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BOUNDEDNESS OF HOMOGENEOUS FRACTIONAL

INTEGRALS ON Lp
FOR N/α ≤ P ≤ ∞

YONG DING and SHANZHEN LU

Abstract. In this paper we study the map properties of the homogeneous
fractional integral operator TΩ,α on Lp(

� n) for n/α ≤ p ≤ ∞.
We prove that if Ω satisfies some smoothness conditions on Sn−1, then TΩ,α

is bounded from Ln/α(
� n) to BMO(

� n), and from Lp(
� n) (n/α < p ≤ ∞) to

a class of the Campanato spaces Ll,λ(
� n), respectively. As the corollary of the

results above, we show that when Ω satisfies some smoothness conditions on
Sn−1, the homogeneous fractional integral operator TΩ,α is also bounded from
Hp(

� n) (n/(n+α) ≤ p ≤ 1) to Lq(
� n) for 1/q = 1/p−α/n. The results are the

extensions of Stein-Weiss (for p = 1) and Taibleson-Weiss’s (for n/(n + α) ≤

p < 1) results on the boundedness of the Riesz potential operator Iα on the
Hardy spaces Hp(

� n).

§1. Introduction and results

It is well-known that the Hardy-Littlewood-Sobolev theorem showed

that the Riesz potential operator Iα is bounded from Lp(Rn) to Lq(Rn) for

0 < α < n, 1 < p < n/α and 1/q = 1/p − α/n. Here

Iαf(x) =
1

γ(α)

∫
�

n

f(y)

|x − y|n−α
dy, and γ(α) =

πn/22αΓ(α
2 )

Γ(n−α
2 )

.

In 1960, Stein and Weiss [11] used the theory of the harmonic func-

tions of several variables to prove that Iα is bounded from H1(Rn) to

Ln/(n−α)(Rn). In 1980, using the molecular characterization of the real

Hardy spaces, Taibleson and Weiss [12] proved that Iα is also bounded

from Hp(Rn) to Hq(Rn), where 0 < p < 1 and 1/q = 1/p − α/n.

Moreover, for the extreme case p = n/α, it is easy to verify that Iα is not

bounded from Ln/α(Rn) to L∞(Rn). However, as its substitute, we know
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that Iα is bounded from Ln/α(Rn) to BMO(Rn). In 1974, Muckenhoupt

and Wheeden [8] gave the weighted boundedness of Iα from Ln/α(Rn) to

BMO(Rn).

On the other hand, it has appeared about the investigations of the

various map properties of the homogeneous fractional integral operators

TΩ,α, which is defined by

TΩ,αf(x) =

∫
�

n

Ω(x − y)

|x − y|n−α
f(y) dy,

where 0 < α < n, Ω is homogeneous of degree zero on R
n with Ω ∈

Ls(Sn−1) (s ≥ 1) and Sn−1 denotes the unit sphere of R
n. For instance,

the weighted (Lp, Lq)-boundedness of TΩ,α for 1 < p < n/α had been stud-

ied in [7] (for power weights) and in [2] (for A(p, q) weights). The weak

boundedness of TΩ,α when p = 1 can be found in [1] (unweighted) and in

[4] (with power weights). Moreover, for p = n/α, an exponential integral

inequality of TΩ,α had been given in [3].

In comparison with the map properties of the Riesz potential operator

Iα, it is natural to ask under what conditions, the homogeneous fractional

integral operator TΩ,α has the same map properties on Hp(Rn) as the Riesz

potential operator Iα.

The aim of this paper is to answer the question above. First we shall

prove that if Ω satisfies some smoothness conditions on Sn−1, then TΩ,α is

bounded from Ln/α(Rn) to BMO(Rn) and from Lp(Rn) (n/α < p ≤ ∞) to a

class of the Campanato spaces Ll,λ(Rn), respectively. As its corollary, then

we verify that Stein-Weiss’s conclusion (for p = 1) and Taibleson-Weiss’s

conclusion (for n/(n + α) ≤ p < 1) hold still for TΩ,α instead of Iα.

It is worth pointing out that in the proof of our results, we use only the

dual theory on the real Hardy spaces, while the atomic-molecular decompo-

sition of Hp(Rn) is not used. Therefore, our method gives indeed another

way proving Stein-Weiss and Taibleson-Weiss’s results on Iα.

Before stating our results, let us give some definitions.

Suppose that Q = Q(x0, d) is a cube with its sides parallel to the

coordinate axes and center at x0, diameter d > 0. For 1 ≤ l ≤ ∞, −n/l ≤
λ ≤ 1, we denote

‖f‖Ll,λ
= sup

Q

1

|Q|λ/n

(
1

|Q|

∫

Q
|f(x) − fQ|l dx

)1/l

,
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where fQ = 1
|Q|

∫
Q f(y)dy. Then the Campanato spaces Ll,λ(Rn) is defined

by

Ll,λ(Rn) = {f ∈ Ll
loc(R

n) : ‖f‖Ll,λ
< ∞}.

