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DEGENERATION OF ALGEBRAIC MANIFOLDS
AND THE SPECTRUM OF LAPLACIAN

KEN-ICHI YOSHIKAWA

Abstract. We shall show that the spectrum of Laplacian depends continu-
ously on the parameter for one parameter degeneration of projective algebraic
manifolds.

§0. Introduction

In [Grl], M. Gromov studies the spectral geometry of semi-algebraic
sets in the Euclidean space. He treats a family of algebraic manifolds
{X:} and studies the continuity of several geometric and analytic quan-
tities. When no degeneration of manifolds happens, most of such quantities
depend continuously on the parameter. He states that the spectrum of
Laplacian is continuous in the parameter unless serious degeneration hap-
pens. As for such degenerations, he mentions the case that the singular
fiber has multiple components and that the dimension of the singular fiber
is different from that of the general fibers (cf. [Grl, 4C]).

The purpose of this article is to study the behavior of the spectrum
of Laplacian in the case of a degenerating family of projective algebraic
manifolds in a fixed complex projective space. We shall show that in the
case of a one parameter families, the spectrum is continuous. Therefore
discontinuity can happen only for families with many parameters. (Note
that the dimension of each fiber is constant in the case of a one parameter
families.)

Let 7 : ¥ — A(1) be a one parameter degenerating family of projective
algebraic manifolds in PV (C) over the unit disc. By this we mean that X is
a complex submanifold of PV (C) x A(1) and that 7 := proj, |z is a proper
holomorphic surjection to A(1) := {z € C;|z| < 1}. Then X; := 7 1(t)
is a pure dimensional projective algebraic variety. Since the discriminant
locus of 7 is a discrete subset in A(1), we may assume that X; is a smooth
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manifold for ¢ # 0 and that Xy is of the form Xo = > "0_; mqY, in the sense
of divisor where m,, € Z4 and Y, is an irreducible variety.

Let G be an arbitrary Riemannian metric of X. Set g; := G|x, for t # 0
and go := G| x,—Sing(xo)- Let A¢ be the Laplacian of (X4, g;), and 0(A¢) the
spectrum of A;. When t = 0, consider the Dirichlet Laplacian of Xqeg :=
Yoo MaYareg; 1., Ag 1= BamaAy where A, is the Laplacian whose domain
is given by W01’2(Ya’reg,g0|ya) where Yj, reg := Yo — Sing(Yy), and myA,, is
the mq-th copy of A,. By the definition, 0(Ag) = Up—i Ma0(Aq). It is
known that o(Ag) consists of discrete eigenvalues (cf. [L-T, §5]). Naively,
it seems that o(A;) converges to o(Ap), since X; converges to Xop in the
sense of current on PV(C) (cf. [F, Proposition 2.3]). But this does not hold
in general, unless Xy is a reduced divisor; i.e., my = 1 for all a. We shall
show that o(A;) converges to the spectrum of a certain branched covering
space of Xg. This covering space is described as follows (cf. [Cl]).

Let (A(1),s) be the unit disc in the s-plane, i.e., the complex plane
whose coordinate is given by s, and let F' be a holomorphic function defined
by F(s) := s™ where m := [[,mq. By this maps, we obtain the fiber
product

F7'% = {(z,5) € X x AQ1);7(z) = s™} C X x (A(1),s).

Let II : F~'X — (A(1),s) be the natural projection induced by that of X.
Then its fiber is given by II"1(t) = X;m. In particular, II71(0) = Xj.

Let ¢ : F-1%¥ — F~1%X be the normalization of F~'¥. Finally, set
Z = 1"Y(Xo) = 71(I171(0)) and gz := t*go.

MAIN THEOREM. Let Ay be the Dirichlet Laplacian of (Zyeg, 9z), and
o(Az) its spectrum. Then,

%irr(x) o(A¢) = o(Ag).

In particular, the k-th eigenvalue of the Laplacian is a continuous function

on A(1).

In [FkK], continuity of the spectrum is studied relative to the measured
Hausdorff topology, and in [K-K1, 2], relative to the spectral distance of
Riemannian manifolds. In [J-W], the same problem is studied for a degen-
erating family of surfaces with respect to several metrics, and in [Y1, 2],
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for a conic degenerating family of Riemannian manifolds and degenerating
family of algebraic curves. Similar to these articles, the proof of Main Theo-
rem is based on the min-max principle developed in [C], [C-F] and [J-W]. To
apply these arguments to our situation, uniformity of the Sobolev constant
for algebraic varieties in a fixed projective space is crucial, which is due to
Li-Tian [L-T]. In the same article, it is also proved that dpax = dmin On
the space of functions for singular algebraic varieties ([L-T, Theorem 4.1]).
In view of their argument, it is equivalent to the existence of a sequence of
cut-off functions approximating the constant function in the W2-norm. It
seems that their construction of such functions contains a gap, because it
is not clear whether various formulae and estimates in [G] hold for singular
subvarieties in a singular variety. In this article, we shall give a rigorous
proof of their theorem.

In view of Theorem 5.1, we can prove that the spectrum of Laplacian is
a continuous function of a certain family of Einstein manifolds (cf. [B-K-N],
[N]). We conjecture that the same is true for the case treated in [A], and for
the case of a degenerating family of minimal submanifolds of SV, since the
Sobolev inequality is uniform in the parameter in both cases (cf. [C-L-Y]).

This article is arranged as follows. In §1, we give a detailed definition
of Z. In §2, we recall the results on the Sobolev inequality and the upper
bound of the heat kernel. In §3, we discuss the existence of a certain se-
quence of cut-off functions on arbitrary irreducible algebraic varieties. In §4,
we recall the result of Li and Tian (cf. [L-T]) which is the main tool of this
paper. In §5, we prove an abstract version of Main Theorem (Theorem 5.1).
Here, the Sobolev inequality with uniform Sobolev constant is used essen-
tially in stead of the curvature bound. For simplicity, we prove Theorem 5.1
when dim M > 2. When dim M = 2, we can prove the theorem in the same
way, if we use the Sobolev inequality obtained in Corollary 4.2. In §6, we
prove Main Theorem. In Appendix, we prove some results concerning di-
mension and degree of algebraic varieties for the convenience of the reader.
The proof given there is due to Y. Namikawa and M. Hashimoto.

Acknowledgments. The author wishes to express his thanks to the
referee who pointed out several mistakes of the earlier version of this arti-
cle and gave a useful suggestions for the contents of §5, and to Professor
M. Hashimoto for kindly teaching him a detailed proof of Proposition A.1
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and A.2. He also wishes to express his thanks to Professors R. Kobayashi,
S. Mukai, Y. Namikawa, T. Ohsawa and H. Umemura for helpful conversa-
tions and comments.

81. Description of Z

Let 7 : ¥ — A(1) be the same as in the introduction. Set X; := 7~1(¢).
When t = 0, we have

a
(1.1) Xo= Y maYs
a=1

as a divisor where my € Z, and Y, is an irreducible algebraic variety. Let
(A(1),t,) and (A(1),s) be the unit disc in the t,-plane and the s-plane
respectively. Let f, and F' be holomorphic functions defined by

(1.2) fa(ta) :=tg, F(s):=s"

where m := [], mq, by which we obtain the fiber product

(1.3) 1% = {(z,ta) € X x A(1);7m(z) = 7=} C X x (A(1),ta)
and

(1.4) F1x:={(z,s) € X x A(L);m(z) = s™} C X x (A1), 5).

Let mq @ 71X — (A(1),ta) and II : F71X — (A(1),s) be the natural
projections induced by that of X whose fibers are given by 7, 1(t) = Xyma
and II7}(t) = Xym. In particular, 7 1(0) = II71(0) = X,.

We denote the normalization of f; !X and F~1X by

(1.5) la f(;Alae — flx
and
(1.6) v F1xX — Fix.

Then, regarding Xy = 7,1(0) = II"}(0) C F7'X and Y, C Xy, define Z,
Z, and W, by

(1.7) Z =1 X0), Zo:=11(Ya), Wu:=:13'(Ya).



DEGENERATION OF ALGEBRAIC MANIFOLDS 87

Since (A(1), s) is a (branched) covering of (A(1),t,), regarding t0'> = sma
we obtain the natural covering map

(1.8) Jo : F7YX 3 (z,5) — (z,8ma) € f1X.

Clearly g, is a branched m/m,-sheeted covering (cf. [G-R, pp. 135]). Since
Jo is a finite surjective holomorphic map, it naturally induces a finite sur-
jective holomorphic map between F~1% and f;'¥. We denote this map by
o

— —

(1.9) Go: F71X — f3l%.
By the definition, it is clear that g, is a branched m/m,-sheeted covering.
Restricting g, to the fiber at zero, we get the finite surjection

(1.10) Ga : Lo — Wa.
Set X, := fafl\%, Pa i= Tq O Lo and define a family
(1.11) Pa: Xo — (A(L), ta)

whose fiber at t # 0 is the same one as that of f;'X, and therefore is Xima,
since f;1X is smooth outside Xo = 7;1(0). Set

Dy = Sing(Ya) U | Ya N Y3,
(1.12) B
Yo =15 (Da);, Sa:=0;"(Za), S :=UaSa.

