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ON DIRICHLET SERIES WHOSE COEFFICIENTS ARE

CLASS NUMBERS OF BINARY QUADRATIC FORMS*

BORIS A. DATSKOVSKY

0. Introduction

0.1. For an integer d > 0 (resp. d < 0) let hd denote the number of S/2(Z)-

equivalence classes of primitive (resp. primitive positive-definite) integral binary

quadratic forms of discriminant d. For d > 0 let εd = ~κ (t + u\[d) where t and u

are the smallest positive integral solutions of the equation t — du = 4 if d is a

non-square and εd = 1 if d is a square. For d < 0 let wd denote the number of

roots of unity in the quadratic field Q(/d). Define the Dirichlet series

ξ+(s) = ζ(2s) Σ
log ed

£_(s) = 2ζ(2s) Σ —

f*(s) = 2ζ(2s) { Σ HUWM

S + 2~2S Σ

Shintani ([12], Theorem. 2) discovered that the series ξ±(s) and ξ± (s) satisfy

a curious functional equation

cosπs
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, o - i ±-2sJ IΛ-,, , r ( n Λλ ίsin πsT(s) \
+ 2 π2 Γys — τ ^ Γ ( s ) ζ ( 2 s — 1) I _ I

where

T(s) = [ψ (s) -ψ(s-^))+ 2 ^ (2s) - -^ (2s - 1))

f (3-2S)-f ( 2 - 2 5 ) ) + ^ .
ζ ζ ' 1 - 2

In an excellent recent paper [8] H. Saito extended Shintani's result to a family of

L-functions associated with the space of binary quadratic forms with coefficients

in Q. The purpose of this paper is to establish Shintani's functional equation for a

family of zeta functions associated with the space of binary quadratic forms with

coefficients in an algebraic number field.

0.2. Let K be an algebraic number field. Denote by M(K) the complete set of

places of K. For v ^ M(K), let Kv denote the completion of K at ι>. If v is

non-archimedean, let qv denote the size of the residue field of Kv.

Let L be a quadratic extension of K. We call L® Kv the v-splitting type of L.

We say that two fields L and L have the same v-splitting type if L ® Kv = L ®

Kv as a iΓv-algebra. Clearly, the number of y-splitting types is finite. For example,

if Kυ = R, then L ® Kv is either R Θ R or C (2 splitting types), and if Kv = C,

then Z, ® iζ, = C Θ C (1 splitting type).

If v is non-archimedean and qυ is not a power of 2, then L®KV is either

iζ, Θ Kv (split case), a quadratic unramified extension of Kv, or one of the two

quadratic ramified extensions of Kv thus the number of v-splitting types is 4. If

qv is a power of 2, then the number of quadratic ramified extensions of Kv is, un-

fortunately, larger than 2. In this case, we will only distinguish between two

quadratic ramified extensions of Kv if their discriminants have different absolute

norms.

Let Xv denote the set of all v-splitting types of quadratic extensions of K. For

a finite set S of places of K, set X s = Π v e S Xy. Let x s = (xv)p<=s

 e ^s We will say

that L has an S-splitting signature x5 if L has splitting type xu at every v e S. In

this case we will write L ~ x5.

Denote by DL the absolute norm of the discriminant of L and by DL/K the

norm of the relative discriminant of L over K. Let ζL(s) denote the Dedekind zeta

function of L and let pL = Z)L Res s = 1 d ( s ) .

Let S be a finite set of places of K containing all the infinite places. In [3] we
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encountered the Dirichlet series

(0.2) ξx(s)= Σ - τ -
i-χs Duκ

where

_ ζκ,s(2s-l)ζίs(2s)

Here ζκ>s(s) denotes the truncated Dedekind zeta function ζKtS(s) = Π ^ 5 ( l — qv

s) ,

and ζL>s(s) — Π ω e M α ) ) M , | ^ S ( 1 ~ tfω

s) . If UΓ = Q and 5 consists of the infinite

place of Q, the series of (0.2) differ from the series ξ±(s) of Shintani only by a

constant factor (see [3], Theorem 0.2).

The series ζXs(s) satisfy functional equations
Xs(

r X s ω
(see Theorem 1.2).

We will not define ξy (s) explicitly in the introduction. It suffices to say that

where T)L>s(s) is given by an Euler product that differs from the Euler product of

ϊ]LtS(s) only at those v £ S that lie over 2. In particular, if S contains all places of

K that lie over 2, then ξ*s(s) = ξYs(s).

The object of this paper is to compute the functional equation coefficients

ΓXsys(s) and the remainder TXs(s).

0.3. This paper is based on an earlier study [3] of zeta functions associated

with the space of binary quadratic forms. The fact that the series ξXs satisfy the

functional equation (0.3) easily follows from the theory of zeta functions associ-

ated with prehomogeneous vector spaces. Moreover, the coefficient matrix

(ΓXsys(s)) = HV€ΞS(Γx^y^(s)), and the local coefficient matrix CΓXvyv(s)) is precisely

the functional equation matrix for the local zeta functions associated with the pre-

homogeneous vector space of binary quadratic forms. The local functional equation

for zeta functions associated with prehomogeneous vector spaces has lately been a

subject of considerable mathematical interest. In [2] I computed the local functional

equation matrix for the space of binary cubic forms with coefficients in a function

field. That work, however, remains unpublished. Igusa [5] showed that for a pre-
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homogeneous vector space that has locally only one nonsingular orbit the local

functional equation coefficient is essentially the Γ-function of Tate's thesis [13].

Recently Muller [6], following the work of Rallis and Schiffmann [7], showed how

to compute the local functional equation coefficients for zeta functions associated

with prehomogeneous vector spaces of commutative parabolic type. Finally, in [9]

F. Sato computed the local functional equation coefficients for several pre-

homogeneous vector spaces. Our local functional equation is a particular case of

one of the functional equations of Sato ([9], Theorem 3.6 with Q(x) = xxxz — x2,
(1) Λ , (2) v

ω = 1 and ω = ωs).

Sato expresses his coefficients as linear combinations of products of Gauss

sums of quadratic characters on K* and Tate .Γ-functions. This elegant formula-

tion certainly sheds much better light on the nature of the functional equation

coefficients. Moreover, it is more general than mine, and it applies to ramified as

well as unramified quasicharacters. Thus my results in Section 2 of this paper can

not strictly speaking be considered new. Nevertheless, I chose to include then in

this paper because my methods are different from Sato's and because my calcula-

tion is more explicit than his. The calculation of the remainder term TXs(s) is com-

pletely new and can be considered the original feature of this paper.

0.4. Let H(n) denote the class number of positive definite integral binary

quadratic forms of discriminant ~ n where the forms equivalent to a(u + v )

and a(u + uv + v ) are counted with multiplicities ~κ and -*• respectively.

Following Cohen [1], let H(0) = - y^, and let

X^z) = Σ H{n)e2πιn\ Im(z) > 0.
fl=0

Zagier [17] discovered a remarkable fact: let

(0.4) 90s) = j^Cz) + - — ^ Σ a(f2y)e~2!"fh, z = x + iy,

X oo o

e 4πutu~^du. Then §(z) transforms under JΓ 0(4) as a modular
X

form of weight 3/2. As a corollary,
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for any ( * * ) e Γ0(4).
\ c a I

The functional equations of Shintani (0.1) for ζ_(s) and Zagier (0.5) are, in

fact, two reflections of the same phenomenon though the connection between the

two remains somewhat unclear. In the last section of this paper we explore the

connection between zeta functions associated with the space of binary quadratic

forms and modular forms of weight 3/2. More precisely, we give a method for con-

structing Dirichlet series ξ(s) — Σna(n)λn, where λn are rational numbers with

bounded denominators, that satisfy

- )«(f- H f )><•>«•>
and write down explicitly one of these series. Not surprisingly it turns out to be

the Mellin transform of a linear combination of ^(mz + I/a) for some integers m,

/ and a.

Unfortunately, we can not yet deduce the functional equation of Zagier from

the theory of zeta functions associated with the space of binary quadratic forms.

However, the tools for doing so already exist. In [8] Saito showed how to twist

zeta functions associated with the space of binary quadratic forms by multiplica-

tive characters modulo p. This combined with the Weil criterion for forms of half

integral weight (see [11], p. 481) ought to lead to the functional equation of Zagier

or a result very close to it.

