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A CONSTRUCTION OF PEAK FUNCTIONS
ON LOCALLY CONVEX DOMAINS IN C”

SANGHYUN CHO?

1. Introduction

Let 2 be a smoothly bounded pseudoconvex domain in C” and let A()
denote the functions holomorphic on £ and continuous on Q. A point p € b2 is a
peak point if there is a function f € A(2) such that f(p) =1, and | f(2) | < 1 for
z € 2 — {p}. The existence of peaking functions is a qualitative converse of the
maximum principle: if f € A(£), then

| f(2) | <sup,l fl, z€ Q.

When £ is strictly pseudoconvex, the situation with regard to peak functions is
fairly well understood, but in the weakly pseudoconvex case we know very little.
If 2 << Cis pseudoconvex and b2 is of finite type, Bedford and Fornaess [1],
showed that there is a peak function in A(£). This method also works for finite
type domains in C" where the Levi-form of b2 has (n — 2)-positive eigenvalues.
We also mention the work of Bloom [2], Hakim and Sibony [10], and Range [16] on
the existence of peak functions with additional smoothness up to the boundary of
£, ie., in the various subclass of A(£).

Recently Fornaess and McNeal [9] proposed a new method to construct peak
functions on finite type domains in C* and on decoupled domains in C". Their
method depends on the solvability of 8-equation with L” or Helder estimates of
the domain, and on the estimates of the Bergman kernel on and off the diagonal
near p € bf2. Here we propose a method different from Fornaess and McNeal’s.
Namely, we construct a regular bumping family of pseudoconvex domains outside

1 3
V, and use Bishop’s VY method directly on bumped domains. This method can

be applied for the domains where the precise estimates of the Bergman kernel
function on and off the diagonal are known but the L™ or Holder estimates of the
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0-equation is not known.

The precise estimates of the Bergman kernel functions near p € b2 are
known for instance, finite type domains in C” [4,11], decoupled domains in C"
[12], finite type domains in C” with the Levi-form of b2 (# — 2)-positive eigenva-
lues [6,7]. Also the existence of peaking functions are known for these domains. In
this paper we will construct a peak function for locally convex finite type domains
in C". We will use McNeal’s [15] estimates of the Bergman kernel functions for
locally convex domains. We state our main theorem as follows:

TueoreM 1.1. Let 2 € < C” be a smoothly bounded pseudoconvex domain and
let b82 be of finite type. Suppose p € b2 and Q is convex near p. For each small neigh-

borhood V of p, there is a peak function that peaks at p and extends holomorphically up
to b2\ V.

We will prove Theorem 1.1 in Section 4.

2. Smooth bumping families

Let 2 be a smoothly bounded pseudoconvex domain in C” with smooth defin-
ing function 7 and let 0 € b£2. If g : C — C is any smooth function with g(0) = 0,
let v(g) denote the order of vanishing of g at 0. For a vector valued G = (g,,.. .,
g,), let Y(G) denote the minimum order of vanishing of the g; at 0.

DeriniTION 2.1 (D’Angelo). O is a point of finite 1-type if

supc% = 4(0) < o,

where G :C— C" is a complex analytic map with G(0) = 0; A(0) is called the
type of O.

DEFINITION 2.2. Let p € bf2 be an arbitrary point and let V be a neighbor-
hood of p. By a smooth bumping family for £ outside V we mean a family
{2} <<, of pseudoconvex domains with C” defining functions {r,} with the fol-
lowing properties:

(a) = Qo‘

(b) 2, < &, if t, <1, and 7,(2) is smooth in z and ¢,

(c) for any neighborhood U of 02\ V there is a t, > 0 such that 2,\ U =

Q\ U for all t € [0, ¢,].

The following theorem can be found in [5].
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THEOREM 2.3. Let p be a point of finite 1-type in the boundary of a pseudoconvex
domain i C" with smooth defining function r(2). Then for each neighborhood V of
D, there exists a smooth 1-parameter family of pseudoconvex domains {R2,}, t<ty €ach
defined by 2, = {z; (2, ) < 0}, where 7(z, t) has the following properties :

(a) 7(z, D is smooth in z near bR, and in t for 0 < t < t,,

(b) 7(z, D =72 forz &V,

(c) % (z, ) <0,

(d) 7(z, 0) = »(2),
v 2

(e) forzmV, P 0.

