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DEGENERATION OF ALGEBRAIC MANIFOLDS
AND THE SPECTRUM OF LAPLACIAN

KEN-ICHI YOSHIKAWA

Abstract. We shall show that the spectrum of Laplacian depends continu-
ously on the parameter for one parameter degeneration of projective algebraic
manifolds.

§0. Introduction

In [Grl], M. Gromov studies the spectral geometry of semi-algebraic
sets in the Euclidean space. He treats a family of algebraic manifolds
{Xt} and studies the continuity of several geometric and analytic quan-
tities. When no degeneration of manifolds happens, most of such quantities
depend continuously on the parameter. He states that the spectrum of
Laplacian is continuous in the parameter unless serious degeneration hap-
pens. As for such degenerations, he mentions the case that the singular
fiber has multiple components and that the dimension of the singular fiber
is different from that of the general fibers (cf. [Grl, 4C]).

The purpose of this article is to study the behavior of the spectrum
of Laplacian in the case of a degenerating family of projective algebraic
manifolds in a fixed complex projective space. We shall show that in the
case of a one parameter families, the spectrum is continuous. Therefore
discontinuity can happen only for families with many parameters. (Note
that the dimension of each fiber is constant in the case of a one parameter
families.)

Let π : X —•> Δ(l) be a one parameter degenerating family of projective
algebraic manifolds in PAΓ(C) over the unit disc. By this we mean that X is
a complex submanifold of P7V(C) x Δ(l) and that π := proj2 \χ is a proper
holomorphic surjection to Δ(l) := {z G C; \z\ < 1}. Then Xt := ^~λ{t)
is a pure dimensional projective algebraic variety. Since the discriminant
locus of π is a discrete subset in Δ(l), we may assume that Xt is a smooth
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manifold for t ^ 0 and that Xo is of the form XQ — Σ^=i m<xYa in the sense
of divisor where ma G Z+ and Ya is an irreducible variety.

Let G be an arbitrary Riemannian metric of X. Set gt := G\χt for t φ 0
and #o := Glxo-Sing(Xo) L e t ^t be the Laplacian of (Xt,gt), and σ(At) the
spectrum of Δ*. When £ = 0, consider the Dirichlet Laplacian of Xo,reg :=
]Γα maYaireg] i.e., Δo := 9 a ^ a \ where Δ α is the Laplacian whose domain
is given by W^'2(YaiTeg,go\γa) where Y^γeg := yα - Sing(Ύα), and maAa is
the raα-th copy of Δ α . By the definition, σ(Δo) = Uα=i maθ~{Aa). It is
known that σ(Δo) consists of discrete eigenvalues (cf. [L-T, §5]). Naively,
it seems that cr(At) converges to σ(Δo), since Xt converges to Xo i n the
sense of current on PiV(C) (cf. [F, Proposition 2.3]). But this does not hold
in general, unless Xo is a reduced divisor; i.e., m^ = 1 for all a. We shall
show that σ(At) converges to the spectrum of a certain branched covering
space of XQ. This covering space is described as follows (cf. [Cl]).

Let (Δ(l),s) be the unit disc in the s-plane, i.e., the complex plane
whose coordinate is given by 5, and let F be a holomorphic function defined
by F(s) := s m where m := Πama. By this maps, we obtain the fiber
product

F~λX := {(x, s) G X x Δ(l); π(x) = sm} C X x (Δ(l), s).

Let Π : F~ιX —> (Δ(l), s) be the natural projection induced by that of X.
Then its fiber is given by Π~1(ί) = Xtm. In particular, Π~1(0) = Xo.

Let i : F~λX —> F~λX be the normalization of F~λX. Finally, set
Z := Γ^Xo) = ^(Π-HO)) and gz := ι*g0.

MAIN THEOREM. Let Az be the Dirichlet Laplacian of(Zγeg,gz), and
σ(Az) its spectrum. Then,

limσ(Δt) = σ(Az).

In particular, the k-th eigenvalue of the Laplacian is a continuous function

onΔ(l).

In [Fk], continuity of the spectrum is studied relative to the measured
Hausdorίf topology, and in [K-Kl, 2], relative to the spectral distance of
Riemannian manifolds. In [J-W], the same problem is studied for a degen-
erating family of surfaces with respect to several metrics, and in [Yl, 2],
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for a conic degenerating family of Riemannian manifolds and degenerating
family of algebraic curves. Similar to these articles, the proof of Main Theo-
rem is based on the min-max principle developed in [C], [C-F] and [J-W]. To
apply these arguments to our situation, uniformity of the Sobolev constant
for algebraic varieties in a fixed projective space is crucial, which is due to
Li-Tian [L-T]. In the same article, it is also proved that c!maχ = cίmin on
the space of functions for singular algebraic varieties ([L-T, Theorem 4.1]).
In view of their argument, it is equivalent to the existence of a sequence of
cut-off functions approximating the constant function in the W^-norm. It
seems that their construction of such functions contains a gap, because it
is not clear whether various formulae and estimates in [G] hold for singular
subvarieties in a singular variety. In this article, we shall give a rigorous
proof of their theorem.

In view of Theorem 5.1, we can prove that the spectrum of Laplacian is
a continuous function of a certain family of Einstein manifolds (cf. [B-K-N],
[N]). We conjecture that the same is true for the case treated in [A], and for
the case of a degenerating family of minimal submanifolds of SN, since the
Sobolev inequality is uniform in the parameter in both cases (cf. [C-L-Y]).

This article is arranged as follows. In §1, we give a detailed definition
of Z. In §2, we recall the results on the Sobolev inequality and the upper
bound of the heat kernel. In §3, we discuss the existence of a certain se-
quence of cut-off functions on arbitrary irreducible algebraic varieties. In §4,
we recall the result of Li and Tian (cf. [L-T]) which is the main tool of this
paper. In §5, we prove an abstract version of Main Theorem (Theorem 5.1).
Here, the Sobolev inequality with uniform Sobolev constant is used essen-
tially in stead of the curvature bound. For simplicity, we prove Theorem 5.1
when dimM > 2. When dimM ='2, we can prove the theorem in the same
way, if we use the Sobolev inequality obtained in Corollary 4.2. In §6, we
prove Main Theorem. In Appendix, we prove some results concerning di-
mension and degree of algebraic varieties for the convenience of the reader.
The proof given there is due to Y. Namikawa and M. Hashimoto.

Acknowledgments. The author wishes to express his thanks to the
referee who pointed out several mistakes of the earlier version of this arti-
cle and gave a useful suggestions for the contents of §5, and to Professor
M. Hashimoto for kindly teaching him a detailed proof of Proposition A.I
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and A.2. He also wishes to express his thanks to Professors R. Kobayashi,

S. Mukai, Y. Namikawa, T. Ohsawa and H. Umemura for helpful conversa-

tions and comments.

§1. Description of Z

Let π : X —> Δ(l) be the same as in the introduction. Set Xt := π - 1 ( t ) .

When t — 0, we have

(l l) X0 =
a=l

as a divisor where ma G Z + and Ya is an irreducible algebraic variety. Let

(Δ(l),ία) and (Δ(l),s) be the unit disc in the t^-plane and the s-plane

respectively. Let fa and F be holomorphic functions defined by

(1.2) /*(««) : = C α . F(s):=sm

where m := f ] α

 rno;5 by which we obtain the fiber product

(1.3) f~ιX := {(x,ta) €Xx Δ(l);τr(ar) = C α } C X x (Δ(l),ί β )

and

(1.4) F~λX := {(x, s) G X x Δ(l); π{x) = sm} C X x (Δ(l), s).

Let π α : /~XX -> (Δ(l),ία) and Π : F~λX -> (Δ(l),s) be the natural

projections induced by that of X whose fibers are given by τr~1(ί) = Xtma

and Π" 1 ^) = Xtm. In particular, π^^O) = Π " 1 ^ ) = Xo.

We denote the normalization of f~ιX and F~λX by

(1.5) la • fFx — * /α ^

and

(1.6) t : i ^ k —> F " 1 ^

Then, regarding Xo = ̂ (O) = Π " 1 ^ ) C F " ^ and yα C Xo, define Z,

Z α and Wa by

(1.7) Z-t-H^o), Zβ^i-^yβ), Wa:=ι-\Ya).
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Since (Δ(l),s) is a (branched) covering of (Δ(l),£α), regarding t™a = s™ ,̂

we obtain the natural covering map

(1.8) ga : F'1* 3 (x,s) —* (x,s^) G f^X.

Clearly ga is a branched m/ma-sheeted covering (cf. [G-R, pp. 135]). Since

ga is a finite surjective holomorphic map, it naturally induces a finite sur-

jective holomorphic map between F"~1X and f^X. We denote this map by

9 a'

(1.9) ga : F^X —> f^X.

By the definition, it is clear that ga is a branched m/m^-sheeted covering.

Restricting ga to the fiber at zero, we get the finite surjection

(1.10) ga:Za—>Wa.