0.5. This paper is organized as follows: Section 1 contains a summary of re-

levant facts from [3] without proofs. This is done in order to make the paper

self-contained. In Section 2 we compute the local functional equation coefficients

Γx y (s). Section 3 is devoted to computing the remainder term Tx (s). Finally, in

Section 4 we draw parallels between zeta functions associated with the space of

binary quadratic forms and modular forms of weight 3/2.

0.6. Acknowledgements. This work was prepared while the author was a

guest at Sonderforschungsbereich-170, Mathematisches Institut, Gόttingen and at

the Technion, Israel Institute of Technology. The author wishes to thank SFB-170

and the Technion for their hospitality and SFB-170 for its generous support.

1. Zeta functions, associated with the space of binary quadratic forms

1.1. The space of binary quadratic forms
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Let V be the 3-dimensional affine space. We identify V with the space of

quadratic forms via the correspondence:

x = (xv x2y x3) e V<-> Fx(uy v) — xxu
2 + x2uv + x3v

2.

The group G/2 acts on V by the linear change of variables. This action,

however, does not allow for scalar multiplication (though it does allow scalar

multiplication by squares). Therefore set G = G/x x G/2. Explicitly, the action of

G on V is given by:

Fg.x(u, v) — tFx(au + cv, bu + dv)

( j a b\\ ~
for g — 11, [ E (7 and x £Ξ ]/.

^ \ c d ''

For x G Viet P(x) denote the discriminant of x :

P (Ύ) — T* Λ Ύ* Ύ*

For g=(t,(a

c

 b

d)) e G, set χ(g) = (ί(αrf - δc))2. Then P(g-χ) = χ(g)P(x).

We call a form x non-singular if P(x) Φ 0 and singular otherwise. It is easy

to see that two non-singular forms in Vκ are G^-equivalent if and only if their

splitting fields over K are the same. Thus non-singular G^-orbits in Vκ are in

one-to-one correspondense with extensions of K of degree less or equal to 2. In

particular, if K is algebraically closed, Gκ has a Zariski-open orbit Vg = {x ^

Vκ: P(x) Φ 0} in Vκ. Thus the triple (G, ρ, V) is a prehomogeneous vector space

in the sense of [10].

Let Kx denote the splitting field of the form x G Vκ over K. Define F / =

{ x e Vκ'.[Kx:K] =2}. The stabilizer Gx of x e F/ has a rather interesting

property. Let Gx be the connected component of Gx. Then | Gx/Gx\ = 2 and

G^ = Rκx/κ((*m) where Gm is the multiplicative group and RRX/K denotes the base

restriction from Kx to K. For details we refer the reader to [3], Section 1.

Now let K be an algebraic number field. For v ^ M(K) let Kv denote the

completion of K at v. If Kv is non-archimedean, let Ov denote the ring of integers

in Kv.

Let A = IYV(=M(K) %v denote the ring of adeles of K and A its group of ideles.

Endowed with the restricted product topologies, A and A become a locally com-

pact topological ring and group respectively. The group A* is endowed with the

adelic absolute value | |^. The field K, identified with a subset of A via the di-

agonal embedding, forms a lattice in A.

Let VA denote the space of binary quadratic forms with coefficients in A.
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Then Vκ forms a G^-invariant lattice in VA. We note that both the sets Vg and F /

are G^-invariant subsets of Vκ.

The action of G on V defines a representation ρ: G—+ Gl(V) defined over K.

The kernel of ρ is a one-dimensional torus T£ in the center of G, Tfi =

\y2, ( * ))}• The image of ρ, H, is a closed reductive subgroup of G/(V) of

semisimple rank 1 and dimension 4. Define i/^ following [14]. Then HA is a sub-

group of G/OV )̂, and Hκ is a discrete subgroup of HA.

Since in much of the paper we will be engaged in calculations that involve in-

tegration with respect to local and global invariant measures on H, we are going

to normalize our measures here once and for all.

The global measure dh on HA is given as follows. Let du and d*t denote

invariant measures on A and A . d t = ~rr\— d t where d t is a multiplicative

invariant measure on A — {t G A* : | t \A — 1}. We normalize dw and d*t by

setting Γ dw = 1 and f dH = 1. As in [3], let n(u) = ( l , ( , ) ) , d(f, 0

= U, ( x )), and α(τ) = ί 1, ( j ) . The group GΛ has an Iwasawa

decomposition GA = ^ β Λ where ^ is the standard maximal compact subgroup of

GA and B a Borel subgroup of G. More specifically, # = Π v e M ( Λ : ) f̂υ where $(v =

GO y is v is non-archimedean, # y = ( ± 1, O2(R)) if J5ΓP = R and Kv = (1, ί/ 2 (O)

Define the measure d^ on GA by rf^ = dtcdb. Every element of β^ can be

written uniquely as b — d(t, t^)n{u)a{τ) where u ^ A and t, tv τ e Ax, and one

easily checks that db — dxtdxtιdud*τ is a right-invariant measure on BA. Finally,

normalize die by setting I d/c = 1. We now have a normalized Haar measure

dg on GΛ.

ff = G/Tp where Γ^ = {d(^"2, tx) e G). Define dA by setting d# = d^^A.

More explicitly, write h = ρ(/cd(tr l)n(u)a(τ)). Then dh = died*tdud*r.

Denote by d Tj, the additive Haar measure on Kv normalized as follows: dxv is

the usual measure if Kv = R, dxv = | dxv Λ dxv | if Kv = C, and I dxv = 1 if Kv

dxu

is non-archimedean. Set the multiplicative Haar neasure d xv on Kv to be
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if Kv = R or C, and the measure, normalized by J d*xv = 1, if Kυ is a

non-archimedean local field. We note that dx = D~Ί Πv(ΞM(κ)dxv and d*x =

Set dhu = d/cvd
xtvd*τvduv where hv = ρ(/cud(tv, Dniu^aiτ^). Clearly, dh —

1.2. The global zeta function

Let sS(VA) denote the set of Schwartz-Bruhat functions on VA. For Φ e

JS(VA) define

(1.1) Z(s, Φ) = f I χ(h) \S

A Σ Φ(h x)dh
JHA/HK χeV£

where dh is a left invariant Haar measure on HA. This is the global zeta function

associated with the space of binary quadratic forms.

Let < ) :A—* C be a non-trivial additive character on A that is trivial on

K. Define a bilinear form [ , ] on VA:

[x, y] = +

Set dx = dxλdx2dx3. For Φ e ^ ( 7 A ) , define the Fourier transform Φ* of Φ by

Φ*(y) = f Φ(x)<lxfy]>dx.
JvA

The properties of the global zeta function Z(s, Φ) are summarized in the follow-

ing theorem due to A. Yukie. For a proof we refer the reader to [16] or [3].

THEOREM 1.1. i) For any Φ G s£(VA), the integral defining Z(s, Φ) converges
3

absolutely and locally uniformly in the half-plane Re (s) > ~κ.

ii) Z(s, Φ) can be analytically continued to a meromorphic function in the entire com-

plex plane.

iii) Z(s, Φ) satisfies a functional equation

(1.2) z ( | ~s,φ) = Z(s, Φ*) + (T(2s, Φ*) - 7X3 - 2s, Φ)).

The distribution T(s, Φ) is rather curious. Let
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(1.3) a(u) = Π (1 + \uυ β * Π (1 + K \u) Π sup(l, I uυ \u).
V(=MC(K) veM0(K)

Define

T(s, w,W) = Γ Γ U I l ^ , tu)a(u)wdudxt.

T(s, w, Ψ) is holomorphic in the region Re (s) > 1, Re (5 — w) > 2 and can be

continued meromorphically to the entire space C .

For Φ e j£(VA) set MΦ(x) = I Φ(fc x)dκ. Define the truncating distribu-

tion Γ2Φ by setting T2Φ(t, u) = Φ(0, ί, u). Then

Γ(5, Φ) =j-T(sywy T2(MΦ))\w=0.