If we identify functions that differ by a constant, then Ll,λ becomes a Banach

space with the norm ‖ · ‖Ll,λ
. It is well-known that

Ll,λ(Rn) ∼





Lipλ(Rn), for 0 < λ < 1,
BMO(Rn), for λ = 0,
Morrey space Lp,n+lλ(Rn), for − n/l ≤ λ < 0.

On the other properties of the spaces Ll,λ(Rn), we refer the reader to [9].

We say that Ω satisfies the Ls−Dini condition if Ω is homogeneous of

degree zero on R
n with Ω ∈ Ls(Sn−1) (s ≥ 1), and

∫ 1

0
ωs(δ)

dδ

δ
< ∞,

where ωs(δ) denotes the integral modulus of continuity of order s of Ω

defined by

ωs(δ) = sup
|ρ|<δ

(∫

Sn−1

|Ω(ρx′) − Ω(x′)|s dx′
)1/s

and ρ is a rotation in R
n and |ρ| = ‖ρ − I‖.

A nonnegative locally integrable function pair (u, ν) on R
n is said to

belong to A(p,∞) (1 < p < ∞), if there is a constant C > 0 such that for

any cube Q in R
n

(
ess sup

x∈Q
ν(x)

)(
1

|Q|

∫

Q
u(x)−p′dx

)1/p′

≤ C < ∞,

where p′ = p/(p − 1).

For a nonnegative locally integrable function w(x) on R
n, let us consider

the function class BMOw(Rn), the weighted version of BMO(Rn). We say

a function g ∈ BMOw(Rn), if there is a constant C > 0 such that for any

cube Q ∈ R
n,

‖g‖BMOw :=

(
ess sup

x∈Q
w(x)

)(
1

|Q|

∫

Q
|g(x) − gQ|dx

)
≤ C < ∞,

where gQ = 1
|Q|

∫
Q g(y)dy.

Now, let us formulate our results as follows. The first conclusion is

about the weighted boundedness of TΩ,α from Ln/α(un/α,Rn) to BMOν(R
n).
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Theorem 1. Let 0 < α < n, s > n/(n−α). If Ω satisfies the Ls−Dini

condition and (us′ , νs′) ∈ A(n/αs′,∞), then there is a C > 0 such that for

any cube Q ∈ R
n,

‖TΩ,αf‖BMOν ≤ C‖f‖Ln/α(un/α).(1.1)

Remark 1. Obviously, Theorem 7 in [8] is the especial example of The-
orem 1 when Ω ≡ 1, s = ∞ and u(x) = ν(x).

The following two theorems show that TΩ,α is bounded map from

Lp(Rn) (n/α < p ≤ ∞) to the Campanato spaces Ll,λ(Rn) for appropri-

ate indices λ > 0 and l ≥ 1.

Theorem 2. Let 0 < α < 1, n/α < p < ∞ and s > n/(n − α). If for

some β > α− n/p, the integral modulus of continuity ωs(δ) of order s of Ω
satisfies ∫ 1

0
ωs(δ)

dδ

δ1+β
< ∞,(1.2)

then there is a C > 0 such that for 1 ≤ l ≤ n/(n − α), ‖TΩ,αf‖L
l,n(α

n −
1
p )

≤
C‖f‖Lp .

Theorem 3. Let 0 < α < 1 and s > n/(n−α). If the integral modulus

of continuity ωs(δ) of order s of Ω satisfies

∫ 1

0
ωs(δ)

dδ

δ1+α
< ∞,(1.3)

then there is a C > 0 such that for 1 ≤ l ≤ n/(n − α), ‖TΩ,αf‖Ll,α
≤

C‖f‖L∞ .

Having the conclusions above, by the dual theory on real Hardy spaces,

we can obtain the boundedness of the operator TΩ,α acting on some real

Hardy spaces.

Theorem 4. Let 0 < α < n, s > n/(n−α). If Ω satisfies the Ls−Dini

condition, then there is a C > 0 such that

‖TΩ,αf‖Ln/(n−α) ≤ C‖f‖H1 .
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Theorem 5. Let 0 < α < 1, n/(n + α) < p < 1, 1/q = 1/p−α/n and

s > n/(n − α). If for β > n(1/p − 1), the integral modulus of continuity

ωs(δ) of order s of Ω satisfies (1.2), then there is a C > 0 such that

‖TΩ,αf‖Lq ≤ C‖f‖Hp .

Theorem 6. Let 0 < α < 1, p = n/(n + α) and s > n/(n − α). If

the integral modulus of continuity ωs(δ) of order s of Ω satisfies (1.3), then

there is a C > 0 such that

‖TΩ,αf‖L1 ≤ C‖f‖Hn/(n+α) .

Below the letter C will denote a constant not necessarily the same at

each occurrence.

