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ON THE SERIES FOR L(1, x)

MING-GUANG LEU anp WEN-CH'ING WINNIE LI

1. Introduction

Let k£ be a positive integer greater than 1, and let x (%) be a real primitive
character modulo k, The series

can be divided into groups of k consecutive terms. Let v be any nonnegative inte-
ger, j and integer, 0 <7 < k — 1, and let
j+k X(l)k + n) _ dEk X(")

T(v; ]’ X) = nil Z)k + n - n=j+1 vk + n.

Then L(1, x) = X! _, 1

nn) + Z:J:O T(U, j; X)

In [3] Davenport proved the following theorem:

TueoreM (H. Davenport). If x (— 1) = 1, then T(v, 0, x) > 0 for all v and k.
Ifx(—1) = —1, then T, 0, x) > 0 for all k, and T, 0, x) > 0 if v > v(k);
but for any ¥ = 1 there exist values of k for which

7{1,0,x) <0, 72,0, <0,...,T(, 0, x) <O0.

In this paper, we will prove

THEOREM 2. For fixed integers k and j, 0 < j < k — 1,
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T(,j, )Tw+ 1,7, %) >0
for positive integer v > v(k, 7).
. k
In the case j = [E] where [x] denotes the greatest integer < x, we have the

following more refined results.
k
Tueorem 3. If x(— 1) = 1, then T<v, [E]’ x> <0 forall v and k.
THEOREM 6. Let x(— 1) = — 1.

(L) 1k # 7 (mod 8), then T, [g] x) <0 forv > k.

(2) If k =7 (mod 8), then T<v, [-122], x) >0 forv = 0.

As a consequence of Davenport’s theorem [3] and Theorem 3, we have the fol-
lowing inequality for even x (cf. Corollary 1 (2)):

—
SES
—

x ()
" < LA, ) < T

i x ()
n=1

3
U

Furthermore, using a result of Davenport 3], we derive a class number formula

. AL [é] £ ()

2lne ;o nlk —n) +1

for real quadratic fields, which seems a little more efficient than the class number
formulas mentioned in [4] and page 46 of [5]. Also, we give estimates of the class
numbers of imaginary quadratic fields (cf. Corollary 2).

We remind the reader that a real primitive character (mod k) exists only
when either k¥ or — k is a fundamental discriminant, and that the character is
then given by

d
2 = (5)
where d is k or — k, and the symbol is that of Kronecker (see, for example,
Ayoub [1] for the definition of a Kronecker character).
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2. A proof of Theorem 2

PrROPOSITION 1. Let X be a real primitive character modulo a positive odd integer
k.(If k=1 (mod4), then x(— 1) = 1, otherwise x(— 1) = — 1.) Then

TO,7,x) #0 for j=01,2,..., k— 1.

Proof. For any positive odd integer k£ > 1, there exists a unique positive in-
teger a such that 2% < k < 2% Let 7 be the largest power such that 2" <j + k.
Then ¥ = & or & + 1 depending on j. For integers i=12,..., k we express J +
1= Zﬁ‘m,- with m, an odd integer and §; an integer. Clearly, j + [ = 2 for some
integer [, 1 £ I < k, and B, < 7 for ¢ # [. Write II:;I(;' + i) = 2'M, where t = B,

4+ 4+ B, and M = II;_, m, is an odd integer. We have

s M

g ZexGEO2TOE
70, j, x) = X 2 = b=
0= 25+ 2'M 2'M

M
erte the numerator N as a sum of two parts 2., x (G + 92" B“— + xG+D
M2, Since the modulus k is odd, we know ¥ (2) # 0, and

N o_ =X xG+ 2" E'M +x(2)M_1 (mod 2).

t—
i+l

) N
This implies that N # 0, and therefore 70, j, x) = " # 0.

O

Remarks. 1. The above argument actually proves a more general fact, name-
ly, given any two positive integers M > m, if there is a positive power of 2

x ()

between them, then Zj,-”:m #* 0 for any positive integer 7.