3
Remark. 1. The poles of Z(s, Φ) occur at 5 = y (at most simple), at s = 1

(at most double), s = -9" (at most double), 5 = 0 (at most simple), and at s = o >

w = 1,2,... [16] and [3] contain explicit formulae for residues at these poles. This

information, however, is irrelevant for the purposes of this paper.

Remark 2. The adelic zeta function, associated with a prehomogeneous

vector space (H, p, V), is usually defined as Z(s, Φ) — I | χ(h) \S

A Σ x e 7 '
JHA/HK

 K

Φ(h ,r)d/z where Vj£ = {x G V̂  PCx) ^ 0 } . Normally, such a zeta function

satisfies a functional equation without a remainder (see [10]). For reasons of con-

vergence we had to restrict our sum under the integral sign to x ^ V%. The points

in V% — V% that we have omitted lead to the remainder term (T(2s, Φ ) —

Γ(3 - 2s, Φ)) in the functional equation of Z(s, Φ).

1.3. The local zeta functions

Let Kv be a completion of the field K. Since iϊ^-orbits in V^v are in

one-to-one correspondence with extensions of Kv of degree less or equal to 2,

their number is finite. For each Hκ -orbit V{ ^ V% define

(1.6) Zγ(s, Φυ) = f I P(yv) \s

υΦ(yv)
1 Jv.

dyv

P(yυ)\ΐ
ZvXs, Φu) is called a local zeta function associated with the space of binary
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quadratic forms.

Let ( ) y be an additive character on Kv given as follows: (x)v = e mx if

Kv = R, <x)v = e4πme(x) if Kv = C, and < >v of order 0 (i.e. <x>v = 1 if and only

if x G Ov) if Kv is non-archimedean. Define the local Fourier transform

K(yJ = I Φv(χP)(ίχv, yv~\>vdxv.

The local zeta function Zv(s, Φv) has the following invariance property: for

hv €= HKu let (hv Φy) (*„) = Φv(h~v

ι *„). Then

(1.7) ZVi(s, K Φv) = I I X

From uniqueness of the Haar measure it follows at once that any distribution with

support in Vi that has the invariance property (1.7) is a constant multiple of

Zv{Sy Φv). Therefore for any Φυ with support in Vχυ

(1.8) zVι(s, Φ*) - Σ r«

In fact, by the same argument as in [4], Section 3, (1.8) holds for all Φv

Let xv e V'ίKJ. Denote by VXv the /ί^-orbit of xy in VKv. Let 7/^ denote the

connected component of the stabilizer of xv in H. The map HKv / (Hx)κ^ —* V̂  ,

hv—*hp'Xv, gives a double covering of FXi/ Set the measure (i^/ϊy on HKv

locally equal to bx —j where bx is a constant whose value depends only on

" \ϊthe orbit VXv and not on xv itself. It is easy to see that d'xhv is an i/^-left in-

variant measure on HKJ(Hx)K)j.

The values of bXv are given in Propositions 4.2-4.4 of [3]; the reason for in-

troducing bx in the measure will become apparent in the next section.

Define

(1.9) ZXu(s, Φv) = jΓ ^ ^ I x(hu) \s

vΦv(hv xJ)d'Xvhv.

Then

(1.10) ZΛs, Φv) = b- I P(xv) \~sZVr (5, Φv).

For each orbit VXv choose a standard orbital representative xv as follows. If

the splitting field KXv = Kv set FXv(u, υ) = uυ. If [KXv:Kυ] =2 and Kv is

non-archimedean, set Fx (u, v) — (u + θv)(u + θ'v) where Ox = Ov[θ]. Here

Ox stands for the ring of integers in Kx and θ' denotes the Galois conjugate of θ
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over Kv. Finally, if Kv = R and KXy = C, set FXv(u, υ) = y (u2 + v2). Note that

I P(xv) \v = DRX /κ where Dκ /κ is the norm of the discriminant of Kx over Kv.

In all computations that follow we will replace Zv (5, Φv) by Zx^{s> Φv).

Therefore we will rewrite (1.8) as

(1.11) Zy (5, Φ*) =ΣΓxy (s)Zx (-K - 5, φX

1.4. An adelic synthesis

The zeta function Z(s, Φ) has no Euler product; however, it is fairly easy to

decompose it into the sum of integrals that do. Since the integral (1.1) defining
3

Z(s, Φ) converges absolutely for Re(s) > y , we can interchange the order of

summation and integration. Then

(1.12) Z(s, Φ) - \ Σ Γ I χ(A) I X * x)dh.
Δ xeHΛKJHA/{H%)κ

Note that i/^-orb its in V^ are in one-to-one correspondence with quadratic

extensions of K. Thus the sum in (1.12) is actually a sum over the quadratic ex-

tensions of K.

Each of the integrals in (1.12) can be written as

(1.13) bxμ(x) f I χ(hf) \s

AΦ(h' x)dr

xW
JHA/(H°X)A

where

μ(x) = f
/(H°X)K

Here dxh
r and dxh" are the measures on HA/(HX)A and (HX)A/(HX)K respective-

ly, and bx is given by dh = bxdxh
rd'xh".

Since Gx = RKχ/κ^n) it is hardly surprizing that for an appropriate choice

of dxh"μ{x) is essentially Vo\{Al

Kχ/K*) = pKχ. In fact, if we choose d"xh" =

PK

Set dxh
f — HV(=M(K) dxh'u where dxh

f

v are the local measures, described in the

previous section. The constants bXv in [3] were chosen so that dhv = dXv hf

vdXv h"v.

Therefore dh = D~^ p~2dxh'dxh".



1 0 6 BORIS A. DATSKOVSKY

Let Φ = Π,, e M ϋ 0 Φυ be a Schwartz-Bruhat function on VA. Then the integral

in (1.13) has an Euler product ΐlVGM(κ) Zx(s, Φv). For each v e M(K) let xv de-

note the standard orbital representative of x in Vκ . In view of (1.10), (1.13)

equals

(1.14) Π
veMUO P(χ)

Π ZXυ(s, Φv) = D~s

χ/K Π Zx{s,Φv)
M{K) x M(K) v

The orbit of x over Kv depends only on the splitting type of the field Kx over

Kv. Consequently we can think of xv as the v-splitting signature of the quadratic

field Kx. Similarly, we can think of x5 = (Xj)veS as the S-splitting signature of Kx.

As in the Introduction, we will write Kx ~ x s to indicate that a quadratic field Kx

has the S-splitting signature xs.

For any Φ = HP€ΞM(K) ®v e d(VA) there exists a finite set S of places of K

such that V v £ S Φv = Φ0v where Φ0v is the characteristic function of Vo . Con-

sequently set

(1-15) i7*,s(s) = Π ZXv(s, ΦOtV),

and let

(1.16) ξXs(s) = Σ 6.
χχ~*s DKχ/κ

Finally, let

(1.17) ZXs(s, Φ) = Π ZXv(s, Φv).

Then

(1.18) Z(s, Φ) = D~*pg3 Σ Z X s (s, Φ)ξXs(s).

The additive character ( ) on A/K decomposes as a product of local additive

characters. The order of its local character at v, however, is not 0; it is nv = ordy

®j, where %v is the different of K at iλ Therefore (x) = ΠyeM(i0<7ΓJ/.rI,>j,. Hence

the Fourier transform Φ*(y) = DpUveM(κ) Φ*(π"vyv).

Set

(1.19) ηts(s) = JΠ Z X v (5, Φo*,)

and
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... ;> = Σ
κx~*s DKχ/κ

Then

(1.21) Z(s, Φ*) = Dp p~3 Dp Σ Zx$(s, Φ*)ξ*s(s).
X S

Combining expansions (1.18) and (1.21) with the functional equations (1.2)

and (1.11) we obtain the following theorem:

THEOREM 1.2. The Dirichlet series ξXs(s), ξXs(s) satisfy the functional equation

I - s) = D2

K

S~> Σ r X Λ ( S ) ξ * ω + r X s ω.

For x ς = (x υ ) u e ς and yς = (yυ)ueς-Γx v (s) = Π υ e o / ^ „ (5) where Γx v (5) are the

functional equation coefficients in equation (1.11)

The values of Zx (5, ΦOJ,) can be found in Proposition 4.1 of [3]. We restate

this proposition here without a proof.

