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AN EXPLICIT FORMULA FOR THE FOURIER
COEFFICIENTS OF SIEGEL-EISENSTEIN SERIES

OF DEGREE 3

HIDENORI KATSURADA1

Abstract. Using an induction formula of local densities by Kitaoka, we give an
explicit formula for the Fourier coefficients of Siegel Eisenstein series of degree
3.

§1. Introduction

Let k be an even integer such that k > n + 2 and

Ek(Z)= Σ \CZ + D\-k.
{C,D}

Siegel Eisenstein series of degree n and of weight fc, where {C, D} runs over
all representatives of the equivalence classes of coprime symmetric pairs of
degree n. Then Ek{Z) has the following Fourier expansion:

Ek(Z) = Σc,(C)exp(2πzTr(CZ)),
c

where C runs over all semi-positive definite half-integral matrices of degree
n over Z, and Tr denotes the trace.

The Fourier coefficient of Siegel-Eisenstein series is one of the most
important subjects in number theory, and many contributions have been
done to it. But we have no explicit formula for it except for a few cases.
The case of degree 1 is well known. In [Mai], [Ma2], Maaβ gave an explicit
formula for the case of degree 2. In [Ki2] Kitaoka essentially gave an explicit
formula for ck(B) when n — 3 and B is Z2-maximal using his recursion
formula in [Kil] (for the definition of Z2-maximal see Section 2). Partial
results for the case where B is not Z2~maximal were given in [O-W].
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In this paper, using the recursion formula in [Kil] we give an explicit

formula for c^{C) for any positive definite half-integral matrix C of degree 3.

To state our main result explicitly, we introduce the notion of the "scheme"

of a symmetric matrix of degree 3 with entries in the field Q p of p-adic num-

bers. For a commutative ring R, let Mmn(R) be the set of (m, n)-matrices

with entries in iϊ, GLn(R) the group of invertible elements in Mnn(R), and

Sn(R) the set of symmetric matrices of degree n with entries in R. Further

for an integral domain i?, let 7ίn(R) denote the set of half-integral matrices

of degree n over i?, that is, Hn(R) is the set of symmetric matrices (α^ ) of

degree n with entries in the quotient field of R such that an (ί = 1,. . . , n)

and 2dij (1 < i Φ j < n) belong to R. We note that Hn(R) = Sn(R) if

R contains the inverse of 2. Let A, B be elements of Sn(R). We say A is

equivalent to B over R if we have B = tTAT for some T G GLn(R), and

write A ^ B.

For two square matrices X and Y we write X1.Y = I I. Let Zp

be the ring of p-adic integers, and Z* the group of p-adic units. Let p φ 2;

then for a non-zero element a— prc £ Q p with r G Z, c G Z ! define

= ( " ) o r 0

according as r is even or odd. Here (-) is the quadratic residue symbol
P

modulo p. Let p = 2; for a non-zero element a = 2rc G Q2 with r G Z,

c G Z2 put

1 if r Ξ= 0 mod 2, c = 1 mod 8

X 2 ( α ) = 4 - 1 if r = 0 mod 2 , C Ξ 5 mod 8

0 otherwise.

Further let ( , ) p denote the Hubert symbol over Qp.

For a non-degenerate symmetric matrix B of degree 3 with entries in

Q p we define five invariants m\p(B), rri2P(B), mzp(B), ηp(B), ζp(B) of B

as follows. As is well known, if p = 2, B has one of the following Jordan

decompositions:

(1) VbxLtK with b, £ Z*2, K = ( ^ y ] or ( / / o

 A ^ ] and

s>t,
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(2) 2°K±2% with 63 6 Z5, K = Γ χ ° 2 ^ 2 ) or f ^ ^ ^ and

s > t + 2,

(3) 2 r6i±2βb2±2 tb3 with bu b2, b3 e Z$, and r > 5 > t,

and if p 7̂  2, β has the following Jordan decomposition:

(4) prb1±psb2±p% with r > s > t, bu b2, b3 e Z*.

We note that we here arrange the Jordan components of B in a different
order from the one in [Ki4 Chap. 5]. Further we remark that the matrix B
in (1) ~ (4) is half-integral over Z2 if and only if we have t > 0.

First let B be of type (1). Then we put

m12(B) = t,

and

Further we define ξ2(B) by

according as s > t + 1 or not.
Next let B be of type (2). Then put

m12{B) = t, m22{B) =t + s + 2, m32(B) =t + 2s,

= (X2(-detK))s~t,

and

Thirdly let B be of type (3). Then we put

m12(B) = t, m22(B) = s + t + 2, m32(B) =

and

η2(B) = (-2r-%b3, -2s

Further we define ζ2(B) by

ξ2(B) = X2(-2s-%b3), χ 2 (-2 s - t 6 2 6 3 ) 2 , or 1
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according as r > s + 3, r = s + 2, or not.

Finally let £? be of type (4). Then we put

mιp = t, rri2p = s + ΐ, m 3 p = r + s + £

and

ηp(B) = (-p^ftifts, - p s

Further we define ζp(B) by

= χP(-ps-%b3) or χ p

according as r > s + 1 or r = s.

