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ON ELLIPTIC CURVES IN SL2(C)/Γ, SCHANUEL’S

CONJECTURE AND GEODESIC LENGTHS
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Abstract. Let Γ be a discrete cocompact subgroup of SL2(C). We con-
jecture that the quotient manifold X = SL2(C)/Γ contains infinitely many
non-isogenous elliptic curves and prove this is indeed the case if Schanuel’s con-
jecture holds. We also prove it in the special case where Γ∩SL2(R) is cocompact
in SL2(R).

Furthermore, we deduce some consequences for the geodesic length spectra
of real hyperbolic 2- and 3-folds.

§1. Introduction

Let Γ be a discrete cocompact subgroup of SL2(C). We are interested

in closed complex analytic subspaces of the complex quotient manifold X =

SL2(C)/Γ. It is well-known that X contains no hypersurfaces and it is easy

to show that it contains no curves of genus 0. The existence of curves of

genus ≥ 2 is an unsolved problem.

On the other hand, it is not hard to show that there do exist curves of

genus one (elliptic curves). (For these assertions, see [3], [9].)

Our goal is to investigate how many different curves of genus one can

be embedded in one such quotient manifold. There are only countably

many abelian varieties which can be embedded into a quotient manifold

of a complex semisimple Lie group by a discrete cocompact subgroup ([9,

Cor. 4.6.2]). Thus the question is: Is the number of non-isomorphic elliptic

curves in such a quotient SL2(C)/Γ finite or countably infinite?
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Under the additional assumption that Γ ∩ SL2(R) is cocompact in

SL2(R) we show that there are infinitely many isogeny classes of elliptic

curves in X (Thm. 2). We will see that there do exist discrete cocom-

pact subgroups in SL2(C) with this property (Cor. 3). We conjecture that

this additional assumption (Γ ∩ SL2(R) being cocompact in SL2(R)) is not

needed and show that it can be dropped provided Schanuel’s conjecture is

true (see Cor. 2).

In order to show that there are infinitely many non-isogenous elliptic

curves, one first has to construct elliptic curves and then one has to investi-

gate under which conditions they are isogenous. There is a well-known way

to construct elliptic curves in X = SL2(C)/Γ, going back to ideas of Mostow

([4]). In fact every elliptic curve in X arises in this way ([3]). This method

works as follows: If γ ∈ Γ is a semisimple element of infinite order, then the

centralizer C = {g ∈ SL2(C) : gγ = γg} is isomorphic to C∗ as a complex

Lie group and C ∩Γ is a discrete subgroup containing γ and therefore com-

mensurable with {γk : k ∈ Z}. The quotient of C∗ by an infinite discrete

subgroup is necessarily compact. Hence for every semisimple element γ ∈ Γ

of infinite order we obtain an elliptic curve E ⊂ X = SL2(C)/Γ which arises

as orbit of the centralizer C. Moreover, this elliptic curve E ' C/(C ∩ Γ)

is isogenous to C/〈γ〉 and therefore isogenous to C∗/〈λ〉 where λ and λ−1

are the eigenvalues of the matrix γ ∈ SL2(C).

Thus our problem is to investigate how many different eigenvalues occur

and under which circumstances different eigenvalues lead to non-isogenous

elliptic curves.

First we show that for every Zariski-dense subgroup Γ ⊂ SL2(C) there

are infinitely many pairwise multiplicatively independent complex numbers

occuring as eigenvalues for elements of Γ (Thm. 1).

We conjecture that, if the eigenvalues are algebraic numbers (this is

known to be the case if Γ is cocompact), then multiplicatively independent

eigenvalues always lead to non-isogenous elliptic curves. We can prove that

this conjecture holds if Schanuel’s conjecture from transcendental number

theory is true.

Even without assuming Schanuel’s conjecture to be true we can prove

the existence of infinitely many non-isogenous elliptic curves in the case

where the eigenvalues are real.

In this way we obtained the desired result in the special case where the

intersection Γ ∩ SL2(R) is cocompact in SL2(R).
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Using an arithmetic construction one can show that discrete cocompact

subgroups Γ for which Γ∩ SL2(R) is cocompact in SL2(R) do indeed exist.

These results on elliptic curves in SL2(C)/Γ can be related to questions

on the length of closed geodesics on real hyperbolic manifolds of dimension

2 or 3. More precisely, let M be a compact real Riemannian manifold

(without boundary) of dimension 2 or 3 which carries a Riemannian metric

of constant negative curvature. Let Λ be set of all positive real numbers

occuring as length of a closed geodesic on M . Then Λ contains infinitely

many elements which are pairwise linearly independent over Q (Thm. 3).

§2. Multiplicatively independent eigenvalues

2.1. Announcement of Theorem 1

Definition. Two non-zero elements x, y in a field k are called multi-

plicatively dependent if there exists a pair (p, q) ∈ Z×Z \ {(0, 0)} such that
xq = yp.

They are called multiplicatively independent if they are not multiplica-
tively dependent.

By this definition a root of unity is multiplicatively dependent with ev-

ery other element of k∗. Thus, if x, y ∈ k∗ are multiplicatively independent,

this implies in particular that neither x nor y is a root of unity.

Note that being multiplicatively dependent is an equivalence relation

on the set of all elements of k∗ which are not roots of unity.

The purpose to of this section is to prove the following theorem:

Theorem 1. Let Γ be a subgroup of SL2(C) which is dense in the

algebraic Zariski topology.

Then there exists infinitely many pairwise multiplicatively independent

complex numbers λ which occur as eigenvalues for elements of Γ.