PROPOSITION 1.3. Let Φ0v be the characteristic function of VOv. Then

1

if [Kx : Kv] = 2, unramified

I (1 - qv ) (1 - qv )
^— if Lfi:x : Kv] = 2, ramified,

)

and

\2
ζκ,s(2s-l)ζκ,s(2s)2

where ζκ>s(s) — Π y ^ s ( l — qv

s) is a truncated Dedekind zeta function.

The last assertion of the proposition follows easily from (1.15) and the values

of ZXv(s, ΦOtV).

If v Jί 2, Φ*v = ΦOv. If v\ 2, Φ*v is the characteristic function of Ov X 2OV

X Ov. The values of Zx (s, Φ2>p) are rather easy to obtain from Proposition 1.3.
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Note that Ov x 2 0 , x Ov = {χv e VOυ: | P{xv) \v < | 4 \v). Writing xu=hv- xv we

see that | χ(hv) \v < j-p?—γτ~. Therefore in the integral defining Zx (s, ΦOy) we

only need to integrate over only those hu with | χ(hv) \v < lL-γ. By partial

i w ι*
fractions, we obtain
(1.22) ZXv(s, Φ*v) =

I 2 If/"1

i f Kχ =

~ 2 γ ^ 7 ) l f

If iίX y is ramified over

(1.23) ZXv(s, Φt,v) =

2 I 2 S " Ί P(x ) |2~s l 2 l 2 Ί P f x ) Γ s

v i

l - q u

i f I p ( χ ) I > I 4 I

7 I
1 - qv

We note that for a standard orbital representative xv of a form x ^ V ,̂

I P(x y) I" is just the norm of the local discriminant of Kx over K at iλ

We are now ready to state

PROPOSITION 1.4. Let M2(K) denote the set of all places of K that lie over 2.

Then

17*S(s) = Π Z (s, Φo,v)r]x,suM2iκλs)
v<=M2(K)-S

where xy is the standard orbital representative of x at v and the values of Zx (5, Φ0v)

are given in (1.22) and (1.23).

Propositions 1.3 and 1.4 complete our discussion of the Dirichlet series ζXs(s)

and ξx (s) and of their origins.

2. The functional equation coefficients

2.1. The split case
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By (1.11),

(2.1, Λ _ _ ^ . . >

where Φv is any test function with support in VXy.

The notation Γx^v is rather cumbersome, and we are going to change it in this

section. We will index the non-singular orbits in Vκ as follows: Vλ will stand for

the orbit of forms in V^ that split over Kv. V2 will denote the orbit of those forms

whose splitting field is a quadratic unramified extension of Kv. If v X 2, we will

denote by F 2 ( 1 ) and V2{1) the orbits of forms whose splitting fields are the two

quadratic ramified extensions of Kv. If v | 2, the number of quadratic ramified ex-

tensions of Ku is greater than two; we will introduce the notations for orbits of

forms corresponding to these extensions in the appropriate section.

We will write x, for the standard orbital representative of the orbit Vif Z^is,

Φv) for Zx.(s, Φv) and Γ^(s) for Γxx(s). In this section we are going to determine

the coefficients Γ^(s).

For any Kvt the standard orbital representative for the orbit Vγ is x1 =

(0,1,0). # X i = {p{d{τ~\ l)a(τv)) : τv e K,x}, the measure d^ h"v = d*τv, and d'Xi

hr

v = d/cpd
xtvduv. Note that d(t, l)n(u) (0,1,0) = (0, t, tu) and that integration

with respect to dκv simply replaces Φv by MVΦV, where MυΦv{χ^) —

i.
(2.2)

Φv(κv ' x^dκv. Therefore

γ{s, Φv) = Γ f \ tJls(MvΦ,)(0, tv, tvuυ)duυd*tv

= f f \tv\T\MvΦv)(0y tv,uv)duvd
xtv.

Let I3Φv(tv) = fKv Φv(0, tvf uv)duv. Then I3ΦU is a Schwartz-Bruhat function

on Ku, and for any ^- invar iant function Φv

(2.3) Zx{s, Φ) = C(2s - 1, I.Φ)

where ζv(s, Ψv) is the local zeta function of Tate's thesis [13].

The following lemma is an easy exercise in Fourier inversion:

LEMMA 2.1. (IzΦv)*(t) = ( / 3 Φ * ) ( - 2ί).

Note that if Φv is ^-invariant, so is its Fourier transform. Also, for any tv ^

K*, uv ^ Kv, (0, tv, uv) G Vv Hence for any Φv with support in Vjt j Φ 1, I3ΦV
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= 0. By Lemma 2.1 73Φ* = 0. Hence Zx(s, Φ*) = 0. Thus for any j Φ 1,

Γ^(s) = 0.

By (2.1), (2.3) and Lemma 2.1

I 9 \2s~ιr (r>c — i (T φ ) * \
{ZΛ) Λ i ^ - ζu(2-2s,I3Φv)

The last quotient is well known (see [13] or [15]). We now have:

PROPOSITION 2.2.

Γ»(_\ _ * I o \2s-\Γvκ2s — 1)
ln(s) - όn\Δ\υ Γv(2-2s)

where δn is the Kronecker delta and

(2π)'sΓ(s) ifKv = C;

(1 — qv ) if Kv is non-archime dean.

2.2. The archimedean completions

For Kv = R, the local functional equation coefficients were found by Shintani

[12]. We state his result as a propositin below:

PROPOSITION 2.3. For Kv = R,

^(s) Γv

22(s)

We note that Shintani's Γn(s) agrees with Γn(s) we found in Proposition 2.2.

For Kv = C, the value of Γ^(s) can be found in Proposition 2.2.

2.3. p-adic completions, p Φ 2

Let Kv, v X 2, be a non-archimedean completion of K. Let Φiv denote the

characteristic function of ${v x, . By [3], Section 4.2, Z f(s, Φf>y) = 1. Therefore

by (2.1)

(2.5) Γ»(s) =Zj{sy Φ*v).

Let Fq denote the residue field of Kv. Then for i= 1,2 # „ ^ can be de-

scribed as follows:



ON DIRICHLET SERIES WITH CLASS NUMBERS 111

(2.6) x ^ f e Ξ t(u + av) (u + bv) or
x = tv(u + av) mod πv: t e F*y, a, b ^ F v a Φ b},

and

(2.7) #„ x2 = {x Ξ t(u + cw) (M + a'v) mod τrv: , α - F

where α' denotes the Galois conjugate of a over F ί y .

Clearly, Φiv(x)> i= 1,2, has support in 7ΓV Vo , depends only on x modulo

Ov and is ^-invariant. This implies that ΦifU(x) takes on four distinct values on

the following sets: VOy, π^(Xv x, ), i = 1,2, and π~\Xv (0,0,1)).

Let Λ:βfft = (u + αf)(w + if) and rα>oo = v(u + av). Then

(2.8) ΦtM = C Σ Σ <t[χatb, yϊ>v.

The inner sum in (2.8) is either qv — 1 or — 1 depending on whether [xOtb, y] is

in Ov or not. Hence

(2.9)

if x €Ξ VQ^

if x e π~\%v- x:)

qu\l - qv

ι) i f Λ . e 7 Γ - i / ^

Another way to write Φlυ is the following:

(2.10) Φt = ^ _j " °>V 2

χ

" o—"— (π'1 ΦlfV) ?

(0,0,1)).

Γ1 Φ 2.J

where (ί Φ) (x) = Φ(t~lχ).

A similar argument shows that

Q -

(2.11) V2,V ω =
if x

x2)

(0,0,1))-
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(2.12)
2v

Next we compute Φ2ω>v(s), i— 1,2. We may assume that the first quadratic

ramified extensions of Kv is the splitting field of the form u + πvv and the second

the splitting field of u + avπvv where av ^ Ov is a non—square. Let ϊ^ω^te) D e

the characteristic function of the set of Eisenstein polynomials ί r = t(u +

a\v2) mod (πv x πv x τ $ ^ F ^ e F,x}. Then Φ2(1)>v = (^ + 1)M,?Γ2(1)^.