If p 7̂  2, by the uniqueness of Jordan decomposition these five quantities
mip(B), rri2p(B), m^p{B)^ ηp(B), ζp(B) are clearly invariants of B. lip = 2,
the Jordan decomposition of B is not necessarily unique. However by easy
observation, we see these quantities are also invariants of B. We remark
that we can define these invariants in more intrinsic way. In fact, we have

mlp(B)= min ord(2 1"^6 i j), m2p(B) = min
1<^<7<3 1<«<7

= ord(4detS),

and

where ord denotes the normalized p-adic order of Qp, δij is Kronecker delta,
Bij is the (i,j)-th cofactor of det β, and hp(B) is the Hasse invariant of B
(for the definition of Hasse invariant, see [Ki4, Chap. 3]). Similarly the
invariant ζp(B) can be also defined without using Jordan decomposition.
But to make a calculation smooth we adopt the above definitions. The 5-
tuple (raip(jB), πi2P(B)J mzp(B), ηp(B), ζp(B)) of invariants of B is called
the scheme of B.

Now let B be a non-degenerate half-integral matrix over Z of degree 3.
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Then for each prime number p and integer k we define Fp^(B) by

mi [(m2-δ2P-l)/2]-i

= Σ( Σ p^kV-k»

m i [7712/2]—02P-i

2=0

7713 —2 7712+T7T.1

2=0 j=0

where πii = rriip(B) (i = 1, 2,3) and nf = np(B) is the number defined by

1 if p -φ 2 and 7722 = 0 mod 2,

rtp(B) = ̂  or if p = 2, 777,3 — 2ra2 + mi = —4, and 777,2 = 0 mod 2
0 otherwise.

We easily see

n'JB) =

' 1 if p φ 2 and β ̂  prb1±psb2±p% with 61? 62, ί>3 € Z;,
r > s >t and s Ξ ί mod 2

or if p = 2 and τ3 ̂  2SK±2% with K = ίΓ or Y,
b3 e 7*1, s > t + 2 and S Ξ ! mod 2

0 otherwise.

Remark that the set {Fp^(B)}p is a genus invariant of B as explained above.

Further remark that Fp^(B) is expressed explicitly as a polynomial of p~k

of degree msp(B), and in particular it is 1 for almost all p. Then our main

result in this paper is

THEOREM 1.1. Let B be a positive definite half-integral matrix over Z

of degree 3. Then we have

Γ 5 5 j

where Bi is the i-th Bernoulli number (for the definition of Bernoulli num-

bers see, for example, Miyake [Mi, Chap. 3]).

It should be remarked that Ck(B) can be completely determined by the set

{(mlp(B),m2P(B),m3p(B),ηp(B),ξp(B))}p of schemes of B. To state the
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outline of the proof, for a half-integral matrix S of degree m and symmetric
matrix T of degree n with entries in Qp, put

Ae(T, S) = #{X G Mmn(Zp)/p
eMmn(Zp); S[X] - T € P

eΉn(Zp)},

Be(T, S) = #{X G Λe(T, 5); X has the maximal rank mod p},

and

ap(T, S) = lim^p(-m n + n(n + 1)/2)βΛ(Γ,5),

βJT, S) = lim p1

e—> o o

where for two matrices T, X, T[X] denotes *XTX. Let Hk = HL...A.H

with ff = I / I. Then it follows from Maaβ [Mai] that for a

\ /
positive definite half-integral matrix £? of degree 3, we have

ck(B) = ( - ^ ^ ^ * 2 f W L

where Γ(2?) is the gamma function, and p runs over all prime numbers. Thus
our main theorem can be reduced to the following.

THEOREM 1.2. Let the notation and the assumption be as above. Then
for any non-degenerate half-integral symmetric matrix B of degree 3 over
7ΛP we have

ap(B,Hk) = (l-p-k)(l-p2-2k)Fp,k(B).

Theorem 1.2 for the case p ψ 2 has been treated by Kitaoka in [Ki2]
though it has not been formulated in the above form (cf. Section 4). The
value a2(B,Hk) for a Z2-maximal matrix B of degree 3 is well known
(cf. Proposition 2.2). Thus Kitaoka essentially proved Theorem 1.1 in this
case. The crutial part of this paper is the proof for the case p = 2. The
method we adopt is similar to that in [Ki2], but we give a more concise
formula than that by introducing the notion of the scheme. Fixing ηp(B)
and ζp(B) we temporarily write Ap(mι^m2,ms) for ap(B,Hk). Then first
we give an explicit formula for Ap{0,ni2,mz) when 777,2 — 0? 1> 2^ p or
2<!>2p+l (cf. Theorem 3.1.3). Next we express v4p(0,777,2, ^3) using Ap(0,777,2 —
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2[(ra2 —2<$2p)/2],ra3 —4[(ra2 —2<52p)/2]) by a certain induction formula when

rri2 > 2̂ 2p (cf. Theorem 3.2.1). Thirdly we give an induction formula by

which we can express Ap (mi, 7712,7713) using Ap(0,ra2 — 2τni,m3 — 3raχ)