PRrROPOSITION 1.1. (1) ¢: Zy — Y, and vy : Wy — Yy are my-sheeted
analytic covering, and §o, : Zo — Wy is a surjective one sheeted analytic
covering. In fact, 1 : Zo — Sq — Yo — Do and 1t : Wy — X — Yo — Dy,
are unramified mq-sheeted covering, and o, : Zo — Soe — Wo — Xy 18 an
isomorphism.

(2) Sing(Wy) C X4 and Sing(Zy) C Sa.
(3) Wo — 3o C Xoreg and po ts of mazimal rank on Wy — X,

Proof. Let x be an arbitrary point in Y, — D,. There is a coordinate
neighborhood (U, (20, -, 2n)) around z in X such that z = (0,---,0) and
for y = (20, -+, 2n) € Uy & A(1)"H,

(1.13) m(y) =257,
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since z is a smooth point of Y, and the multiplicity of Y, is m,. Put

(1.14) f Uz = {(y,ta) € fa X5y € Un}

(1.15) F7U, = {(y,5) € F'%;y € Us}.
Using above local coordinates, we can write
(1.16) falUs = {(2ta) € A( )" AL 2gt =ty

_‘{ Z ta H(ZO Cma - }a

(1.17) FU, = {(z,s) € A( yH

={(z:9); H (20 = G 8

)iz = 5™}
5) =0}

Al

where (,,, = exp(2my/—1/m,). From the definition of normalization, it
follows that

(L.18) b (2) = B () = ma

and

(1.19) b [ Ue = U0 Vg, VerNVey=0 (k#1)

(1.20) P, = U Oy OppNOLy =0 (k#1)

where

(1.21) ot Voo — {(2,ta); 20 — (,’;atma = 0},

(1.22) L:O0g ) — {(2,8); 20 — Cﬁlasmﬂa =0}

are isomorphisms. Set o = (;1(z) N Voi and zx := 7H(z) N Ogp.

Then Vg i (resp. O 1) is a coordinate neighborhood of fo 1% (resp. F/‘Tf{)
around z, ) (resp. z;). Therefore V, ,NW,, (resp. O, xNZ,) is a coordinate
neighborhood of W,, (resp. Z,) around zq k (resp. z4):

(1.23) 1o : Ve xNWo — {(2,t0) € A" T X A(1); 20 = tim, = 0} = A(1)",
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(1.24)  0: 04N Zo — {(2,8) € AL)" x A(1);20 = s =0} = A(1)",

which implies that W, — ¥, and Z, — S, consist of smooth points of W,
and Z, respectively, since x is an arbitrary point of Y, — D,. This proves
(2).

By (1.19), (1.20), (1.23) and (1.24), ¢4 (resp. ¢) is a m,-sheeted covering
map between W, —X, and Y, — Dy, (resp. Zo— S, and Y, —D,,). This proves
(1) for ¢, and ¢. Since gq(z,s) = (z,s':ln_a) in the above coordinates, gq :
(Oz ) = ta(Vy k) is an isomorphism. Therefore we obtain an isomorphism
Ga 2 Oz = Vi k. As o is globally defined on Z,, it must be an unramified
covering resiricted to Z, — S,. Since g, 0t = 14 © §o and g, is the identity
map on Yg,, §, must be an isomorphism between Z, — S, and W, — %,
comparing the mapping degree. This completes the proof of (1).

By (1.21), there exists a coordinate neighborhood (V x, (&, -,&n))
around zj, such that z = (0,---,0) and for £ = (o, -+, &n) € Vo,

(1.25) &= hak,  pall) = (R éo.

This shows that p, is of maximal rank at z;, and that p, is of maximal rank
on W, — X,. This proves (3). [

Define the e-tubular neighborhood of ¥, and S, as follows. By the defini-
tion, f71X is a subset of A :=PN(C) x (A(1),t) x (A(1),ta). Let G4 be a
Riemannian metric of A defined by

(1.26) Ga = gpv + |dt)? + |dta]?

where gpv is the Fubini-Study metric of PV (C). Let d(-,-) be the distance
of A induced by G 4. Then, define a function of f;1X x f71X by

(1.27) do(,y) = da(i(z),i(y))

where 7 : 7!

o X — A is the natural inclusion. By the definition, it is clear

that for any z, y € 7 1(¢),

(1.28) da(,y) = dpn (i (2), 41 (y))

where j; : 71 (t) < PN (C) is the natural inclusion.
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Regarding 7, (0) = Xo, define the e-neighborhood of D, by
(1.29) Do = {z € f;'%;dy(x,Dy) < €},
and the e-neighborhood of X, S, and S by
(1.30) Yae =5 (Do), Sae:=Gn (Bae), Se:=USqe.

As Yo — Do = {y € Yo;dpn(y.Dy) > €} is compact, so are W, — Eq,
Zy — Sa,c and Z — S, by Proposition 1.1.

Let GG be the same Riemannian metric of X as in introduction. Let G,
(resp. Hy) be a Riemannian metric of ;!X (resp. X4 ), defined by

(1.31) Go =G +|dtal?| ;15  Ha = 15Ga.

By the definition,

(132) Galwgl(t) = gtmo, Ha'pgl(t) = ngtma, gtma = GIXtma .
Finally define a metric of W, by

(1.33) 9w, = Halw,,

and metrics of Z, and Z by

(]"34) gZa = l’*g[)'ch = (ga)*gWa = (l’a © ga)*QO, ngZa = gZa'
The goal of this section is to prove the following theorem.

THEOREM 1.1.  For every small 0 < € < 1, there ezists 0 < y(€) < €
and a family of into-diffeomorphisms for |t| < vy(e):

fe,t:Z_Se;’Xt

by which the following conditions are satisfied.
(1) On Z — S,

1
59z < firgr < 2gz.

(2) On every compact subset K € Z — Sk,

E_{% fe*,tgt =9z
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in the C*°-topology on K.
(3) If vol(-) stands for the volume relative to the induced metric from G and
gz, then

vol(X; — fe(Z — Se)) < 3vol(Se).
For the proof, we need some lemmas and propositions.

LEMMA 1.1.  For every small 0 < € < 1, there exist an open neigh-
borhood Uy (€) of Wy —Ea e in Xq, and vector fields ug), o8 on Ua(€) such

that
(pa)erly) = o (pa)ld) = 2

oz’ Oy
where to, = x + v —1y.

Proof. Clear by Proposition 1.1 and the compactness of W, — ¥ ¢ in
X O

LEMMA 1.2.  For every small 0 < € < 1, there exist 0 < v1(€) < €
and an into-diffeomorphism

@Ef) : (Wa - Ea,e) X A(71 (6)) - Ua(e)

such that
(1) For any t € A(v1(e)),

D) (Wy, — Sae, t) C p32(2).

(2) @Sf)(-,O) is the identity map on Wy — Xq..

Proof. Integrating the vector fields in Lemma 1.1, desired into-dif-
feomorphism is obtained. 0

PROPOSITION 1.2.  For every small0 < € < 1, there exist 0 < y3(€) <
€ and a family of into-diffeomorphisms for |t| < va(e)

B i Wy = Se — Xima
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such that
(1) ¢((;,)0 is the identity map of Wo — Eqe.
(2) On Wy — X,

1
39Wa < (¢S,)t)*gtma < 29w,

(3) On Wy — Zq.,
lim (657)" gime: = 9w,
in the C*°-topology on Wy — Xg .
Proof. For |t| < v1(€), set
(1.35) 3 (@) = 1o 0 B (x, 1)

where 71 (€) and ®'? are the same ones as in Lemma 1.2. Then, ¢>at is a
map from W, — S t0 tq 0 (pr1(t)) = 7,1 (t) = Xima. By the definition,

ta : Pot(t) = mq(t) is an isomorphism for ¢ # 0. By Lemma 1.2, @Ef)(‘,t) :
Wa — Za,c — 75 (t) is an into-diffeomorphism for || < 1 (e). Namely, ¢f;)t
is an into-diffeomorphism from W, — ¥, ¢ to Xima.
By (1.31) and (1.32), we get
(1.36) (65 gima = (ta 0 B1)* Gl o1y
= (@51 Ho.

Since @Ef ) depends smoothly on t, it follows that
(1.37) lim (@4],)" Ho = (@]0)" Ho

= Ha|p;1(0) = W, -
(3) follows from (1.37). Since W, — X4 is compact, there exists y2(€) <
~1(€) such that (2) holds for [t| < ya(e). 0

Proof of Theorem 1.1.  For every ma, let tmLa be a fixed branch of the
inverse function of ™ on A(1). Let gb ) be the same map as in Proposi-
tion 1.2. Since Z — Se = Uy (Zy — Sa,e), to define fes : Z — Se — Xy, it is
sufficient to define it on each Z, — S, . Define f.; by

(1'38) fetIZo( Sa,e ™ ¢ Sl ©0a: Za— Sa,e — Xi.

mo
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Since g : Z — Se = Uy(Wa — Sa,e) is an isomorphism by Proposition 1.1,
fet is an into-diffeomorphism for every small ¢ with |t| < 72(¢). Then
we get (1) and (2) by Proposition 1.2, because lim;_,gt™= = 0 although
tma ¢ CO(A(L)).