Φ22a),v
to compute. Its support lies in πυ Ov X πv Ov x τrv

Moreover, for any z/ ̂  ττ~ Ov x π~ Ov X π~ Ov

K»,Λy) = ?;4((ί, - 1) # tea to* ^1 e " # teβ: [y, x j

where xa denotes the form u + a iτυυ , a ε Y An easy computation now shows

that for y <= 7r;

(2.13)

x π/O, x π/(

/ -i \2

if;

if
2 2 2 2 2

πvy =τ(u - b %vv ) mod %v x π v x π v

" Qv o otherwise.

Let FlfU and F2v be the characteristic functions of Ov X Ov X πv0v and Oy X

πv0v X πv0v respectively. Then

(2.14) ¥2(1)>v=-qv

~3 - 2

where j = 1 if qv = 1 mod 4 (i.e. — 1 is a square in F β ) and j — 2 otherwise.

LEMMA 2.4.

MVF1>V =



ON DIRICHLET SERIES WITH CLASS NUMBERS 1 1 3

Proof. F2tV

 = τzv Φ0v + F3v where F3tV is the characteristic function of the

set S3p = {x = (t, 0,0) modπu:t ^ F*}. The stabilizer of this set has index

qv + 1 in #„, any two distinct κv S3v, κv G Ήv are disjoint, and the image of S3tU

under the action of # v consists of those forms in Ov — (πv0u) that are singular

modulo πu. Therefore

MUF3)V = —r-γ (ΦOιV - (πv Φ0>v) - Φhv - Φ2,v),

and MvF2tV = MvF3v + πv Φ0v is as in the statement of the lemma.

FltV = F2>v + F4>v where F4>1) is the characteristic function of the set

S4,y = ίx= (tl9 t29 0) mod πv: t2 e Oy

x}.

Alternatively,

S4)ί, = {/cy (0,1,0) : ̂  = (ί, ( a ) ) e ^ v , c = 0 mod πvord = 0 mod TΓJ.

2
Hence MJFAtV = , -. Φ1;V. Adding this to the value of MuF2tV, we obtain MvFhu.

From (2.14) and Lemma 2.4

By (1.7) Z^s, tv Φy) = I χ ( O IpZ^s, Φy). Therefore it is now a simple mat-

ter to compute Γ^(s) from (210), (2.12) and (2.15):

PROPOSITION 2.5. If v Jί 2, the local functional equation coefficients 7^ (s),

i, j — 1,2, 2(1), 2(2), are given in the following table'.

1 2$~2 1 " 2 /i -l\ IΛ i 2s-l\ /i -l\ /1 ι 2s-l\

I * l ? ( l ί ) ( l + ? ) ( l ? ) ( l + ? )
-2S\ /H l-2S\ n / ! -2S\/, l-2S\ π / i -2$\ /* l-2S\

?y )(l-?y ) 2(1-?y )(l-?y ) 2(1 — ̂  ) ( l - ί v )

(1-gy ) "ft, (l ~ gy ) ~ gy (l " gy )
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a-?;
1-

1

-2\ 25-2

-25

-2s 25-2

-2S

(Iv

(>

('

+1

-1

' - Γ

^ (Iv '

~1

\ \ 4S-4
jψv

2 ( 1 -

2 ( 1 -

(l-(

9, )

(1 + (
-25x

- Γ

- Γ

u ~

( 1 + ( T )

\ 45-4

2 ( 1 -

2 ( 1 -

(l + l

-25\

C)
\ qv ί

qv I

2.4. 2-adic completions

Let Kv, v I 2, be a 2-adic completion of if. Let mv denote the integer such that

I 2 | v = #v

 m y. The quadratic ramified extensions of Kv have discriminants of norm

qv\ i = 1, . . . , mv and qv

Mv+ . We will denote by V2i{k) the orbit of forms whose

splitting field is the k field in the list of quadratic ramified extensions of Kv with

the discriminant of norm qv. A standard orbital representative of V2tik) will be de-

noted by x2'(fc) When there is no need to distinguish between distinct ramified ex-

tensions of Kυ of discriminant ql, we will simply write V2t and x2< for F2'α) a n d

X2'(/c)

Denote by ΦJ

OtU the characteristic function of {x e F O y : | P(x) \v < q~3}. The

possible values of | P(x) \v are q~2J, j = 0,1,. . ., mv, and #J"*, ̂  ^ 2my + 1. Con-

sequently, we need only distinguish between Φ^y, = 0, . . .ymv, and Φ ^ , A: ̂  2mv

+ 1. The functions Φo^, = 0,. . . , my, afford a rather simple description: they

are the characteristic functions of the sets Ov x πv0v x Oy. In particular, ΦoJv is

the characteristic function of Oυ X 2OV x Oy.

fl, I Z ( ) l>o*( % ) χ 2 ^ where

I χ(Λ) \v < ql }}. The value of Z2/(s, ΦOy) is given in Proposition 1.3. It is a sim-

ple exercise now to obtain:

LEMMA 2.6. For an integer j < 0 let j =

~κ if j even

Then

if1-"
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and if j > i,

If) < i,

0W)(l-2s)

^ A x 1 - qv 1 - qv '

Z2,(s, ΦL) =
— 2S\ '

)( 1 - qι

v

 2 s ) ( 1 - qv

Let Φiv,i= 1,2, be as in the previous section. Then as before Γ^is) =

Zj(s, ΦiιV).

Φlv is the characteristic function of the set $iv x : whose explicit description

is given by (2.5). Clearly Φι>v(y) has support in π~ (Ou X 2OV X O j , depends

only on y modulo Ov X 2OV X Ov and is ^-invariant. Therefore we only need to

compute Φ1>v(y) for four distinct values of y : y — (0,0,0), y = πv (1,0,1), y =

τιv (1,0,0) and y = πv (0,2,0). The computation is carried out as in (2.8): one

need only find the number of xab such that [y, xab] ^ Oy. The result is the fol-

lowing:

iίyeθv X 2 θ v x Ov;

if y = κv π~v\\$X) mod Ov x 2OV x O,, Λ:V

if y = tcv TΓ ' U A O ) mod Ov x 2 0 , x Ov, κv

1/-. - K

- K

if y e /cv < ' (0,2,0) mod Ov x 2 0 , x Ov, «„

The last three sets in (2.16) look rather complicated. In fact, they have better

descriptions. The first consists of x ^ π~ (Ov X 2OV X Ov) — Ov such that

I P{x) \v = q~2m\ the second consists of x G π " 1 ^ X 2OV X Ov) - θl such that

^ < q~ ™v, and the third is the set of x ^ Ov such that | P(x) \v = q~ m"'.

Let Fiu, i = 1,2,3, be the characteristic functions of these three sets. Then

- 2 Λ - 1 - 1
Ή QL — 1 2m 1 2w ^ ^

N o w F2tV =

(2.17)

Similarly,

- Φ o " " " 1 a n d F3Λ> = Φ2^ 2 - Φ2

0

m

v

υ \ H e n c e
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(2.18)
-

if y e Oυx 20vy- Ov;

- 2

-y- if y = fcv ^(1,0,1) mod 0, x 20, x 0,, Λ:,

_ -1ci _ -1)
— o — — — if z/ Ξ ^ πy"1 (1,0,0) mod 0, x 20, x 0,, /c,

g" 1 i f

or alternatively

(2.19)

- 2

= ~\~7ίv

- 2

y i
• j i

Λ / πj"1 (0,2,0) mod 0v x 20, x 0,, κυ

ΦQ/ 9 ^2,v 9~^3,v

The coefficients Γ^is), i = 1,2, can now be computed with the help of Lemma 2.

PROPOSITION 2.7.

2 IΓ
+

2S-2 I o \2S/Λ l - 2 s \

g, 1 2 I, (1 - g, )
Λ - 2 5

For i = 1 , . . . , m, — 1,

I 2 i Γ ' t t - Q2v 2) , ^ + 1 & ( < + 1 ) s~ 21 2 | ^ ( 1 - qι~2s)
1-25

and

2(i+l)s-2 I sd - q;

1 in2mv

2 ( 1 — qv )

n 2S-2 -2s
2 - Qv ~ Qv

^ U O (Λ 1 —25\ /-• Λ"~25\ '

2 ( 1 — qv ) ( 1 — qv )
2s-2(Λ l-25x

Qv ( 1 ~ Qv )
i 22^^v

ΓV Wy

2 ( 1 -
l-25v

Qv )
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and

9e 9

222mv+1~ 2{l-q-v

2s) '

It remains to compute the local functional equation coefficients for the orbits

corresponding to the ramified extensions of Kv. Because of difficulty of dealing

with individual ramified extensions we are going to combine all quadratic ramified

extensions of Kv with discriminant of the same norm together. Consequently, let

Φ2iv be the characteristic function of U Λ # „ x^*). Then Γ^is) = Zjis, Φ^t)).

