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ON DIFFERENTIAL POLYNOMIALS I

HISASI MORIKAWA

Abstract. The content of Part I is nothing else than, the theory of bino-
mial polynomial sequences in infinite variables (ιr , ir , IT 3 ,...) with weight
vS ' = I. However, sometimes we are concerned with specialization vS '—K^) u >
therefore, we call the elements in K[u^\u^2\u^3\ ...] differential polynomials.
As analogies of special polynomials with binomial property, we may construct
special differential polynomials with binomial property.

§1. Differential polynomial sequences

The theory on differential polynomial sequences, is formally nothing else
than the theory on polynomial sequences in a system of infinite variables,

with weight
weight u® =1 (I > 1).

However sometimes we are concerned with specializations,

therefore we call the elements in K[u^\u^2\u^\ ...] differential polynomi-
als instead of polynomials in (i^)/>i. The main result in this paragraph
is the expansion formula for binomial differential polynomials sequences.

1.1. Binomial differential polynomial sequences
We shall first recollect the definition of binomial polynomial sequences,

given by R. Mullin and G. C. Rota in [2], and shall generalize it slightly, so
that the set of binomial polynomial sequences in wide sense has a module
structure with respect to infinite triangular matrices.

DEFINITION 1.1. (R. Mullin-G. C. Rota)
A polynomial sequence (pn(

χ))n>o i n a polynomial algebra i^[x], is called
to be binomial, if it satisfies
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40 H. MORIKAWA

i) po(x) = 1

ii) degpn(x) = n

in) Pn(χ
' n }

where K means a field of characteristic zero. The condition

iv) pn(0) - 0 (n > 1)

is a consequence of i) and iii).

DEFINITION 1.2. Replacing ii) by a weaker condition

ii*) degpn(x) < n (n > 1)

we define binomial polynomial sequence in wide sense.

For each polynomial sequence (pn(
χ))n>o w e associate its generating

functions

(1.1) Φp(x I t) = Y]pn(x) —
n=0 n

which is a formal power series in t. By means of generating functions, the
condition iii) is equivalent to

iii*) Φp(x + y\t) = Φp{x I t)Φp(y \ t)

PROPOSITION 1.1. The set P{K[x\) of binomial polynomial sequences
in wide sense in K[x], coincides with the set of polynomial sequences

nO))n>0 | OL = (θίi, α 2 , α 3 , . . .), OLj G K},

which are defined by means of generating functions,

(1.2) x
3 = 1 n=0 n\

Proof. Since po(x) = 1, we may put

logΦp(x I t) = log
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with polynomial ψj(x) (j > 1) in K[x\. Then condition Φp(x + y \ t) =
Φp(x I t)Φp(y I t) is equivalent to ψj(x + y) = ψj(x) + ψj(y) {j > 1) and
this is also equivalent to ψj(x) = OLJX with constants αy in K. This means

Φp(x I t) = exp

PROPOSITION 1.2.

(1.3)

Proof. From the definition of (pa,n)n>o it follows,

n = 0

= Πe χp

Similarly to polynomial sequences, we define binomial differential poly-
nomial sequences and these in wide sense.

DEFINITION 1.3. A differential polynomial sequence (pn(^))n>o in K[u]
= K[ιλι\ vί2\vP\ ...] is called to be binomial, if it satisfies

i) po(u) = 1

ii) weightpn(u) — n

Ifi\

iii) pn(u + v) = 22 / )Pn-i(u)pι(v) (n > 0).
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The condition

iv) pn(0) = 0 ( n > 1).

is a consequence of i) and iii).

DEFINITION 1.4. Replacing ii) by a weaker condition

ii*) weightpn(u) < n (n > 1),

we define binomial differential polynomial sequences in wide sense.
By means of generation functions, condition iii) is equivalent to

iii*) Φp(u + υ\t) = Φp(u \ t)Φp(v \ t).