Set Xa := /o71X, pa •= TΓQ; ° La and define a family

(1.11) p α : £ α —

whose fiber at t ^ 0 is the same one as that of /~1X, and therefore is

since f&ιX is smooth outside Xo = π~1(0). Set

Da := Sing(yα) u (J y α n ^ ,
(1.12) /3#α

Σ α := L~ι(Da), Sa :=

PROPOSITION 1.1. (1) L : Za —> Ya and ta : Wα —> Ya are ma-sheeted

analytic covering, and ga : Za —>> Wα 25 α surjective one sheeted analytic

covering. In fact, L : Za — Sa —> Ya — Da and La : Wa — Σ,a —> Ya — Da

are unramified ma-sheeted covering, and ga : Za — Sa —> Wa — Έa is an

isomorphism.

(2) Sing(Wα) C Σ α and Sing(Zα) C Sa.

(3) Wa — Σ α C Xa,reg and Pa ^s °f maximal rank on Wa — Σ α .

Proof. Let x be an arbitrary point in Ya — Da. There is a coordinate

neighborhood (Ux, (zo, , zn)) around x i n X such that x = (0, , 0) and

(1.13)
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since x is a smooth point of Ya and the multiplicity of Ya is ma. Put

(1.14) j~λυx := {(y,ta) E f-'X y E Ux}

(1.15) F-ιUx := {(y, s) E F^X; y E Ux}.

Using above local coordinates, we can write

(1.16) f~ιUx = {(z,ta) E

~ιU = {(z s) E Δ ( l ) n + 1
(1.17) F~ιUx = {(z, s) E Δ ( l ) n + 1 x Δ(l); z%° = sm}

fc=l

where ζπia = exp(2π-s/
r^ϊ/ma). From the definition of normalization, it

follows that

/i i n\ L| — 1 / \ ji — 1 / \

and

(1.20) ΓxF-χUx = U^O^fc, O x, f cnOX ) / = 0 (fc^Z)

where

(1-21) t« : K,fc —> {(z, ί β); z0 - d , , ί m α = 0},

(1.22) i: O f̂c — - {(z, s); 20 - (tas™* = 0}

are isomorphisms. Set £α>fc := ^ 1(ίc) Π Vx^ and x^ := ^~1(x) Π O

Then T4,A; (resp. Ox^) is a coordinate neighborhood of fά1^ (resp. i71"

around xa^ (resp. x x). Therefore y^ΠWα (resp. OXikΓϊZa) is a coordinate

neighborhood of Wa (resp. Zα) around xa^ (resp. x^):

(1.23) ta : y^ΠWα -^ {(^,tα) G Δ ( l ) n + 1 x Δ ( l ) ; z 0 = ίmα = 0} ^
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(1.24) i : OXίk Γ)Za-^ {(z, s) € Δ ( l ) n + 1 x Δ(l); z0 = s = 0} ^ Δ ( l ) n ,

which implies that Wa — Σ α and Za — Sa consist of smooth points of Wa

and Za respectively, since x is an arbitrary point of Y& — Da. This proves

(2)

By (1.19), (1.20), (1.23) and (1.24), La (resp. L) is a raα-sheeted covering

map between Wa — Σιa and Ya — Da (resp. Za — Sa and Ya — Da). This proves
m

(1) for La and L. Since ga(z,s) = (z,sm«) in the above coordinates, ga :

ί{Ox^k) —> ίa.(yx,k) is a n isomorphism. Therefore we obtain an isomorphism

9a Oxfi —* Vx^> As ga is globally defined on Z α , it must be an unramified

covering resiricted to Za — Sa. Since gao ι = ^α o ga and ga is the identity

map on Ya, ga must be an isomorphism between Za — Sa and Wa — Σ α ?

comparing the mapping degree. This completes the proof of (1).

By (1.21), there exists a coordinate neighborhood (V^, (£Q, * >£n))

around x^ such that Xk — (0, , 0) and for ξ = (ξo5 * * , Cn) G V ;̂̂ ,

(1-25) ξk:=L*aZk, Pa(ξ) = ζ-kJθ.

This shows that pa is of maximal rank atx/. and that p α is of maximal rank

on Wa - Σ α . This proves (3). Q

Define the e-tubular neighborhood of Σ α and SO, as follows. By the defini-

tion, f~λX is a subset of A := PN(C) x (Δ(l),ί) x (Δ(l) , t α ) . Let G^ be a

Riemannian metric of A defined by

(1.26) GA := pPiv + |rfί|2 + \dta

where gFN is t h e Fubini-Study metr ic of PN(C). Let G U ( , •) be t h e dis tance

of A induced by G ^ . T h e n , define a function of f&X x fa1^ ^Ύ

(1.27) da(x,y) :=

where i : f^1^ -^ A is the natural inclusion. By the definition, it is clear

that for any x, y £ π " 1 ^ ) ,

(1-28) da(x,y) = dψN(jt(x)Jt(y))

where jt : /7Γ~1(t) -̂> P ^ ( C ) is t h e n a t u r a l inclusion.



90 K. YOSHIKAWA

Regarding 7ΓQ1(0) = XQ, define the e-neighborhood of Da by

(1.29) Daj€ := {x G Z"1*; da(x, Da) < e},

and the e-neighborhood of Σ α , 5 α and S by

(1.30) Σ α ? e := t~\D^e), Saje := ^ ( ^ W ) , 5 e := U5 α ? € .

As Ŷ , — Daj€ = {ί/ E yα;cίPiv(y.jDα) > e} is compact, so are Wa — Σ α ; e ,

^α ~ 5α,e and ^ — ̂  by Proposition 1.1.

Let G be the same Riemannian metric of X as in introduction. Let Ga

(resp. jfiΓα) be a Riemannian metric of f^λX (resp. Xa), defined by

(1.31) Ga:=G + \dta\
2\f-iχ, Ha := L*aGa.

By the definition,

(1.32) Ga\π-i^ = gtma, Ha\p-ι^ = i^gt^a, gtma := G|χ t m α .

Finally define a metric of Wα by

(1-33) ^ W c , := ^ α | w α 5

and metrics of Za and Z by

(1.34) gZθί := ^*^o|yα = (Pα)*^^α = ( ^ o ga)*g0, gz\za '= gza>

The goal of this section is to prove the following theorem.

THEOREM 1.1. For every small 0 < e < 1, there exists 0 < j(e) < e

and a family of into-diffeomorphisms for \t\ < j(e):

Λ,ί :Z-S€<-+Xt

by which the following conditions are satisfied.

(1) OnZ-Se,

-^gz < fltdt < 2gz.

(2) On every compact subset K <ε Z — Se,
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in the C°° -topology on K.

(3) //vol( ) stands for the volume relative to the induced metric from G and

9Z, then

Vθl(Xt ~ fe,t(Z ~ Se))

For the proof, we need some lemmas and propositions.

LEMMA 1.1. For every small 0 < e « 1, there exist an open neigh-

borhood Ua(e) ofWa — Σ α ? e in Xa, and vector fields Ua , Va on Ua(e) such

that

a dx a * a dy

where ta = x + y/—ly.

Proof. Clear by Proposition 1.1 and the compactness of Wa — Σ α j € in
T Π

LEMMA 1.2. For every small 0 < e <C 1, there exist 0 < 71 (e) < e

and an into-diffeomorphism

Φg : (Wa - Σα,e) x Δ(7i(e)) — * Ua(e)

such that

(1) For any t G Δ(7i(e)),

(2) Φα ( ,0) zs ί/ie identity map on Wa — Σa^.

Proof Integrating the vector fields in Lemma 1.1, desired into-dif-

feomorphism is obtained. Π

PROPOSITION 1.2. For every small 0 < e « l , there exist 0 < 72(6) <

e and a family of into-diffeomorphisms for \t\ < 72(e)

Φat : WOL - Σ α , e —• ^ t m «
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such that

(1) φ£0 is the identity map ofWa — Σ α ? e .

(2) On Wa - Σα > C J

— QW ^ (Φm +)*Qtma ^ 2(7W .eye/Wot — KiOέjT/ *-> ^ — J *v a

(3) On Wa - Σ α , e ,

m tfoe C°° -topology on Wa — Σ α > € .

Proof. For |ί | < 71 (e), set

(1.35) φ^t(x):=LaoΦ^(Xit)

where 71 (e) and Φ« are the same ones as in Lemma 1.2. Then, φ^t is a

map from Wa — Σ α ? e to ta o (p~1(ί)) = ^ α 1 ^ ) ~ Xtm^- By the definition,
ιoi Pα1(^) ""̂  π α W i s a n isomorphism for t Φ 0. By Lemma 1.2, Φ« ( ,t) :

Wα — Σ α ? e —> τr~1(ί) is an into-diffeomorphism for \t\ < 71 (e). Namely, 0^ t

is an into-diίfeomorphism from Wa — Σ α 5 € to X^mα.