Let ΨjtV denote the characteristic function of the set Ov X τιv0υ X πv0u .

Then, for / = 1, . . . , m» Φ^v = (qv + l)Mu(Ψj>v - Ψj+hi) and Φ#m^v = (qv + ΐ)Mv

Φmu+i,w The Fourier transform of ΨjtV is rather easy to find. The calculation is

analogous to the calculation of Ψ2*ω,v i n Section 2.3. Supp(?F ;>)* c π~2Ov X

τrv

 v } Ov X πv Oυ, and for y G πv Ov x πv

 v 3 Ov x πp Ov one obtains:

-O+l)/-j _ -1\2 . . ^ -1/Λ χ mv-iQ χ ^

-0+2) (Λ -K2 ,.

— ^y (1 — qυ ) otherwise.

Let 3>ktV be the characteristic function of Ov x πv0v x τrv0v. Then

i - i -i - 1 i

* J- —Qp -2 -L — Qv -i 1 - 2

LEMMA 2.8. For 1 < k < mv>

Proof. For 1 < k < ntv,

(2.21) Ou x ^ 0 , x πv0v= 0*v x TΓ^O, X π v 0 y U π y 0 y x π " θ u x πυ0υ.

The second of the two sets in (2-21) is ^-s table ; its characteristic function is
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πv * Φo,iΓ The ^fy-image of the first set in (2.21) is the set of all forms in Ov X

nv0v x Ov that are not congruent to 0 mod π y, i.e. it is (Oy x πv0v x πv0u) —

(πuΌv X πk

v0v X πv0v). Its stabilizer has index qυ + 1 in #„. Therefore its char-

acteristic function, normalized with respect to $(v is — T T (ΦQ,I> ~ ftv ' @o,v )•

The expression for Mu2FktV, k = 1,. . . , my, is just the sum of the above two ex-

pressions.

The argument for k = mv + 1 is similar. As for A: = 0, 0FOtV is the character-

istic function of

Ov x Ov x τry0, = Ov x πv0v x τrv0v U 0, x Oy

x x τr,Oy.

2
Therefore as in the proof of Lemma 2.4 MJHF^ — MJ$FltV H 7 j γ Φ l v .

An easy argument shows that MvΨjv = — r r y Σk> 2j ®2k,v Therefore by

(2.20) and Lemma 2.8

I -i ^

(2.22) {qv ^ 7

(2.23) : ^ = ^ 2 2 r i + 2 > X ? "

for 2 < j < nzu, and

(2.24) (qv-

2(1 - q~ι) _! 1 _ _2

ύ' V q V k>2

By a straightforward calculation

rt/-j -2\ -2{mv-j)s

(2.25) Z 2(s, (^v 4- \)MuΨjv) = v — v —^ s , j — 1 , . . . , mv

For i < mv — j + 1

2(i - ί;2)*;20""-'-'*
(2.26)

Qv (1 ~ ίv
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and for i > mv — j + 1, including i = mv + y,

- 1 \ 4S /-, , 1-2S\ 4s

(2.27) Z2«(s, (^ 4- l)MvWjfV) = — — + — .
Qv ( ~ Qv ) ^

Note that a separate calculation is required to determine Z22i(s, (qv + 1)MV

?f; v) when 7 = mv + 1 or i — mv — j ~^r \. The results, however, turn out to be

the same as for all other j or i < (mv ~ j) respectively.

Since Φ2υu = (qv + l)Mv(Ψjv - Ψj+1>1), j = 1,. . ., mv, and Φ22*u+ifV = (qv +

1)MvΨmv+lv, one can now easily compute Γi2>(s) :

PROPOSITION 2.9.

2(1 - qv )qv (1- qv )
,7 - 1 , . . . , muf

Qv U ~ gv

and

^ , , 2(1 -
-2s\ '

)

For i < mv — j ,

/-. -2\ -2{mv-j-l-i)s /

' 3+2,Λ -2Sx »
gv (1 - gp )

α - K 4S/-, 2-2Sx 4S

. . , . _ ~ qu )qv (1 ~ qv ) qv
1 22(mv-i+i)22i{s) - T ^ — — — .

Qv v l — Qv ) gv

For ί ^ my — y -i" 2, including i — mv

Jr -~t

? (1 ί )

and for all

Our list of local functional equation coefficients for zeta functions associated

with the space of binary quadratic forms is now complete.



1 2 0 BORIS A. DATSKOVSKY

3. The remainder

Our next task is to compute the remainder term Tx (s) in the functional equa-

tion in Theorem 1.2.

Let x 5 = (xΛes Then by (1.2) and (1.18)

n τ ( Λ jΛ 3 Γ(2s, Φ*) - Γ ( 3 - 2 s , Φ)
.1) Γx (5) = D*pκ UveSZXv(^- s, Φu)

w h e r e Φ = T l v e S Φ y x Π ^ 5 Φ0v a n d f o r e a c h y G j S u p p ( Φ v ) c F X j / F o r a

^-invariant function Φ, T(s, Φ) =-^T(s, w, T2Φ) \w=0 where (T2Φ)(t, u) =

Φ(0, t, u) and T(s, w, Ψ) is given by the integral (1.4).

T(s, w, Ψ) has an Euler product: let

(3.2) av{uv) = •

and

(1 + U J , ) if

sup(l, U J V ) if

(3.3) Γy(5, wyΨv)= f f \ tvζΨv(tvf tvuv)av(uv)
wduvd*tv.

Jκl Jκu

Then for Ψ = UVGM(K) Ψv

(3.4) Γ(s, to, 80 = £ > ; W Π Γv(s, w, 8T).

The following two lemmas are essential for out calculations;

LEMMA 3.1.

Xs, w, T2ΦJ =
(1

1 - ,

- q»') (i

w-s

1+W-S\ '

- Qv )

For the proof of this lemma we refer the reader to [16], Proposition (2.8).

LEMMA 3.2. For $(v-invariant function Φv

Tv(2s,0,T2Φv)=Zι(s,Φυ).
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Proof.

Tu(2s, 0, T2ΦV) = f f \ tJlsΦv(O, tv, tvuv)duvd
xtv

Jκl Jκv

= ί ί \tJlsΦv(n(#,)<t(O (0, 1, 0))duudΊv
Jκl Jκv

= I I I \tv^Φv(
Jκl Jκv

 Jχv

The last expression is clearly Z^s, Φv).

By Lemma 3.1

(3.5) Tis, w, T2Φ) = Dpp?Tsls, W, T2Φ) ς ^

where

(3.6) Ts(s, w, T2Φ) = Π Tv(s, w, T2ΦU).

For a $fy-invariant function Φv let

(3.7) Tυ(s, Φυ) = -~ Tv(s, w, T2ΦV) | w = 0 .

Then

Tis, Φ) = D^p? [τs(s, 0, T2Φ)ζKtS(s - 1) (•&£• (s) - &- (s - 1))

(3.8)

+ ζ x > s (s - 1) Σ Π Tβ(s, 0, T2Φ,)Tυ(s, Φυ)\.

Thanks to Lemma 3.2 we can rewrite (3.8) as follows:

Γ(2s, Φ) = D~^p-K

ι [ π Z x (s, Φ v )ζ x , s (2s - 1) ( | ^ (2s) - - ^ (2s - 1))

+ ζκ>s(2s - 1) Σ Π Z^s, ΦJT^s, Φv)\

As in Section 1.4 Φ = D~J UueM(κ) π~Hu Φv where wv is the order of the

different of K at v. It is easy to see that Tv(s, w, π~n ¥v) = q"sTv(s, w,Ψu).