§2. Boundedness of TΩ,α acting on Lp(Rn) for n/α ≤ p ≤ ∞
In this section we shall give the proofs of Theorems 1 through 3. Let

us begin with giving a lemma.

Lemma 1. Suppose that 0 < α < n, s > 1, Ω satisfies the Ls−Dini

condition. There is a constant 0 < a0 < 1/2 such that if |x| < a0R, then

(∫

R<|y|<2R

∣∣∣∣
Ω(y − x)

|y − x|n−α
− Ω(y)

|y|n−α

∣∣∣∣
s

dy

)1/s

≤ CRn/s−(n−α)

{ |x|
R

+

∫

|x|/2R<δ<|x|/R
ωs(δ)

dδ

δ

}
.

Using the similar method as proving Lemma 5 in [5], we can prove

Lemma 1. We omit the detail here.

Proof of Theorem 1. Fix a cube Q ⊂ R
n, we denote the center and the

diameter of Q by x0 and d, respectively. Writing

TΩ,αf(x) =

∫

B

Ω(x − y)

|x − y|n−α
f(y)dy +

∫
�

n\B

Ω(x − y)

|x − y|n−α
f(y)dy

:= T1f(x) + T2f(x),

where B = {y ∈ R
n; |y − x0| < d}. It is sufficient to prove (1.1) for T1f(x)

and T2f(x), respectively. Below we denote briefly ess supx∈Q ν(x) by E.
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First let us consider T1f(x). We have

E

|Q|

∫

Q
|T1f(x) − (T1f)Q|dx

≤ E

|Q|

∫

Q

∫

B

|Ω(x − y)|
|x − y|n−α

|f(y)|dydx

+
E

|Q|

∫

Q

(
1

|Q|

∫

Q

∫

B

|Ω(z − y)|
|z − y|n−α

|f(y)|dydz

)
dx

≤ 2E

|Q|

∫

B
|f(y)|

∫

Q

|Ω(x − y)|
|x − y|n−α

dxdy

≤ 2E

|Q|

∫

B
|f(y)|

∫

|x−y|<2d

|Ω(x − y)|
|x − y|n−α

dxdy.

Note that Ω(x′) ∈ Ls(Sn−1), we get
∫

|x−y|<2d

|Ω(x − y)|
|x − y|n−α

dx ≤ Cdα‖Ω‖Ls(Sn−1) ≤ C|Q|α/n‖Ω‖Ls(Sn−1).

On the other hand, by Hölder’s inequality,

∫

B
|f(y)|dy ≤

(∫

B
|f(y)u(y)|pdy

)1/p(∫

B
u(y)−p′dy

)1/p′

.

Here and below we denote p = n/α in the proof of Theorem 1. Since
p′ < s′(p/s′)′, using Hölder’s inequality again, we have

E

|Q|

∫

Q
|T1f(x) − (T1f)Q|dx(2.1)

≤ CE|Q|−1+α/n

(∫

B
|f(y)u(y)|pdy

)1/p(∫

B
u(y)−p′dy

)1/p′

≤ CE

(∫

B
|f(y)u(y)|pdy

)1/p( 1

|2√nQ|

∫

2
√

nQ
u(y)−p′dy

)1/p′

≤ CE

(∫

B
|f(y)u(y)|pdy

)1/p( 1

|2√nQ|

∫

2
√

nQ
u(y)−s′(p/s′)′dy

)1/[s′(p/s′)′]

,

where 2
√

nQ denotes the cube with the center at x0 and the diameter 2
√

nd.
By the condition (u(x)s

′

, ν(x)s
′

) ∈ A(p/s′,∞), we get

E

(
1

|2√nQ|

∫

2
√

nQ
u(x)−s′(p/s′)′dx

)1/[s′(p/s′)′]

(2.2)
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≤
{(

ess sup
x∈2

√
nQ

ν(x)s
′

)(
1

|2√nQ|

∫

2
√

nQ
(u(x)s

′

)−(p/s′)′dx

)1/(p/s′)′}1/s′

≤ C < ∞.

Therefore, by (2.1) and (2.2) we obtain

E

|Q|

∫

Q
|T1f(x) − (T1f)Q|dx ≤ C

(∫
�

n

|f(x)u(x)|pdy

)1/p

.(2.3)

Now, let us turn to the estimation for T2f(x). In this case we have

E

|Q|

∫

Q
|T2f(x) − (T2f)Q|dx(2.4)

=
E

|Q|

∫

Q

∣∣∣∣
1

|Q|

∫

Q

{∫

|y−x0|≥d
f(y)

[
Ω(x − y)

|x − y|n−α

− Ω(z − y)

|z − y|n−α

]
dy

}
dz

∣∣∣∣dx

≤ E

|Q|

∫

Q

1

|Q|

∫

Q

{ ∞∑

j=0

∫

2jd≤|y−x0|<2j+1d
|f(y)|

∣∣∣∣
Ω(x − y)

|x − y|n−α

− Ω(z − y)

|z − y|n−α

∣∣∣∣dy

}
dzdx.