PROPOSITION 1.3. The set DP(K[u}) of binomial polynomial sequences
in wide sense in K[u] coincides with the set of differential polynomial se-
quences,

{(Pa,n(u))n>o I a = (<Xij)l<i<j', (*ij E K}

which are given by means of generating functions,

(1.4) Σ
β

= Σ;
n=0

1 nV

Proof. Since po(u) = 1, we may put

with polynomials ψj{u) of weight at most j (j > 1) in
|

Then the
condition Φp(u + v \ t) = Φp(/u | ί)Φp(t? | ί) is equivalent to ψj{u + υ) =
ψj{u) + ψj{v) {j > 1), and this is also equivalent to

(j >

with constants α^ in K. This means

Φj(u I t) — exp
.7=1 i = l

**!" ~\

From the expansion of exp[J2(^=1 u^P/j!], we obtain the standard bi-
nomial differential polynomial sequence (piin(

u))n>θi which corresponds to
the standard binomial polynomial sequence (xn)n>o The relation between
(u^-\u^2\u^\ ...) and (pi,i,pi,2,Pi,3, •) is very important in this article.
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PROPOSITION 1.4.

(1.5) exp uyjJ —

3 = 1

tn

n = 0

(1.6)

(1.7)

(1.

Uy ' —

771=1

Proof.

exp

By

OO

calculation we have

P
< I \J ) = JJexp

3

OO ,rt

' U)tj

j !

/ OO -,

= Π Σπ

?7,=n J

From Tayler expansion

log(l
ra=l

we have
oo

3=1 f 3=1

= Σ
(_l)m-l

m= 1
777,

U = i

oo , n

n = 0

n ( _ 1 ) m _ x

Σ
m = l m
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PROPOSITION 1.5.

(1.9)
/=0

Proof. Applying d/dt on the both sides of

7Ί

we have

n=0 j=O J *

—i? exp

Σ
\n=o

\l=0

The next statement is one of the evidence of the standardness of the
differential polynomial sequence (pi,n(^

PROPOSITION 1.6. Putting Z(s) — exp[iz(s)]; we have relations be-
tween the derivates]

(1.10)
ϋj.

where Z^(s) = (-f ] Z(s) andu^\s) = ( — ) u{s).
\ds / \ds J

Proof. From Tayler expansion of ΊX(S + t) it follows,

z , x = exp[ix(s + t) - ix(s)] = exp
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1.2. Homomorphisms of DP(K[u}) onto P(K[x\)
ROQ^) means the K-algebra of triangular matrices (o>ij)i<i<j with co-

efficients in K, and G^K) means the group of triangular matrices (ji,j)i<j
with 7jjγo (j > 1) By means of generating functions, the natural R
module structure on DP(K[U]) and P(K[x]) are defined as follows,

%Λu I t)Ί = ΦPaΊ(u I ί) (a,β,j € Roo(K); λ , μ € i f ) ,

φ P α (^IO ;

Φ P Q ( x I ί ) 7 = Φ P o r γ ( z (α = K)n>i ,/5 = (/?n)n>i;

PROPOSITION 1.7. To each formal power serious f(s) without constant
term, we associate a mapping pf of DP(K[u]) into P(K[x])]

(1.11) pf exp
oo j

= exp

oo 3

Z—• I Z—^

j=l V=l

j is an i?oo(jFί) -module homomorphism.
This is a direct consequence of the definitions of

tures on DP(K[u]) and P(K[x\).
-module struc-

PROPOSITION 1.8. The mapping p ^ defined by

(1.12) Poo exp

oo J

j=li=l

= exp

oo j

α RQQ^K)-module homomorphism of DP(K[u]) onto P(K[x]) such that
o induces a vector space isomorphism from the vector subspace

= { (pa,niU))n>0

onto the vector space P(K\x\).

t) = exp
3=1

, ctj e K

Proof. Putting f(s) = Σ^=i sJ/j^ a n ( l Poo — Pf > we observe that p^
is an i?oo(i ;ί)-module homomorphism of DP(K[u}) onto P(jftΓ[x]) satisfying
the condition in the proposition.