Also if v /f 2, Φ 0 v = Φ o v . Therefore if S contains all places of K that lie over 2,
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1 [ π Zλ(s, Φ*)ζAS(2s - 1) (f^ (2s) - f^ (2s - 1)

+ ζκ,s(2s - 1) Σ Π Zx(s, <)T v(s, Φ*)l.
S S φ Λ

T(2s, Φ*) =

(3.10)

2" ~ s, φX Let δXv = 1 if xv = xx and

0 otherwise and let δ γ = Π,J(=ς<5v . Then

(3.11) TXs(s) = Π •*• (2s) - # £ - (2s - 1))

- δXs ζκ,s(2 - 2s) ( | ^ (3 - 2S) - | ^ (2 - 25)) + Σ

where δXs_m = Π ^ ^ v δX ( i and

(3.12) C(s, Φv) =

, Φ*) - ζκ,s(2 - 2s)Tv(3 - 2s, Φv)

The numerator in (3.12) can be considerably simplified. Observe that by (2.4)

ζ'S(2 — 2s) = ^v^sΓuis) and that D^S~JΠyeM{κ) Γ^(s) = 1. Thereforeζ(2 — 2s)

(3.13) CU, Φj

Equation (3.11) implies that

(3.14) (Γυ

n(s)VlTv(2s, Φ*) - Tυ(3 - 2s, Φv) = Σ

" Γ ^ ( 3 - 2s>

- s,

i.e. it is a distribution that has the invariance property (1.7) under the action of
3

GKv with -rt" — s in place of 5. This fact can also be verified by a direct local

calculation.

With the notation of (3.14) we have: if S contains all places of K that lie over

2,
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(3.15)

TXs(s) = p2

κζκ,s(2 - 2s) k s ( | ^ (2s) - ^ (2s - 1))

*- (3 - 2s) - £*- (2 - 2s)) + Σ δ^ Cκ
tfS ±KS ' veS S {} V

What we have to do now is to compute CXv(s).

As in Section 2, we will write Civ{s) for CXy(s) if xv is the standard orbital

representative of the local orbit V{. Clearly

(3.i6) c,>) = (r1

j;ω)"1ry(25, Φ*,) - TJΆ - 25, ΦJ.

If v X 2, the right hand side of (3.16) is rather easy to compute All we need

is the following lemma:

LEMMA 3.3.

α-ίrvα-o1

and for any i in the index set of local GKv-orbits Tv(s, Φiu) = 0.

Proof. The first statement follows from Lemma 3.1 by differentiation. As for

0 iίiΦl

1 if i= 1'
the second, one only need to observe that Tv(s, w, Φiv) =

The Fourier transforms Φ*v, i= 1,2,20'), are given in (2.10), (2.12) and

(2.15). A quick calculation now shows:

PROPOSITION 3.4.

2-25/-, -K2/i , l-2S\

qv v± — ίμ i U Γ ^ j

Chv(s) = - \ogqv—- ϊ^^ΓT, 2̂ΪΓ»
2 ( 1 - q v ) { \ - q v ) { l - q v )

and

— l \ 2

& )α
- & ft

— ^ —
2 ( 1 - qv )(\~ qu
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To compute Civ(s) for v | 2 we need

LEMMA 3.5. For a non-negative integer j

and

—is , j(l-s) Λ /-, 2-5\ ~ j(l-s)

logg ?„ loggd - & ) ;g
, j(l-s) Λ /-, 2-5\

τ , Λy s gμ loggμ ?„ logged - & )

Proof.

Tv(s, w, T2Φi>v) = Γ Γ I ίJJ sup(l, I «y O'd
Jtveπ'vOv

 Jtvuve0v

/» / OΓdyίy \

= J , l ί y L U + Σ ft ί y ( l ~ qv ))d tv
Jtveπ'υOυ \ n=l '

Jh*π>vov \ 1 — ? y (1 - ?y

^ ^ (1 - qv ) , ^ (l-qv)

1 —s Λ —1—w /-, w+l—S\ /-, — 1—W\

- qv 1 - ί y (1 ~ qv ) (1 ~ qv )

as claimed. The formula for Ty(s, Φ^) can now be obtained by straightforward

differentiation.

Using (2.17), (2.19) and (2.22)-(2.24) we can now find CitV(s). We spare the

reader a tedious calculation and just list the final result here.

PROPOSITION 3.6. For v I 2

2-2Sx

= log ? v [ - — ^ — + mυ

{qv -\){\-qv )
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- l w , 1-25x2
+ Qv ) . \2\V{1

o /-, 2—2S\ r» /-, — 1 \ /-, —2S\ /-. 2—2S\

2 ( 1 - ̂  ) 2 ( 1 - qu ) (1 - ̂  ) (1 - qv )

I r» I /-i 1—2s\ 2

121,(1 - ̂  )[ t

l

= 1 , . . . , m y

)q (1 q ) 1
n , , _ , r O / Ί -K H2S-B _,_ 12 La - ? ; χ α - ?Γ )Ί
C22/V(s; — log #u — 2 ( 1 — qv )qv ^ — ,

L ( l - q ; 2 s ) a - ql2S) J

and
( 1_ g;i) ( 1_ ? i-*)

= I 2 |y 2 5 l o g ^ [ - 2qv

 1

2-25

- ] •U — qv ){± — qv

It remains to compute Civ(s) for archimedean places. Before we do this

though, we need to make a slight correction to equations (3.10)—(3.15). As writ-

ten, these equations are only valid if S contains all places of K that lie over 2. To

make (3.10)—(3.12) valid for all S one needs to replace ζ#>s(2s ~~ 1) by

Π y e ! ST y(2s, 0, T2ΦQι) and γ^~ (2s) — γ^~ (2s — 1) by the logarithmic derivative

of nv<ίSTu(s, w, Γ2Φ0*y) at w = 0. By Lemma 3.2 Tv(s, 0, T2Φ*V) = Zλ(s, Φ* y ) ,

so when one pulls out ζκs in (3.12) one has Π y ^ s — r ^ — ! — — — τ ~ = Π^g/^(5).

Thus (3.13) and (3.14) are valid for any 5.

Φ0v — ΦO)V

V, and we can compute the logarithmic derivative of Tv(s, w,

T2Φ0]) at w = 0 using Lemma 3.5. Comparing with the logarithmic derivative of

Tv(s, wy T2Φ0v) at w = 0 we obtain

(3.17)

Therefore the version of (3.15) that is valid for any 5 is

13181 - ,(2- 2 s)kiΣ(- 1o 8 | 2 l-.o»,^ 1- |. 2, ί ) α-Γ

d
dwlog

+ m>v

Tv(s, w, Γ2Φ0*.

log ^

) U
- 1 /

(]

... d
dwι

1 - C

og

(1

T

( 1 •

—

(s, w, 7

-25\

^ )
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*- (2s) - - ^ (2s - 1)) - ( ^ (3 - 2s) - ί ^ (2 - 2s))]
K,S ^KS ' ^^K,S ^K,S n

We now specialize to K — Q and 5 = {°°}. In this case (3.18) reads:

TAs) = ζ(2 - 2s) f l 0 g 2

 2s + Ά (2s) - ψ (2s - 1)
L 2 ( l - 2 ) V ζ ζ

(3.19)

- (-|- (3 - 2s) - •£• (2 - 2s)) + C1>c.(s)]

and

(3.20) TX2(5) = ζ(2-2s)C 2 > o o ( s) .

By [3], Theorem 0.2, when K = Q and S = {00} ?Xi(s) = f+(s) and ̂ ( 5 ) =

τr?_(5) where £±(s) are the Dirichlet series of Shintani [12]. Thanks to [12],

Theorem 2, we know what the remainder is in this case (see (0.1)). Comparing

(3.19) and (3.20) with (0.1) we obtain:

PROPOSITION 3.7. Let v be a real place of K. Then

1 IΓ' Γr I 1\\

Chv(s) = 2{τis)-τ(s- 2))

and

^ w ~ 2sinτr5

It would be interesting to obtain Civ(s)> i = 1,2, for a real place v of K

directly without referring to the work of Shintani. I leave this project, however, to

those readers who are more profficient in real analysis than I am.