2. The sign of T(0, j, x) is known for the following cases: When j = 0, it is
) k
positive for any modulus & (cf. [3]); when j = [5], it is negative for any k such

that ¥ (— 1) = 1 (cf. Theorem 3), and it is positive for k¥ = 7 (mod 8) which im-
plies x(— 1) = — 1 (cf. Theorem 6).

Instead of proving Theorem 2 directly we shall prove a more general state-
ment first.

For each positive integer d, let f, be a function on the integers such that
G+ 1),...,f,G+ d are not all zero for some integer j. Let C(l, j, f,) =
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an=1fd(j + m)m', where [ is any integer. Then we have the following result:
THEOREM 1.  For some integer I, 0 < [ < d — 1, one has C(l, 7, f) # 0.
Proof. Express the system of equations

d
Cl,j,f)=2fG+mm' 1=01,...,d—1,
m=1

in matrix form:

LG+HD CQ, 4, 1
1 1 -1 LG+ 2) ca,y, 1)
1 2 - d . _ .
190 9it L. gt . .
LG+ d Cd—1,4,1)
Since the Vandermonde matrix is invertible, and f,(G + 1),. .., f,(G + d) are not
all zero, so C(l, 7, f) # 0 for some [, 0 <1< d— 1. [l

For integers ¥ = 1 and 0 < 7 < k — 1, we have

T, i, 1) = z—%%ﬂ

_ 5 xG+m)
_vk+]m11+ m
vk + 7

l

1 k
= : + L —
vk+]mz= x G m)Z( )! (vk—l—])

= vkl-l-]Z(Z X(7+m)m)<vk~—&j>l'

=0

(In the above expansion, m = vk + j occurs only when j =0, v =1 and m = k,
in which case x(j + m) = 0 and there is no need to consider such a term.) As a

corollary of Theorem 1, we have:

THEOREM 2. For any fixed integers k and j, 0 < j < k — 1, one has

Tw,j, )T+ 1,7,x) >0
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for positive integer v > v(k, j).

Proof. Applying Theorem 1 to the case d =4k and f, =), we have
Sk xG+mm' =CAd,j, x) # 0 for some integer I, 0 < I < k — 1. Let I, be
the smallest nonnegative integer such that C(ly, 7, x) # 0. Then there exists a
positive integer v(k, j) such that

(= 1D"CUy 7, )T, j, x) >0
for v > v(k, ). O

Remark. From the proof of Theorem 2, we know that, for integer v large
enough, the sign of T(v, j, ) and the sign of (— 1)°C(l,, j, x) are the same,
where [, is the smallest nonnegative integer such that C(l, j, x) # 0. Moreover,

) 1 .
we may choose v(k, j) in the proof above to be 7 ((k + 1)""® — ). In general,

the sign of T(v, j, x), with fixed ¥, j and varying v, changes sometimes, but our
computer data never showed these partial sums equal to zero.!

3. The real quadratic fields

From the definition of Kronecker character we know that x(n) = x(— n) -
sgn(d), where d is the fundamental discriminant equal to k or — k (cf. {1, page
292)). If both k and — k are fundamental discriminants (which happens if and
only if k = 8k’, where k" is odd and squarefree) there are two real primitive char-
acters (Kronecker character) (mod k), otherwise only one. Clearly, we have that
x(— 1) = 1 if and only if d > 0. In this section we restrict ourselves to the case
d = k. Fix such an integer k, let x be a real primitive character attached to the
real quadratic field Q(Vk) with x(— 1) = 1.

THEOREM 3. For any integer v = 0, T(v, [5], x) <0.

ik x(n) _%an x (n)

Proof. Write T(v, j, x) = 2 ;i1 pya i1 ,, and keep in

v+—l—c"

1 After this paper was written, the first author showed in (7] that the sums T(v, 7, x)

are indeed nonzero for any odd prime k.
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2] in this proof.