DErINITION 2.4, Suppose 2, p € b2, V be as Theorem 2.3. Then we say
{2} <<, a bumping family of £ with front V.

THEOREM 2.5. Let R C C" be a smoothly bounded psewdoconvex domain and
let b8 be of finite 1-type. Assume p € b8 and V is a small neighborhood of p. Then
there is a 1-parameter family of a smooth bumping family {Q,} outside V.

Proof. Choose a neighborhood U of p such that V C C U. Since b8 is com-
pact, we can choose points zy,..., 2y € b2 and ¢,,..., ey > 0 such that

(1) 2 is pseudoconvex and bR is of finite type,

(2) UY, Bz, ¢,/2) D bR\ U,

(3) VN B(z,e) =0,i=1,2,..., N,

(4) B(z, €;), is contained in a neighborhood V; where Theorem 2.3 can be

applicable, t = 1,2,..., N.

Set V; = B(z, ¢),1=1,2,..., N, for the convenience. Consider a bumping fami-
ly of £ with front V,. Since the type condition is stable under small
C”-perturbations of b2, we will get a family {8, }9<,<a, of smooth pseudoconvex
domains satisfying (1)-(4) for the domains .Q,1 (instead of ) provided «; is suffi-
ciently small. For each “Qh’ 0 < t, < a,, we consider a bumping family of Qt; with
front V, and call it {2, }o</<a, Again {2, )<, <o, Will satisfy (1)-(4) provided
a, is sufficiently small. Continuing in this manner, we will get a bumping family of
pseudoconvex domains {£,, , } outside V. Obviously we can regard this family
as a 1-parameter family of pseudoconvex domains. Ul

3. Estimates on the Bergman kernel

In this section, we estimate the Bergman kernel function on a locally convex
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domains in C". For the estimates of the kernel on the other domains, one can refer
(4,6,7,11,12).

Let 2 € C C” be smoothly bounded and convex in some neighborhood U of
p € b£2. Suppose that p is a point of finite type T in the sense of D’Angelo [8]. In
[13], McNeal showed that T is actually the maximum order of contact of b2 with
complex lines at p. The convexity of b2 in U is independent of the choice of the
local defining function. Furthermore we may assume that the defining function 7
for U N b82 has the property that all the sets {z; #(z) < n} N U are convex for
n in some range — 1, <N <17y N, >0. Let " ={ & C";|{|=1}). Then
each element of S”, together with the point g near p determines a complex line in
C" If £ € S" and 5, < n < 1, we denote the distance from ¢ to the level set {z; #(2)
= 5} along the complex line determined by { by d,(q, {). Assume p = 0 € bQ.

PropositioN 3.1 (15, Proposition 2.1).  After perhaps shvinking U, for every q €
QN U and every € > 0 sufficiently close to 0, there exist coordinates (2, . . ., 2,)
centered at q, positive numbers 7,(q, €), . . ., T,(q, &), and points p,,. .., p, € {z;7(2)
= ¢ -+ r(q)} such that in the coordinates (z,,. .., 2,), the defining function v satisfies

() for1 £ 1< m,

z-1 (Qy E)

n(g, ) _ or 29
T q, € ’

7,(q, &) ~ 0z @) | =<
(i) if 1 < j,

Tl(q, 8)
Ti(q’ 6) ’

e
(i) if 1 > 7, |g—2 @) =o0.
Also if we define the polydisc
P =1{z€U;l|lz|<tlq9),...,|2]|<r1,q, e},
then there exists a constant ¢ > 0, independent of ¢ € Q N U, such that cP.(q) C {z
e U;r@@ <e+ rig).