By Proposition 1.2, for every small 0 < € < 1, there exists y3(€) such
that

(1.39) [vol(fet(Z — Se)) — vol(Z — S¢)| < vol(Se)

for every t with |t| < y3(€). Since vol(Z~S,) = vol(Z)—vol(S.) = vol(Xp)—
vol(Se), it follows from (1.39)

(1.40) vol(fet(Z — Se)) > vol(Xg) — 2vol(S)

for ¢ with |t| < v3(¢). Let wg be the Kahler form of G. Then,

(1.41) vol(X¢) ::/X W

t
By [F, Proposition 2.3], as vol(X}) is a continious function in ¢, for every
small 0 < € < 1, there exists vy4(¢€) such that

(1.42) | vol(X¢) — vol(Xo)| < vol(Se)
for every t with |t]| < ~4(e). By (1.40) and (1.42), for ¢t with |t| <
min{~3(e), va(€)},
vol(X¢ — fer(Z — Se)) = vol(Xy) — vol(fe1(Z — Se))
(1.43) < vol(X3) — vol(Xp) + 2 vol(S)
< 3vol(S,).

Set y(€) := min{~y2(€),v3(€),va(e)}. Then, Theorem 1.1 is proved for this
(€). i
§2. Sobolev inequality and upper bound of the heat kernel

In this section, we recall some basic results on the Sobolev inequality
and the heat kernel. For the reference, see [D].

Let (M,g) be a compact Riemannian manifold of dimension m with
possibly smooth boundary. We denote by A the Laplacian and by k(¢, z,y)
the heat kernel. When M has boundary, consider the Dirichlet Laplacian
and the Dirichlet heat kernel. As an application of the logarithmic Sobolev
inequality, the following result is well known.
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THEOREM 2.1. ([C-K-S] and [D, Theorem 2.4.2]) For u > 2, the fol-
lowing two inequalities are equivalent:

(1) For0 <t <1 and (z,y) € M x M,

wiE

k(t,z,y) < Cit™ 2.

(2) For every f € C*(M),
£ 2 < Co(lldf [z + (1 F[l2)-

Here Cy and Cs depend continuously on each other.

Let {0 = Ao < A1 < A2---} be the eigenvalue of the Laplacian and ¢;
be the normalized eigenfunction such that

(2.1) Ady = Nidi,  (di, &5) = 645
By [C-L, Corollary 1], the following estimate holds.

PROPOSITION 2.1.  Under the two inequalities of Theorem 2.1,

L3
2

where C3 depends on Cy and Cs.

In the sequel of this article (in §5), we shall use Theorem 2.1 and
Proposition 2.1 for 4 = m when m > 2 and p = 4 when m = 2.

§3. The space of functions on algebraic varieties

Let (X, gx) be an irreducible projective algebraic variety of dimension
n in PV (C) with the Bergmann metric, i.e. the restriction of the standard
Fubini-Study metric of PV (C). We denote by X x the singular set of X.

Let C'/2(X) (resp. Cé/ 2(X )) be the space of all Lipschitz functions
(resp; with compact support on X — Xx) on X. Define Wh2(X) and
Wy*(X) by

(3.1) WLA(X) = {f € CY2(X); f € L3%(X),df € L2(X)}

(3.2) W (X) = Cy/*(X)
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where the completion is taken with respect to the norm || - || L2

I£llz2 = [1Fll2 + lldfl2-

In [L-T], it is proved that W2(X) = W;"*(X). Since the proof seems to
be rough, we shall give a detailed proof in this section.
Let us fix notations. For any closed subset S C PV (C), set

(33) rs(z) = d(z,S) = inf d(z,y),

(3.4) S, :={z € PNV(C);rs(x) < €}
where d(-,-) is the distance of PV (C).

THEOREM 3.1. Let Y be a subvariety of pure dimension d (< n)
in X. Then, for the pair (X,Y), there exist functions v(-), 6(-) (= 0)
€ C%([0,1/16]) and ne € CY(X = Y)NWL2(X) for any € € (0,1/16] which
satisfy the following conditions:
(1)

0<ne <L, [ne= 1o+ ldnllz <7(e), lim~(e) =o0.

(2)

X —Yj() Csuppne C X =Y, supp(l —ne) C Yags(),
€ < é(e), lin%cf(e) =0.

THEOREM 3.2.  There exzist functions 6(-)(> 0) € C°([0,1/16]) and
fle € CY(X —Ex)NWL2(X) for any € € (0,1/16] which satisfy the following
conditions:

(1)
supp7ic C X —Tg, 0<ii <1+

(2)

lim |7 = 12 + [[d7cl|z = 0.

(3) If we set S(e) := {z € X;7(x) = 0}, then dS(e) consists of finitely
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many smooth manifolds.

(4)
E% C S(G) Cc 25(5), 221(1)5(6) =0.

In view of [L-T, Theorem 4.1}, we get the following corollary.

COROLLARY 3.1. For any projective algebraic variety of pure dimen-
sion, W¥2(X) = WoX(X). Equivalently, dpax = dmin on L2(X).

For the proof, we prepare several lemmas and propositions.
We denote by Yies := Y — Yy the regular part of Y. For y € Y, set

(3.5) Ny := exp,(T,Y)* c PY(C)

where the exponential map is considered in PV (C) relative to the Fubini-
Study metric. Then N, is isometric to PV~4(C) and intersect Y transver-
sally at y. Therefore there is a neighborhood U of y such that Y NN, NU =

{y}. Let
(3.6) NyNX =Ug(NyNX)qo
be the irreducible decomposition. Set

(3.7) NyNnX)y:= |J (VynX)g
Biye(NyNX)g

At first let us study the dimension of (N, N X),. Since each (Ny N X)q is
a pure dimensional space, it follows that
dim(Ny N X)q = dimy (Ny N X)a,

3.8
(3:8) dim(Ny N X)y = max, dimy (N, N X)q

where dim, W stands for the analytic dimension of W at y for algebraic
variety W. See [G-R, Chap. 5] for the definition of dimension.

PROPOSITION 3.1. There exists a nonempty Zariski open subset Uy
of Y such that if y € Uy,

dimy NyNX =n—d.



DEGENERATION OF ALGEBRAIC MANIFOLDS 97
Proof. See Appendix Proposition A.1.

Since dim(Ny N X ), > n — d by the intersection inequality ([G-R,
p. 102]), we get the following proposition.

ProrosiTiON 3.1'. Ify € Uy,
dim(Ny N X)y = n — d.

Next let us study the volume of (N, N X),. For an algebraic variety
W < PV(C), its volume with respect to the Fubini-Study metric is given by

(3.9) vol(W) = /W(gw)llw,

where w is the Kahler form of the ambient projective space and [ = dim W.
V=1

Since *5—w represents the same current as H, a hyperplane in the ambient
projective space (cf. [G-H]), we have

(3.10) vol(W) = (7) deg(W), deg(W)=#W NH;N---NH),
where Hy,- -, H; are generic hyperplanes.

PROPOSITION 3.2. Let Hy,---, H, be arbitrary (< n)-th hyperplanes
in PN (C). Let

XnHn-nH =Y X" (dimX"™ =n-i)
=0

be the decomposition into the pure dimensional components. Then,
deg(X) > deg(X{"").
Proof. See Appendix Proposition A.2.

Since Ny is a linear subspace of dimension N — d in the ambient pro-
jective space, there are hyperplanes Hy, - -, Hy such that

(3.11) Ny=H;Nn---NHg.

By Proposition 3.2, we get the following proposition.
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ProposITION 3.2". Ify € Uy,
deg(Ny N X)y < deg(X).

Let us study the tubular neighborhood of Y in PV(C). If Y is smooth,
it is diffeomorphic to the normal bundle of Y. Define the normal projective
bundle Ny by

(3.12) Ny = {(y,w) € Yieg x PV(C);w € N }.
We denote by i : Ny < Y;eq X PV (C) the inclusion. Define projections by
(3.13) m:=p10%: Ny — Y, p::p2oi:Ny—>PN((C)

where p; stands for the projection to the i-th factor. It is clear that « :
Ny — Y;q is a fiber bundle with fiber PY~¢(C). Define a subbundle of the
tangent bundle of Ny by

(3.14) TN :=Ker(my : TNy — TY:eg).

Then for (y, w) € Ny, it follows that TN,, = T, Ny. By this identification,
define a Riemannian metric gy of TN by

(3.15) gv = J g,
yelfreg

where gy, := gpn|n, is a Riemannian metric of N,. Define a ball bundle
Ny (€) by

(3.16) Ny (€) := {(y,w) € Ny;dpn(y,w) < €}.

LEMMA 3.1. Let S be a subvariety of Y such that S D Sing(Y) and
dimS < dimY. Then, for the pair (Y, S), there exists an increasing func-
tion a(e) € CO([0, 1]) which satisfies the following conditions:

0
li_I)I(l) a(e) =0, a(e) > ve.

(2) p: 77 H(Y = 8,9) N Ny () — PV (C) is an into-diffeomorphism such that

1
§p*gpzv < gy + 9N < 2p"gpn

on 1Y — Sg(¢)) N Ny (€) where gy := gpnly.
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Proof. By the definition of p, it is the identity map restricted to Yieg.
Choose a point y € Yieg. By the definition of Ny, we get the following
decomposition of the tangent space of PV(C) and Ny at y:

(3.17) T,PN(C) = TyNy = T,Y ® T,N,, T,Y L T,N,.

Choose tangent vectors v € T,Y and v € T,N, arbitrarily. Since
ply = id as above, we know

(3.18) (Px)yu = u.

