condition is stable, we may assume that bΩtχ is of finite type. Also we have d —

d i s t ( β \ F , bΩh\V) > 0. Choose (by induction) a sequence qn coverging to p

along N and define hn(z) = hQn(z + qn ~ p), where hQn is the function defined on

Ωh (instead of Ω) as in Lemma 4.3 associated with qn. Notice that hn(z) is defined

on Ω\V, and on U intersect a translate of Ω which contains Ω Π V, provided qQ

is sufficiently close to p. Therefore hn is well defined and holomorphic on Ω for

each n > 0. Let Un denote the neighborhood corresponding to hn as in Lemma 4.3.

Without loss of generality, we may assume that Un+ι <z C Un. For a suitable con-

stant 0 < c < 1, to be determined later, let r = 1 — c and define a peak function

as H = r Σζ=0 c hn. Let us estimate H on various sets. First outside Uo. Then

I hn I < ~2 for every n by the property (3) of Lemma 4.3 provided that q0 is

c 1
sufficiently close to p. So we get that | H \ < r Σ ^ = o ~~o~ = ~o From the continuity

of hk> 0 < k < n — 1, and from the fact that hk(p) = 1, we may (inductively)

choose qn and hence a neighborhood ί/w so that | hk \ < rn for k < n on C7Λ, where

rM > 1 is arbitrary close to 1. Hence for z ^ Un\ Un+1, we have that | hn \ < C

and I /^Cε) | < TΓ (by the property (3) of the Lemma 4.3) if k > n. Hence for z ^

t/w \ ί/Λ+1, we estimate H as follows

\H\ <r\Σrnc
k + cnC+ Σ ck2\

*-k<n k>n J

- c ) , „„ , r. c
= r- 1 - c '» ' 'L " ' 2 2(1 - c)

-cn)rn+^cn+1 + rCcn

where sM < 1 can be chosen arbitrary close to 1. If rC = -~, for instance, we have

HI < 1 and r — -q^r, c = -^r. Notice that Hip) = 1 and H is continuous on
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and holomorphic on Ω\ Fand this proves Theorem 1.1. Ώ

Remark 4.4. In the proof of Theorem 1.1, we may take, for example, rn = 1 +
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