(cf. Theorem 3.3.1), and finally combining these results, we complete the

proof. The proof is rather long but comprehensible, and our mehtod is ap-

plicalble to Siegel-Eisenstein series of any degree, and a lot of information

on the Fourier cofficients of it can be obtained. Further we remark that the

same result in this paper can be obtained by using a modification of our

recursion formula in [Kal] and [Ka2]. In fact, in the first draft of this paper

we have obtained the main result using it. The detail will be published in

a subsequent paper. We also remark that D. Zagier conjectured some in-

duction formulae similar to ours. The author thanks Professors Y. Kitaoka

and T. Ibukiyama for many helpful discussions and suggestions. He also

thanks the referee for valuable comments.

§2. Kitaoka's recursion formula

In this section we review Kitaoka's recursion formula for local densities

following [Kil]. Put

Λ =

-1 0 0 \ / p'1 0 0

0 p - 1 0 , g2(a) = 0 1 p'λa | ,

0 0 1 ) \ 0 0 p " 1

p~ιa p~ιβ

gs(<x,β)= I 0 p - 1 0

0 0 p~ι

Further put

JΓ={/i,/2(α) ( α - 0 , l , . . . , p - l ) , /3(α,/3) (α,/3 - 0,... ,p - 1)},



206 H. KATSURADA

and

0 = {9i,92(<x) (α = 0 , l , . . . , p - l ) , gs(a,β) (a,β = 0,... ,p - 1)}.

Then by [Kil, Theorem 1] we have

THEOREM 2.1. Let B be a non-degenerate half-integral matrix of de-

gree 3 over Z p . Then we have

ap(B, Hk) = / " 2

βp(B,Hk),

where E3 denotes the unit matrix of degree 3.

For two symmetric matrices B and Bι of degree n with entries in Qp,

we write B' < B if there exists a non-degenerate non-unimodular matrix

X of degree n with entries in Zp such that B' — 5[X]. This defines an

order in Sn(Qp). We call B Zp-maximal or simply maximal if it is maximal

in Hs(Zp). From now on we simply write ap(B) and βp(B) instead of

ap(B,Hk) and βp(B,Hk), respectively, and put

The following proposition is well known.

PROPOSITION 2.2. (1) Let H be the matrix defined in Section 1, and

Y = I . I. Then a maximal matrix B in 7ϊs (Z2) is equivalent, over

Z2, to one of the following forms:

2rbλ±K, with r = 0,1, if = £Γ or Y, 61 G Z$,

6i_L2y mί/i 61 G Z^

(2) Let p φ 2. Γ/ien a maximal matrix B in Ή^(ΊΛ^) has one of the following

Jordan forms:

p r 6 i ± 6 2 ± 6 3 with r = 0,1, bu 62,63 G Z;,

p6i±p62_L63 mίΛ 61,62,63 Ξ Z* ; -6162 ^ Z* 2.

Further in (1) and (2), /or SΪ/C/I a matrix B we have

ap(B) = βp(B).
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Remark. Let 6χ, b2, 63 be elements of Z2, and if = i ϊ or Y. Then we

have

where ^ e Z3J, and K' ~ H oτY according as η2{2r {bιUD2-^-b^)) = 1 or —1.

Now by [Ki3, Lemma 9] we have

PROPOSITION 2.3. Let B be a non-degenerate half-integral matrix of

degree 3 over Zp, and mιp(B) and others be the invariants of B defined in

Section 1. Then we have

βP(B) =

d ifmip(B) = m 2 p (β) = m5p(B) = 0
d(l + p2~%(B)) if mlp(B) = m2p(B) = 0

and msp(B) > 1p ( )

d{\ - P

4~2k) if mlp(B) = 0, m2p(B) > 1,
and rri3p(B) > 1

U(l -p 4~ 2 / c)(l +p 3 " f c ) ifmlp{B) > 1

COROLLARY. Lei B and B' be two half-integral matrices of degree 3

over Zp with the same scheme. Then we have

§3. Proof of the main result

In this section we prove Theorem 1.2. Let d = (1 - p~k)(l — p2~2/c)

be as stated in Section 2. Put Γ = GLs(Zp)^ and for two elements /, g of

GLs(Qp) we write

/ = g mod Γ

if we have / = gh with some h G Γ. Further we write E — T\Δ Q U { p " 1 ^ } ,

where .T7 and <J are the subsets of GL^(Qp) defined in Section 2.

3.1. First step
LEMMA 3.1.1. (1) Let p = 2. Let blf b2, h 6 Z\ and K = H orY.

(1.1) Let B = 6i_L62J-63 or B = 2K±b3. Then we have

(1.2) Let B = 26i_L62-L63. Γ/ien we have
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(1.3) Let B =-2bi_L2&2-L&3. Then we have

(2) Let p φ 2 and B — pb\l_pb2±.b3 with b\, b2, b3 G Z*. Then we have

Proof. First let B be as in (1.1). If we have η2(B) = — 1, the assertion

(1.1) for this case holds by (1) of Proposition 2.2, the remark after Propo-

sition 2.2 and Proposition 2.3. If we have η2(B) — 1, again by the remark

after Proposition 2.2, B is equivalent to b'γUlH with b[ G Z^ Then by

Theorem 2.1 we have

a2(B) = 25-2ka2(b[±H) + β2(B).