Choose a curve 7(t) := (y,exp,(tv)) in Ny. By the definition,

(319)  (pa)yr = cleop((1) = Slmoexp,(t) =
This shows (p«)y = 1. Since y is an arbitrary point of Ve, we get p, = 1
along Yieg. Set
b(e) :=sup{b € (0,1];

p:7 (Y = S.) N Ny (b) — PV(C) is an embedding}.
By (3.18) and (3.19), we get on Yieg

(3.20)

(3.21) P'gpy = T'gy + gn.
In the same way as the definition of b(e), set

c(e) := sup{c € (0,1];
(3.22)

Ep*gpw < 7*gy + gy < 2p*gpy on T 1Y — S.) N Ny (c)}.

By the definition, b(e) and c(€) are increasing functions and satisfy b(e),
c(e) < 1. Since Y — S, is compact, b(e), c(e) > 0.
Define B(e) by

€ 62
(3.23) B(e) == /0 min{b(t), c(t) }tdt < 5 min{b(e), c(e)}.

Then p : 77 }Y — S¢) N Ny(B(e)) — PM(C) is an into-diffeomorphism
and the inequality of Lemma 3.1 (2) holds on 7~ 1(Y — S,) N Ny (B(e)).
Furthermore, B(e€) is a continuous increasing function satisfying

(3.24) lim B(e) = 0.

e—0
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Finally, define a(e) by the inverse function of B(e):

(3.25) a(e) := B~ He)(> Ve).

By (3.23) and (3.24), a(e) is a continuous increasing function satisfying
Lemma 3.1 (1).
By (3.22) and (3.23), the inequality of Lemma 3.1 (2) is satisfied by

a(e). 0
LEMMA 3.2. Let B(r) := {z = (z1,---,2n5) € CV:||2|? :== =N, |z?
< r} be the ball of radius v in CN. Then the following inequality holds:
99||z])*

~09log(~log 121) 2 j o [

for z € B(1/2) where 98¢ is the complex Hessian:

Z a dz@dz]

Proof. By computations, we get

N
(3.26) —8dlog(—log||z||?) = Z G5(2)dzdz;,
i,j=1
(Sij 2izj Zizj

(3.27) Gy (2) =

=2 log 217~ T=lA(~ log [ * =l4(~ log [[=I%)2"

which implies

1
(5.28 o= (%) 2 T ioaTae

0

LEMMA 3.3. Let V C PY(C) be a projective algebraic variety of pure
dimension d. Let U be the standard affine open subset of PN (C); i.e., U =
CN. Let (21,---,2N) be the coordinate of U. Then the following inequality
holds for any € € (0,1):

/ dvy < C(N)e? deg(V)
B(e)NV

where C(N) is a constant which depends only on N, and dvy is the volume
form of V' with respect to the Bergmann metric of V.
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Proof. By the definition,
(3.29) dvy = (W)lv

where w is the Kéhler form of PV(C). We denote by 2 the Kahler form of
CY with respect to the Euclidean metric. On B(1),

1
Let T, be a linear transform of CV defined by
(3.31) Te(z) := ez.

We denote by T, the extension of T, to PV (C). Since

(3.32) / 0 = / ) 04,
B(e)NV B(YNT .1 (V)

it follows from (3.9), (3.10) and (3.30)
(3.33) / dvy < (47)%€2 deg(T. (V).
B(e)NV
Since T,-1 € Aut(PY(C)), we find
(3.34) deg(V) = deg(Te-1(V)),
which combined with (3.33) yields the assertion. 0

LEMMA 3.4. Let C be an algebraic curve in PY(C). Let U be the

affine open set and z = (z1,-- -, zn) be the coordinate of U as in the previous
lemma. Set
izl dr
= dy (0, 2) = / o
p(z) ]PN( Z) 0 1 + 7,2

Then, for any € € (0,1/16), the following inequality holds:

/ dve < Co(N) deg(C)
C

N{e<p<v/a) p?(—loge)? — —loge’
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Proof. 1In this proof, we consider 3¢ as a 2-form for any function ¢.
By the definition,

(3.35) %HZII < p(z) <|lzll - for p < Ve

Therefore by Lemma, 3.2,

/ dvc
cn{e<p<ye} PP(—loge)?
— TRID)
(3.36) <2 ] o
cnfesr<avey 2 [12]2(—log||2]]?)
<2 Y98 10g(~ log []1)
Cn{e<r<2+/¢} 2
where r(z) := ||z||. Set
(3.37) d®:= —v/=1(0 - 9), dd°=2/-180.
By computation,
J=1 -
I(e) == / Y 98 1log(— log ||2]|?)
CN{e<r<2+/e} 2

1
= - —dd®log(— log || z||?
1 Jenqeersaye) g(—log|z[|)

- - ~log(—log J2I?) ~ 7 [ ~log(~log]|=|1)
Cn{r=2/€} {r=c

1 A &zl

1 /Cn{r:wz} (= og T2l ~ 4 Jentr—a TIP(- log [2IP)

1 &z &

1
4 Jengr=ayey (22 (—log(2v/6)?) 4 /Cm{rze} €2(~ log €2)

— (200~ log(2v/))"! Y=Lo5)2

/cms(zf) 2
gy [ oo

Applying Lemma 3.3 to the integrands of the last equahty of (3.38), we get

_gaélog(— log |12/]2)

(3.38) =

(3‘39) /Cﬁ{egrSQ\/E}
1 n 1
—logde —loge?

< C(N) deg(C)( )-
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When € € (0,1/16), it is easy to verify the inequality:

1 1 1
: < (log =)
(3.40) —-10g4€+—10g€2 "(Oge)
By (3.36), (3.38), (3.39) and (3.40), we get the desired inequality. U

Proof of Theorem 3.1. We prove the theorem by induction. When
dimY < dim X — 2, define a function py, by

0 (ry(z) <e)
(3.41) pye(z) =3 e ry(z)—e) (e <ry(x) < 2€)
1 (ry(z) > 2e¢),

where ry is the same function as (3.3). When dimY = dim X — 1, define
Py,e by

0 (ry(z) <e)
(3.42) pre@) =3 2= VDL (e<ry(a) < VE)
1 (ry(2) > V/e).

It is clear by the definition that 0 < py, < 1.

First let us prove the theorem when dimX > 1 and dimY = 0. Set
v(e) = Ce¢, 6(€) = 2¢ and n(x) = pye(zr). By the definition (3.41), the
condition (2) of the theorem is satisfied. Since Y is a discrete set of X, we
may assume Y = {p}. By computation,

1=l + ldnl < vol(X Yo+ [ Jary o
e<ry <2e
(3.43) < C(N) deg(X)e®™ + sup |dry|?e 2 vol (X N Ya)
X

< C(N) deg(X)e™ D (1 + sup |dry|?)
X
where Lemma 3.3 is used. By the definition of ry, we find

(3.44) Iry (z) = ry (y)| < dpn (2, 9) < dx(z,y)
for any z,y € X which implies

(3.45) sup |dry| < V2n.
X
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Commbining (3.43) and (3.44), we get
(3.46) 11 = nell3 + ldnell3 < C(N) deg(X)eX" ),

which proves the theorem when dimY = 0.

Next assume the theorem for any subvariety of pure dimension k — 1
and prove it for an arbitrary subvariety Y of pure dimension k. Let Uy be
the Zariski open subset of Y considered in Proposition 3.1. Set

(3.47) Z = Zy = (Y — Uy) USing(Y).

Then Z is a subvariety of Y whose dimension is strictly smaller than k.
Let Z = U;Z; be the irreducible decomposition of Z. By the induc-

tion hypothesis, there exists a function n; . which satisfies the conditions of
Theorem 3.1 for (X, Z;). Set

(3.48) €e(x) = Hm,e(a:).
Let v;(€) and 6;(¢) be the functions of Thorem 3.1 for (X, Z;). Set
(3.49) vz(€) := #{i} max vi(€), bz(e):= max bi(€)-

Then it is easily verified that vz (e), 6z(¢) and & satisfy the conditions of
Theorem 3.1 for the pair (X, Z). Therefore {&} is a family of functions
which satisfies the conditions of Theorem 3.1 for (X, Z).

Since Z O Sing(Y’), we can apply Lemma 3.1 to the pair (Y, Z). Let
a(e) be the function considered in the lemma. Define 7 by

(3.50) Ne(x) := pyie(@) Eaq(2e) (2)-

In the sequel, we shall verify the conditions of Theorem 3.1 for {7}.
By the definition, it is clear

(3.51) 0<n <1.
Next we verify (2). Since

SUpp 7)e = SUpp pe N Supp §24(2¢), SUPPpe = X — Y,

(3.52) U(X — Zi,éi(e)) C suppé C U(X - Zi,f)’

1
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we have
(353) (X —-Yo)NnuU;(X — Zi75i(2a(26))) Csuppne C (X —Y)NU(X = Z; ().
As Z is a subset of Y and §7(2a(2¢)) > max;{8;(2a(2€)), €}, it is clear
(3.54) X — Y5, (2a(2¢)) C suppne C X — Y.

Since

supp(1l — n¢) C supp(l — pe) U supp(1l — £24(2¢))
3.55
( ) C Supp(1 - Pe) U Usupp(l - ni,2a(25))a

when £k =dimY <n —1, we get
(3.56) supp(1 — ne) C Yae U|J Z;2002¢) C Yas,(2a(20))

and when k =dimY =n — 1,

(3.57) supp(l = 1e) C Y e U Zs, (2a(2e)) -
Set
(3.58) b(€) := max{+\/e,67(2a(2))} (> e).