By (1.31) and (1.32), we get

(1.36) (φStTgtm* = (La o φ W | t ) * G α | π - i ( t )

Since Φα depends smoothly on ί, it follows that

(1.37)

(3) follows from (1.37). Since Wa — Σ α ? e is compact, there exists 72(e) <

71 (e) such that (2) holds for \t\ < 72(e). D

1

Proof of Theorem 1.1. For every ma, let t m« be a fixed branch of the

inverse function of t m α on Δ( l ) . Let φ^t be the same map as in Proposi-

tion 1.2. Since Z - Se = Ua(Za - 5α,€), to define /Cjt : Z - 5€ -> X t , it is
sufficient to define it on each Za — SΌ,̂ . Define /e?t by

(1.38) fetlz -S '— φ^ i O Qa : Za — Sae
 c-^ Xt-
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Since g : Z — Se —» UαO^α ~ ^α,e) is an isomorphism by Proposition 1.1,

fβ)t is an into-diffeomorphism for every small t with |ί| < 72(e). Then

we get (1) and (2) by Proposition 1.2, because limt_+o£™<* = 0 although

t^k $ cf0(Δ(i)).
By Proposition 1.2, for every small 0 < e C 1, there exists 73(6) such

that

(1.39) I vol(/Cjt(Z - Se)) - vo\(Z -Se)\< vol(5c)

for every t with \t\ < 73(e). Since vol(Z-S€) - vol(Z)-vol(S€) - vol(X 0 ) -
vol(5c), it follows from (1.39)

(1.40) vol(/€jt(Z - 5C)) > vol(ΛΓo) - 2 vol(5c)

for t with |t| < 73(β). Let cĵ f be the Kahler form of G. Then,

(1.41) vol(Xt) := / ωn

G.

By [F, Proposition 2.3], as vol(Xt) is a continious function in ί, for every

small 0 < 6 « 1, there exists 74(5) such that

(1.42) I Yθ\{Xt) - vol(X0)| < vol(5c)

for every t with \t\ < 74(e). By (1.40) and (1.42), for t with \t <

min{73(e),74(e)},

- Ut(Z - S€)) = vol(Xt) - vol(/c, t(Z - 5C))

(1.43) < vol(Xt) - vol(Xo) + 2 vol(5c

Set 7(e) := min{72(e), 73(6), 74(6)}. Then, Theorem 1.1 is proved for this

7(e) 0

§2. Sobolev inequality and upper bound of the heat kernel

In this section, we recall some basic results on the Sobolev inequality
and the heat kernel. For the reference, see [D].

Let (M, g) be a compact Riemannian manifold of dimension m with
possibly smooth boundary. We denote by Δ the Laplacian and by fc(ί, x, y)

the heat kernel. When M has boundary, consider the Dirichlet Laplacian

and the Dirichlet heat kernel. As an application of the logarithmic Sobolev

inequality, the following result is well known.
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THEOREM 2.1. ([C-K-S] and [D, Theorem 2.4.2]) For μ > 2, the fol-
lowing two inequalities are equivalent:
(1) For 0 < t < 1 and (x, y) G M x M,

k(t,x,y) < Cί""2

(2) For every f e C°°(M),

\\f\\j^<C2(\\df\\2
μ-2

Here C\ and C2 depend continuously on each other.

Let {0 = λo < λi < λ2 - •} be the eigenvalue of the Laplacian and
be the normalized eigenfunction such that

(2.1)

By [C-L, Corollary 1], the following estimate holds.

PROPOSITION 2.1. Under the two inequalities of Theorem 2.1,

' \\ΦA\oo < c 3 λ ?

where C3 depends on C\ and C2.

In the sequel of this article (in §5), we shall use Theorem 2.1 and
Proposition 2.1 for μ = m when m > 2 and μ = 4 when m = 2.

§3. The space of functions on algebraic varieties

Let (X, gx) be an irreducible projective algebraic variety of dimension
n in PiV(C) with the Bergmann metric, i.e. the restriction of the standard
Fubini-Study metric of P^(C). We denote by Σ,χ the singular set of X.

Let Cι/2(X) (resp. Co (X)) be the space of all Lipschitz functions
(resp. with compact support on X — Έx) on X. Define W1'2(X) and
<> 2 (X) by

(3.1) W^\X) := {/ G CV2(χ) ; / e L2(X), df €

(3.2) Wl" " ^
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where the completion is taken with respect to the norm ||

In [L-T], it is proved that Wlj2(X) = W^2(X). Since the proof seems to

be rough, we shall give a detailed proof in this section.

Let us fix notations. For any closed subset S C P7V(C), set

(3.3) rs{x) := d(x, S) = inf d(x, y),

(3.4) Se:={x£FN(C);rs(x)<e}

where d( , •) is the distance of P^(C).

THEOREM 3.1. Let Y be a subvariety of pure dimension d (< n)

in X. Then, for the pair (X,Y), there exist functions j(-), δ(-) (> 0)

G C°([0,1/16]) and ηe G Cg(X -Y)Π W^2(X) for any e G (0,1/16] which

satisfy the following conditions:

(1)
0 < r/e < 1, \\τ]e — 11|2 + |M?7e||2 ^ 7(e)> lim7(e) = 0.

(2)

X — Yδ{e) ^ SUPP^e C l - 7 e , SUpp(l — Tye) C ^2£(e),

e < 5(e), Iim5(e) = 0 .

THEOREM 3.2. T/iere exist functions £(•)(> 0) G C°([0,1/16]) and

f7e G C^(X-Σχ)ΠVI/ 1 ' 2 (X) /or any e G (0,1/16] which satisfy the following

conditions:

(1)
SUpp ίfe C X - Σ£ , 0 < 77e < 1 + e.

2 '

(2)

(3) //ί/ e 5βί *5(e) := {x G X;?7e(^) = 0}? t/ien dS(e) consists of finitely
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many smooth manifolds.

(4)
Σi CS(e)cΣδ{φ ()

In view of [L-T, Theorem 4.1], we get the following corollary.

COROLLARY 3.1. For any projective algebraic variety of pure dimen-

sion, W1 >2{X) = W Q ' 2 ( X ) . Equivalently, c?max = dm[n on L2(X).

For the proof, we prepare several lemmas and propositions.

We denote by Yreg := Y — Σy the regular part of Y. For y G Yreg, set

(3.5) Ny := expyiTyY)1- C

where the exponential map is considered in P iV(C) relative to the Fubini-

Study metric. Then Ny is isometric to PΛΓ~rf(C) and intersect Y transver-

sally at y. Therefore there is a neighborhood U oΐy such that YΠNyΠU =

{y}. Let

(3.6) NyΠX = Ua(NyΠX)a

be the irreducible decomposition. Set

(3.7) (NynX)y:= U (NynX)β.

At first let us study the dimension of (Ny Π X)y. Since each (Ny Π X)a is

a pure dimensional space, it follows that

dim(ΛΓy Π X)a = dimy(Ny Π X ) α ,
(3.8J

dim(iV2/ Π X)y = maxα dim2/(iVy Π X)a

where dimy VF stands for the analytic dimension of W at y for algebraic

variety W. See [G-R, Chap. 5] for the definition of dimension.

PROPOSITION 3.1. There exists a nonempty Zariski open subset lJγ

of Y such that if y G Uy,

dimy Ny Π X = n — d.
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Proof. See Appendix Proposition A.I.

Since dim(Λ^ Π X)a > n — d by the intersection inequality ([G-R,

p. 102]), we get the following proposition.

PROPOSITION 3.]/. IfyeUy,

dim(Ny Π X)y = n- d.

Next let us study the volume of [Ny Π X)y. For an algebraic variety

W C PAΓ(C), its volume with respect to the Fubini-Study metric is given by

(3.9) vol(W) = / (
Jw

where ω is the Kahler form of the ambient projective space and I = dim W.

Since 2^ω represents the same current as H, a hyperplane in the ambient

projective space (cf. [G-H]), we have

(3.10) vo\(W) = (π)1 deg(W), deg(W) ^ΰiWn^n -n Hi),

where Hi, , Hi are generic hyperplanes.

PROPOSITION 3.2. Let Hi, , Hr be arbitrary r(< n)-th hyperplanes

in FN(C). Let

XnHιΠ nHr = J2Xrn~i] (dimX^) = n - i)

be the decomposition into the pure dimensional components. Then,

deg(X) > deg(Xjn-r>).

Proof. See Appendix Proposition A.2.

Since Ny is a linear subspace of dimension N — d in the ambient pro-

jective space, there are hyperplanes Hi, , H^ such that

(3.11) Ny = H1Γ)'- nHd.

By Proposition 3.2, we get the following proposition.
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PROPOSITION 3.2'. Ifye Uγ}

Let us study the tubular neighborhood of Y in P i V(C). If Y is smooth,

it is diffeomorphic to the normal bundle of Y. Define the normal projective

bundle Ny by

(3.12) Ny := {(y,w) G Yreg x P"(C);ti; G iVj.

We denote by i : iVy °—» Yΐeg x PΛΓ(C) the inclusion. Define projections by

(3.13) π := Pl o i : Ny —> y r e g, p := p 2 o i : Ny —> FN(C)

where pi stands for the projection to the i-th factor. It is clear that π :

Ny -> y r e g is a fiber bundle with fiber ΨN~d(C). Define a subbundle of the

tangent bundle of Ny by

(3.14) TN := Ker(τr* : TNy -> Γ F r e g ) .

Then for (y,w) E Λ ŷ, it follows that TTV^ = TwNy. By this identification,

define a Riemannian metric g^ of TiV by

(3.15) gN- U ^

where g ^ := ^piv|Ary is a Riemannian metric of Ny. Define a ball bundle

Ny(e) by

(3.16) Ny(e) := {{y,w) G Ny dψN(y,w) < e}.

LEMMA 3.1. Let S be a subvariety ofY such that S D Sing(y) and

dimS < d i m F . Then, for the pair (Y, S), there exists an increasing func-

tion a(e) G C°([0,1]) which satisfies the following conditions:

(1)
limα(e) = 0, α(e) > y/e.