By Hölder’s inequality, we get

∫

2jd≤|y−x0|<2j+1d
|f(y)|

∣∣∣∣
Ω(x − y)

|x − y|n−α
− Ω(z − y)

|z − y|n−α

∣∣∣∣dy(2.5)

≤
( ∫

2jd≤|y−x0|<2j+1d
|f(y)|s′dy

)1/s′

×
(∫

2jd≤|y−x0|<2j+1d

∣∣∣∣
Ω(x − y)

|x − y|n−α
− Ω(z − y)

|z − y|n−α

∣∣∣∣
s

dy

)1/s

.

Since
∣∣∣∣

Ω(x − y)

|x − y|n−α
− Ω(z − y)

|z − y|n−α

∣∣∣∣

≤
∣∣∣∣

Ω(x − y)

|x − y|n−α
− Ω(y − x0)

|y − x0|n−α

∣∣∣∣ +

∣∣∣∣
Ω(z − y)

|z − y|n−α
− Ω(y − x0)

|y − x0|n−α

∣∣∣∣,
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we have
( ∫

2jd≤|y−x0|<2j+1d

∣∣∣∣
Ω(x − y)

|x − y|n−α
− Ω(z − y)

|z − y|n−α

∣∣∣∣
s

dy

)1/s

≤
( ∫

2jd≤|y−x0|<2j+1d

∣∣∣∣
Ω(x − y)

|x − y|n−α
− Ω(y − x0)

|y − x0|n−α

∣∣∣∣
s

dy

)1/s

+

(∫

2jd≤|y−x0|<2j+1d

∣∣∣∣
Ω(z − y)

|z − y|n−α
− Ω(y − x0)

|y − x0|n−α

∣∣∣∣
s

dy

)1/s

:= J1 + J2.

Let us give the estimations of J1 and J2, respectively. Writing J1 as

(∫

2jd≤|y|<2j+1d

∣∣∣∣
Ω((x − x0) − y)

|(x − x0) − y|n−α
− Ω(y)

|y|n−α

∣∣∣∣
s

dy

)1/s

.

Note that x ∈ Q, if taking R = 2jd, then |x−x0| < 1
2j+1 R. Applying Lemma

1 to J1, we get

J1 ≤ C(2jd)n/s−(n−α)

{ |x − x0|
2jd

+

∫

|x−x0|/2j+1d<δ<|x−x0|/2jd
ωs(δ)

dδ

δ

}

≤ C(2jd)n/s−(n−α)

{
1

2j+1
+

∫ |x−x0|/2jd

|x−x0|/2j+1d
ωs(δ)

dδ

δ

}
.

By z ∈ Q and using similar method, we have

J2 ≤ C(2jd)n/s−(n−α)

{
1

2j+1
+

∫ |z−x0|/2jd

|z−x0|/2j+1d
ωs(δ)

dδ

δ

}
.

Since p = n/α and n/s − (n − α) = −n/[s′(p/s′)′], we get

(2jd)n/s−(n−α) ≤ C|2j+1√nQ|−1/[s′(p/s′)′].

Thus, with the estimations for J1 and J2, we have

(∫

2jd≤|y−x0|<2j+1d

∣∣∣∣
Ω(x − y)

|x − y|n−α
− Ω(z − y)

|z − y|n−α

∣∣∣∣
s

dy

)1/s

(2.6)

≤ C|2j+1√nQ|−1/[s′(p/s′)′]

{
1

2j
+

∫ |x−x0|/2jd

|x−x0|/2j+1d
ωs(δ)

dδ

δ

+

∫ |z−x0|/2jd

|z−x0|/2j+1d
ωs(δ)

dδ

δ

}
.
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On the other hand, using Hölder’s inequality again we have
(∫

2jd≤|y−x0|<2j+1d
|f(y)|s′dy

)1/s′

(2.7)

≤
(∫

2jd≤|y−x0|<2j+1d
|f(y)u(y)|pdy

)1/p

×
(∫

2jd≤|y−x0|<2j+1d
u(y)−s′(p/s′)′dy

)1/[s′(p/s′)′]

≤
(∫

�
n

|f(y)u(y)|pdy

)1/p(∫

2j+1
√

nQ
u(y)−s′(p/s′)′dy

)1/[s′(p/s′)′]

.

Since (u(x)s
′

, ν(x)s
′

) ∈ A(p/s′,∞), it is easy to see that there is a C > 0
such that for any j ≥ 0,

E

(
1

|2j+1
√

nQ|

∫

2j+1
√

nQ
u(x)−s′(p/s′)′dx

)1/[s′(p/s′)′]

(2.8)

≤
{(

ess sup
x∈2j+1

√
nQ

ν(x)s
′

)

×
(

1

|2j+1
√

nQ|

∫

2j+1
√

nQ
u(x)−s′(p/s′)′dx

)1/(p/s′)′}1/s′

≤ C < ∞.