By (3.54), (3.57) and (3.58), Theorem 3.1 (2) is satisfied by 7. and 8(e).
Next verify the latter part of (1).

Casel (k=dimY <n—1)
From (3.50) and the induction hypothesis, it follows that

(3.59) 1= nellz2 < 1L = peflz + 1 = E2a2e)ll2

< \/m + vz(2a(2¢))

and

lldnellz = [[€2a(2e)dpe + ped€aaae)ll2
(3.60) < [[€2a26)@Pell2 + |d€2a(26)II2
< [[€2a(2¢)dpell2 + vz (2a(2€)).
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It follows from (3.41),

RV A | dry [Pdux
Xﬂ(y2e—yv€)ﬂsupp£2a(2e)
< 2ne 2 vol((Yae — Yo) N (X — Zag(2)))-

When z € (Yac) N (X — Zyqa(2¢)), let y be a point of ¥ such that ry(z) =
dpv (z,y). By the trigonometrical inequality and (3.25), we get

dpn (y, Z) > dpn (2, Z) — dpn (2, Y)
(3.62) > 2a(2€) — 2¢
> 0(26),

which implies y € Y — Z,(5.) and & € Ny(2¢). Therefore we have
(363) (Y2€ - Y:E) n (X - Z2a(25)) C p(ﬂ-_l(y - Za(Ze)) N Ny(ze))

where Ny (e) is the same as in (3.16) and p and 7 are the same as in (3.13).
From (3.61), (3.63), Lemma 3.1 and Fubini’s theorem, it follows that

(3'64) “£2a(26)dpe“% < 2,”6_.2 VOI(X N p(ﬂ"l(y - Za(2€)) N Ny(26)))

< 4™"2ne? /Y Z dvy /X dvx N, (2¢)-
—Za(2¢) NNy (2€)

Since y € Uy, (X N Ny)y is a pure dimensional space and thus Lemma 3.3
is applicable. Set W, := (X N Ny), and consider y as the origin of U in
Lemma 3.3. Applying Lemma 3.3 and Proposition 3.2, we get

d'U c :/ dU " —

/XﬂNy(Ze) XNy (26) W, n{p<4e} Pt

(3.65) < C(n — k) deg(W,)(8¢)2"H)
< C(N) deg(X e,

which combined with (3.60), (3.64) yields
(3.66) lldnel|? < C(N) deg(X)eX™ =Y vol(Y) + vz (2a(2¢)).

By (3.60) and (3.66), Theorem 3.1 (1) is proved for 7.
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Set
(3.67) F(e) := C(N) deg(X)e2™ %=1 4 7, (2a(2¢)).
From (3.49), (3.58) and the induction hypothesis, it follows that
(3.68) lim 3(0) =0,
which combined with (3.66) yields, the latter part of (1).

Case 2 (k=dimY =n—1)
By (3.59) and (3.60), it is sufficient to show

(369) 51_1_}'(1) “£2a(26)dp6”2 =0.

It follows from (3.42),

(3.70)  [|€2a(20dpcl3 = 4(log 6_1)*2/ ryldry |dvx
Xn(Y\/E_YE)nsupp€2a(Ze)
< 8n(log 6—1)_2/ ry2dux.

XN(Y, e=Ye)Nsupp £2a(2¢)
When z € (Y ) N (X — Zzq(2¢)); let y be a point of Y such that ry(z) =
dpn (z,y). By the trigonometrical inequality and (3.25), we get
dpn(y, Z) > dpn (z, Z) — dpn (2, y)
(3.71) > 2a(2¢) — Ve
> ale),
which implies
(372) Xﬁ(Y\/E__}/G)msupp &3(1(6) C p(ﬂ.‘l(Y_Za(e))m{NY(\/g) _NY(E)})
From (3.70), (3.72), Lemma 3.1 and Fubini’s theorem, it follows that

(3.73)
ll&’;a(e)dpeug
< 8n(loge )2 ry2dox
XNp(r= (Y =Zy(e)){Ny (VE)—Ny (e)})
< 4"8n(log e~1)"2/ T;zﬂ*dvydenNy
P~ H X)W (Y = Zg () )N(Ny (vV€)~Ny (e))

—2
Ty dvxnn,-

= 4"8n(log e~1)'2/ dvy (y) /
Y=Zq) (XNNy)yN(Ny(v/€)=Ny(e))
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Set Cy := (X N Ny)y. By (3.73), Lemma 3.4 and Proposition 3.2,

(3.74)

|I§2a(2€)dp€”g < 4n8n/ de('y) (log 6_1)_2p;2d’l)cy
Y—Zo() Cyn{e<py<Ve}

< / C(N)deg(Cy)(log e vy (y)
~Za(e)

< C(N) deg(X) vol(Y)(loge™) %,

which yields (3.69). Set

(3.75) 4(€) := C(N) deg(X) vol(Y)(loge 1) ™! + vz (2a(2¢)).
Then
(3.76) 11 = nell3 + ldnell < 7(e),  lim 5(e) =0,

which proves the latter part of (1). As in the proof of Case 2, we can prove
the theorem when n = 1 and leave it to the reader. I

Proof of Theorem 3.2. Let Xx = Uy%,, be the irreducible decomposi-
tion. By Theorem 3.1, we may assume that for the pair (X, ¥, ), there exists
a family of cut-off functions {7q,c}ec(0,1/16) Which satisfies the conditions of
Theorem 3.1. Fix such a family and set

(3.77) Ne := Hna,f.

Then we find suppne C X — X by Theorem 3.1 (3). Since the boundaries
of the zero set of each 7. are not smooth by the construction, we must
regularize the cut-off functions. For simplicity, set ¥ = X x.

Let ¢(z) > 0 be the injectivity radius at z € X — X. Put

(3.78) i(e) == A—llmin{zei}?fzéi(x), €}.

Since X — X is compact, i(e) > 0 for € > 0. Let {U;}~; be an open
covering of X — ¥, chosen in such a way that J;U; C X — X/ and for
each U, there is a metric ball B;(x;) of radius i(€) centered at z; such
that U; = By (x;) and z; € X — ¥c. By the Gauss lemma, identify U;
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with the ball of radius i(€) in the Eucilidean space of dimension 2n via the
exponential map

(3.79) ¢; : B(r) — U; = By(;)

for all < 2i(e). Since i(€) < i(x;), there is a constant C; > 1 such that, on

B(i(e)),
(3.80) Cilge < ¢igx < Cigp.

where gg is the standard Euclidean metric. Let {h;} be a partition of unity
subject to the covering {U;} of X —X,. Since ne = Y, hine, first consider the
regularization of h;ne. Set m; := ¢} (hine). Since n € CY(X —X)NWH2(X),
it follows that n; . € CQ(B(i(e)) N WH2(B(i(e)).

Following [G-H, Chap. 3, §1], let x € C§°(R?") be a nonnegative func-
tion supported in a neighborfood of the origin with

(3.81) /Rzn x(z)dv = 1.
Put
(3.82) xs(@) = 677"x(5).

If supp x = K, then supp xs = 6 K and

(3.83) /R xs(@)dv = 1.

For any function f € L (R?"), set

@31) )= [, xsle - dy= [ 1@ - vxs) dy.

By [G-H, pp. 374] and [Na, Lemma 14.1], if f € CJ(B(r)) NW12(R?"), then
{fs} satisfies the following conditions:
(1) fs is a smooth function and supp fs C B(r + 8).

(2)

(3.85) lim sup |fs — f| = 0.
6—0p(2r)
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3)

(3.86) lim |[f5 — fll2 + l|dfs — dff|2 = ©.
Set

(3.87) Tes = Y (07 (mie)s-

From (3.79), Theorem 3.1 (1) and (1) above, if 6 < i(e), it follows that
Nes € C5°(X — Xe/a). Since

(3.88) sup [nes —mel <Y sup | (7:.c)s — Miel,

X =2/ i
(3.89)  lInes—nella+lldnes—dnella < D I (mie)s —isella+1d(mie)s — dnscll2,
7

using (3.79), (3.85) and (3.86), there exists j(€) such that 0 < j(e) < i(e)
and that for any 6 < j(e),

(3.90) SUp |Mes — Me| <€,
X—Ze/z
(3.91) 76,6 — Mell2 + ldne,s — dnellz < €.

By the definition, 7 ;) is a smooth function which takes zero and is not
identically equal to zero. By Sard’s theorem, there exists a regular value
A(e) of n j(e) such that 0 < A(e) < e. Finally, set

5 — Ne,j(e (CL‘) - A(€) ( €,j(e (.13) 2 A(E))
(392)  Ale)= { 0" (e (2) < A6).

Let us verify that 7. satisfies the conditions of Theorem 3.2.
It is clear that 7. > 0, and that

(3.93) suppfle C SUpp e j() C X — X,

as j(e) < i(e) and suppnes C X — X/ for 6 < i(e). From (3.90) and
Theorem 3.1 (1), it follows that

(394) Te < Ne,j(€) <1+eg,
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which proves Theorem 3.2 (1). By (3.91) and (3.92),

(3.95) 17e — Lll2 + ld7ell2 < lIme,5(e) = Lll2 + lldne i) ll2 + €4/ vol (X)
< e = 112 + lldnell2 + €(1 + 4/vol(X)).
By (3.77) and Theorem 3.1 (1), we get

(3.96) e = 12 + lldnell2 < Y 1Mae = Lz + ldnaellz < Y vale)
« e

where 7,(€) satisfies Theorem 3.1 (1) for the pair (X, ¥,), which combined
with (3.95) yields Theorem 3.2 (2). By (3.92), it is clear that
(397) SO ={r € Xin @) <A@}, 05 =1L (A().
As A(e) is a regular value of 7 j(), S(€) is a smooth 2n — 1-dimensional
manifold and consists of finitely many connected components by the com-
pactness of X. This proves (3).