(2) p : 7Γ~1(Y — Sa(e})ΠNy(e) -+ P^(C) is an into-diffeomorphism such that

-p*gΨN < π*gγ + gN < 2p*gΨN
Δ

on π~ι(Y — £α(€)) Π Nγ(e) where gy :=
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Proof. By the definition of p, it is the identity map restricted to y r e g .

Choose a point y G Yτeg By the definition of JVy, we get the following

decomposition of the tangent space of PAΓ(C) and Ny at y:

(3.17) TyΨ
N(C) = TyNγ = TyY θ ΓyiVy, Γ y y _L TyNy.

Choose tangent vectors u G TyY and t; G TyNy arbitrarily. Since

p|y = id as above, we know

(3.18) (p*)yu = u.

Choose a curve j(t) := (^exp^ti*)) in iVy. By the definition,

(3.19) | ( ( * ) ) = v.

This shows (p*)y = 1. Since y is an arbitrary point of Yτeg, we get p* = 1

along Yreg. Set

(3.20) 6 ( 6 ) :

p : π - 1 ( y - 5e) Π JVy(δ) -^ P7V(C) is an embedding}.

By (3.18) and (3.19), we get on Yreg

(3.21) p*gpN = π*gγ + gN-

In the same way as the definition of b(e), set

c(e) :=sup{cG (0,1];
(3.22) !

* π * 5 y + gN < 2p*gpN on π ~ x ( y - Se) Π ΛΓy(c)}.

By the definition, 6(e) and c(e) are increasing functions and satisfy 6(e),

c(e) < 1. Since Y — Se is compact, 6(e), c(e) > 0.

Define β(e) by

,. e2

(3.23) B(e):= mm{b(t), c(t)}tdt < — min{6(e),c(e)}.
Jo 2

Then p : π~1(Y - St) Π Nγ(B(e)) -> P iV(C) is an into-diffeomorphism

and the inequality of Lemma 3.1 (2) holds on π~1(Y - Se) Π Nγ(B(e)).

Furthermore, B(e) is a continuous increasing function satisfying

(3.24)
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Finally, define a(e) by the inverse function of B(e):

(3.25) a(e):=B-1

By (3.23) and (3.24), α(e) is a continuous increasing function satisfying

Lemma 3.1 (1).

By (3.22) and (3.23), the inequality of Lemma 3.1 (2) is satisfied by

α(e). D

LEMMA 3.2. Let B(r) := {z = (zlr-,zN) G C^; ||2:||2 := ΣΪLi N 2

< r} be the ball of radius r in CN. Then the following inequality holds:

for z G B(l/2) where ddφ is the complex Hessian:

ozazj

Proof. By computations, we get

(3.26) -aβlog(- log Pll2) = ]Γ

which implies

(3.28) C'""W^|,F(-1S tW

D
LEMMA 3.3. Lei y C PJ?V(C) be a projectiυe algebraic variety of pure

dimension d. Let U be the standard affine open subset of FN(C); i.e., U =

CN. Let (zi, , ZN) be the coordinate of U. Then the following inequality

holds for any e G (0,1):

/ dvv <C(N)e2d deg(V)
JM(e)nVJm(e)nv

where C(N) is a constant which depends only on N, and dvy is the volume

form ofV with respect to the Bergmann metric ofV.
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Proof. By the definition,

(3.29) dvv = (ωd)\v

where ω is the Kahler form of PAΓ(C). We denote by Ω the Kahler form of

C^ with respect to the Euclidean metric. On B(l),

(3.30) -Ω < ω < Ω.

Let Te be a linear transform of C^ defined by

(3.31) Te(z) := ez.

We denote by fe the extension of Γe to PΛΓ(C). Since

(3.32) / Ωd = e2d ί Ωd,
JB(e)nv </i(i)nfe_i (V)

it follows from (3.9), (3.10) and (3.30)

(3.33) / dvy < (4π)de2ddeg(fe-i(V)).
JM(e)nV

Since Γc-i G Aut(P i V(C)), we find

(3.34) deg(V)=deg(Γ e -i(y)),

which combined with (3.33) yields the assertion. Π

LEMMA 3.4. Let C be an algebraic curve in PAΓ(C). Let U be the

affine open set and z = (zi, , zjy) be the coordinate ofU as in the previous

lemma. Set
\\z\\ dr

Then, for any e G (0,1/16), the following inequality holds:
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Proof. In this proof, we consider ddφ as a 2-form for any function φ.

By the definition,

(3.35) ~\\z\\ < p(z) < \\z\\ f° r P < \Γe-

Therefore by Lemma 3.2,

dvc

(3.36) <2 ί

<2

where r(z) := ||^||. Set

(3.37) dc := -y/=

By computation,

J Cn{t<r<2yfe} 2

= i / -ώflog(-log|μ||2)

= i / - c f l o g ( - l o g | H | 2 ) -\f - d c l o g ( - l o g | | z | | 2 )
4 Jcn{r=2v^} 4 7cn{r=e}

<T\\42 I ί dc\\zf
\z\\H- log P P ) 4 yCn {r= e } |M | 2 (- log ||

1 /• d cPll 2 1 f \
4 Jcn{r=2Ve} (2Vi)2(- log(2Vί)2) 4 i c n { , = e

f
cn{r=2Ve} (2Vi) 2 (- log(2Vί)2) 4 i c n { , = e } e 2 ( - log e

Jcnn(e) 2

Applying Lemma 3.3 to the integrands of the last equality of (3.38), we get

ί
(3.39) Jcn{e<r<2V~e}

+ ,
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When e G (0,1/16), it is easy to verify the inequality:

(3-40) - y i — + —-!—* < (log - Γ 1 .
- log 4e — log e2 e

By (3.36), (3.38), (3.39) and (3.40), we get the desired inequality. Q

Proof of Theorem 3.1. We prove the theorem by induction. When

dim Y < dim X — 2, define a function pγ^t by

ί 0 (rγ(x) < e)

(3.41) PY,e(x) := \ ^(r Yix) - e) (e < rγ(x) < 2e)

1 1 (rγ(x) > 2e),

where ry is the same function as (3.3). When d i m F = dimX — 1, define

PY,e by

Γ 0 {rγ{x) < e)

(3.42) PY,e(x)--=\ φτΓeY{X)Uϊ (e<rγ(x)<V~t)

It is clear by the definition that 0 < pyj€ < 1.

First let us prove the theorem when dimX > 1 and dimY = 0. Set
'γ(e) = Ce, δ(e) = 2e and ηe{x) := pγ^e(x). By the definition (3.41), the

condition (2) of the theorem is satisfied. Since Y is a discrete set of X, we

may assume Y = {p}. By computation,

II1 - Ve\\l + ll^elli < vol(X Π Ye) + e~2 / \drγ\2dvχ
Je<rγ<2e

(3.43) < C(N) deg(X)e2n + sup |dry |V 2 vol(X ΠY2e)

x

~ X

where Lemma 3.3 is used. By the definition of rY, we find

(3.44) \rγ(x)-rγ(y)\ < dψN{x,y) < dχ(x,y)

for any x, y G X which implies

(3.45) sup I dry I < V2n.

x
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Commbining (3.43) and (3.44), we get

(3.46) | |1 - ηef2 + \\dηe\\2

2 <

which proves the theorem when diml" = 0.

Next assume the theorem for any subvariety of pure dimension k — 1

and prove it for an arbitrary subvariety Y of pure dimension k. Let Uy be

the Zariski open subset of Y considered in Proposition 3.1. Set

(3.47) Z = Zγ := (Y - Uy) U Sing(y).

Then Z is a subvariety of Y whose dimension is strictly smaller than k.

Let Z = UiZ{ be the irreducible decomposition of Z. By the induc-

tion hypothesis, there exists a function r/̂ e which satisfies the conditions of

Theorem 3.1 for (X, Zi)\ Set

(3.48) ξ e (x) :

Let 7i(e) and δi(e) be the functions of Thorem 3.1 for (X, Z{). Set

(3.49) 7z(e) := jj{z}max7;(e), δz(e) := max^(e).
i i

Then it is easily verified that 7z(e), fe(€) and ξe satisfy the conditions of

Theorem 3.1 for the pair (X,Z). Therefore {ξe} is a family of functions

which satisfies the conditions of Theorem 3.1 for (X, Z).

Since Z D Sing(F), we can apply Lemma 3.1 to the pair (Y,Z). Let

α(e) be the function considered in the lemma. Define ηe by

(3.50) ηe(x) := pγi€(x) £2α(2e)O)

In the sequel, we shall verify the conditions of Theorem 3.1 for {ηe}-

By the definition, it is clear

(3.51) 0 < ηe < 1.

Next we verify (2). Since

SUpp ηe = SUpp pe Π SUpp ξ2α(2e) J SUpp Pe = X ~ Ye,

(3-52)
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we have

(3.53) (X - Y€) Π Ui(X - ZιM2a{2e))) C suppτye C {X - Y€) Π U{{X - Zij€).

As Z is a subset of Y and <5^(2α(2e)) > max^{<^(2α(2e)), e}, it is clear

(3.54) X - Yδzi2a{2e)) C SU P P ηe C X - Ye.