Let us introduce a quantitative estimate on the weights 7,(q, €). Let z;, = x;
+ wx;,, for 1 £ j < n denote the underlying real coordinates. For each 2 < i < 5,
an application of Taylor’s theorem gives

T .
r:2(0,...,2,0...,0) = (@) + = a,(@x; + 0(x,|™™
k=2

r(g) + fi(x).
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Since each 7,(q, €) is the maximum distance in Rez; direction to the level surface
{z; r(z2) = r(q) + ¢}, we have that

e+ =g + 3 d@eg o + 6 |,
k=2

For 2 < k < T, define
4@ =a@|
and for € > 0, set
(3.1) 0.(q, © = min{(e/AL(@)7; 2 <k < T).
Then it was shown in [15] that, for each 2 < ¢ < 5,
(3.2) 0,(q,¢8) < 1(q,¢) <o0,q,e).

From the construction in Proposition 3.1, 7,(q, ¢) is the distance from ¢ to bD,
where bD,, = {z € U ; r(z2) = ¢ + r(¢g)}. Hence Rez, is the normal direction and
7,(¢, €) = ¢ independent of ¢ € U.

In these setting, McNeal got the following estimates for the Bergman kernel
function.

THEOREM 3.2. Suppose 2 € C C” is smoothly bounded and pseudoconvex. Let
D € bR be a point of finite type T and assume theve is some neighborhood U of p so
that 82 is convex in U. There exists a neighborhood VC C U so that if ¢ € VN £,

(3.3) Ky(g, 9 = N 7,(q, O,
i=1
where 6 = | 7(g) |.
Suppose that ql, q2 € U N 2. Define
M(q', ¢ =infle > 0; ¢* € P.(¢)},

where Pe(ql) is constructed from the coordinates about q1 as in Proposition 3.1.
Set 3 = M(q', ¢°). Then

n T .
M@Jﬁ%”%ﬂﬂ+§E£@Hd—ﬁﬁ

where the coordinates of q1 and q2 are measured in the coordinates associated to
ql and 0 by Proposition 3.1. In the following, we let D, denote the differential

operator %z where z; is one of the coordinates constructed in Proposition 3.1
i
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associated to ¢*. For multi-indices o and B, D*D? = D& .. . DXDP. . . D2 with
the convention that the holomorphic derivatives act on the first # variables of the
kernel function and the anti-holomorphic derivatives act on the last #-variables.

THEOREM 3.3. Let 2 € C C" be a smoothly bounded, pseudoconvex domain. Sup-
pose that near p € b2, Q is convex and that p is a point of finite type T. There exists
a neighborhood U of p so that, for all multi-indices o, B, there exists a constant C,g
such that for all ql, q2 eUn g,

=

(3.4) | D°DPK,(q", ¢) | < Cp I 7,(q", &) 7%,

i=1

where 8 = (| r(g) | + 1 (@) | + Mg, ¢*).
LEmMMA 3.4, Let 2 and p € b8 be as in Theorem 3.3. Then theve exist a neigh-
borhood U of p and a constant C so that
|K(z, 9/K(g, 9 | < C

forallz, q € U.
Proof. Take @ = B = 0 in (3.4). Then we have
| K,(z, @ | < C" 1T 7,(q, 0) 77,
i=1

where 8, = (| 7(2) | + | r(@) | + M(q", ¢»)). Also from (3.3) we have K,(q, @) =
I}, 7.(q, 8,)7%, for 6, =|7(g)|. From (3.1), (3.2) and from the definition of 7,
one can see that 7,(g, 6) is an increasing function for 8. So | K,(z, )/ K,(q, @) |
< C for some C > 0. O

4. Construction of peak functions

Suppose that 2 CC C"isa smoothly bounded pseudoconvex domain and p €
b8 is a point of finite 1-type. Then Catlin’s theorem [3] says that there are € > 0
and a neighborhood U in which 0-Neumann problem satisfies a subelliptic esti-
mate of order ¢ > 0 on (0,1)-forms. For each w € U C £, define the function

K,(z, w)

hw(z) = Kg(w, w) .

We will estimate K,(z, w) for z outside a certain neighborhood of w and will
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show that | h,(2) | is quite small outside that neighborhood. For the convenience
in notation, we denote by C the various constants that follows.

Let 7 be a projection onto b§2 and set p = w(w). For n > 0, let B(p, n)
denote the euclidean ball centered at p of radius 7. Let £ € C™(C") be a function

with the property that =1 on 2\ B(, n) and { =0 on B(p, 122) and let N
denote the 0-Neumann operator on (0,1)-forms. The following theorem was proved
in [14].