When z € X¢, then 7 j(z) = 0 and therefore € S(e) by (3.92),
which implies ¥¢ C S(e). When z € S(e), it follows that 7 ;) (z) <
A(e€) < e which combined with (3.90) yields 7.(z) < 2¢ < 1. This implies

z € supp(l — 7). By (3.77), one of « satisfies 74 (z) < 1. Therefore we
have

(3'98) S(G) - Usupp(l - 77(1,6) C U 2cx,26o((e) - 26(6)
@ a

where §(€) := 2max,{,(€)} and é,(€) satisfies Theorem 3.1 (2) for the pair
(X, Z0).
Since lim,_,g 6(¢) = 0, we get Theorem 3.2 (4) by (3.97). 0

For our later purpose (cf. §6), we need the following.

LEMMA 3.5. Let (X,g) be an irreducible algebraic variety in PN (C)
with the Bergmann metric. Let m: X' — X — X x be a m-sheeted covering

of X — ¥ x. Then
Wo (X!, m*g) = WX/, m*g)
and Theorem 3.2 holds for (X', 7*g).

Proof. By [L-TJ, it is sufficient to show Theorem 3.2 for (X', 7*g).
Considering the pull back of the family of cut-off functions of Theorem 3.2
for (X,g), it satisfies the conditions of Theorem 3.2, since 7 is a finite
covering. 0
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84. A comparison theorem for the heat kernel of projective
varieties

In this section, we recall the results of [L-T] concerning the upper bound
of the heat kernel of projective algebraic varieties with the Bergmann met-
ric.

Let M be a projective algebraic variety of pure dimension n in the
projective space PV(C). Let g be the Bergmann metric of M; i.e., the
restriction of the Fubini-Study metric of PV(C). Let S be the singular
set of M. Consider the Dirichlet Laplacian of M — S; i.e., the Friedrichs
extension of the Laplacian on C§°(M — S) which is defined by:

(4.1) A= 6ma.xdmin-

Since dpax = dmin on the space of functions (cf. [L-T, Theorem 4.1] and
Corollary 3.1), we can ignore the Dirichlet boundary condition. As the semi-
group generated by the Dirichlet Laplacian has a smooth kernel function
denoted by Kp(t,z,y). In particular, we denote by Kpn(t,z,y) the heat
kernel of complex projective space of dimension n with the Fubini-Study
metric.

Let r(z,y) be the distance of two points z and y in P"(C) relative to
the Fubini-Study metric. By the symmetry on P"(C),

(4.2) Kpn(t,2,y) = Kpn (t,7(2,y))

where Kpn(t,s) is a function of ¢t and s. Now we can state the result of
Li-Tian.

THEOREM 4.1. ([L-T]) Let (M,g) be a projective algebraic variety of
pure dimension n with the Bergmann metric. Then the following compari-
son theorem of the heat kernels holds for all (t,z,y) € [0,00) X (M — S) x
(M - 8):

KM(t,.’E,y) < KIP"(ta TpN (as,y))

where rpn (x,y) is the distance from x to y in PN (C).

Combining Theorem 4.1 and Theorem 2.1, we have the following corollary.
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COROLLARY 4.1. Let (M,g) be the same as in Theorem 4.1. Then

there is a constant C(n) which depends only on n such that for every f €
C(())O(M - S))

1l 2o < Cr)(lldfllz + 11 fll2)  (>1),
Iflla <C@)(lldfllz + [ fllz)  (n=1).

COROLLARY 4.2. Let m: X — A(1) be a one parameter degenerating
family of projective algebraic manifolds of dimension n in a fixed projective
space PV(C) as in the introduction. Let G be an arbitrary Riemannian
metric of X. Set X; := n71(t) and g; := G|x, fort € A. Then there exists
a constant C > 0 independent of t € A(1/2) — {0} such that for every
f € C™(Xy), the following inequality holds:

s < OO lag + 1fls0) (0> 1),
[fllae < Cldfllze + [1fll2e)  (n=1)
where || - ||+ is the LP-norm with respect to gy.
Proof. Since X|p(1/2) € PV (C) x A(1), there is a constant Cp such that
(4.3) o (gen ey + 1dt?) < g < Colgpw ey + ldt]?)

on 7' (A(1/2)) where gy (¢ is the Fubini-Study metric of PY(C). which
implies

(4.4) Co "gon )| xe < 9t < Cogen )|,
By Corollary 4.1 and (4.4), we obtain the desired estimates. 0

85. Continuity of the spectrum in the parameter

Let (M, g) be a Riemannian manifold of dimension n with finite vol-
ume, and let {(M;, g;) }i>1 be a sequence of compact Riemannian manifolds
of dimension n. In this section, we shall show that the spectrum of the
Laplacian of (M;, g;), converges to that of the Dirichlet Laplacian of (M, g)
as ¢ — oo under certain conditions, which is an abstract version of our Main
Theorem. Introduce the following condition for (M, g).
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CONDITION. (C1) (1) There exists a sequence of cut-off functions
{pi}320 C CY(M) N WL2(M) which satisfies the following conditions:

zlggo lpi — 1|2 + [ldpill2 =0, 0<p; <1

(2) S; :={z € M;pi(x) =0} has finitely many smooth boundaries.

(3)
lim vol(S;) = 0.

Set y(¢) := ||pi — 1ll2 + lldpill2. Then (i) — 0 as i — oo.
Remark 5.1.  From the argument of [L-T, Theorem 4.1], under (C1),

it follows that W12(M) = Wol’2(M ) with respect to g, or equivalently
Clmax = dmin for (Mv g)

Introduce the following condition for the family {(M;, g:)}:

CONDITION. (C2) There exists a sequence of open subsets {S;} of
M and a sequence of into-diffeomorphisms { fi}i>1 fi : M — S; — M; which
satisfies the following conditions:
(1) For everyi > 1,
1
39 < figi<2g

on M — Si.
(2) If we trivially extend f}g; to M by setting fgi := 0 on S;, then

lim ffgi=g
11— 00

almost everywhere on M.
(3) Setting Kl = M,; - fz(M - Sz);
lim vol(K;) = 0.

If {Si} is the same one as in (C1), then (C2) is said to be subject to (C1).

Let {\(7) < A2(¢) < ---} be the spectrum of A;, the Laplacian of
(M;, gi), and {A; < A2 < ---} the spectrum of A := éyaxdmin, the Dirichlet
Laplacian of (M, g), counted with multiplicities. Our goal in this section is
to prove the following theorem.
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THEOREM 5.1.  Let {(M;, g;)} be a sequence of compact Riemannian
manifolds and (M, g) a Riemannian manifold with finite volume satisfying
(C1). If (C2) subject to (C1) is satisfied for {(M;,g;)} and (M,g), and
if the Sobolev inequality is uniform; i.e., there exists a constant C > 0
independent of i such that

6]l 2= ; < C(lldell2;i + [1l2:)
for every ¢ € C°(M;) where || - ||p; is the LP-norm of (M;, g;), then

Lim Ap(3) = Mg

1—00

As mentioned in the introduction, we prove the theorem only when
n > 2. To show that the spectrum of the Dirichlet Laplacian of M consists
of discrete eigenvalues, we need the Rellich lemma for M.

LeEMMA 5.1.  Under the assumption of Theorem 5.1, the Sovolev in-
equality holds on M. Namely there exists a constant C > 0 such that for
any ¢ € C§°(M), the following inequality holds:

[l 2o < C(l[dll2 + [|]2)-

Proof. Let v € C$°(M). Since (f1)*(pitb) is a smooth function on
M;, we get by the Sobolev inequality on M; and (C2),

lpitpll 2n < 4"C(lldll2 + [[Pll2 + 19 lloolldpill2)-

Since ||dp;i]|l2 < v(¢) by (C1), we obtain the desired inequality, taking the
limit as ¢ — oo. 0

PROPOSITION 5.1. (Rellich lemma) Inclusion W12(M) — L%*(M) is
compact.

Proof. Let {f,} be a bounded sequence in WbH2(M); i.e.,
[ fallz + lldfnlla < Co < o0

for all n. Since M — S; has a smooth compact boundary, Rellich lemma
holds for any M — S; (cf. [G-T, Theorem 7.26]). By the diagonalization
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argument, we can choose a subsequence {fn,} which converges in every
L?(M — S;). By the Hélder inequality, Lemma 5.1 and Remark 5.1, we get

anm“L2(Sz) < VOl(Si)% ”fnm”Ln% (S5)

(5.1) < Cvol(S)7 (| fumll2 + | dfamll2)
< CCyvol(S;)n.

Let € > 0 be an arbitrary given number. By (C1), there exists i(€) such
that

(5.2) CCyvol(S;)* < g for i>i(e).