There exists a very simple and concrete cross section of P(K[x\) into
DP(K[u\) which is unfortunately not a vector space homomorphism.
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PROPOSITION 1.9. Let v§ be the mapping of P(K[x\) defined by

u pn(D)exp[u]
(1-13)

t/zen UQ is a cross section of P(K[x\) into DP(K[u]) such that

where Dnu — u^ (n > 1) and po = pf, f(s) = s.

Proof. Let y be a variable independent over K[x] and let D' be the
derivation acting on a variable υ independent over K[x] such that

D'nυ - v^ (n > 1)

and

Since JD.0' = D'D and Dt; = D ^ = 0, for each element (pn(%))n>o
P(K[x]) we have

exp[u + v]

n

Ί)pn-l(D)Pι{D'){exp[u} exp[v})

This means VQ maps P(K[x}) into DP(K[u]). On the other hand, putting
z(s) — exp[u(s)] for a generic function z(s) and D = ^ , by virtue of
Proposition 1.6 we have

] ZW( a )
= PiAu(s)) ( n ^ 1 ) 's)J Z(s)

hence

Since po means the specialization

uw —> x, u ( i ) —> 0 (j > 2),
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this means

1.3. Expansion formulas
For each (pn(^))n>o in DP(K[u]) the vector subspace spanned by pn(u)

(n > 1) is very thin in K[u], hence in order to treat expansion formulas, it
is necessary to introduce a suitable equivalence relation in DP(K[u]).

DEFINITION 1.5. Two elements {pn{u))n>o and {qn{u))n>o in DP(K[u\)

are called to be similar each other, if there exist two systems of constant

(λm,n)i<m<n and (μm,n)i<m<n in K such that

m=l m = l

THEOREM 1.1. (Expansion theorem) Let (pn(^))n>o and (^n(^))n>o be
binomial differential polynomial sequences. Then (pn{u))n>o ctnd (gn(^))n>o
are similar each other, if and only if there exists a system of constants
(Xj)j>ι such that \χ φ 0 and

(1.14) qn(u) =
m=l ^jL=n 3

Condition (1.14) is equivalent to

(1.15) Φq(u I t) =

Proof Let (pn(^))n>o and (qn(u))n>o be similar binomial differential
polynomial sequences and put

m=0
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with λ m ? n in K. They λo,o = 1, λo,n = 0 (n > 1) and

n
qn(u + v) = ] P pm('u + t;)λm?n

n / m
= Σ ( Σ 7Σ ( Σ ( 7

m=0 Vι=0 V

z=o VV

z=o \ v

Comparing the coefficients of pm-h(u)ph(v) in the both sides of

m=0 \/ ι=0 V ̂  y

Z=0 \ / \ α / \ 6 /

we have

n\ ' ^ ( n - /)! /! ' v

Using this relation, we obtain a nice relation on the power series

OO i

fm(t) = Σ Π1

n=m n'

as follows

^ 777!

m—h ) \b=h /

= fm-h(t)fh(t) (l<h< m).
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This means

where λ̂  = λij (j > 1). Hence we have

λ m ,n - ) n ! Π / . | ( A]

Moreover

n = 0

n

tn

\Σh=«

m=0 ""' \j=l J

For its sake of the invertiblity, we observe

Remark. A variable transformation t

angular matrix:

σ(λ) = (σm,n(λ))

0

Jm,n\

0.

Vx φ 0) induces tri-

(m > n)
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such that
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j=\

, h \ i oo / j

4 = Σ
.=1 V J=l \i=l

7 1 = 1

o o / n

Σ ( Σ
7 1 = 1 \ 7 7 l = l

tn

σ(λ) is given concretely as follows,

0 λi 3λiλ2 4λχλ3 + 3λ2 5λχλ2 + 10λ2λ3

σ(λ) =
0 0 λ
0 0 0
0 0 0

6λi2λ2

λi 4

0

10λi2λ3 + 15λiλ2

2

10λ!3λ2

\ *

1.4. Multi-binomial differential polynomials sequences
We choose r infinite variable vectors

u -

with weight

weight uψ = ... = weight 4 ° =

(3)