Thus the assertion (1.1) holds again by (1) of Proposition 2.2 and Proposi-

tion 2.3. The other assertions can be similarly proved.

LEMMA 3.1.2. (1) Let p = 2. Let bλ, b2, b3 e Z ^ and K = H or Y.

(1.1) Let r > 0, and put B = 2rbι±K. Then we have

2=0

(1.2) Let r > s, s = 0 ,1 . Further assume that —b2b3 φ 1 mod 4 if s = 0.

Put B = 2rb1±2sb2±b3. Then we have

ot2(B) = d( l + τ]2(κB)2^oτ ^ e ^ ^ ^).

(1.3) Let r > 0 ; and assume that —b2b3 = 1 mod 4. Pit£ S = 2r\

Then we have

r-2

2=0

(2) Let pφ2. Let bλ, b2, b3 G Z;.

(2.1) Let r > 1. Pwί β = p rfei±p62±63. ΓΛen ^e /lâ  e

« P ( 5 ) =

(2.2) Let r > 0. Put prbι±b2±.b3. Then we have

r
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Proof. (1.1) By Theorem 2.1, for r > 1 we have

a2{B) = 24~2ka2(2r-2b1±K) + β2{B).

Thus the assertion follows from (1) of Proposition 2.2 and Proposition 2.3.

Here we give the following remark, which is a direct consequence of

(1.1):

(*) a2(2rb±K) - 24-2k{2r-2b'±K) = d(l + 22~kχ2{- det K))

for r > 1 and b, b' <E 1\.

(1.2) The case r < 1 follows from Lemma 3.1.1. Assume r > 2, and

s = 0 or 1. Then similarly to (1.1) we have

α 2 ( S ) = 24-2ka2{2r-2b1±2sb2±b3) + /32(β).

Thus the assertion can be proved by Proposition 2.3 and Lemma 3.1.1.

(1.3) Let r > 2. Then by Theorem 2.1 we have

(**) a2(B) = 24-2 f cα2(£[/1]) + 24~2fe £ a2(B[f3(a, 1)])
α=0,l

Then we have

B[h] = 2r-2b1±

and

B[g2{ΐ)} S 2 r - 2

where Kf = H or Y according as —b2bs = 1 mod 8 or not.

First let r = 2. Then by easy calculation we have

B[f3(a,l)]^4b'1(a)±K'(a)

for α = 0, 1, where b[(a) G Z2 and Kf(a) = H or Y according as —b2b3 =

4a+l mod 8 or = 4α+5 mod 8. Thus the assertion follows from Proposition

2.3, Lemma 3.1.1, and (1.1).

Next let r > 3. Then we have
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for a = 0, 1 with &Ί(α) G Z?J. Thus the assertion follows from Proposition
2.3, Lemma 3.1.1, and (*).

(2) The assertion can be proved similarly to (1) by using Theorems 2.1
and 2.4, Propositions 2.2 and 2.3, and (2) of Lemma 3.1.1.

Summarizing the above results, we have

THEOREM 3.1.3. Let b\, b<ι, 63 and K be as in Lemma 3.1.2. Let B =

prί>i_Lps??2-L^3 with r > s, 0 < s < 1, or 2rb\A-K with r > 0, and B2 be a

symmetric matrix of degree 2 such that B = pr&i_L£?2 Then we have

7713 — 2777.2

ap(B) = dp(β-*)'' Σ eP(β) i+V2- f c ) i

2=0

{ 0 if 4 det ^2 is ?/mί

d(l + ηp(B)prn3^-k^) otherwise,
where V = 0 or δ2P according as p = 2 and B2 = K, or not.

3.2. Second step

Now for a non-degenerate symmetric matrix B\ of degree 2 with entries

in Qp and 63 E Z*, put

7(Bi,63) = ap(P

2B1±b3)~p5-2kap(B1±b3).

Now fixing an element 63 G Z* we define a subset 7^2(^2X^3) °f ^ ( Q p ) by

= {Si; S i = 2rbι±2~2b2 with r > - 1 , 61, b2 € ZJ, -6 26 3 ^ 1 mod 4}

U {5i; Bi = 2 r61J_2-χ62 with r > 0, fei, fe2 € Z^}

U { β i ; B\ = 2r61_L2r62 with r = 0, - 1 , - 2 , 61, 62 € ZQ

U { S i ; S i ^ 2*K with * = 0, - 1 , K = H, Y},

and by

n'2(zp)(h) = {Bλ Bx ^p^hip-2^ with 6χ, 62 G z;}

U {Bi Bi ^ p r 6 i l p - 1 6 2 with r > - 1 , 61 ; 62 € Z;}

U {Bu Bi Sί 6i-L62 with 61 ; 62 € Z;}

for p ^ 2. We note that 2~1bι±2'2b2 with 6X, 62 € Z^ belongs to W2(Z2)(ό3)
even if —6263 = 1 mod 4, and Ή2(Zp)(63) is independent of 63 if p φ 2.
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THEOREM 3.2.1. Let b3 e Z* and B\ an element of 7ί2 {Zp) U

ZP)(63). Put B = Bx±b3. Then we have

i, 63) =

To prove the theorem, we need some preliminary result.