Therefore for i > i(e), we get

(5.3) | = Famlle < L fom = ol 2t -5y + 5-

Since {fnm} converges on M — S;, there exists m(e€) such that if m,m’ >
m(e),

(5.4) fm = Foms 2 ua-5) < 5

which combined with (5.3) yields || fom — frumll2 < € for m,m’ > m(e). [J

COROLLARY 5.1.  The spectrum of the Dirichlet Laplacian of (M, g)
consists of discrete eigenvalues.

Let {#x(:)} be a complete orthonormal system of L2(M;) which consists
of eigenfunctions of A;; i.e.,

(5.5) Aidr (i) = Ak (D)dr (),  (Dr(4), ¢u(4))i = bmi
where (-, -); stands for the inner product of L?(M;). Set
(5.6) Yi(1) = pifi dr (i) € C°(M — ;).

From the definition, Proposition 2.1 and (C), it follows that for all ¢ and k

(5.7) [k(i)ll2 < C'Ak(E)"

where C' is a constant depending only on C, the constant in Theorem 5.1.
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PROPOSITION 5.2.  For every N > 0, there exists a subsequence {i(v)}
such that the following formulae hold for 0 < k < N:

) Jim i) = A
(2) s — lim Yr(i(v)) = ¢ in L2(M)

w= Jim i) = g in W)
where ¢y, is the eigenfunction of A such that (¢r, ¢1) = Ok and Ady, = Aok
For the proof, we need the following.
LEMMA 5.2.  Suppose that Proposition 5.2 is true for N. Then,
lim sup AN+1(%) < ANt

Proof. By Proposition 5.2 for N, we may assume

(5.8) s— lim ¥(i) = ¢, in L2(M)
(5.9) w— lim ¢3(i) = ¢, in WHE(M)

for 0 <i < N. Let ¢n41 be the eigenfunction of Ay such that

(5.10) (¢i,dn+1) = 6int1 and  Agdn+1 = AN+1ON+1

for i < N + 1. Since Wh2(M) = Wy**(M), there is a sequence {on+1,) C
C§°(M) such that

1
(5.11) [én+15 — dn4allpz < > supp ¢n+1,, C M — S;.
Set
(5.12) xn+1(8) = (F7) N1, € CF(M; — K;),

(5.13) Envi1(2) == xna1(8) — Z (XN+1(";)’ éx(1))idr (1),

k<N
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(5.14) P(¢n+1,) = En+1(8)/[1EN+i(3)]]2, € C°(M;).

It follows from the definition

(5.15) I1P(én+1i)llzi =1, P(éng1) L {do(i),- -, én (1)},

(5.16) ldP(pn+1)l3: > PP Idf13/11F113 = An+1(),

lldxn+1(5) — Zpan (Xv+1(2), B (2))idr (9113 4
Ixv+1(8) = Zpan (X1 (2), dx(@))idr (D)3,

(5.17) |dP(¢n+1)l13: =

By computation,

(env+1(), 9x(8))i = ((F71 ¢N+u,¢k(l))
(518) _"/ ¢N—|—1 1¢k(1’)dvz

- / ¢N+1zf 64 (0) fdv;.

Set

| frdvi/dv (M - S;)
(5.19) G ._{ 5 ().

By the definition and (C2), it follows that
(5.20) 1Gilloo < 2.
From (5.18) and (5.19), it follows that

(XN+1(2), D (0))i = (41,6, fidr(9)Ga)
= (¢N+1,is Vi (3) + (dN41,05 (1 — pi) £ D1 (7))
+ (IN+145 fi Pr(1)(Gi — 1))
(5.21) = (dN+1,Yk(9) + (dN+1,: — DN+1, Yr(9))
+ (OdN41,4, (1 — po) fi dr(4))
+ (dN+1,s fi Ok(1)(Gi = 1)).
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By the hypothesis,

(5.22) Z.liglo(ngﬂﬂ/Jk(i)) = (¢N4+1, %) = 0.
By (5.7) and (5.11),

(5.23) [(@n+1i — On+1, Yr(D)] < llonv+1 — dvallzllvoe ()2

_ 200

?

From (C2), Proposition 2.1 and the hypothesis, it follows that for £ < N

(5.24) l6x(D)lloe < CAR(1)" < C"(Ak(3)" + 1)
where C’ > 0 is a constant independent of ¢ and k. By (C1) and (5.24),

[(dns1,i5 (1= o) f ok ()] < Mlons1ill2lll = pill2lldr (4) o
(5.25) <20'(A% + D11 = pill2
<20°(; + D)y(9)

In the same manner,
(5.26) [(PN+14, [ (1) (Gi — 1))| < 207 (A% + DIGi — 12

Since ||Gi — 1]joo < 2" 4+ 1 and lim;,o0(Gi(z) — 1) = 0 for almost every
z € M by (C2) and (5.19), the Lebesgue convergence theorem implies

(5.27) .lim “G'L - 1“2 = 0,
71—00

which combined with (5.26) yields

(5.28) Jim (1,0, £ 0x(0)(Gi — 1)) = 0.
By (5.21), (5.22), (5.23), (5.35) and (5.28), we get
(5.29) iEf&(XN%»l(i)? dk(i))i =0,

which yields
Jim {lx v (2) — > (xw+1(8), ¢x(8))epr ()34

k<N
(5.30) = lim (1) ovll3
=1,

Bim oo ()13,
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Jim {ldxn11(d) — > (xn+1(3), $(3) )idbi (1) 1135
k<N

(5:31) = lim v (3)]3;
1—00 ’
Ndonnl3+ lim [ Jddaaa (G = 1ydv.

By the Lebesgue convergence theorem again, we get

(5.32) lim |dpn41|%(G% — 1)dv = 0,
i—oo JA-8,

which combined with (5.30) and (5.31) yields
(5.33) lim [|dP(¢n+1,0)ll2: = An+1-
By (5.16) and (5.33) we get
zli{glo sup AN+1(7) < AN41-
0

Proof of Proposition 5.2. We prove the proposition by induction. It is
clear by Theorem 3.1 that the proposition holds for N = 0. Therefore we
may assume the proposition for 0 < 7 < N, and prove it for N + 1.

By Lemma 5.2, we may assume 0 < Ayy1(¢) < 2Ay41. By the defini-
tion, Proposition 2.1, (C1) and (C2), we have

[on+1(@)2 + [N (9)]]2
= |lpi fi dn+1(D)ll2 + | d(pi £ dn+1(2))]]2
(5.34) < lpill2llon+1()lloo + lldpill2llon+1(8)lloo
+ lpillooll £ dpn+1(9) |2
< ZC')\R/_H + 20)\%4_17(’&') +2CAN41,

which combined with Proposition 5.1 implies that there is a subsequence
{i(v)} and ¢ € W12(M) such that

(5.35) lim Ay 41(i(v)) = lim inf Ay (i)

1—00
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and {¢)n11(i(v))} converges to 1) weakly in W12(M) and strongly in L?(M).
Since

lons1(@)ll2 = Npifidne1()ll2
> Hf onr1(Dll2 = (1 = pi) f dn+1(9) |2

(5.36) > 5,;H¢N+1< Mezqat—rc) ~ Vs llt = ol
> (U= w102 sey) — CN417)
> 52(1= 200 vol(K2) = CNR (),
we have
(5.37) Il = Jim, [ (i)l > o

which shows ¥ # 0. Let us show that (¢, ¢r) =0 for £k < N and ||¢]2 = 1.
By computation,

|(¥n+1(2), Yi(D))]
= |(pi f{ dn41(2), pifi Dk)]
<111 = pEll2ll N1 () llooll Pk (i )||oo + [(ff dN41(2), £ Bk ()]

< CAFv() + I/ ¢N+1 k(1)Gy dvg]
< O +17()+|(¢N+1() bk (2))il
(5.38) / |on+1(2) ¢k (4)(Gi ™ — 1)duy

+ [ lonea@onm67 v
< CAZ (i) + C2AZ vol(K) + CAN+1/ G — 1|dv;
< N2 (v (3) + 27 vol(K) /M G — 1|dv)
where G; ! € L®(M;) is defined by

1 (v = (f7Ydv) dvs (M — K)
(5.39) Gt ._{ 0 i)
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It is clear, by the definition, that |G| = |(f,71)*G:| < 2. By (C2) and
the Lebesgue convergence theorem, we get

(5.40) (¥, 88) = lim (Y1 (i), Yu(i(v)) =

In the same way, we can show

(5.41) ]l = 1.

Next let us show that Ay = ayp where a = liminf,_, o, An41(i(v)).
Choose an arbitrary x € C§°(M). Since A = émaxdmin for (M, g), it is
sufficient to show

(5.42) (d,dx) = a(¥,x)
to prove
(5.43) A = azp.
By the definition, we get
(dp,dx) = lim (dipy 2 6(0)), o)
— Jim (d1 (1)), () i
(5.44) = lim (Ay)on+1(6(0)), (fi)) Xiw)
= lim An41(i(1)(on+1(i(0)), (fi) Xiw)
= a(¥, ),
which proves (5.43). Since ¥ L {¢o,---,$n} by (5.40), we get
(5.45) Y.

Lemma 5.2 and (5.45) imply Ay41 = limsup An4+1(2) = lUminf Ay4;(4).
This prove the proposition for N+1. 0

Proof of Theorem 5.1. We prove the theorem by induction. Since A (%)
0 for all 4, it holds for K = 0. We assume the theorem for £ < n and
prove it for k = n + 1. For the proof, it is sufficient to show

(5.46) lim sup Apt1(i) < Adpy1 < lim mf Ant1(1).