From (2.5),(2.6),(2.7) and (2.8), we obtain

∞∑

j=0

E

∫

2jd≤|y−x0|<2j+1d
|f(y)|

∣∣∣∣
Ω(x − y)

|x − y|n−α
− Ω(z − y)

|z − y|n−α

∣∣∣∣dy

≤ C

∞∑

j=0

(∫
�

n

|f(y)u(y)|pdy

)1/p

E

(∫

2j+1
√

nQ
u(y)−s′(p/s′)′dy

)1/[s′(p/s′)′]

×|2j+1√nQ|−1/[s′(p/s′)′]

×
{

1

2j
+

∫ |x−x0|/2jd

|x−x0|/2j+1d
ωs(δ)

dδ

δ
+

∫ |z−x0|/2jd

|z−x0|/2j+1d
ωs(δ)

dδ

δ

}

≤ C

(∫
�

n

|f(y)u(y)|pdy

)1/p

×
∞∑

j=0

{
1

2j
+

∫ |x−x0|/2jd

|x−x0|/2j+1d
ωs(δ)

dδ

δ
+

∫ |z−x0|/2jd

|z−x0|/2j+1d
ωs(δ)

dδ

δ

}
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≤ C

(∫
�

n

|f(y)u(y)|pdy

)1/p{
2 + 2

∫ 1

0
ωs(δ)

dδ

δ

}

≤ C

(∫
�

n

|f(y)u(y)|pdy

)1/p

.

Combining this with (2.4), we have

E

|Q|

∫

Q
|T2f(x) − (T2f)Q|dx ≤ C

(∫
�

n

|f(x)u(x)|pdy

)1/p

.(2.9)

By (2.3) and (2.9), we complete the proof of Theorem 1.

Proof of Theorem 2. As the proof of Theorem 1, We need only to prove
(1.3) for T1 and T2, respectively. First let us consider T1f(x). We have

1

|Q|α/n−1/p

(
1

|Q|

∫

Q
|T1f(x) − (T1f)Q|ldx

)1/l

≤ 2

|Q|α/n−1/p

(
1

|Q|

∫

Q
|T1f(x)|ldx

)1/l

=
2

|Q|α/n−1/p

(
1

|Q|

∫

Q

∣∣∣∣
∫

B

Ω(x − y)

|x − y|n−α
f(y) dy

∣∣∣∣
l

dx

)1/l

≤ 2

|Q|α/n−1/p

1

|Q|1/l

∫

B
|f(y)|

( ∫

|y−x|<2d

( |Ω(x − y)|
|x − y|n−α

)l

dx

)1/l

dy.

Note that Ω(x′) ∈ Ls(Sn−1) and s > n/(n − α) ≥ l, hence

( ∫

|x−y|<2d

( |Ω(x − y)|
|x − y|n−α

)l

dx

)1/l

≤ Cdn/l−(n−α)‖Ω‖Ls(Sn−1)(2.10)

≤ C|Q|1/l−(1−α/n)‖Ω‖Ls(Sn−1).

On the other hand, by Hölder’s inequality,

∫

B
|f(y)|dy ≤ C|Q|1/p′

(∫

B
|f(y)|pdy

)1/p

≤ C|Q|1/p′‖f‖p.

Thus,

1

|Q|α/n−1/p

(
1

|Q|

∫

Q
|T1f(x) − (T1f)Q|l dx

)1/l

(2.11)

≤ C|Q|1/p−α/n−1/l+1/p′+1/l−(1−α/n)‖Ω‖Ls(Sn−1)‖f‖p ≤ C‖f‖p.
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Now, let us turn to the estimation for T2f(x). In this case we have

1

|Q|α/n−1/p

(
1

|Q|

∫

Q
|T2f(x) − (T2f)Q|l dx

)1/l

(2.12)

=
1

|Q|α/n−1/p

(
1

|Q|

∫

Q

∣∣∣∣
1

|Q|

∫

Q

{ ∞∑

j=0

∫

2jd≤|y−x0|<2j+1d
f(y)

×
[

Ω(x − y)

|x − y|n−α
− Ω(z − y)

|z − y|n−α

]
dy

}
dz

∣∣∣∣
l

dx

)1/l

.

By (2.5) and s′ < n/α < p,
∫

2jd≤|y−x0|<2j+1d
|f(y)|

∣∣∣∣
Ω(x − y)

|x − y|n−α
− Ω(z − y)

|z − y|n−α

∣∣∣∣dy(2.13)

≤
(∫

2jd≤|y−x0|<2j+1d
|f(y)|s′dy

)1/s′

(J1 + J2)

≤ C‖f‖p(2
jd)n/[s′(p/s′)′](J1 + J2).