PROPOSITION 3.2.2. The assertion in Theorem 3.2.1 holds for b3 G Z*

and S i GW7

2(ZP) (63).

Proof First let p = 2.ϊΐB1^K and Bλ ψ. bλ±b2 the assertion follows

immediately from (1) of Lemma 3.1.1 and (1.2) of Lemma 3.1.2 remarking

that a2(B1±b3) = 0. Next let Bλ = K. Put

and

Then by Theorem 2.1 we have

β2(4B1±b3),

α2(Bi±&3) = β2(Bι±h) = d,

and

Remark that Bι[X] € /W2(
Z2)(^3) but

for any I ε ^ . Thus we have

Thus the assertion follows from the above. Similarly the assertion holds for
B\ — b\H)2' The assertion can also be proved for p φ 2 by using (2) of
Lemmas 3.1.1, and 3.1.2.
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Proof of Theorem 3.2.1. First let p = 2. Let "<" be the order in
Ή2(Z2) UTί^i^)^) defined in Section 2. We prove the assertion by in-
duction on this order. Clearly all maximal matrices in 7^2(22) U 7^2(^2) (̂ 3)
belong to T^i^X^)- Thus the assertion holds for all maximal matrices
Bι G Ή2(Z2) U7ΐ/

2(Z2)(63) by Proposition 3.2.2. Assume that Bx is not
maximal in ^2(^2) if>z) U H^^)^) and that the assertion holds for any
B[ such that B\ < B[. In view of Proposition 3.2.2 we may assume that
Bι φ W2(Z2X63); then we have

Bι ^ 2r6χJL2s62 (r > s > 0), ̂  2 r6i±2 r62 (r > 1) or ^ 2rK (r > 1).

First let Bx = 2rbι±b2 with r > 0, -62^3 = 1 mod 4. Then by Theorem 2.1
we have

α2(4Bi±63) = 24-2fcα2((4B1±63)[/i]) + 24"2fc ^ α2((4β1±63)[/2(α)])
α=0,l

- 2g-4ka2((4B1±b3){g1})+β2(4B1±b3)

and

a2(B!±b3) = 24-2/cα2((JB1±63)[/1]) + 24-2fc ^ ^ ( ( i ϊ α ^ ) ^ ^ , 1)])
α=0,l

Clearly we have

(^SiXδs)[/i] = ̂ Bif/ίJlfta (i = 0,1),

where /{ is the matrix defined in the proof of Proposition 3.2.2. For a — 0,

1, put B(μ) = (4Bi_Lfc3)[/2(α)]. T h e n clearly we have

Thus we have

- 24-2ka2(B(a)[f1}) - 24'2ka2(B(a)[f3(0,1)])
α=0,l

24-2 f cα2(£(α)[/3(l, 1)]) + 2g-4ka2(B(a)[g2(l)})}

28-4fc]Γ{α2(i3(α)[/3(0,1)]) + α2(B(α)[/3(l, 1)])

α=0,l

5 2 f c - 2α2(β[/3(α, 1)])

- 24-2fc)(l - 25-2fc).
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By Theorem 2.1, the second term on the right-hand side is

4 2 / J2 (a)) = 25~2kd{l - 24~2k).
α=0,l

We claim the third term is 0. To prove this we remark that

and

for any β = 0, 1, where K1 = H or Y according as — &2&3 = 1 mod 8 or
= 5 mod 8. Thus by (*) in the proof of Lemma 3.1.2 we have

α2(β(0)[/3(0,1)]) + α2(B(0)[/3(l, 1)]) - 2^2k

- 2α2(β[/3(0,1)]) + 25-2ka2(B[g2(l)}) = 0.

On the other hand, we have

B(l)[f3(β, 1)] i Ή3(Z2), *< 2r+25h±K" or S* 2r+2h±Kf

according as r = 1, 2, or not, and

B(l)[g2(l)} i W3(Z2), = 2r5b1±K" or ^ 2rh±K'

according as r = 1, 2 or not, where K" = Y or H according as —62̂ 3 =
1 mod 8 O Γ Ξ 5 mod 8. Further

B[f3(l, 1)] i Ή3(Z2), * 2r5b!±K" or 9* 2rh±K'

according as r — 1, 2 or not, and

B[g2(l)} i W3(Z2), or ^ 2r~2bιLK'

according as r = 1 or not. Thus again by (*) we have

α2(J3(l)[/3(0,1)]) + α 2(β(l)[/ 3(l, 1)]) - 25-2ha2(B(l)[g2(l)})

- 2a2(B[f3(h 1)]) + 25-2ka2(B[g2(l)}) = 0.