Since

s u p p ( l - ηe) C s u p p ( l - pe) U s u p p ( l - ξ2α(2e))
(3.55)

C s u p p ( l - pe) U | J s u p p ( l - ? ^ )

when k = d imy < n — 1, we get

(3.56) supp(l - ηe) C Y2e U (J Z i > 2 α ( 2 c ) C

and when A; = d i m F = n — 1,

(3.57) supp(l - ηe) C ^ U Z f e ( 2 α ( 2 c ) ) .

Set

(3.58) <5(e) := max{v^, δz(2a(2e))}(> e).

By (3.54), (3.57) and (3.58), Theorem 3.1 (2) is satisfied by η€ and δ(e).

Next verify the latter part of (1).

Case 1 (k = dimY < n - 1)

From (3.50) and the induction hypothesis, it follows that

(3-59) ||1 - ηe\\2 < ||1 - p e | | 2 + ||1 - & β ( 2 e ) | | 2

< ^/vol(y2e) + 7z(2α(2e))

and

\\dVeh = \\^2a(2e)dPe + Pedξ2a(2e) h

(3-60) <lle2α(
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It follows from (3.41),

(3.61) U2a(2e)dpe\\l=e-2 ί \drγ\2dvX

Jxn(Y2e-Ye)nsupPξ2a(2e)

< 2ne~2 vol((y2e - Ye) Π (X - Z2a{2e))).

When x G (^2e) Π (X — Z2a(2ej), ^ y be a point of Y such that rγ(x) =

dψN{x^y). By the trigonometrical inequality and (3.25), we get

dψN (y, Z) > dψN (x, Z) - dFN (x, y)

(3.62) > 2α(2e) - 2e

>α(2c),

which implies y EY — Za(2e)
 a n d x ^ Ny(2e). Therefore we have

(3.63) (y2 e - y€) Π (X - Z2a{2e)) C p{π-\Y - Z α ( 2 e ) ) n iVr(2e))

where Nγ{e) is the same as in (3.16) and p and π are the same as in (3.13).

From (3.61), (3.63), Lemma 3.1 and Fubini's theorem, it follows that

(3-64) U2a{2e)dpe\\2

2 < 2ne-2vol(XΠp(π-1(Y-Za{2e))nNγ(2e)))

< 4n2ne~2 ί dvγ f dvXnN {2e).

Since y E C/y? (X Π Ny)y is a pure dimensional space and thus Lemma 3.3

is applicable. Set Wy := (X Π Ny)y and consider y as the origin of U in

Lemma 3.3. Applying Lemma 3.3 and Proposition 3.2, we get

/ dvXΠNy(2e) = / dvψn-k

(3.65) < C(n -

which combined with (3.60), (3.64) yields

(3.66) \\dηe\\2 < C(N) deg(X)62(n- f c-1) vol(Y) + 7z(2α(2e)).

By (3.60) and (3.66), Theorem 3.1 (1) is proved for ηe.
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Set

(3.67) 7(e) := C(N) degpOe2^"*-1) + Ίz(2a{2e)).

From (3.49), (3.58) and the induction hypothesis, it follows that

(3.68) lim7(e) = 0,
e—>0

which combined with (3.66) yields, the latter part of (1).

Case 2 (k = dimY = n - 1)

By (3.59) and (3.60), it is sufficient to show

(3.69) lim||6α(2C)dpc||2 = 0.

It follows from (3.42),

(3.70) U2a{2e)dpe\\l = 4(loge- 1 )- 2 / rγ2\drγ\2dvx

< δn^oge"1)"2 / rγ2dvχ.
JXn(Yv-e-Y€)Πsuppξ2a{2e)

When x G (Y^ji) Π (X — Z2a(2e))i ^ V be a point of Y such that rγ{x) =

dpjv(x,2/). By the trigonometrical inequality and (3.25), we get

dFN (y, Z) > dΨN (x, Z) — dΨN (x, y)

(3.71) > 2α(2e) - y/e

> α(e),

which implies

(3.72) xn(y y i -y e )nsupp^ α ( e ) cp(π-1(y-zα(e))n{JVy(λ/i)-iVy(e)}).

From (3.70), (3.72), Lemma 3.1 and Fubini's theorem, it follows that

(3.73)

rγ2dvχ
)

rγ2-κ*dvγdvXnNγ

= 4n8n(loge~1)-2[ dvγ(y) ί rγ2dvXnNy.

JY-Za(e) J(XnNv)yn(Ny(V-e)-Ny{e))
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Set Cy := (X ΓΊ Ny)y. By (3.73), Lemma 3.4 and Proposition 3.2,

(3.74)

U2a(2e)dpe\\l < 4n8n f dvγ(y) ί (loge-1)"2Py2dvCy

< ί C(iV)deg(Cϊ/)(loge-1)-1^y(y)
JY-za(ΐ)

< C(N) deg(X)vol(r)(loge-1)-1,

which yields (3.69). Set

(3.75) 7(6) := C(iV)deg(X)vol(y)(loge-1)-1 +Ίz(2a{2e)).

Then

(3.76) I|l-»fell2 + ll<frfell2<7(e), lim7(e) = 0,

which proves the latter part of (1). As in the proof of Case 2, we can prove
the theorem when n — 1 and leave it to the reader. Q

Proof of Theorem 3.2. Let Σx = U α Σ α be the irreducible decomposi-
tion. By Theorem 3.1, we may assume that for the pair (X, Σα), there exists
a family of cut-off functions {rja,e}ee(o,i/iβ) which satisfies the conditions of
Theorem 3.1. Fix such a family and set

(3.77) %:

Then we find supp^ C X — Σ e by Theorem 3.1 (3). Since the boundaries
of the zero set of each η€ are not smooth by the construction, we must
regularize the cut-off functions. For simplicity, set Σ = Σx.

Let i(x) > 0 be the injectivity radius at x E X — Σ. Put

(3.78) z(e):=-min{ inf i(x),e\.

Since X — Σe is compact, i(e) > 0 for e > 0. Let {Ui}f=1 be an open
covering of X — Σ e chosen in such a way that (Ji Ui C X — Σe/2

 a n d f°r

each Ui, there is a metric ball B^e\(xi) of radius i(e) centered at xι such
that Ui = Bi^(xi) and X{ G X — Σ e. By the Gauss lemma, identify Ui
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with the ball of radius i(e) in the Eucilidean space of dimension 2n via the

exponential map

(3.79) φi:B(r)-+Ui = Br(xi)

for all r < 2z(e). Since i{e) < i(xi), there is a constant Q > 1 such that, on

B(ί(e)),

(3.80) Crx

9E < φ*.gx < CτgE.

where gE is the standard Euclidean metric. Let {/ιj be a partition of unity

subject to the covering {Ui} of X — Σ e . Since η€ = Σi hiηe, first consider the

regularization of hiηe. Set η^e := φ*(hiηe). Since ηe G CQ(X—Σe)ΠWli2(X),

it follows that τ/i>e e C§(B(z(e)) Π Wrl'2(B(i(e)).

Following [G-H, Chap. 3, §1], let χ G C£°(]R2n) be a nonnegative func-

tion supported in a neighborfood of the origin with

(3.81) / χ(x)dυ = 1.

Put

(3.82) Xδ(x):=δ-2nχφ.

If supp x = K, then supp x^ = ί i f and

(3.83) / χδ(x)dυ = l.

For any function / G L1

1

oc(IR2n), set

(3.84) fδ(x) := / X 6 ( z - y)/(y) dy = / /(x - y)χδ{y) dy.
JR2n JR2n

By [G-H, pp. 374] and [Na, Lemma 14.1], if / G C^(B(r))nTy1'2(R2n), then

{fs} satisfies the following conditions:

(1) fs is a smooth function and supp/^ C B(r + δ).

(2)

(3.85) lim sup \f6 - f\ = 0.
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(3)

(3.86) lim | |/δ - / | | 2 + \\dfδ - dfh = 0.
0—>u

Set

(3-87) ηeJ

From (3.79), Theorem 3.1 (1) and (1) above, if δ < i(e), it follows that

ηe,6 € C?{X - Σ e / 2 ) . Since

(3.88) sup \ηe6 - ηe\ < V s u p \(ηi,e)δ - Vi,e\,
X-Σe/2 i Ui

(3.89) \\ηe,δ-ηe Σ
i

using (3.79), (3.85) and (3.86), there exists j(e) such that 0 < j(e) < i(e)

and that for any δ < j(e),

(3.90) sup \η€jδ -ηe\ < e,

(3.91) l l^g - ηe\\2 + \\dηe>6 - dηe\\2 < e.

By the definition, ηej(e) i s a smooth function which takes zero and is not

identically equal to zero. By Sard's theorem, there exists a regular value

A(e) of ί?ej(e) such that 0 < A(e) < e. Finally, set

(3 92) ή (x) - ί ^ W ( x ) - A ( e )
(3.92) t f c ( s ) . - j 0 (t7 e j- ( e )(x)<A(6)).

Let us verify that fye satisfies the conditions of Theorem 3.2.