71—00
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We can choose sequences {4, } and {i,} such that

Jim Ang1(iy) = lim sup A (i), Jim Ay (i) = lim inf Ania (3).

By Propostioin 5.2, choosing subsequence {i, 1} and {i,;} if needed, we

have
lim )‘n+1 (iu,k) = >\n+1) lim An—i—l (iu,l) = )\n—i—l-
k—o0 l—o0
This implies (5.46) and completes the proof. U

§6. Proof of Main Theorem

In this section, we use the same notations as in §0, §1, §3 and §5.

In view of the proof of Theorem 5.1, it is sufficient to show the following
proposition (P) to prove Main Theorem:

(P) For every sequence {t,} with lim,_. t, = 0, there exists a subse-
quence {tn;} such that

(6.1) Jim o(Ax, ) =o0(Az).

Let {t,} be given. For every i, we can find t,; with |t, ;| < v(1/i) where
v(e) is the same one as in Theorem 1.1, and obtain a subsequence {¢,;}.
Set (M,g) :=(Z —Xz,92), M; := X3, and g; == gq,, ,.

It is clear that (M, g) is a Riemannian manifold with finite volume. To
apply Theorem 5.1 to (M, g) and (M, g;), we shall verify (C1) and (C2) for
them.

At first we must find a family of cut-off functions verifying (C1) for
(Z —Xz,9z). By Theorem 3.2 and Lemma 3.5, there is a family of cut-off
functions {p;} C CY(Z —Lz)NWh2(Z) which satisfies (C1) for (Z, g) where
g = t*(gpn(c)l x,) is the pull back of the Bergmann metric of Xo. Since gz
is a restriction of some Riemannian metric of X, it is quasi-isometric to g.
Therefore, {p;} also satisfies (C1) for (Z — Xz, gz).

Next we must construct maps f; : M — S; — M; verifying (C2) subject
to (C1). Set f; :== fMY .z -8, — X, , where ff : Z — % — X, is
the same map constructed in Theorem 1.1. We remark that fi is well-
defined on Z — S;, since t(:,{ Y is defined on Z — ¥ 7.1 by Theorem 1.1 and
Z —Si € Z— X2 from Theorem 3.2. By Theorem 1.1 and (4.4), {fi}
satisfies (C2) subjelct to (C1).
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Finally, we must verify the uniformity of the Sobolev inequality for
{(M;,g:)}. But this follows from Corollary 4.2. Therefore, we can apply
Theorem 5.1 to (Z,gz) and {(Xt, ;,9t,,)}, and obtain (6.1). U

Appendix

Let X be an irreducible algebraic variety of dimension n in PV(C), and
Y an irreducible subvariety of dimension d(< n) in X. For y € Yieg, let N,
be a linear subspace of dimension N — d in P (C) which contains y such
that ¥ and N, intersects transversally at y; i.e., T,PY (C) = T,Y & T, N,.

Here, by a linear subspace, we mean a subvariety of the form HyN---N
H, where H; is a hyperplane in PV (C).

ProrosITION A.1. There exists a nonempty Zariski open subset Uy
(CY —Xy) of Y such that if y € Uy, then

dim, N, X =n — d.

For the proof, we need several lemmas. In what follows, rings in con-
sideration are noetherian commutative with 1, and all schemes are assumed
to be Noetherian.

Let A be a local ring and 9% be the maximal ideal of A. Let I and J
be proper ideals of A. Let A := A/I be the residue ring and 7 : A — A
be the natural projection. Let 90T := m(9M) be the maximal ideal of A. We
denote by GryA the graded A-algebra defined by

(A1) GrrA := @2, I/ (I° .= A).
For x € A, we attach an integer v7(z) defined by
(A.2) vi(z) :=sup{j € Zso;z € P} (z#0), vr(0)= co.

For z € A, we attach an element inj(z) of GryA defined by
(A.3)
inf(z) ;=2 mod I[V®+1 g i@ /@1 (5 £0) in;(0) = 0.

Finally, we define an ideal Grz(J, A) of Gr;A by

(A.4) Gri(J, A) := {ins(z);z € J}.
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LEMMA A.1l. ([M, Theorem 15.7]) Let A be a local ring, and I C A be
an ideal. Then,
dim A = dim Gr A.

LEMMA A.2. ([H, Chap. 2, §2, Lemma 5]) There ezists an isomor-
phism between graded algebras as follows:

Grryg/gA/J = GrA/Gr(J, A).

LeEMMA A.3. ([M, Theorem 15.1)) Let ¢ : A — B be a flat local ho-
momorphism of local rings. Then,

dim B = dim A + dim B/9MB.

LEMMA A.4. Let A be a local ring with the mazimal ideal 9N, and B
be a flat A-algebra with B # MB. Then,

dim B > dim A + dim B/9MB.

Proof. Take a maximal ideal i of B/9MB such that dim B/9MB =
dim(B/9MB); where (B/9MB); is the localization of B/9MB by the maximal
ideal 7.

Let 7 : B — B/9MB be the projection. We set n := w~!(). Then, by
Lemma A.3, we have

dim B > dim B, = dim A + dim(B/MB); = dim A + dim B/MB.

Finally, we need the following theorem:

THEOREM A.1. ([H, Chap. 2, Sect. 1, Theorem 1]) Let X be a scheme

and Y C X be a reduced closed subscheme. Then, there exists a nonempty
Zariski open subset U C X such that
(HUNY #0.
(2) U is normally flat along UNY. Or equivalently, Grz, ,Oxy ts Oyy-
flat for every y € UNY where Ox (resp. Oy) is the structure sheaf of X
(resp. Y), Iy (C Ox) is the defining ideal sheaf of Y, and Ox y (resp. Oy,
Ty,y) denotes the stalk at y.
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Proof of Proposition A.1. By virtue of Theorem A.1, it suffices to prove
that dimy Ny N X =n —d if y € Yiee and if X is normally flat along ¥ at
y; i.e., Grzf,(,yOX’y is Oy, -flat.

We can take a minimal set of generators z = (21, -, z4) (consisting of
d-elements) of Iﬁ,}:,y. Set A= Oxy, M= Mx, and I =Ty,. We also set
A=A/I and MM =M/I.

Since dimy N;NX > n—d from the intersection inequality of dimension
(cf. [G-R, p. 102]), it suffices to show dimy, Ny, N X < n—d. By Lemma A.1
and A.2,

(A.5) dimy NyNX =dimA/zA
= dim Gr(74,4y/,44/2A = dim Gr;A/Gr[(zA, A).

AsY and N, intersects transversally at y, we have I}‘:;Z’y—f-fgj\; = Mpw .
Hence, z is mapped to the regular system of parameter Z = (Z1,- -+, Z4) of
A=A/l =0yy = Opn,, /I% by the natural projection map. In other
words, we have ZA = 9. This also shows that v7(z;) = 0 for each ¢; i.e., 2; ¢
I for each ¢. Here we consider z; as an element of A = Ox, = Opn ,, /I}ng.
This shows that iny(z;) = z; mod I = Z; is an element of the degree zero
component A = A/I of Gr;A.

As Gry(zA, A) contains Z, it suffices to show that dim GryA/zGrrA <
n —d by (A.5). Note that we have Gr;A/2Gr;A = GryA/MMGrrA. Hence,
by Lemma A.1 and A .4, we have

(A.6) dimGr;A/2CGr;A < dim GryA—dim A/I = dim A—dim A/ = n—d.
This completes the proof. U

PROPOSITION A.2. Let X be an irreducible algebraic variety of di-
mension n in PN (C).
Let Hy,---,H, (r <n) be hyperplanes in PN (C). Let

XﬂHlm'--ﬂHr:U(XﬂHlﬁ...ﬂHr)(n_i)
=0
(dim(X NHiN---NH) ") =n —)

be the decomposition into the pure dimensional components. Then,

deg(X) > deg(X N Hi NN Hy)prop
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where (X N Hy N - 0 Hy)prop := (X N Hy O --- 0 Hy )™ s the proper
component of the intersection X N H1 N --- N H,.

For the proof, we prepare a lemma.

LEMMA A.5. LetY be an irreducible algebraic variety in PV (C) and
H be a hyperplane in the same projective space. Then,

deg(Y) > deg(Y N H)prop-

Proof. By the intersection inequality of dimension (cf. [G-R, p. 102]),
dimY N H is equal to either dimY — 1 or dimY. When dimY N H =
dimY — 1, then deg(Y) = deg(Y N H) by the Bézout theorem. When
dmYNH =dimY,YNH =Y and therefore (Y N H)prop = 0. Therefore,
deg(Y N H)prop = 0 by the definition. This completes the proof. 0

Proof of Proposition A.2. We prove the propositon by induction. When
r = 0, there is nothing to prove. We assume the proposition for » < k and

prove it for r = k + 1.
Let

(A.7) (XNH NN H)prop = | 4a

be the irreducible decomposition. By the definition and the intersection
inequality of dimension,

(A.8) (X NHy N0 Hye 0 Hgg1)prop € | (Aa N Het1)prop-

By Lemma A.5 and the hypothesis of induction, we have

(A.9) deg(X) > Z deg(Ay) > Z deg(Aq N Hiq1)prop

> deg(X NHiN---N Hk+1)prop

This completes the proof. 0
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