Thus the claim has been proved, and therefore, the assertion holds by the
induction hypothesis.
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Next assume that Bx = 2rbι±2sb2 with r > s > 0, Bx = 2rbι±.b2 with

r > 0 and — 62&3 ^ 1 mod 4, or Bi = 2rK with r > 0. Since for 6χ, 62 G Z£

we can find 6'1? 62 e Z£ such that 26/

1_L6/

2 = 2&i_L62 and -6'263 = 1 mod 4,

we may assume that r > 2 if 5 = 0 in the first two cases. Then by Theorem

2.1, we have

1B1I.63) + β2(4iB1±b3)

for z = 0, 1, where A^ is the set defined in the proof of Proposition 3.2.2.

Thus we have

&3) = 2

+ d ( l - 2 4 ~ 2 A : ) ( l - 2 5 - 2 / c ) .

Thus by the induction hypothesis the assertion holds for the first two cases.

The assertion also holds for the case B\ = 2rK with r > 0. Similarly the

assertion can be proved for p φ 2.

The following corollary can be easily derived from the induction formula

in Theorem 3.2.1.

COROLLARY TO THEOREM 3.2.1. For the matrix B in Theorem 3.2.1,

let m2 = m2p(B), 7713 = rrisp(B) be the invariants defined in Section 1.

Then we have

ap(B) = α p

[m2/2]-δ2p-l

i=0 i=0

where E2 denotes the unit matrix of degree 2.

3.3. Third step

For a non-degenerate symmetric matrix B of degree 3 with entries in

Q p, put

Ί(B) = ap(pB) - (p5-2k+P

3-k)
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We define a subset H'3{Z2) of 5 3 (Q 2 ) by

n'3(Z2) = {B;BQέ 2rblLb2±.2'1b3 with r > 0, bu b2, b3 € Z*2}

with r > 0, bu b2, b3 G Z2, -b2b3 φ 1 mod 4}

U {B; B 9* 2rΛΓ-L2s63

with fc3 € Z*2, (r, s) = (0, - 1 ) , (-1,0), (0,0), K = H, Y}.

We remark that any element of H3(Z2) Π ̂ 3 ^ 2 ) is equivalent over Z2 to

THEOREM 3.3.1. Let BeT-ί3(Zp)un/

3(Zp). Here we understand H'3(ZP)

is the empty set if p φ 2. Then we have

where 777,3 = πisp(B).

To prove the theorem first we have

LEMMA 3.3.2. For B G 7^3(Z2); the assertion in Theorem 3.3.1 is true.

Proof. The assertion follows from Theorem 3.1.3 except for b\l.K. If

B — bι_LK then we have bf

λLH for some b[ G Z2, and therefore we may

assume K — H. Then by (1) of Proposition 2.2, Proposition 2.3, and

Theorems 2.1 we have

a2(2B) = 24~2ka2(H±b3) + d(l - 24~2 / c)(l + 23~k) and a2(B) = d.

Thus again by Proposition 2.3 the assertion holds.

Proof of Theorem 3.3.1. The assertion for p φ 2 has been proved in
[Ki2], and thus we treat only the case p = 2. But we remark that the
case for p / 2 can be proved similarly to the case of p = 2 by using our
method. We prove the theorem by induction on the order defined in Section
2 in H3(Z2) U U^(ΊA2). Clearly any maximal element of H3(Z2) U WZ(Z2)

belongs to ^ 3 ^ 2 ) . Thus by Lemma 3.3.2 the assertion holds for all maximal
elements in 7^3(Z2) U 7^3(Z2). Assume that B is not maximal and the
assertion holds for any B1 such that B < B1. The proof is divided into four



216 H. KATSURADA

cases:

(1) B G H'3(Z2) (2) B G H3(Z2) but 2~ιB £ H3(Z2) (3) 2~ιB G

H3(Z2) but 2~2B i H3(Z2) (4) 2~2B G H3(Z2).

Case (1) The assertion holds by Lemma 3.3.2.

From now on let &i, b2, b3 G Z£ and K = ff or Y.

Case (2) In view of Lemma 3.3.2 we may assume B ψ b\±K. Thus in

view of the remark after Proposition 2.2 we may assume B = 2sKA_b3 with

s > 0, 2rb1±2sb2±bs with r > s > 0, 2r&i_L62-L^3 with r > 0, or 2rb1±K

with r > 0.

First let B = 2sK±b3 with 5 > 0 or B = 2rbι±2sb2±b3 with r > s > 0.

Then by Theorem 2.1, we have

02(2*5) = 24-2 f e«2(2 i

JB[/1]) + 2 4" 2 f c £ c ^
α=0,l

for i = 1, 0. Further by Proposition 2.3 we have

β2(B) = d{\ - 2 4" 2 f c), β2(2B) = d(l - 2 4- 2 f c)(l + 23-fc)

Thus we have

α=0,l

4 ~ 2 f c )(l 25"2 A :)d(l - 24~2 f c)(l - 2 5" 2 A :).