It is clear that ηe > 0, and that

(3.93) suppf?€ C supp7jej(€) C l - Σ i ,

as j(e) < i(e) and suppry^^ C X — Σ € / 2 for 5 < i(e). From (3.90) and
Theorem 3.1 (1), it follows that

(3.94) η€ < ηed{e) < 1 + €,
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which proves Theorem 3.2 (1). By (3.91) and (3.92),

(3.95) \\ηe - 1||2 + \\dηe\\2 < \\ηeJ(e) - 1||2 + \\dηeJ(e)\\2 + e^Jvo\(X)

< \\ηe - 1||2 + \\dηe\\2 + e(l + y/vol(X)).

By (3.77) and Theorem 3.1 (1), we get

(3.96) ||77e - 1||2 + \\dηe\\2 < £ \\ηa,e - 1||2 + \\dηa,eh <

where ηa{
e) satisfies Theorem 3.1 (1) for the pair (X, ΣQ,), which combined

with (3.95) yields Theorem 3.2 (2). By (3.92), it is clear that

(3.97) S{e) = {* G X;η€j(e)(x) < A(e)}, dS(e) = η^{e)(A(e)).

As A(e) is a regular value of ηej(e)> ^S(e) is a smooth 2n - 1-dimensional

manifold and consists of finitely many connected components by the com-

pactness of X. This proves (3).

When x G Σ i , then τ]ej(e)(χ) — 0 a n ( i therefore x G S(e) by (3.92),

which implies Σ i C 5(e). When x G S(e), it follows that ^7€j(€)(ίc) <

A(e) < e which combined with (3.90) yields ηe(x) < 2e < 1. This implies

x G supp(l — ηe). By (3.77), one of a satisfies ηa,e(x) < 1. Therefore we

have

(3.98) 5(e) C U S U P P ( ! ~ Va,e) C (J Σ α ; 2 έ Q ( e ) C Σ ί ( e )

α a

where δ(e) := 2maxα{ίQ;(e)} and δα(e) satisfies Theorem 3.1 (2) for the pair

Since lime__0^(e) = 0, we get Theorem 3.2 (4) by (3.97). Q

For our later purpose (cf. §6), we need the following.

LEMMA 3.5. Let (X,g) be an irreducible algebraic variety in P7V(C)

with the Bergmann metric. Let π : X' —+ X — Σx be a m-sheeted covering

ofX-Σx. Then

and Theorem 3.2 holds for (X\π*g).

Proof. By [L-T], it is sufficient to show Theorem 3.2 for (X;,7τ*gf).

Considering the pull back of the family of cut-off functions of Theorem 3.2

for (X, g), it satisfies the conditions of Theorem 3.2, since π is a finite

covering. D
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§4. A comparison theorem for the heat kernel of projective

varieties

In this section, we recall the results of [L-T] concerning the upper bound

of the heat kernel of projective algebraic varieties with the Bergmann met-

ric.

Let M be a projective algebraic variety of pure dimension n in the

projective space P^(C). Let g be the Bergmann metric of M; i.e., the

restriction of the Fubini-Study metric of PAΓ(C). Let S be the singular

set of M. Consider the Dirichlet Laplacian of M — S\ i.e., the Friedrichs

extension of the Laplacian on CQ°(M — S) which is defined by:

(Λ Λ\ Δ •— 8 d

Since c?max = dm[n on the space of functions (cf. [L-T, Theorem 4.1] and

Corollary 3.1), we can ignore the Dirichlet boundary condition. As the semi-

group generated by the Dirichlet Laplacian has a smooth kernel function

denoted by KM(t,x,y). In particular, we denote by Kψn{t^x^y) the heat

kernel of complex projective space of dimension n with the Fubini-Study

metric.

Let r(x,y) be the distance of two points x and y in Pn(C) relative to

the Fubini-Study metric. By the symmetry on Pn(C),

where Kψn(t,s) is a function of t and s. Now we can state the result of

Li-Tian.

THEOREM 4.1. ([L-T]) Let (M,g) be a projective algebraic variety of

pure dimension n with the Bergmann metric. Then the following compari-

son theorem of the heat kernels holds for all (ί, x, y) G [0, oo) x (M — S) x

(M-S):

%y) < Kpn(t,rpN(x,y))

where rFN(x,y) is the distance from x to y in

Combining Theorem 4.1 and Theorem 2.1, we have the following corollary.
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COROLLARY 4.1. Let (M,g) be the same as in Theorem 4.1. Then

there is a constant C(n) which depends only on n such that for every f £

-s),

( n > l ) ,

(n = 1).

COROLLARY 4.2. Let π : X —* Δ(l) be a one parameter degenerating

family of protective algebraic manifolds of dimension n in a fixed protective

space P^(C) as in the introduction. Let G be an arbitrary Riemannian

metric of X. Set Xt := ^~λ(t) and gt := G\χt for t £ Δ. Then there exists

a constant C > 0 independent of t £ Δ(l/2) — {0} such that for every

f £ C°°(Xt), the following inequality holds:

t) (n = 1)

where || \\pj is the LP-norm with respect to gt.

Proof. Since X |Δ(I/2) ^ P7V(C) x Δ( l) , there is a constant Co such that

(4.3) ^Q1(9ΨN{C) + l^ | 2 ) ^ 9 ^ CO(9ΨN(C) + l^ | 2 )

on π" 1 (Δ( l/2)) where pPN(C) is the Fubini-Study metric of P7V(C). which

implies

(4-4) Co gψN^\χt < gt < CogFN(C}\χt.

By Corollary 4.1 and (4.4), we obtain the desired estimates. Q

§5. Continuity of the spectrum in the parameter

Let (M, g) be a Riemannian manifold of dimension n with finite vol-

ume, and let {(M^, gi)}i>± be a sequence of compact Riemannian manifolds

of dimension n. In this section, we shall show that the spectrum of the

Laplacian of (M^,^), converges to that of the Dirichlet Laplacian of (M,g)

as i —• oo under certain conditions, which is an abstract version of our Main

Theorem. Introduce the following condition for (M,g).
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CONDITION. ( C l ) (1) There exists a sequence of cut-off functions

i^o C CQ(M) Π W1'2(M) which satisfies the following conditions:

lim \\Pi - 1\\2 + \\dpi\\2 = 0, 0<Pi<l.

(2) Si := {x G M; pi(x) = 0} has finitely many smooth boundaries.

(3)
lim vo\(Si) = 0.

i—-»oo

Set 7 ( i ) := | | ^ - 1||2 + IMpzlb Then 7 ( i ) -+ 0 as i -• ex).

Remark 5.1. From the argument of [L-T, Theorem 4.1], under (Cl),

it follows that Wl'2(M) = W Q ' 2 ( M ) with respect to g, or equivalently

dmin for

Introduce the following condition for the family {(M^,^)}:

CONDITION. (C2) There exists a sequence of open subsets {Si} of

M and a sequence of into-diffeomorphisms {fi}i>i f% : M — Si <"-> Mi which

satisfies the following conditions:

(1) For every i>l,
1 +

2# - Ji 9ι — 9

on M - Si.

(2) // we trivially extend flg% to M by setting f*g% := 0 on Si, then

lim flgi = g
I—»0O

almost everywhere on M.

(3) Setting K{ := M{ - U(M - Si),

lim vol(Ki) = 0.
i—+oo

If {Si} is the same one as in (Cl), t/ien (C2) is 5αzc? to 6e subject to (Cl).

Let {λi(i) < λ2(i) < * •} be the spectrum of Δf, the Laplacian of

(M^,^), and {λi < λ2 < •} the spectrum of Δ := <5max<imin, the Dirichlet

Laplacian of (M, g), counted with multiplicities. Our goal in this section is

to prove the following theorem.
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THEOREM 5.1. Let {(Mi,gi)} be a sequence of compact Riemannian

manifolds and (Λf, g) a Riemannian manifold with finite volume satisfying

(Cl). // (C2) subject to (Cl) is satisfied for {(M^,^)} and (M,g), and

if the Soboleυ inequality is uniform; i.e., there exists a constant C > 0

independent of i such that

for every φ G C°°(Mi) where || \\pj is the Lp-norm of (Mi,gi), then

lim λfc(i) = λfc.
I—>OO

As mentioned in the introduction, we prove the theorem only when

n > 2. To show that the spectrum of the Dirichlet Laplacian of M consists

of discrete eigenvalues, we need the Rellich lemma for M.

LEMMA 5.1. Under the assumption of Theorem 5.1; the Sovolev in-

equality holds on M. Namely there exists a constant C > 0 such that for

any ψ G CQ°(M), the following inequality holds:

Proof. Let ψ G C Q ° ( M ) . Since (f~1y(piφ) is a smooth function on

Mi, we get by the Sobolev inequality on Mi and (C2),

| | ^ l | ^ » . < 4nc(\\dψ\\2 + \\φ\\2 + UWooWdpih).
n-2

Since ||dpi||2 ^ 7(^) by (Cl), we obtain the desired inequality, taking the

limit as i —» oo. Π

PROPOSITION 5.1. (Rellich lemma) Inclusion W1'2{M) ^ L2(M) is

compact.

Proof Let {fn} be a bounded sequence in Wl'2(M)\ i.e.,

for all n. Since M — Si has a smooth compact boundary, Rellich lemma

holds for any M — Si (cf. [G-T, Theorem 7.26]). By the diagonalization
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argument, we can choose a subsequence {fnm} which converges in every

L2(M — Si). By the Holder inequality, Lemma 5.1 and Remark 5.1, we get

(5.1) < Cvo\{Si)τ(\\fnm\\2 + \\dfnmh)

<CC0Vθl(Si)n.