For integer v = 0, consider the function

. k
mind that 7 is equal to [

1 1 3
gl = o F 2 defined for 7 <z < o
13 . .
Over the interval ( , E) it has Fourier expansion

glx) =

No| =

a, + 2 (a, cos 2zmx + b,, sin 2wmzx)
m=1
where

zfz cos 2”mxdxand b, = 2f'z sin 2mzx dz.
v+zx
Using integration by parts, we have, for m = 1
_ = 2 cos 2mmx
@rm)’ (v + x)
Let

32 12 cos 2nmx

@Qmm) (v + 2)*

3/2

172

48 f% cos 2mmzx

7 ) - dx.
vz (2mm)" Y3 (w+ )

12 cos 2mmx

B @Qmm)'w + *

3/2

Y f
172

dx.
emm)'Ys (w+2°
Then | Y| < | X| and XY < 0. We have
2 1 1
a, = (—1D" { 2 2}
27m)’ 1 3
(@nm) <” + 2> <” + 2)

m1 12 1 1
+(-D (27"-'”)4{(1) L } 6,

4 3 4
+3)  (0+3)
depending on v and 0 < 6,, < 1. Now

T, j, x) = %;Z: x(n)g(%)

_X+Y
where 6,, = b

=% ?EI:I x () {Z (am cos an% + b, sin 27m %)} (since ,~§ () = 0)

n=j+1
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1 00 j+k n itk n
=7 > {am 2 x(n) cos 2mm 5 + b, 2 x(m) sin27tmz}
m=1 n=j+1 n=j+1
1 0
=% > a,xmvk.
m=1

2mimn

n'k = y (m)vk since

Here we used the fact that Gauss sum 2., x (W)exp

x (— 1) = 1. Rigorously speaking, the above expression for T(v, 7, x) is valid for
. . k

k odd; when k is even, we have k£ =0 (mod4), hence x G+ k) = x([E] + k)

=0 and T(v, j, x) is really summing over j+ 1<% <j+ k —1 so that we
may replace g by its Fourier expansion. After interchanging the sum over m and
n, we may change the limit for # back to j +1 < % < j + k since xG+ k) = 0.
The final conclusion for T(v, j, x) remains the same. Hence

fET(v, [g], x) = m% a,,x (m)

_ 1 1 1 e (= D"x(m)
2n’ {< +l>2 - ( +§>2} = m’
L) L)
3 1 1 = (— D"y (m)8,,
+ '—4 { 4 4} Z 3( .
4 (U + l) (v + _3_) m=1 m
2 2
We divide the argument into two cases:
Casel. v=1.
Since
3 (=1 2)((m) -1+ ¥ (=1 2)((m)
m=1 m m=2 m

2

© 1
<=2+ X —=-2+7<0
m=1 m

4
and {(4) = —9750- we have

#1(s, [3]. %)
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2

wioy ey ety ey
= <ﬁ—?){<v+%)z - <v+%>2] * 120 {<v+%>4 - <v+%>4]

BT LR s v

For integer v = 1, we have

1 _ U 1 1 1 1
e s
This gives
sy ) <o
Hence T(v, [g], x) < 0 for integer v 2= 1.
Case 2. v=0.
We have
‘/ET(O’ [g]' X) = 1::[2 {él = li:zx (m) f%rél (= l)m’:i( (m)&m]
oo —_ m 2 _
- 1212 [mZ:l (-1 x(m;fm aem)} (Wherea=§2;%>
- 9152 {— 1+ ab, + m% (= D" (m;fmz ~ aﬁm)]
<o lm1vonr £
= glf— {=2+af, + ()

=—91—:—2[—2+a01+%2}.
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2
T
To estimate — 2 + af, + 5 write

dr.

a;

_—2 ( _é) 12 ( __1§> 48 (3 cos 27mx
@n)’ 9 @n)* 81 @en)' Y z°
We have 6, = 1 — B, where

il vl Rl K el Ul )