By assumption all the B[fι], B[f2(0)], B[f2(l)\, and B[gι] belong to 7ί 3 (Z 2 )

UΉ3(Z2). Thus by the induction hypothesis and the case (1) we have

Ί{B) = 2 4 " 2 f c d(l + 2(-

- 29~4kd(l + 2 ( 2 - f c ) ( m 3 - 1 ) i 7 2 (S)) + d(l - 24~2 f c)(l - 25~2fc)

Next let B = 2r&1J_b2-L&3 with r > 0. Then by Theorem 2.1, we have

a2{2iB) = 24"2fc

α2(2i

JB[/1]) + 24"2fc £ α ^ ^ / a K 1)])
α=0,l

Further by Proposition 2.3 we have

β2(B) = d(l - 24-2k),β2(2B) = d(l - 24~2 f c)(l + 2 3" f c).
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Thus we have

4 " 2 f c

Ί(B) = 2i'2k

Ί{B[h)) + 24

α=O,l

- 29-4k

Ί(B[gι}) + d{\ - 2 4 " 2 f c )(l - 2 5 " 2 f c ).

Thus the assertion can be proved similarly to the first case.

Thirdly let B = 2rb1_LH with r > 0. Then by Theorem 2.1, we have

+ 24~2k £ a2(2B[f2(a)} + 24"2fc £ α2(2B[/2(α, 0)])
α=0,l o:=0,l

- 2 9 - 4 f e α 2 (2β[ f f l ]) - 2 9- 4 f e« 2(25[ 5 2(0)]) + β2(2B),

and

By easy calculation we have

2B[f2(a)} 9* 2r+1b[(a)±H, 2B[f2(a,0)} * 2r+ιb'l(a)±H,

and

2B[gi] = 2B[g2(0)} = 2r~%±H,

where b[(a), br{(a) G Z^ Further by Proposition 2.3 we have

β2(B) = d{\ + 22~k), β2(2B) = d(l - 2 4 " 2 / c )(l + 2 3" f c).

Thus the assertion can be proved by (*) in the proof of (1.1) of Lemma

3.1.2.

Finally let B = 2 r 6 x ± y with r > 0. Then by Theorem 2.1, we have

a2{TB) = 24-2ka2(2iB[f1})+β2{2iB)

for i = 0, 1. Further by Proposition 2.3 we have

β2(B) = rf(l - 22~k), β2(2B) - d(l - 24~2 / c)(l + 23" / c).

Thus the assertion holds.

Case (3) It suffices to prove the assertion for the case B=2rbιL2sb2A.2bs

with r > s > 1, 2rK±2b3 with r > 1 or β = 2r6i_L2K with r > 1.
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First let B\ = 2rK with r > 1 or Bλ = 2rbι±2sb2 with r > s > 1, and
put S = B\-L263. Then by Theorem 2.1, we have

02(2*5) = RφB) + 2^2ka2(2iB[f1}) + 24"2fc £ α2(2*5[/2(α)])
α=0,l

- 29-4ka2(B[gi}) ί

for i = 1, 0, —1, where

α,/3=0,l α=0,l

or 0 according as i = 1 or not. Put B(a, β) = 2B[fs(cέ, β)] for any α, /? = 0,
1. Clearly we have

<fe(/3) = fs(a,β)fi, g3(a',a) = /3(α,/3)/2(α')

and 2 - ^ 3 Ξ /3(α, /3)5l mod Γ

for any a, β, a' = 0, 1. Thus we have

2B[g2(β)} * B(a,β)[h], 2B[g3(a',a)} * B(a,β)[f2(a')])

and

for any α, /3, α7 = 0, 1. By easy calculation for any α, /? = 0, 1 we have

with Bi(a,β) e 2H2(Z2) ΠGL2(Q2) and 63(α,/?) G Z^. On the other hand
we have B(a,β)[X] £ W3(Z2) for α, /? - 0, 1 and X e £\{f1j2(a') (a' =
0,1),gx}. Thus Theorem 2.1 and Proposition 2.3 imply

α,/3=0,l

Thus by the induction hypothesis and Proposition 2.3 we have

7(5) = R(2B) + 24-2fc

7(5[Λ]) + 24~2fc Σ Ί{B[h{a)}) - 29-
α=0,l

- (2 3 - f e + 2 5- 2 f c)/ 8 3 f c
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Next let B = 2r&iJ_262-L2&3 with r > 1. Then Theorem 2.1 implies

a2[2iB) = R(TB) + 24-2ka2(2ιB[f1}) + 24~2k £ α2(2*5[/3(α, 1)])
α=0,l

-29-4ka2(2iB[g2(l)]) i

for z = 1, 0, — 1, where

a2(2B[f3(a,0)})
α=0,l α=0,l

- 29"4 f cα2(2JBb2(0)]) - 2 9 - 4 f c

α,/3=0,l

or 0 according as % = 1 or not. Similarly to the above case, Theorem 2.1

yields

α=0,l α=0,l

On the other hand, easy calculation shows

2B[f2(a)] * B[(a)±b'3(a), 2J3[/3(α,0)] ^ B'i{

where Bj(a), B ^ a ) G 2Ή 2 (Z 2 ) Π GL 2(Q 2) and i/3(α), 6(((α) G Z*. Thus by
Proposition 2.3 we have

R(2B) = 26~2kd(l - 24~2k).