Since the integral modulus of continuity ωs(δ) of order s of Ω satisfies (1.2)
and ∫ 1

0
ωs(δ)

dδ

δ
<

∫ 1

0
ωs(δ)

dδ

δ1+β
< ∞,

we know that Ω satisfies also the Ls−Dini condition. From Lemma 1 and
the proof of Theorem 1,

J1 + J2 ≤ C(2jd)n/s−(n−α)(2.14)

×
{

1

2j
+

∫ |x−x0|/2jd

|x−x0|/2j+1d
ωs(δ)

dδ

δ
+

∫ |z−x0|/2jd

|z−x0|/2j+1d
ωs(δ)

dδ

δ

}
.

Note that

(2jd)n/[s′(p/s′)′]+n/s−(n−α) = (2jd)n(α/n−1/p) ≤ C|Q|α/n−1/p2jn(α/n−1/p).

Moreover,

2jn(α/n−1/p)

∫ |x−x0|/2jd

|x−x0|/2j+1d
ωs(δ)

dδ

δ
(2.15)

≤ 2jn(α/n−1/p)(|x − x0|/2jd)β
∫ |x−x0|/2jd

|x−x0|/2j+1d
ωs(δ)

dδ

δ1+β

≤ C2j[n(α/n−1/p)−β]

∫ 1

0
ωs(δ)

dδ

δ1+β
.
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By 0 < α < 1 and β > α − n/p, we have n(α/n − 1/p) − 1 < 0 and
n(α/n − 1/p) − β < 0, respectively. Thus, by (2.13)–(2.15) and (1.2),

∞∑

j=0

∫

2jd≤|y−x0|<2j+1d
f(y)

[
Ω(x − y)

|x − y|n−α
− Ω(z − y)

|z − y|n−α

]
dy

≤ C‖f‖p|Q|α/n−1/p
∞∑

j=0

{
2j[n(α/n−1/p)−1] + C2j[n(α/n−1/p)−β]

∫ 1

0
ωs(δ)

dδ

δ1+β

}

≤ C‖f‖p|Q|α/n−1/p.

Combining this with (2.12), we have

1

|Q|α/n−1/p

(
1

|Q|

∫

Q
|T2f(x) − (T2f)Q|l dx

)1/l

≤ C‖f‖p.(2.16)

By (2.11) and (2.16), we complete the proof of Theorem 2.

Proof of Theorem 3. For T1f(x), by f ∈ L∞ and (2.10) we get

1

|Q|α/n

(
1

|Q|

∫

Q
|T1f(x) − (T1f)Q|ldx

)1/l

(2.17)

≤ 2

|Q|α/n

1

|Q|1/l

∫

B
|f(y)|

( ∫

|y−x|<2d

( |Ω(x − y)|
|x − y|n−α

)l

dx

)1/l

dy

≤ C|Q|−α/n−1/l+1+1/l−(1−α/n)‖Ω‖Ls(Sn−1)‖f‖∞ ≤ C‖f‖∞.

On the other hand, by f ∈ L∞ and (2.13) and (2.14),
∫

2jd≤|y−x0|<2j+1d
|f(y)|

∣∣∣∣
Ω(x − y)

|x − y|n−α
− Ω(z − y)

|z − y|n−α

∣∣∣∣dy(2.18)

≤
(∫

2jd≤|y−x0|<2j+1d
|f(y)|s′dy

)1/s′

(J1 + J2)

≤ C‖f‖∞(2jd)n/s′(2jd)n/s−(n−α)

×
{

1

2j
+

∫ |x−x0|/2jd

|x−x0|/2j+1d
ωs(δ)

dδ

δ
+

∫ |z−x0|/2jd

|z−x0|/2j+1d
ωs(δ)

dδ

δ

}
.

Note that (2jd)n/s′+n/s−(n−α) ≤ C|Q|α/n2jα, by (2.18) and (1.3),

∞∑

j=0

∫

2jd≤|y−x0|<2j+1d
f(y)

[
Ω(x − y)

|x − y|n−α
− Ω(z − y)

|z − y|n−α

]
dy(2.19)
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≤ C‖f‖∞|Q|α/n

×
∞∑

j=0

{
2j(α−1) +

(∫ |x−x0|/2jd

|x−x0|/2j+1d
ωs(δ)

dδ

δ1+α
+

∫ |z−x0|/2jd

|z−x0|/2j+1d
ωs(δ)

dδ

δ1+α

)}

≤ C‖f‖∞|Q|α/n.

Now,we may give the estimate of T2f(x). By (2.12) (taking p = ∞) and
(2.19), we have

1

|Q|α/n

(
1

|Q|

∫

Q
|T2f(x) − (T2f)Q|l dx

)1/l

≤ C‖f‖∞.(2.20)

Thus, Theorem 3 follows from (2.17) and (2.20).