Let e > 0 be an arbitrary given number. By (Cl), there exists i(e) such

that

(5.2) CC0vol(Si)n < I for i> i(e).

Therefore for i > i(e), we get

(5-3) Wfnm — fnm'Wϊ ^ Wfnm ~ fnm' || L2(M-Sτ) + «•

Since {/nm} converges on M — Si, there exists m(e) such that if 771,777/ >

m(e),

(5.4) | | / n m - /nm'IIL2(M-5i) < y

which combined with (5.3) yields \\fnm — fnm'Wi < e f° r m,171' ^ m(e). D

COROLLARY 5.1. T/ιe spectrum of the Dirichlet Laplacian of (M,g)

consists of discrete eigenvalues.

Let {φk(i)} be a complete orthonormal system of L2(Mi) which consists

of eigenfunctions of Δ^; i.e.,

(5.5) Δiφk{i) = λ*(i)<fo(i), (φk(i), Φι(i))i = hi

where ( , -)i stands for the inner product of L2(Mi). Set

(5.6) φk(i) := PiftΦkii) € C?(M - Si).

From the definition, Proposition 2.1 and (C), it follows that for all i and k

(5.7) \\Ψk(i)h<C>Xk(ί)n

where C is a constant depending only on C, the constant in Theorem 5.1.
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PROPOSITION 5.2. For every N > 0, there exists a subsequence {i(v)}

such that the following formulae hold for 0 < k < N:

(1) JLjm^λfc^i/)) = λfc.

(2) s - lim φk{i{u)) = φk in L2(M)
V—>OO

w - lim φk(i(v)) = φk in W^2(M)
v—> o o

where φk is the eigenfunction of A such that (φk, φι) = δki and Aφk =

For the proof, we need the following.

LEMMA 5.2. Suppose that Proposition 5.2 is true for N. Then,

lim sup \N+i(i) ^ λjv+i

Proof By Proposition 5.2 for N, we may assume

(5.8) s - .lim φk{ι) = φk in L2(M)

(5.9) w - lim φk(i) = φk in W^2(M)

for 0 < i < N. Let ΦN+I be the eigenfunction of ΔQ such that

(5.10) (ΦI,ΦN+I) = <5i57v-fi and ΔQ^TVH-I
 ==

 ^N-\-IΦN-\-I

for i < N + 1. Since W r l>2(M) = W0

1>2(M), there is a sequence {0iv+i,i} C

such that

(5.11) WΦN+IJ ~ ^AΓ+I|IL2 < T , supp^ΛΓ+i,!/ C M -

Set

(5.12) ^

(5.13) ξτv+i(O := Xτv+i(i) - Σ (χw+i(i), Φk(ϊ))iΦk(ϊ),
k<N
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(5.14) P{ΦN+U) •= ξN+i{i)/\\ξN+i(i)h,i € C°°(Mi).

It follows from the definition

(5.15) \\P(ΦN+ι,i)h,i = 1, P(ΦN+i,i) ± {Φo{i), •••, Φ N H ) } ,

(5.16) ||dP(^+i,i)|ll,i >

(5.17)

By computation,

(5.18) = / {f-l

JMτ-Kτ

= / ΦN+l
JM-Si

Set

(5 1 9 ) G< - \ o (sτ).

By the definition and (C2), it follows that

(5.20) HGilloo < 2n.

From (5.18) and (5.19), it follows that

(1 ~ Pi)f*Φk(i))

+ (φN+i9iJ*Φk(i)(Gi-l))

(5.21) = (φN+ljψk(i)) + {ΦN+1,1 ~ φN+
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By the hypothesis,

(5.22) l i m ( ^ + i , ^ ( i ) ) = (φN+i,Φk) = 0.
z — • o o

By (5.7) and (5.11),

(5.23) \(φN+ί,i - φN+1,ψk(i))\ < \\φN+i,i-φN+ih\\Ψk(i)h

i

From (C2), Proposition 2.1 and the hypothesis, it follows that for k < N

(5.24) \\Φk(i)\\oo < C\k(i)n < C'(λk(ΐ)n + 1)

where Cr > 0 is a constant independent of i and k. By (Cl) and (5.24),

\{φN+i,iy (1 - Pi)f*Φk(i))\ < | | ^ + i , i | | 2 | | l - Pih\\Φk(i)\\oc

(5.25) <2C"(λ^

< 2C'{\1

In the same manner,

(5.26) \(ΦN+i,i,fiΦk(i)(Gi - 1))] < 2C\\n

k + l)\\Gτ - 1||2.

Since \\Gi — l||oo <ί 2 n + 1 and \γmi-+oo{Gi(x) — 1) = 0 for almost every

x £ M by (C2) and (5.19), the Lebesgue convergence theorem implies

|
> o o

(5.27) lim
i—> o o

which combined with (5.26) yields

(5.28) lim (φN+liii ftΦkii){βi - 1)) = 0.

By (5.21), (5.22), (5.23), (5.35) and (5.28), we get

(5.29)

which yields

lim |||

(5.30) = lim \\{f-lYφN+Λl
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lim \\dχN+ι(i)- ^2{
l~^°° k<N

/ \dφN+ι\
2{G2

τ - l)dv.
M-Sτ

By the Lebesgue convergence theorem again, we get

(5.32) lim / |#Λr + i | 2 (Gf - l)dυ = 0,
*->oo JM-SX

which combined with (5.30) and (5.31) yields

(5.33) lim \\dP(φN+1^\\2ii =

By (5.16) and (5.33) we get

lim supλjv+i(i) <

D

Proof of Proposition 5.2. We prove the proposition by induction. It is

clear by Theorem 3.1 that the proposition holds for TV = 0. Therefore we

may assume the proposition for 0 < i < N, and prove it for N + 1.

By Lemma 5.2, we may assume 0 < λjv+i(i) < 2λjv+i By t h e defini-

tion, Proposition 2.1, (Cl) and (C2), we have

(5.34)

which combined with Proposition 5.1 implies that there is a subsequence

{i(y)} and ψ G Wι'2(M) such that

(5.35) lim λjv+i(i(^)) = lim inf λjv+i(i)
I/—>OO
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and {ipN+i(i(v))} converges to φ weakly in W1 > 2(M) and strongly in L2(M).

Since

(5-36)

> ^ ( 1 - 2Cλn

N+ι vo\(Kt)) - Cλn

N+lΊ(i),

we have

(5-37) ^

which shows φ ^ 0. Let us show that (φ, φk) = 0 for k < N and H^lh = 1.

By computation,

= \(pif*φN+i(i),Pif*Φk)\

< ||1 - />?||2||0ΛΓH-l(i)||oo||^fc(ΐ)||oo + \(f*φN+l(i),f*Φk(ί))\

< C\%+ll(i) + I /
JM%-Ki

(5.38) + / \φN+1{ι)φk{ϊ){G-1 - ΐ)dvi

/

M

~ι G L o o (

+ I \φN+i{ϊ)Φk{ϊ)Glιdυi\

vo\{Ki) + C\%+1 ί IGΓ1 - l\dVi

\GJι - l\dv)

where G~ι G L o o (M ί ) is defined by

( 5 3 9 ) G ί = \ o
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It is clear, by the definition, that \G^\ = K / Γ 1 ) * ^ ! < 2n. By (C2) and

the Lebesgue convergence theorem, we get

(5.40) (φ,φk) = ϊ^{φN+1{i{u)),φk{i{v)) = 0.

In the same way, we can show

(5.41) \\φ\\2 = 1.

Next let us show that Δ ^ = o/φ where a = lim inf ^ ^

Choose an arbitrary χ G C Q ° ( M ) . Since Δ = δmSiXdmm for (M,g), it is

sufficient to show

(5.42) (dφ,dχ) = a(φ,χ)

to prove

(5.43) Aψ = aφ.

By the definition, we get

= lim(dψN+ι(i(ι/)),dχ)

(5-44)

which proves (5.43). Since ψ _L {(/>o, , ΦN} by (5.40), we get

(5.45) a>λN+1= inf 2 2

f±{φ

Lemma 5.2 and (5.45) imply λjv+i = limsupλjv+i(i) = liminf λjv+i(i)

This prove the proposition for N + l . Q

Proof of Theorem 5.1. We prove the theorem by induction. Since Xo(i)

0 for all ί, it holds for k = 0. We assume the theorem for k < n and

prove it for k = n + 1. For the proof, it is sufficient to show

(5.46) lim sup λ n +i(ϊ) < λ n +i < lim inf λ n +i(i).
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We can choose sequences {i^} and {iμ} such that

lim \n+i{ii/) = lim sup λn+i(i), lim λ n + i(ΐ μ) = lim inf λn +i(i).
is^ oo z-^-oo μ—»oo z—»oo

By Propostioin 5.2, choosing subsequence \iv,k} a n d {v,/} if needed, we
have

lim λn+ι(i^k) = λn+χ, lim λn+i(iμ>/) = λ n + i .