Thus the assertion holds.

The rest of the cases can be treated in the same way.

Case (4) Theorem 2.1 tells us

a^B) = 24~2k ]Γ a

for i = - 1 , 0, 1. By assumption B[X] G W3(Z2) for any X G S. Thus by

the induction hypothesis, the case (3), and Proposition 2.3 we have

Ί{B) = 7 x 24~2kd{l + 2<5
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7 x 29~4kd(l +

215~6kd(l + 2^

- 2 4 ~ 2 / c )( l + 2 3 " f c ) ( l - 23~ f c - 25~2k

Thus the assertion holds by induction.

By the induction formula in Theorem 3.3.1 we easily see

COROLLARY. The notation being as above, we have

mi 7711 — 1 r π - i — 1— i

ap(B) = ap(p-^B)p^-k^ ^ p ( 2 " ^ + d £ £ p(s-
j=Q ί=0 j=0

7711—1 ΎΠ\—\ — i
^ ^ p(3-2fc)jp(2-fe)ij

2=0 .7=0

where πi\ = πiιp(B).

3.4. Final step
Now in this subsection we complete the proof of Theorem 1.2. Let

mi = mlp(B), m2 = m2p(B), m3 = m3p(B), η = ηP(B), ξ = ^ p ( 5 ) ,

n' = nf

p(B) be as in Section 1.

First let B = p m i ( p r S i ± 6 3 ) with r > 0,Si G H2(Zp), b3 e Z*. Then

by Theorem 3.1.3 and Corollary to Theorem 3.2.1 we have

α p ( p - " l l B ) = d{α(β 1)
7713—27712+7711

[7712/2]-7711-6 2 p-l

ΐ=0

where

if p φ 2 and vn2 is even

if p = 2, ττi2 is even and B\ — K

otherwise.
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Thus we have

[πi2 /2]—m\—δ2P—m'

ap(p-miB) = d Σ ^'2k)j

3=0

[m2/2]-mι-δ2p
/ ] ) ( )

where m! — mf

p(B) = 1 or 0 according as p φ 2 and rri2 is even, or not.

Clearly we have [7722/2] — #2p — TΏ! — [(rri2 — δ2P — l)/2]. Thus the assertion

can be derived from Corollary to Theorem 3.3.1 by remarking that we have

[m2/2]-mι-δ2P-m/ mi mι-1 rriι-1-i

d Σ p(5-2k^p(s-k^Σp{2~k)i +dΣ ( Σ p{5-2k)j)p{s-k)i

j=0 i=0 i=0 j=0

m1 [m2/2}-δ2p-m'-i

and

[m2/2]-δ2p-m1 m i

dηp(2~k)m3-(3-2k)({m2/2}-δ2p)-(3-k)m1 V - p(3-2k)j p(3-k)m1 γ^p(2-k)i

j=n' ί=0

mι — 1 mι — 1—i

Σ ( Σ p^~2k^)p^2-k^
z=0 j=0

mi [m2/2}—δ2p—i

Next let p = 2 and S = 2 m i (2 r 6i±ίί). Then by Theorem 3.1.3, we

have
7713— 2

Thus the assertion also holds in this case.
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§4. C o m m e n t s

We give Theorem 1.2 in more concise form. First let p φ 2. Then a non-

degenerate symmetric matrix B of degree 3 with entries in Zp is equivalent,

over Z p , to a matrix of the form (4) in Section 1. Then we have

i=0 j=0

ί l

+(-pr-tb1b3,-pa-tb2b3)pP{2~kKr+a+t)~{3~2ms+t)/2] Σ Σ

where nf = 1 or 0 according as 5 — ί is even or odd, and

o r o
2=0 j=0

according as 5 — t is even or odd. This coincides with [Ki 2, Theorem].

Next let p — 2. Then a non-degenerate half-integral matrix B of degree

3 over Z2 is equivalent, over Z2, to one of the forms (1), (2) and (3) in

Section 1.

(1) The case where B is equivalent to a matrix of the type (1):

d~ια2{B) =
ί=0 j=0

t t-l-i
1)y'( V

i=Q j=0

(- det i ί)2 2 - f c )
j=0

(2) The case where B is equivalent to a matrix of the type (2):

t

Σ



FOURIER COEFFICIENTS OF SIEGEL-EISENSTEIN SERIES 2 2 3

where nf = 1 or 0 according as s — t is even or odd.

(3) The case where B is equivalent to a matrix of the type (3):

j = 0

X Σ Σ 2(
ΐ=0 j=0

where
r-s-2 ί-1

?i(J5) = 2 ( 5 ~ 2 / c ) [ ( 5 ' h ί " h 2 ) / 2 ] ~ ( 2 ~ A ; ) ί V £ ( £ ) * + 2 2 ( 2 ~ ^ V 2 ( 2 ~ ^ ' o r 0

z=0 j=0

according as s — £ is even or odd.
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