> 1)

DEFINITION 1.6. A differential polynomial sequence (pn(/ui,...,
Ur))n>o in ̂ [^l? 5^r]j is called to be multi-binomial, if it satisfies

i) po(uu...,ur) = 1

ii) weightpn(u\,... ,ur) = n, weightpn(uι,... ,^ r) = n (1 < A: < r),

iii) n

\ α χ , α 2 , . . .,a2r "

where ( ^ , i , . . . , Wj,r)
 r u n s o v e r all the vectors such that

= Uk or J < 2 r).

The condition

iv) pn(0,...,0) =
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is a consequence of i) and iii).

DEFINITION 1.7. Replacing ii) by a weaker condition

ii*) weightpn(u\,... ,ur) < n {n > 1),

we define multi-binomial differential polynomial sequences in wide sense.
By means of generating functions, condition iii) is equivalent to

iii*) Φ p O i + vι,... ,ur + υr I t) = J J Φ p ( ^ , i , . . >,wjik \ t),
3=1

where (m^i,. . . ,^j,/c) runs over all the vectors such that Wj^ = Uk or Vk
(1 < k < r ; 1 < j < 2r).

PROPOSITION 1.10. The set DP(K[u\,... ,u^\) of multi-binomial dif-
ferential polynomial sequences in K[uι,..., ur] in wide sense, coincides with
the set of differential polynomial sequences

which are defined by

(1.16) ΦPa(uι,...,ur I t) = exp

00

x ( i l )

Proof. Since po(^i? , ̂ r) = 1? we may put

( °° t3

3=1

,...,ur I t)
3 = 1 J '

with polynomials ψj(uι,..., ur) of weight at most j {j > 1) in K[uι,..., ur

Then the condition

2 r

Φp{uι +V!,...,Ur +Vr I t) = J | Φp(whii,...,Whir \ t)
h=l
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h=l

This is also equivalent to ψj(uι1..., ur) are liner homogeneous in uι,..., ur,
i.e. there exists a system of constants α ^ i , . . . ,irij in K such that

Σ (<-) (i > i),

i.e.

,ur\t)= exp Σ 7ϊ

Two multi-binomial differential polynomial sequences (pn(^i ? ? ^r))n>o
and (ςn(^i? ? ^r))n>o are called to be similar each other, if there exist two
system of constants in K {\m,n)ι>m>n and (μm,n)i>m>n such that

m=l
n

m = l

THEOREM 1.2. (Expansion Theorem) Multi-binomial differential poly-
nomial sequences (pn(uι,..., txr))n>o α n c ^ (^n(^i) ? ^r))n>o i>n K[uι,...,
i6Γ] are similar each other, if and only if there exists a system of constants
(λj)j>ι in K such that \\ φ 0 and

(1.17)

m = l
Σ

condition (1.17) is equivalent to

(1.18)
J=l
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Proof. Assume qn(uu...,ur) = Σm=iPm(^i, ,^r) λm,n (n > 1).
We fix w2, .. ,wr and consider (pn(uι,w2,. , w r )) n > 0 and (gn(^i,^2, ,
^r))n>o as differential polynomial sequences in u\ with coefficients in
K[w2, . , wr], then they are binomial differential polynomial sequences sim-
ilar each other. Hence by virtue of Theorem 1.1 there exists a system of
elements in K[w2, , wr] (Xj(w))j>i such that X\(w) φ 0 and

Φq(u1,w2, ..,wr I y) = Φp

J=l

It is enough to show Xj(w) (j > 1) belong to K. Since p n ( ^ i ^
(n > 1) are linearly independent over K[u>2,.. , ̂ r]? this means

Σ
Ljl

On the other hand by virtue of Proposition 1.4, using vn =
(n > 1), we have

Σ

This proves Xj(w) (j > 1) belong to K.