This implies (5.46) and completes the proof. D

§6. Proof of Main Theorem

In this section, we use the same notations as in §0, §1, §3 and §5.
In view of the proof of Theorem 5.1, it is sufficient to show the following

proposition (P) to prove Main Theorem:
(P) For every sequence {tn} with lim.n-.ootn = 0, there exists a subse-

quence {tn,i} such that

(6.1) lim σ(Δ X t , ) = σ ( Δ z ) .

Let {tn} be given. For every i, we can find tn^ with \tn^\ < τ(l/i) where
7(e) is the same one as in Theorem 1.1, and obtain a subsequence {tn^}.
Set (M,5) := (Z - Σz,gz), Mi := X^ and ft := gtn%x.

It is clear that (M, ̂ ) is a Riemannian manifold with finite volume. To
apply Theorem 5.1 to (M,g) and (M^,^), we shall verify (Cl) and (C2) for
them.

At first we must find a family of cut-off functions verifying (Cl) for
[Z — Σz,gz)> By Theorem 3.2 and Lemma 3.5, there is a family of cut-off
functions {p{} C C$(Z-Έz)nW1'2(Z) which satisfies (Cl) for (Z,g) where
g := £*(#PiV(C)|χ0) is the pull back of the Bergmann metric of XQ. Since gz
is a restriction of some Riemannian metric of X, it is quasi-isometric to g.
Therefore, {pi} also satisfies (Cl) for [Z — Έz^gz)-

Next we must construct maps fc : M — S{ —> Mi verifying (C2) subject
to (Cl). Set fi := f ^ : Z - Si -> Xt^τ where ft : Z - Σ e -+ X, is
the same map constructed in Theorem 1.1. We remark that fi is well-
defined on Z — Si, since ft '%* is defined on Z — Σ z i by Theorem 1.1 and
Z - Si m Z - Σ z 2 from Theorem 3.2. By Theorem 1.1 and (4.4), {/;}
satisfies (C2) subject to (Cl).
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Finally, we must verify the uniformity of the Sobolev inequality for

{(Mi,gi)}. But this follows from Corollary 4.2. Therefore, we can apply

Theorem 5.1 to {Z,gz) and {{Xtntii9tn,»)}> a n d obtain (6.1). Q

Appendix

Let X be an irreducible algebraic variety of dimension n in PAΓ(C), and

Y an irreducible sub variety of dimension d{< n) in X. For y G Yreg , let Ny

be a linear subspace of dimension N — d in PAΓ(C) which contains y such

that Y and Ny intersects transversally at y; i.e., TyΨ
N(C) = TyY 0 TyNy.

Here, by a linear subspace, we mean a subvariety of the form ffifl Π

Hr where Hi is a hyperplane in P i V(C).

PROPOSITION A.I . There exists a nonempty Zariski open subset llγ

(C Y - Σy) ofY such that if y G Uγ, then

dimy Ny Π X = n - d.

For the proof, we need several lemmas. In what follows, rings in con-

sideration are noetherian commutative with 1, and all schemes are assumed

to be Noetherian.

Let A b e a local ring and ΐΰl be the maximal ideal of A. Let / and J

be proper ideals of A. Let A := A/I be the residue ring and π : A —> A

be the natural projection. Let ΐOl := τr(SDΐ) be the maximal ideal of A. We

denote by GrjA the graded v4-algebra defined by

(A.I) Gr/A := ®%L0I
i/Ii+1 (7° := A).

For x E A, we attach an integer ^/(x) defined by

(A.2) i//(x) := sup{j G Z> 0;x G / j} (x ^ 0), z//(0) = oo.

For x G A, we attach an element in/(x) of GrjA defined by

(A.3)

inj(a ) := x mod Γ/iίχ)+1 e yi(χ)/yi^+i (x φ 0 ) , i n / ( 0 ) = 0.

Finally, we define an ideal Gr/( J, A) of G17A by

(A.4) Gr/(J, A) := {in/(x); x € J } .



DEGENERATION OF ALGEBRAIC MANIFOLDS 125

LEMMA A.I . ([M, Theorem 15.7]) Let A be a local ring, and I C A be

an ideal. Then,

dim A = dimGr/A

LEMMA A.2. ([H, Chap. 2, §2, Lemma 5]) There exists an isomor-

phism between graded algebras as follows:

LEMMA A.3. ([M, Theorem 15.1]) Let φ : A —> B be a flat local ho-

momorphism of local rings. Then,

dim B = dim A + dim B/ΐΰlB.

LEMMA A.4. Let A be a local ring with the maximal ideal UΆ, and B

be a flat A-algebra with B φ DJIB. Then,

dim B > dim A + dim B/UJIB.

Proof. Take a maximal ideal n of B/VJIB such that dim B/MB =

dim(B/UJlB)ri where (B/ΐOlB)n is the localization oϊB/ΐΰlB by the maximal

ideal n.

Let π : B -> B/MB be the projection. We set n := π~ 1(n). Then, by

Lemma A.3, we have

dimB > dim.Bn = dim A + dim(B/mB)n = dim A + dim B/MB.

D

Finally, we need the following theorem:

THEOREM A.I. ([H, Chap. 2, Sect. 1, Theorem 1]) LetX be a scheme

and Y C X be a reduced closed subscheme. Then, there exists a nonempty

Zariski open subset U C X such that

(1) UΠY φ$.

(2) U is normally flat along U ΠY. Or equiυalently, Grχ y @x,y is @Y,y-

flat for every y G U ΠY where Oχ (resp. Oγ) is the structure sheaf of X

(resp. Y), 2 γ ( c Oχ) is the defining ideal sheaf of Y, and Oχ^y (resp.

Iγ,y) denotes the stalk at y.
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Proof of Proposition A . I . By virtue of Theorem A.I, it suffices to prove

that diniy NyΠX = n — diίyE Yτeg and if X is normally flat along Y at

y; i.e., Gr^x @x,y is (9y?y-flat.

We can take a minimal set of generators z — (zi, , zj) (consisting of

d-elements) of Xjy . Set A = Oχ^y, 9Jί = 5Jίχ,y and / = 2y>2/. We also set

5OTA = A/1 and 9Jΐ = Wl/I.

Since dimy NyΠX > n — d from the intersection inequality of dimension

(cf. [G-R, p. 102]), it suffices to show dimy NyΓ)X < n — d. By Lemma A.I

and A.2,

(A.5) ά\my NyΠX = dim A/zA

= dimGr(j+zAyzAA/zA — dimGr/^4/Gr/(z^4, A).

As Y and Ny intersects transversally at y, we have 2]y y+Zγy = WlψN^y.

Hence, z is mapped to the regular system of parameter z = (fi, , z^) of

A — A/I = Oγ^y — OΨN^y/lγ by the natural projection map. In other

words, we have zΛ = ίfft. This also shows that vj(zi) = 0 for each i; i.e., Zi φ

I for each i. Here we consider Z{ as an element of A — Oχ^y = OΨN y / I j .

This shows that in/(^) = zι mod / = Z{ is an element of the degree zero

component A = A/1 of Gr/A

As Gΐj(zA,A) contains z, it suffices to show that dimGrjA/zGYJA <

n — d by (A.5). Note that we have GviA/zGτiA = GτiA/dJΪGτiA. Hence,

by Lemma A.I and A.4, we have

(A.6) dimGτiA/zGτiA < dimGr/A—dim A/1 = dim A—dim A/1 = n—d.

This completes the proof. Q

PROPOSITION A.2. Let X be an irreducible algebraic variety of di-

mension n in P^(C).

Let Hi, , Hr (r < n) be hyperplanes in P^(C). Let

r

X n Hi n . nHr = \J(X nHX n nHr)^-^

(dim(X Π Hi Π Π Hr)(n~^ = n - i)

be the decomposition into the pure dimensional components. Then,

deg(X) > deg(X Π Hi Π Π Hr)prop
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where (X Π Hi Π Γ) # r ) p r o p := (X Γ) Hi (1 - Π Hr)
{n'r) is the proper

component of the intersection X Π iΐi ΓΊ Π Hr.

For the proof, we prepare a lemma.

LEMMA A.5. Let Y be an irreducible algebraic variety in ΨN(C) and

H be a hyperplane in the same protective space. Then,

> deg(y n H)prop-

Proof. By the intersection inequality of dimension (cf. [G-R, p. 102]),

dimY Π H is equal to either dimY — 1 or dim Y. When dimY Π H —

dimY - 1, then deg(Y) = deg(Y Π H) by the Bezout theorem. When

dim YΠH = dim Y.YΠH = Y and therefore (Y Π H)pΐop = 0. Therefore,

deg(Y Π H)prop = 0 by the definition. This completes the proof. Π

Proof of Proposition A.2. We prove the propositon by induction. When

r = 0, there is nothing to prove. We assume the proposition for r < k and

prove it for r = k + 1.

Let

(A.7) (X n Hλ n . n # r ) p r o p = | J Aα

a

be the irreducible decomposition. By the definition and the intersection

inequality of dimension,

(A.8) (X n Hx n .. n Hr n Hk+1)prop c\J{Aan Hk+1)prop.
a

By Lemma A.5 and the hypothesis of induction, we have

(A.9) deg(X) > £ deg(A*) > £ deg(AΩ Π i/ f e +i)p r Op

> deg(X n £Ti n n Hk+1)pτop

This completes the proof. Π
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