ProposITION 4.1. Let 2, U, and € > 0 be as above. Let s, t € R”. If a is a
smooth (0,1)-form in the domain of the Kohn Laplacian and suppa C B(p, %) then
there is a constant Cy, > 0 so that

_o( Skt
leNaF < ¢, 25 a2,

Let ¢ € C, (0,1) be a non-negative radial function with fgb =1. Forw €

U, set

0.0 = (°3") "ol 7z

Then from the Kohn’s formula,

K,(z, w) = ¢,(2) — 3" Ng,(2).

Assume supp¢g, C B<p, 187—) Then from the Proposition 4.1 with s =7+ 1, we

have

ICCYEo(-, w) 2 < Cll¢NDg, () |2,

< o) 1 5g, () .

If t>n+ 1, Sobolev's lemma gives ,
I oIy = supll (b, N5 FECT, Ifly <D
<clfglsc

for some C > 0. If we choose » > »n + 1, another application of Sobolev’s lemma
shows

sup, | @ Ky(z, w) | < C|CCHK, (-, w) |,
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Hence

_o(2n+4
Supzl C(Z)KQ(Z, ll)) | < Cy] 2( € +4).
Now set n = d(w) (@) If we combine Theorem 3.2 and Theorem 3.3, we have

proved the following:

ProPOSITION 4.2. Let 2 and n be as above. There exists a constant C > 0, inde-
pendent of w € U, so that

| h,(2) | < Co(w)
forw € Uand z € @\ B(x(w), 1).

Now we denote by N the interior normal to the boundary of £ at p. In [15],
McNeal showed that the sharp subelliptic estimates of d-equation holds near p €

1 1
bf2. So we may take ¢ = T Set p = 2en ¥ T

LEmMA 4.3. For every g on N, let | ¢ — p| = d. There exists a constant C > 0
such that for every point ¢ on N sufficiently close to p, there exist a neighborhood U, of
p and a holomorphic function h = h, on £ such that

Q) |hl<Com&

(2) hig) =1,
() | h() | < Cd forz € 2\ U,,
4) | Dh| < %

Proof. Define h,(2) = K(z, 9)/K(q, q). Property (2) is clear. From Proposi-
tion 4.2, we have | h,(2) | £ Cd for z € 2\ B(n(g), d"). This proves (3) with
U,= B(p, d"). Lemma 3.4 gives | h| < C for z € U, = B(n(g), d"). This fact
together (3) gives (1). Also from the estimated of Theorem 3.2 and Theorem 3.3,

we have | Dk | <%. O

We now ready to prove Theorem 1.1.

Proof of Theorem 1.1. We may assume that p = 0. Let the type of p is equal
to T and choose a neighborhood U of p such that the subelliptic estimates for

1
0-equation of order T hold on U and Proposition 3.1, Theorem 3.2 and Theorem
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3.3 hold on U. We denote by N the interior normal to the boundary of £ at p. For
each neighborhood V C C U of p, choose a neighborhood V;, V, cC VCC U, so
that V; N 2 is convex. Next we consider a 1-parameter family of a smooth bump-
ing family {2},<,c,, outside V;. We may assume that ¥V, N 2 =V, N 2, for all
t >0, after perhaps shrinking V,, and Q\VC € Q,\V for all 0 <¢t<¢,
Now fix 0 <# </, and consider the pseudoconvex domain £,. Since the type
condition is stable, we may assume that b.Q,1 is of finite type. Also we have d =
dist(R\ V, b.Q,l\V) > 0. Choose (by induction) a sequence g, coverging to p
along N and define h,(2) = h, (z + g, — p), where h, is the function defined on
Q, (instead of 2) as in Lemma 4.3 associated with g,. Notice that k,(2) is defined
on 2\ 'V, and on U intersect a translate of £ which contains 2 N V, provided g,
is sufficiently close to p. Therefore h, is well defined and holomorphic on £ for
each # = 0. Let U, denote the neighborhood corresponding to %, as in Lemma 4.3.
Without loss of generality, we may assume that U,,;, € C U,. For a suitable con-
stant 0 < ¢ < 1, to be determined later, let # = 1 — ¢ and define a peak function
as H=r2X, ,c'h, Let us estimate H on various sets. First outside U, Then