1.5. Binomial partial differential polynomials sequences
We shall use the following multi-indexed notations:

n = j \ = j i ! . . . j r ! ,
r n LLγ

u(n) =

uκ
UUl,' dr)

V f J
7 = v7z,j

jẐ  = n = ( n i , . . . , nr) =
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where (u^)n>o means a system of variables with a vector valued weight:

weight u ( n i ' - ' n r ' = ( m , . . . , n r ) .

Replacing the notations in 1.1, 1.2, 1.3, and 1.4 by the above multi-
indexed notations, we observe that almost all statements and formulas hold
by the same expressions.

DEFINITION 1.8. A partial differential polynomial sequence in K[u]

is called to be binomial, if it satisfies

i) po(u) = 1,

ii) weightpn(u) = n,

iii) pn(u + v) = ] Γ I ]pn_/(i4)pi(v) (n > 0).
0>/>m W

By induction o n n = (ni, . . . , n r), i) and ii) implies

iv) pn(θ) = 0 (n = (ni,. . . ,n r) > 0).

Using the generating function

„ tn

(1.19) Φp(u I ί) = Σpn{u)—V

n>0 U'

we can express iii) by the equivalent condition,

iii*) Φp(u + v\t) = Φp(u I t)Φp(v I ί ) .

DEFINITION 1.9. Replacing ii) by a weaker condition

weightpn(u) < n (n = (nu . . . ,n r ) > 0),

we define binomial partial differential polynomial sequences in wide sense.

PROPOSITION 1.11. The set DPr(K[u]) of binomial partial differential
polynomial sequences in wide sense in K[u], coincides with the set of partial
differential polynomial sequences

\\Pa,n\u))n>0 | a — \ai,j)0<i<ji aiσJσ ~ ai,j \ σ ^ ^rj^ij *=. xv/,

which are given by

.(0

l' n>0

where Sr means the symmetric group of degree r.

(1.20) Φa(u\t) = exp ^ " •'• ^ ' "f'
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Proof. For each (pn(u))n>o in DPr(K[u]) we may put,

j>o 3' j j>o -*'

with a unique system of partial differential polynomials {ψj{u))j>o such
that ψj{u) is of weight at most j . From multiplicative property Φp(u + v \
t) = Φp(u I t)Φp(v I t) we obtain ψj(u + υ) = ψj(u) + ψj(v), i.e. ψj(u)
are linear in u^ (0 < i < j). This means there exists a unique system of
bisymmetric contains α^j in K such that

Φp(u I t) = exp W

We obtain also the standard binomial partial differential polynomial
sequences as follows;

PROPOSITION 1.12.

(1.21)

(1.22)

(1.23)

exp
n>0 n\

n>0

( n > 0 )

Proof. By direct calculation we have,

j>0

m>0
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£ Σ (-

PROPOSITION 1.13. Putting z(s) = exp[it(s)], we obtain the relation
between the partial derivatives;

h

- ΣΣ

i,..., sr), u(s) =

Proof From Tayler expansion of u(s + t) we have

z(s-

z(s)
= exp [u(s + t) — u(s)] = exp

tn

n>0 n!

Two binomial partial differential polynomial sequences (pn(u))n>o
(qn(μ))n>o are called to be similar, if there exist two siptems of constant

(λ m , n )θ>m>n and (μm,n)θ>m>n SUch t h a t

0<m<n 0<m<n

THEOREM 1.3. (Expansion Theorem) Two binomial partial differential
polynomial sequences (pn(u))n>o and (qn(u))n>o a r e similar, if and only if
there exists systems of constants in K

such that
^ 1 } \

(1.25)
,(2) .

det
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and

(1.26) qn(u)

0<m<n
Σ -ΊΊΠ

where e\ — ( 1 , 0 , . . . , 0 ) ,
(1.25) is equivalent to

( n > 0 )

( 0 , 1 , . . . , 0 ) , . . . ,er = ( 0 , . . . , 0 , 1 ) . Moreover

Proo/. Putting qn{u) = ^ Pm{n)\m,n, we have
0<m<n

λo,o = 1, λo,n = 0 (n > 0)

and two way expression of qn(u + υ):