_ —81 % cos 2z

= dx.
320 i o
By using computing software Mathematica, we have 8 = 0.555924, so 8 > 0.555.
Since §, =1 — 8<0.445 and @ = 202 < —20—7 we have
37 3(3.14)
2 2
20 3.15
—2+af + < =24+ — T (0.445) + ( 5 < —o.04
3(3.14)
k
Hence T(O, [5], X> < 0. ]
To give bounds for L(1, %), define, for integer v = 0,
A= 82D gy - & 20
U= =kt 20 v= vk + n

Then
k
T®, 0, %) =A@ + B®) and T(v, [5] x) =B + A+ 1).

Combining Davenport’s theorem [3], Theorem 3 and the fact L(1, x) > 0, we
obtain the following bounds for L(1, x).

ProOPOSITION 2. For any integers m, n = 0,

5 (A0) + BO) < LA, 1) <AO) + 3 (B + A+ D).

CoroLLARY 1. (1)  For integerv = 0, A(v) > 0 and B(v) < 0.
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(2) A0 + B(0) <L, x) <A0).
(3) Fork > 1000, 0 < A(0) — L(1, x) <0.12.

Proof. (1) Since B(v) + Alv +1) = T(v, [g], x) < 0 for integer v =0

and L(1, x) > 0, so A(0) > 0. On the other hand, by Proposition 2, we have
> AW +BW) <AO0) + X B +Aw+ 1)
v=0 v=0

for any integer # = 0, which implies A(# + 1) > 0. Hence B(n) < 0.

(2) The inequalities holds by putting w2 = # = 0 in Proposition 2 and the
fact B(0) + A1) < 0.

(3) The proofs for the case kK = 0 (mod 4) and the case £k = 1 (mod 4) are
the same, here we consider the case ¥ = 0 (mod 4). By (2), we know that

A(0) + B(0) <L, x) <A).

Since
k
7 k
A0 +BO) = 2 X0 5 x@
n=1 M n——-%ﬂ "
% ( ) % 1 k=11
R
I
3
> A(0) — f —dz +f+l-£dx
> A0) — 0.12 for k£ > 1000,
we have 0 < A(0) — L(, x) < 0.12 for k > 1000. ]

Dirichlet’s class number formula asserts that

Yk

h= 2lne

La, x),

where £ is the class number, and & (> 1) is the fundamental unit of Q(Wk). Thus
the estimates on L(1, ) in Corollary 1 above yields the following results on the
class number of Q(Vk).

. IfﬂA(O) < 2 then h = 1.
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I o ‘/7 (A(O) + B(0)) = 1, then h # 1.

In fact, the class number % for the real quadratic field Q(vk) can be express-
ed explicitly as follows.

THEOREM 4. We have

=

2 [£1 x (1)
S @© + By +1= [

2lne El n(k — n)

+1,

where [x] denotes the greatest integer < .

1
Proof. Since ¢ = §(t+ uvk) > 1 is the fundamental unit of QWk), we
1++5
2

have ¢ = . Due to Davenport [3], we have the following inequality.

LA, 2) ~ AO) + BO) VE < 155

From this inequality and A(0) + B(0) < L(1, yx), we obtain
vk _ Vk

11 1
Z\Qe (A0 + BO) + 155 5 5
where b = # Since %Elrll_b < 1, so we have
k
h= [%M (A0 + BOY| +1. O

Remarks. 1. By Theorem 4, the following two conjectures are equivalent:
(1) (Gauss conjecture) There exist infinitely many real quadratic fields

Q(/p) of class number one, where p is a prime congruent to 1 modulo 4.
3/2

(2) There exist infinitely many real quadratic fields Q(/p) with ﬁ

s3] x®

e < 1, where p is a prime congruent to 1 modulo 4 and ¢ > 1 is

the fundamental unit of Q(v/p).
2. For an evaluation of the regulator In ¢ in the class number formula, see, for
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example, Williams and Broere [6].