1
| h,| < 5 for every m by the property (3) of Lemma 4.3 provided that g, is
2
n

w € 1
sufficiently close to p. So we get that | H| < an=07 = 3 From the continuity

of h,, 0 <k <n—1, and from the fact that 4,(p) = 1, we may (inductively)
choose ¢, and hence a neighborhood U, so that | &, | < 7, for k < n on U,, where
7, > 1 is arbitrary close to 1. Hence for z € U,\ U,,,, we have that | h,| < C

1
and | h,(2) | < 5 (by the property (3) of the Lemma 4.3) if k > n. Hence for z €

U,\ U,,,, we estimate H as follows

|H|<r[Z vt +c"C+ chZ]

k<n k>n
_ (l_cﬂ) " P cn+l
=ry=¢ mtreCtyog—y

=1—-c"r,+ %c"“ + rCc"

=1-c"s,+ %c"“ + 7"C
1

where s, < 1 can be chosen arbitrary close to 1. If 7C = 3 for instance, we have

1 _
|H|<1and r= 300 €= % Notice that H(p) = 1 and H is continuous on £
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and holomorphic on 2\ V and this proves Theorem 1.1. O

Remark 4.4.  In the proof of Theorem 1.1, we may take, for example, v, = 1 +

1 c"

1 , _,._ 1
10°¢ and s, = 1 10+10'

(1]
(2]
[31]
[4]
(5]
[6]
(7]
(8]
(9]
(10]
(11]
(12]
(13]
(14]
[15]

(16]

REFERENCES

Bedford, E. and Fornaess, J. E.,, A construction of peak functions on weakly
pseudoconvex domains, Ann. of Math., 107 (1978), 555—-568.

Bloom, T., C” peak functions for pseudoconvex domains of strict type, Duke Math.
J., 45 (1978), 133-147.

Catlin, D. W., Subelliptic estimates for the d-Neumann problem on pseudoconvex
domains, Ann. of Math., 126 (1987), 131—-191.

Catlin, D. W., Estimates of invariant metrics on pseudoconvex domains of dimen-
sion two, Math. Z., 200 (1980), 429—466.

Cho, S., Extension of complex structures on weakly pseudoconvex compact complex
manifolds with boundary, Math. Z., 211 (1992), 105-120.

Cho, S., Boundary behavior of the Bergman kernel function on some pseudoconvex
domains in C”, Trans. Amer. Math. Soc., 345 (No.2) (1994), 803-817.

Cho, S., Estimates of the Bergman kernel function on certain pseudoconvex domains
in C", Math. Z., to appear.

D’Angelo, J., Real hypersurfaces, order of contact, and applications, Ann. of Math.,
115 (1982), 615-637.

Fornaess, J. E. and McNeal, J., A construction of peak functions on some finite type
domains, Amer. J. Math., 116 (No.3) (1994), 737—-755.

Hakim, M. and Sibony, N., Quelques conditions pour l'existence de fonctions- pics
dans des domaines pseudoconvexes, Duke Math. J., 44 (1977), 399-406.

McNeal, J., Boundary behavior of the Bergman kernel functions in Cz, Duke Math.
J., 58 No.2 (1989), 499-512.

McNeal , J., Local geometry of Decoupled pseudoconvex domain, Proc. in honor of
Grauert, H., Aspekte der Math., Vieweg, Berlin (1990), 223-230.

McNeal, J., Convex domains of finite type, J. Funct. Anal., 108 (Ne.2) (1992),
361-373.

McNeal, J., Lower bounds on the Bergman metric near a point of finite type, Ann.
of Math., 136 (1992), 361-373.

McNeal, J., Estimates on the Bergman kernels of convex domains, Adv. in Math. (to
appear).

Range, R. M., The Caratheodory metric and holomorphic maps on a class of weakly
pseudoconvex domains, Pacific J. Math., 78 (1978), 173-188.

Department of Mathematics Edu.
Pusan University

Pusan 609-735, Korea

E-mail: cho@hyowon.cc.pusan.ac.kr