0<m<n

0<m<n \0</ι<m V /

(u) (v) sr^ n\

0<Kn \V 0<Kn V / \ a / \ b /

Comparing the coefficients of Pm-h(u)Ph(v) m the both sides, we have

ίm
Λ m,n —

n Λm-h,n-hΛh,h
0<l<n

(m — /ι)!

n!
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Hence, putting
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777 I

fm(t) = Σ "7
m>n

(m > 0)

we obtain the key relation,

(m-fc)!

m>n

= fm-h(t)fh(t) =

\m—h>a

r r

= Π Σ

where λ̂  ^ = λ e f c J (j > 0). This means,

Σ
k=lj(

7 (r)

and

Φq(u I ί)
-f-n

n>0

n>0

tn

n! Σ »>ΠΠ

m>0 ' k=l j(k) J
, (fc)ι

Pm(u)

Π Σ
λ, f c°

fe=l

h>b

Σ λf
=l \j>0

;(*)! ,-(*)
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k (D* J '

1.6. g-binomial differential polynomial sequences
We choose a quantity q in K which is transendental over rational num-

ber field Q, and denote briefly

r . , „ . ( i - g n ) ( i - g " " 1 ) • • • ( ! - g )
( )q ~ (i )»

= (1 + g)(l + g + g2) . (1 + q + ... + ς""1), (0),! = 1,

Replacing binomial coefficients with q binomial coefficients (̂ ) (0 <
I < n), we can easily define binomial differential polynomial sequences. We
introduce two types of infinite variables;

with commutation relation

(1.28) ώWfiϋ) =

DEFINITION 1.10. A differential polynomial sequence (pn(u))n>o
called to be g-binomial, if it satisfies

i) po(u) = 0,

ii) weightpn(u) = n,

n /
f niii) pn(ύ + u) = Σ pn_ι(u)pι(ύ) (n > 1).

The condition

iv) pn(0) = 0 (n > 1)

is a consequence of i) and iii).
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DEFINITION 1.11. Replacing ii) by a weaker condition

ii*) weightpn(u) < n (n > 1),

we define g-binomial differential polynomial seqences in wide sense.
By means of generating function

(1-29) Φ ^ ( \ t ) J 2 ( )
n=0 V"7<7

condition iii) is equivalent to

iii*) Φq(u + ύ\t) = Φ^q\u I t)Φp{ύ I ί),

where t is commutative with vSι\u^ (i, j > 1).
Since the commantation relation xx — qxx implies

1=0 \ / q

g-exponential function

(1.31)

satisfies
(1.32)

g-log function log^(l +1) is the formal power series in t which is the inverse
function of exp9(ί), i.e.,

log«[exp'[ί]]=ί

We briefly denote

- 1

(1.33) P%>(n)= χ ; ( n v f π

PROPOSITION 1.14.

(1.34) log ω ( l + t)

n-l

n=2
Σ

r=l 1<7Π1<7712<

—
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Proof. We denote

λ, =

and

then

This means

-

ml

oo / oo

m=l "v' \7=1

n = l

n = l

m = l

im=l

3 r

tn

n\

ra=l

On the other hand

Pm,n{X)

Π!

n!

= 0 (n > 2).

Σ
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hence
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n - 1

7 7 1 = 1

7 1 - 1

m = l

Σ
r = l

oo

Σ
7 1 - 1

Σ(-!)r Σ tn

PROPOSITION 1.15. TTie seί DP(q\K[u]) of q-binomial differential
polynomial sequences in wide sense in K[u] coinicides with the set of dif-
ferential polynomial sequences

{(Pa,n(u))n>0 | Oi = (aij)i>j,Caij £ K},

which are given by menas of generating functions as follows

(1.35) Σ
J><ι

Proof. For an element (pn(u)) in DP^q'(K[u]) we put

3=1 3=1

with polynomials ψj(u) of weight at most j in K[u). Let us prove

φ{u + u) = ψj(ύ) + ψj{u) {j > 1)

Since

lim
1 1

<?->! (n)q\ nV
= exp[t]
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we have

exp = lim

= lim

= lim

= exp

= exp

u I t) = lim

^ ( ώ l t)

oo ^ oo

3=1

This means ψj{ύ + u) = ¥?j(ΰ) + ^j(^) (j > 1), i.e.,
forms. The converse is obviously true.