§3. Boundedness of TΩ,α acting on Hp(Rn) for n/(n + α) ≤ p ≤ 1

Before giving the proofs of Theorems 4 through 6, let us recall some

definitions. Assume that 0 < p ≤ 1 ≤ q ≤ ∞, p 6= q, and s be a nonnegative

integer with s ≥ [n(1/p − 1)]. Then a function a(x) ∈ Lq(Rn) is called a

(p, q, s) atom, if there is a cube Q ⊂ R
n such that a(x) satisfies the following

conditions: (i) suppa ⊂ Q; (ii) ‖a‖Lq ≤ |Q|
1
q
− 1

p ; and (iii)
∫

a(x)xγdx = 0

for all multi-indices γ of order |γ| ≤ s. The atom Hardy spaces Hp,q,s
a (Rn)

is defined by

Hp,q,s
a (Rn) = {f ∈ S ′(Rn) : f(x)

=
∑

k

λkak(x), each ak is a (p, q, s) atom and
∑

k

|λk|p < ∞},

where S ′(Rn) denotes the tempered distribution class, and the equality in

the definition above is in the sense of distribution. Setting Hp,q,s
a (Rn) norm

of f by

‖f‖Hp,q,s
a

= inf(
∑

k

|λk|p)1/p,

where the infimum is taken over all decompositions of f(x) =
∑

k λkak(x).

Then by the theory of atomic decomposition on real Hardy spaces Hp(Rn)

(see [6] or [10], for example), we know that

Hp,q,s
a (Rn) = Hp(Rn), in the sense ‖f‖Hp,q,s

a
∼ ‖f‖Hp .(3.1)



167_02 : 2002/9/6(14:49)

30 Y. DING AND S. LU

Now let us give the definition of the dual spaces (Hp,q,s
a (Rn))∗ of Hp,q,s

a (Rn)

for 0 < p < 1. Suppose that s is a nonnegative integer, Ps denotes the set

of all polynomials with its degree ≤ s. Moreover, λ ≥ 0, 1 ≤ l ≤ ∞. Let

‖f‖Ll,λ,s
= sup

Q

1

|Q|λ/n

(
1

|Q|

∫

Q
|f(x) − (PQf)(x)|l dx

)1/l

,

where (PQf)(x) denotes the unique polynomial P (x) ∈ Ps satisfying

∫

Q
[f(x) − P (x)]h(x)dx = 0, for any h(x) ∈ Ps.

Then the Campanato space Ll,λ,s(R
n) is defined by

Ll,λ,s(R
n) = {f ∈ Ll

loc(R
n) : ‖f‖Ll,λ,s

< ∞}.

The following conclusion shows that Ll,λ,s(R
n) is the dual space of Hp(Rn).

Theorem A. ([6]) Let 0 < p ≤ 1 ≤ q ≤ ∞, p 6= q, 1/q + 1/q′ = 1
and s be a nonnegative integer with s ≥ [n(1/p− 1)]. Then (Hp,q,s

a (Rn))∗ =
Lq′,n(1/p−1),s(R

n).

Thus, by Theorem A and (3.1) we get for 0 < p < 1, 1 ≤ l ≤ ∞ and

s ≥ [n(1/p − 1)],

(Hp(Rn))∗ = Ll,n(1/p−1),s(R
n).(3.2)

Below, let us consider another space L′
l,λ,s(R

n), a version of Ll,λ,s(R
n),

which is defined by

L′
l,λ,s(R

n) = {f ∈ Ll
loc(R

n) : ‖f‖L′

l,λ,s
< ∞},

where s is a nonnegative integer, λ ≥ 0, 1 ≤ l ≤ ∞, and

‖f‖L′

l,λ,s
= sup

Q

1

|Q|λ/n

(
inf

P∈Ps

1

|Q|

∫

Q
|f(x) − P (x)|l dx

)1/l

.

If we identify functions that differ by a polynomials with its degree ≤ s,

then L′
l,λ,s(R

n) becames a Banach space with the norm ‖ · ‖L′

l,λ,s
.

In [12], it was proved that the space L′
l,λ,s(R

n) is equal to the space

Ll,λ,s(R
n) in the sense

‖f‖L′

l,λ,s
∼ ‖f‖Ll,λ,s

.
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From this and (3.2), for 0 < p < 1, 1 ≤ l ≤ ∞ and s ≥ [n(1/p − 1)], we

have

(Hp(Rn))∗ = L′
l,n(1/p−1),s(R

n).(3.3)

On the other hand, from the definitions of Ll,λ(Rn) and L′
l,λ,s(R

n), it is easy

to verify that for any nonnegative integer s and λ > 0, 1 ≤ l ≤ ∞

Ll,λ(Rn) ⊂ L′
l,λ,s(R

n), and ‖f‖L′

l,λ,s
≤ ‖f‖Ll,λ

for f ∈ Ll,λ(Rn).(3.4)

Therefore, by (3.3) and (3.4) we get for 0 < p < 1 and 1 ≤ l ≤ ∞

Ll,n( 1
p
−1)(R

n) ⊂ (Hp(Rn))∗.(3.5)

Now let us turn to the proofs of Theorem 4 through 6.