As a corollary of Theorem 4 and the class number formula of Ono [4], we can
get the following interesting inequality without involving the class number % and
the fundamental unit e.

THEOREM 5. Let p = 1 (mod 4) be a prime. Then

b
dy p3/z 51 x ()
(G Z ) >l 2
where N = % dy=1 and 2nd, = Zo_,(1 + <%)\/17>d,,_,,, 1< n<N. (Here
(%) denotes the Legendre symbol.)
Proof. By [4], we have
dy

hlne = (\FnZld +\/§)

On the other hand, by Theorem 4, we have
p:A
3 ps/z 5] X(n)
h= [ZIne Zon(p— n)] Tl

which gives

p3/2 [12;_] X( ) p3/2 [!2;'] X(n)

h> e = nlp—n) O equivalently, Alne > 55— El ap—n
hence Theorem follows. U
4. The imaginary quadratic fields
In this section we restrict ourselves to the case d = — k. Fix such an integer
k, let x be a real primitive character attached to the imaginary quadratic field
w (D"
Q=R with x(-D=-1 L& r=x5, "2 xm
w x@2m—1) _ww X @2m) e X@Cm)
Zm‘12m——1 and L,=2_, o, - Then L,= DI om =
x(2) w  X(m) x (2m) x(2)
L2000 and L=, B o mn X (1 X2 a, ).

Furthermore, we have L = L, — L, = (x(2) — 1)L(1, x) which gives the follow-
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ing lemma.

LEMMA 1.

0, if — k=1 (mod8);
L={—LA,%x) if—k=0(mod4);
— 2L, x) if — k=5 (mod 8).

Now we are ready to prove Theorem 6.

TueoREM 6. (1) If kK Z 7 (mod 8), then T(v, [%], x> < 0 for integer v > k%.

(2) If k = 7 (mod 8), then T(v, [g], x) > 0 for integer v = 0.

) 1 .
Proof. Express T(v, 7, x) =7 ;:I;H X(n)n and keep in mind that j=
v+ %

k .
[5] in this proof.
For integer v = 0, as in the proof of Theorem 3, consider the Fourier expan-
sion of

1 1 3
g(x)—v_,’_x for §<x<§.

Proceeding as before and applying Gauss’s sum Zi:;H x(n) expQmimn/k) =
ix m)Vk for x(— 1) = — 1, we have

ferf [§].3) = & womn

% sin 2nmx ) ) )
where b,, = 2 || v ¥z dx. By integration by parts, we obtain
7

me(;r}'L)m( T 13>*;(;Z;<( 11)3—(0::;)3)%

v—’—i 1)—1—5 v+—2—

where ¢,, = ¢,,(v) depending on v and 0 < ¢,, < 1. Now we have

ferfe 8], = £ xoone
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1\ & (= D"m)
1 3) El m
5 vty

1 = (= D"x(m) ¢,
3 3 3) m2=1 ma :
o §> (” +3)
Let J= > _ (— 1"y (m)qum_s, then, independent of v, we have

U+¢1|—IZ (= D"xm)p,m™"| < Z—<021

mzm

On the other hand,

. 2 sm27tx
b= Zf v+x

_ T cos2nx /2 4 cos 2nx  |*? 12 f% cos 2nx
T+ 2) Cn)lw+ e @r'Yt w4+ 2!
_ T cos2nx 2 4 cos 2nx 3/2¢
T+ 2) | (27[) (v + x) v Y
which gives
3
2 COS 27X 1 1
@y p-1={3 - dr /s — 5l
z (vt (U—I——) <v+—>
2 2
1 1 1 1 1
Let g,(x) = i 3 i~ T 5
v+ 2 <v+§—x> <u+§+x> w+2—2x
3
<z Z Then
3 CcoSs 27x 3
(4.2) j; ~*——~da:=j; g,(x) cos 2nx dx.