(j > 1) are liner

THEOREM 1.4. Two q-binomial differential polynomical sequences
(pn(u))n>o and (rn(/u))n>o are similar each other, if and only if there exists
a system of constans (Xj)j>i in K such that \\ Φ 0 and

(1.36) rn{u) =
m = l H?! Lj.

Condition (1.36) is equivalent to

(1.37)

The proof of this theorem is completely same as that of Theorem 1.1.

Appendix A. Central moments of entropy

1. Using the standard binomial differential polynomials, we an express
the n - th central moment of entropy concretsly.
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A distribution function means a positive real value function in s > 0
which is given by an integral

z(s) = / exp[-sf(x)]μ(dx),

where f{x) is a non-negative real value function on a measurable space
(Ω,μ) and we assume that d/ds and integration are always commutative.
Entropy of the distribution function z(s) is defined by

E(z(s)) = ί (-log

-ίί
JΩ \

exp[-s/(z)Π\ exp[-s/(aj)]

z(s z(s)
μ[dx)

= —s-
z(s)

+ log z (s).

The n-th central moment of entropy E(z(s)) is defined by

Mn{z{s)) =

Putting z(s) = exp[^(°)(s)], from Proposition 1.6, we have

^7 = exp
J

n=0 n=0

tn

where

ιAu(s)) = (n>0)

THEOREM 1.

(A l) Σ ̂
n=0 nl

exp

exp

uy

J=2

exp I -st)]-u(s)~u^\s)\
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(A.2) Mn(z(s)) = (s)n

Σ

(A.3) MM8))=0,

M2{z(s)) =sV 2)(s) = z(s) z s

w/iere «U)(s) = (d/dsy-2«(2)(s) (j > 2).

Proof. By calculation we have

Γexp[-s/(a;)]
Mn(z(s))= / -log

z(s

z(s)

z(s

-μ{dx)

= 5

n / \

z(s) Jn
f(x)n-lexp[-sf(x)}μ(dx)

'n\ 1 z^
Z(S)

/ = 0

/ exp[-sf(x)]μ(dx)
JΩ

1=0

(

This means

f oo / n
' n (st)n

I z(s) I z(s) nl
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= exp

= exp
3=2

exp

- Σ

Aίi(«(s)) = 0, M2(«(s)) = s 2 u ( 2 ) (s) = s
z(s) \ z(s)

2. Relations between the contral moments under certain functional
equations

THEOREM 2. Under the assumption

(A.4) z(—) =Xz(s)
V s *

or
(A.5) z\-\ =

w£/ι α non-zero constant λ, we obtain the relations between the central mo-
ments,

0<h+2l<n
hϊϊl

or

' Σ
0<h+2l<n

fn - / - l

L Λ + / - 1 hill

Proof. Putting z(s) = exp[u(s)] and a — logλ, we have

u(—) =u(s) + α,
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uκ }\~\ —

α,

n=0

= exp

= exp

uκ

exp \u(s(l - t)) - u(s) -

Appendix B. The inhomogeneous invariant theory

1. The GL2(K)-germ action on the basic formal power series
We choose an element ω in K different from positive integers, and a

system of variables

with degree, weight and index such that

degξ(/), weight ξ(/) = /, £(/) =w-2l,

We introduce the basic formal power series

(B.I) fω(ξ I ί) =

ι=o

on which the germ of GL2(K) acts as follows,

where (ω)ι = ω(ω - l)(ω - 2 ) . . . (ω - 1 + 1) and (^) = (ω)ι/l\.
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(B.2) is equivalent to the realization of the algebra sfaiK) in K[ξ],

£ U ( ί ) = it1-1 (Γ * = o)

(B.3) Aωξ{l) = (ω - /

where

[Dω,Aω}=Hω

(B.4) [Hω,Dω] = 2D

LEMMA 1.