Proof of Theorem 4. Note that the dual relations (Ln/(n−α)(Rn))∗ =
Ln/α(Rn), and (H1(Rn))∗ = BMO(Rn), by (1.1) (taking u(x) = ν(x) ≡ 1),
for any f ∈ H1(Rn) we have

‖TΩ,αf‖Ln/(n−α) = sup
g

∣∣∣∣
∫

�
n

TΩ,αf(x)g(x) dx

∣∣∣∣

= sup
g

∣∣∣∣
∫

�
n

f(x)(TΩ,α)∗g(x) dx

∣∣∣∣,

where the supremum is taken over all g ∈ Ln/α(Rn) with ‖g‖Ln/α ≤ 1, and
(TΩ,α)∗ denotes the adjoint operator of TΩ,α. Obviously, we have (TΩ,α)∗ =

T �Ω,α, where Ω̃(x) = Ω(−x). It is easy to see that Ω(−x) satisfies the same

conditions as Ω(x). Thus, we know that under the conditions of Theorem
4, the conclusion of Theorem 1 holds also for Ω̃(x). Therefore,

‖TΩ,αf‖Ln/(n−α) = sup
g

∣∣∣∣
∫

�
n

f(x)(TΩ,α)∗g(x) dx

∣∣∣∣
≤ sup

g
‖f‖H1‖(TΩ,α)∗g‖BMO

≤ C sup
g

‖f‖H1‖g‖Ln/α ≤ C‖f‖H1 .

This is (1.5).

Proof of Theorem 5. By n/(n + α) < p < 1 and 1/q = 1/p − α/n, we
get 1 < q < n/(n − α) and n/α < q′ < ∞. Moreover, it is easy to verify
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that β > n(1/p− 1) is equivalent to β > α− n/q′. Thus, by Theorem 2 for
1 ≤ l ≤ n/(n − α) and the adjoint operator (TΩ,α)∗ of TΩ,α, we have

‖(TΩ,α)∗g‖L
l,n( 1

p−1)
= ‖(TΩ,α)∗g‖L

l,n( α
n −

1
q′

)
≤ C‖g‖Lq′ .(3.6)

On the other hand, by (3.5) we know that for 0 < p < 1 and 1 ≤ l ≤ ∞,
Ll,n( 1

p
−1)(R

n) ⊂ (Hp(Rn))∗. Thus, for any f ∈ Hp(Rn) (n/(n+α) < p < 1),

if taking 1 ≤ l ≤ n/(n − α) and using the idea above proving Theorem 4,
then by (3.6) and (3.4) we get

‖TΩ,αf‖Lq = sup
g

∣∣∣∣
∫

�
n

TΩ,αf(x)g(x) dx

∣∣∣∣ = sup
g

∣∣∣∣
∫

�
n

f(x)(TΩ,α)∗g(x) dx

∣∣∣∣
≤ sup

g
‖f‖Hp‖(TΩ,α)∗g‖L

l,n( 1
p−1),s

≤ sup
g

‖f‖Hp‖(TΩ,α)∗g‖L
l,n( 1

p−1)

≤ C sup
g

‖f‖Hp‖g‖Lq′ ≤ C‖f‖Hp ,

where the supremum is taken over all g ∈ Lq′(Rn) with ‖g‖Lq′ ≤ 1. Thus,
we finish the proof of Theorem 5.

Proof of Theorem 6. Finally, let us apply the idea above to give the
proof of Theorem 6. By Theorem 3, for 1 ≤ l ≤ n/(n − α) and the adjoint
operator (TΩ,α)∗ of TΩ,α, we get

‖(TΩ,α)∗g‖Ll,α
≤ C‖g‖L∞ .(3.7)

By (3.5) we know that Ll,α(Rn) ⊂ (Hp(Rn))∗ for 1 ≤ l ≤ ∞ and p = n/(n+
α). Thus, for any f ∈ Hp(Rn) (p = n/(n + α)), if taking 1 ≤ l ≤ n/(n−α),
by (3.4) and (3.7), we get

‖TΩ,αf‖L1 = sup
g

∣∣∣∣
∫

�
n

TΩ,αf(x)g(x) dx

∣∣∣∣ = sup
g

∣∣∣∣
∫

�
n

f(x)(TΩ,α)∗g(x) dx

∣∣∣∣
≤ sup

g
‖f‖Hp‖(TΩ,α)∗g‖Ll,α,s

≤ sup
g

‖f‖Hp‖(TΩ,α)∗g‖Ll,α

≤ C sup
g

‖f‖Hp‖g‖L∞ ≤ C‖f‖Hp ,

where the supremum is taken over all g ∈ L∞(Rn) with ‖g‖L∞ ≤ 1. This is
the conclusion of Theorem 6.
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