L w+ 2! 3
1 3 . 3
Since g,/ (x) < 0 for 5 < 1 and integer v = 0, also g,,<z> =0,s0g,(x) =20

1 3
for & ) <zxr<-— T and integer v = 0. Hence, by (4.2),

2 2 - ! + 1 = 3f g,(dx

prd) (+2) ed) ed)
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3
2 2
23.1:2 COS ﬂ.ﬁdx
7 (w+2x

3
i
> —3_& g,(v)dx

2 2 1 1
= - - +

(43 0+ (o) (ry)

Substituting into (4.1), we obtain

2{ 153_ 133} 2{ 133_ 153}
ST T OOV 5 T
(v+3) (+3) (v+3) (o+3)
Let
_ 1 11
S A o L A
:3(v+1)2+—1i6<<v+1)2—%>3f0r020.
3(v+1)2+z (v+1)2—T6—

Then F(v) is increasing as v increases. We have 1.52>2 — F(0) =2 —
F() = ¢,(v) 2 F(v) = F(0) > 0.48 which implies F(v) —2.21 £ — ¢,(v) —
0.21 <J<0.21 — ¢,(») £0.21 — F(v) for integer v = 0. Now we have

1/ 1 1 8.84 — 4F(v) 11
I e LT

(4.4) > ﬁT(v, [g], x)

11 1y, 4 11
e e ey
< 1 1 )L+4F(v) —0.84{ 1 1

v+ = (27[)3
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1
v+

k
for integer v = 0. For simplicity, write T(v), @ and b for T(v, [E]’ x), i
2

1 a—b
and 3 respectively, then dividing each term in (4.4) by —\/7;—* we obtain

1)+*2—

f \/‘(884 4F(v))( + b+b)>kT(v)

@2n)’ b

\F f (4F () — 0.84)
@2n)?

@+ ab+ b)),

which gives

(5 VEOBAFW) 2y gpy gy s KT [k—L

@2’ —b
\F (4F(v) —0.84)

@n)’

@+ ab+b).

By applying Dirichlet’s class number formula for imaginary quadratic fields,

8.84 — 4F
Lemma 1, the inequality 1> — f Vk (8.8 @) (@ +ab+ b)) for

v @n)?
integer v > k% and (4.5), if k¥ # 7 (mod 8), then T(v, [

k .
-2—], x) < 0 for integer

1
v > k* (since the class number %2 =1 is a positive integer), if k£ = 7 (mod 8),

then T(v, [g], X> > 0 for integer v = 0. U

Let T(v), a and b be the ones defined in the proof of Theorem 6, then we
have the following estimates of the class number % of Q(V— k).

COROLLARY 2. Suppose k > 4.

k k X(")
(1)h<m/E—1Z”=1 o

(2) If k = 0 (mod 4), then

h = [::ai——jllj))—] + 1 for any integer v > k%_
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(3) If k = 3 (mod 8), then

h= [2( kT(g] + 1 for any integer v > k%.

(4) Ifk = 7 (mod 8), then

L }
NES

1y
) | 28.08

1 R 277

\/E

T

3
It

The symbol [x] denotes the greatest integer < .
Proof. In [3], we have

(L(l, x) — Z x )

)«/F <=L, p).
n=1 n
Applying class number formula for imaginary quadratic fields & = ?L(l, x)
(k > 4), we have statement (1).
The statements (2) and (3) are consequences of (4.5).
For statement (4), we write

~
SE
—
ba
~~
S
N

LQ, y) =

U
N
+
1s
~
TN
=
—
i
L ——
ba
~——

n

which implies, by Theorem 6 (2), that

LA, ) > [z:] x4 1(o, [5], x).

Hence, by taking v = 0 in (4.4), we have

k
K VE Ly | 28 08,
h= L/:L(l, X > O
T T n=1 2771'
. : . [£] x ()
Remark. 1t is proved in [2] that, for k sufficiently large, one has Zn:l T

> 0 for any real character modulo k.
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