[Dω,AιJ = -1(1 - lJΔL" 1

Proof. Assuming (B.5) for Z, we have

[Dω, Δ^+1] = [Dω, Δ^]Δ ω + AιJ[Dω,,

= -1(1 - l)Δi, + lAι

ωHωAω + Aι

ωHω + L

= -1(1 + 1)Δ^ + Z Δ i Γ 1 ^ , Δω] + lAι

ωHu

=-1(1 + I)Aι

ω + (I-

[Hω, Aω ] = [Hω, Δ ω ] Δ ω + Aω

= -21A1*1 - 2Δf+1

2. (Dω, Aω, iίu;)-action on the basic inhomogeneous formal power series

We mean by the basic inhomogeneous formal power series the formal

power series

Changing variables
(l) {l) (I > 0),
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from (B.3) we have

D

(B.7) Δ

ΐ)z ι~ι 1 = 0)

Again changing variables z^ / z^ (I > 1) to u^ (j > 1) by

+Σ
AD tι

z(°) n
= exp

we obtain the following (Dωi AωiHω)-action on K[u^\

PROPOSITION 1.

(B.8)

Proof. We choose a generic analytic function y(s) and ω(J') (s) =
OJ(S). Hence by means of differential algebra specialigations

-(3)

s) ds

d

ds

we obtain

Prom (B.7), denoting ^°) = z^ = exp[u(°)], we have

and

= 0

HωuW = Γ^.nxW;'"-1

= ωzκ Jzκ J — ω
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Hence from u^ = Δ^" 1^ 1) = Δ ^ Δ ^ 0 ) = Δ ^ ( o ) and Lemma 1 we
obtain

DωυP = £>WΔ>(°) = [Dω, A ^ + AΪDωu^

( J > 2 )

ττ (j) _ ΪTT

— ΔiΊAA. .ΊJL "ι U "i Z-Λ Cc/ — ^ ^ ^ ί̂ y ^ ^ J?

Now we can conclude as follows:

THEOREM 3. The invariant theory on the basic inhomogeneous formal
power series

(B.9) 1 + Σ^Tί t

t(0

is equivalent to the invariant theory on the basic inhomogeneous basic form

°° p
(B.10) 1 + Σ U Ϊ

i=i J

with respect to the realization

T/ie structure of the graded algebra θ of semi incariants in K[u] is very
simply expressed as follows:

THEOREM 4. The isobaric polynomials

(B.ll) Ψn(u) = Σ i_ili ^ α / 1 " * ! / 7 1 " ^ ^ 1 ) 1



DIFFERENTIAL POLYNOMIALS 7 1

are generators of the graded algebra Θ of semi-invariants, i.e.

Proof. By calculation

Dφn{u) =
1=1

ι=o

1=1

1=0 L'

= 0

On the other hand K[u(1\ψ2(u), ^ ( u ) , ^ 4 ( u ) , . . . ] = K[u^ι\u^2\ u^\ ...]

and i^1) is transcendental over K[^(tO? Ψs(u), ΨA{U)I •]? hence F = Σ ^ = o

t̂ ^1^ 9k(Ψ) belongs to Θ, if and only if F — go(Ψ)>

A Cashimi operator is a non - zero element in the center of the uni-
versal enveloping algebra of SI2 [K], and the next is a generator of Cashimir
operators of the realization (D ω , Δ ω , Hω) of s

(B.12) Kω = ^{Hj + 4Δω£>ω + 2Hω).

PROPOSITION 2.

(B.13) Kωuj = 0 (j > 1)

Proof. By caluculation we have

(-2)u^) = 0,

-(4j 2tί ϋ ) - 4j(j - l)ti ( i ) - 4j«( i )) = 0.
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PROPOSITION 3.

(B.14) Kωξ® = ^ω(ω + 2)ξ® (I > 0)

Proof. By calculatation, we have

2lf
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