Finally, let v be a complex place of K. Let Φ(x) = e Xι c + X<1 c + x*c where

\x\c here denotes the complex modulus of x. The function Φ(x) is ^-invariant .

Moreover, Φ* = 2Φ. By (2.2)

Zι(s9Φ)=f>

(3.21) C > "

= (2π) I I /ί β d λdμ = 2π Γ(2s — 1).
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Λ2s, w, T2Φ) = I f l t\re (1 + I u | Γ ) dud t
Jcx Jc

(3.22) = (2τr)2 Γ Γ λ2se-πil+2u\l + ^ ) > d x ^

= 4τr2~2sΓ(2s) Γ" (1 + 2μ)~2s(l + μ)wdμ.

The last integral can be evaluated in terms of hypergeometric functions. In fact, it

F\2s, 2s - w - 1 2s - w -^J
equals 2~ s «—— ^~Λ . We, however, are only interested in

CJS W JL

its derivative with respect to w at w — 0. Differentiating, we obtain

Tv(2s, Φ) = 4π2'2sΓ(2s) Γ (1 + 2Jtί)~2ilog(l + μ)dμ

( 3 2 3 )

) (1 + 2 μ Γ 2 s + 1 ( l + μ>~ιdμ.

Setr = (1 + 2μ)'\ Then

Γ 1 T2S~2

Tv(2s, Φ) = 2π2~2sΓ(2s - V '

= 2^7X2,-

= π2'2sΓ(2s - 1) (jr (s - Y ) - ^ (s - 1)).

Substituting (3.24) and (3.21) in (3.14) we obtain:

PROPOSITION 3.8. If v is a complex place of K,

K , W 2 \ Γ \ s 2/ Γ Ks l)) 2 \ Γ u s) Γ \2 s))'

We summarize our results in the theorem below:

THEOREM 3.9. The Dirichlet series ζXs(s), ζXs(s) satisfy a functional equation

ς χ s \ 2 / κ

 y 5

 χsys ςys χs

The functional equation coefficients ΓXsVs(s) = Πv<=sΓXvyv(s), and the values of
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ΓXvyv(s) are given in Propositions 2.2, 2.3, 2.5, 2.7 and 2.9. The remainder TXs = 0

i/"xs is non-split in at least two places v^S.Ifxsis non-split at just one place v ^ S,

TSs(s)=p2

κζκ,s(2-2s)CXv(s),

where the values of C x (5) are given in Propositions 3.4, 3.6, 3.7 and 3.8. If xs is

split at all v e S,

TXs(s) = pκζKιS{2 - 25) [ Σ ( - log I 2 I - log qυ

a-?;1)

^ (2s) - y^ (2s - 1) - (ψ^- (3 - 2s) - - ^ (2 - 2s)

+ ΣChv(s)}.

4. Dirichlet series with a modular functional equation

In this section we are going to construct a family of Dirichlet series ζ(s) —

Σna(n)λn , where λn are rational numbers with bounded denominators, that satisfy

(!)*>(! -.M!-.) = (f)>«{«.
We specialize to K = Q. Take Φ = Πy e M (Q)Φy where two of the Φy satisfy

Zx(s, Φv) = 0. Then by Proposition 2.2 Z^s, Φ*) = 0, and by Lemma 3.2 and

(3.8) T(2s, Φ*) = Γ(3 ~ 2s, Φ) = 0. The functional equation (1.2) now takes a

particularly simple form:

(4.2) Z[f - s , Φ) = Z(s,ΦΊ.

Let ^ = # R and // (oo) = ^ x Π ^ Z / Then ^ Λ = # ( ° ° ) # Q . Moreover,

the measure dh on i?^ equals dA^ x Π̂ , dhp.

Write Φ = Φ^ X Φo where Φo = Π̂ , Φ .̂ By normalizing if necessary we may

assume that all Φp are //"^-invariant. Then

(4.3) Z(s, Φ) = j f I χ ( A J Γ Σ Φ M ( ^ x)Φ0(x)dhoo

= Σ ΦQ(x) f | χ ( A J ΓΦooUoo

The last integral was evaluated in [3], Equation 7.6. It equals
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(4.4) cxμjx) \P(x) \~sZx(s, ΦJ

where

1 iί(Hx)z= (Hx)z;

1
~w otherwise

and

4ττ . , . , , . .
— if x is definite;

2 log εx if x is indefinite.

Here ωx is the number of automorphs of x if x is definite, and εx is the fun-

damental unit that generates the group of automorphs of x if x is indefinite.

Let (VΊ)Q denote the set of indefinite binary quadratic forms with coefficients

in Q that do not split over Q, and ( V 2 ) Q the set of definite binary quadratic forms

with coefficients in Q. Then we have

(4.5) Z(sy Φ) = Z x(s, Φjξ^s, Φo) + Z 2(s, ΦJξ2(sy Φo)

where

f,(s, Φ0) = Σ C I Γ

The series ξ2(s, Φo) can be described in more classical terms. Let V^ denote

the set of positive definite binary quadratic forms. Since Hz = {± 1, PGL2(Z)),

any form in ( I ^ Q ̂ S -ί^equivalent to a form in (V2 )Q. Moreover, cx = ~κ if

ίΓ z-orbit of x coincides with SL2(Z)-orbit of x and cx = 1 if ϋfz-orbit of x de-

composes into two SL2(Z)-orbits. Hence

(4.7) £ 2 ( S ) Φ 0 )=2π Σ - ^ |

2" - 5, Φ^j = 0, and by

(1.11) and Proposition 2.3

(4.8) Z 2 ( 5 , Φl) = 22s~ιπ^2sr(s - j)r(s)cos(ττs)Z2(| - 5,

This combined with (4.2) yields
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PROPOSITION 4.1. Let Φo = Up Φp be a product of locally constant functions with

compact support on VQ such that for almost all p Φp is the characteristic function of

Vz and for one of the primes p Zx(s, Φp) = 0. Let

, Φ0) - ( ! ) Vωξ 2u, Φ0)

where ξ2(s, Φo) is given by (4.7). Then

L ( | - 5 , Φo) = -y/2Us, Φo*)

The Fourier transform Φo = Up Φp. The local measures dxp are self-dual for

all p Φ 2, and for p = 2(Φ2*)* = -^ Φ2. Therefore we can pick Φp so that Φ* =

C

—j= Φo where C = ± 1. We now have

COROLLARY 4.2. Suppose Φo satisfies the hypotheses of Proposition 4.1 and

furthermore Φo = -τ=- Φ o w/ι<?r<? C = ± 1.
γ2

| - 5 , Φo) = -CUs, Φo).

We conclude this paper by giving an example of a series satisfying equation

(4.1). Let q be an odd prime. Set

2) Φ4 = Φ2,, + Φ*,
3) Φp = Φ o f ί if ^ is an odd prime other than q.

Then Φo = Π^ Φ̂ , satisfies the hypotheses of Corollary 4.2 with C — — 1, and

hence ζ2(s, Φo) satisfies equation (4.1).

The function Φ2q is given in (2.12). Note that Φlq + Φ2q is the characteristic

function of the set of forms with Z9-integral coefficients whose discriminants are

Z9-units and Φ2q the characteristic function of the set of forms with Z^-integral

coefficients whose discriminants are non-squares in Z*.

Let H(n) be the number of SL2(Z)-classes of positive definite integral binary

quadratic forms of discriminant — n, counted with multiplicities as in (0.4). Then

(2.12) and (4.7) imply that
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— ξ2(s, Φo) = (1 - q ) (1 - q ) Σ I — 1* 1

oo

(4.9) + q2s~\l — q~l) Σ

(
» non—sq. (mod Q) fl

The functional equation for the series (4.9) suggests that the inverse Mellin

transform of (2πq )~sΓ(s)ξ2(s, Φo) plus an appropriate constant term (necessary

since (2πq )~sΓ(s)ξ2(s, Φo) has a simple pole at 5 = 3/2) is a modular form of

weight 3/2 on ΓQ(16q ). It is indeed so as can be easily seen from Theorem 3.3

and Corollary 3.4 of [1].

The results of this section point to a curious connection between modular

forms of weight 3/2 and zeta functions associated with the space of binary

quadratic forms. It would be extremely interesting to investigate this connection

further.
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