2.2. A fact from combinatorics

As a preparation for the proof of Thm. 1 we need a combinatorial fact.

Lemma 1. Let S be a finite set, φ : N → S a map.

Then there exists a natural number N ≤ #S and an element s ∈ S
such that

As,N = {x ∈ N : φ(x) = s = φ(x + N)}
is infinite.
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Proof. Assume the contrary. Then As,N is a finite set for all s ∈ S,
1 ≤ N ≤ #S. Hence there is a number M ∈ N such that x < M for all
x ∈ ⋃s∈S

⋃

N≤#S As,N .
But this implies that φ(M + i) 6= φ(M + j) for all 0 ≤ i < j ≤ #S,

which is impossible by the pigeon-hole principle.

2.3. Roots in finitely generated fields

We need the following well-known fact on finitely generated fields.

Lemma 2. Let K be a finitely generated field extension of Q.

Then for every element x ∈ K one of the properties hold :

• x = 0,
• x is an invertible algebraic integer (i.e. a unit) or

• there exists a discrete valuation v : K∗ → Z with v(x) 6= 0.

For the convenience of the reader we sketch a proof.

Proof. Let K0 denote the algebraic closure of Q in K. Then K0 is a
number field and K can be regarded as function field of a projective variety
V defined over K0. Let f ∈ K. If f 6∈ K0, then f is a non-constant rational
function and therefore there is a discrete valuation given by the pole/zero-
order along a hypersurface which does not annihilate f . If f ∈ K0, then
either f = 0, or f is a unit, i.e. an invertible algebraic integer or an extension
of a p-adic valuation is non-zero for f .

Let K be a field and WK the group of roots of unity contained in K.

Let x ∈ K∗. We want to measure up to which degree d it is possible to find

a d-th root of x in K (modulo WK). For this purpose we define

ρK(x) = sup{n ∈ N : ∃α ∈ K : αnx−1 ∈ WK} ∈ N ∪ {∞}.

Lemma 3. Let K be a finitely generated field extension of Q and x ∈
K∗. Then ρK(x) < ∞ unless x is a root of unity.

Proof. Let x be an element of K∗ which is not a root of unity. First we
discuss the case in which there exists a discrete valuation v : K ∗ → Z with
v(x) 6= 0. In this case αnx−1 ∈ WK for α ∈ K implies v(α) = 1

n v(x) ∈ Z.
Therefore ρK(x) ≤ |v(x)| in this case.

Now let us discuss the case where every discrete valuation on K anni-
hilates x. By Lemma 2, this implies that x is contained in the algebraic
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closure K0 of Q in K and moreover that x ∈ O∗
K0

, i.e. x is an invertible
algebraic integer. Assume that there are elements α ∈ K, w ∈ WK and
n ∈ N such that αn = xw. Then αnN = xN for some N ∈ N. As a conse-
quence, α is integral over OK0 . Similarily, α−nN = x−N implies that α−1 is
integral over OK0 . Thus we obtain: If αnx−1 ∈ WK for some α ∈ K and

n ∈ N, then α ∈ O∗
K0

.
Therefore

ρK(x) = sup{n ∈ N : ∃α ∈ O∗
K0

: αnx−1 ∈ WK}.

A theorem of Dirichlet states that O∗
K0

is a finitely generated abelian group

(with respect to multiplication). Thus O∗
K0

/WK ' Zd for some d ∈ N. This
implies ρK(x) < ∞.

Lemma 4. Let K be a field, x ∈ K∗ with ρK(x) < ∞. Assume that

there are integers p ∈ Z, q ∈ Z \ {0} and an element β ∈ K ∗ such that

βqx−p ∈ WK.

Then
p
q ρK(x) ∈ Z.

Proof. Let n = ρK(x). Assume that p
q n 6∈ Z and let Γ denote the

additive subgroup of Q generated by 1/n and p/q. Now 1
n Z ( Γ, hence

there is a natural number N > n such that Γ = 1
N Z. Since Γ is generated

by 1/n and p/q, there are integers k,m ∈ Z such that

k
1

n
+ m

p

q
=

kq + nmp

nq
=

1

N
.

Since n = ρK(x), there is an element α ∈ K∗ with αnx−1 ∈ WK . Now we
define

γ = αkβm.

We claim that γNx−1 ∈ WK . Indeed, since N = nq/(kq + nmp), this
condition is equivalent to γnqx−kq−nmp ∈ WK which can be verified as
follows:

γnqx−kq−nmp = αknqβmnqx−kq−nmp =
(

αnx−1
)kq(

βqx−p
)nm ∈ WK .

But γNx−1 ∈ WK implies ρK(x) ≥ N , contradicting N > n = ρK(x).
Thus we see that p/q must be contained in 1

n Z.

The statement of the lemma may be reformulated in the following way:
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Corollary 1. Let K be a field, x ∈ K∗ with ρK(x) < ∞. Let

ΘK,x =

{

p

q
∈ Q : ∃β ∈ K∗ : βqx−p ∈ WK

}

.

Then ΘK,x is a discrete subgroup of (Q,+), generated by 1/ρK(x).

Next we verify that the behaviour of ρK(x) under finite field extensions

is as to be expected.

Lemma 5. Let L/K be a finite field extension of degree d and x ∈ K ∗

with ρK(x) < ∞.

Then there exists a natural number s which divides d such that ρL(x) =
sρK(x).

Proof. In the notation of Cor. 1 ΘK,x is a subgroup of ΘL,x.
On the other hand, if there is an element β ∈ L∗ and a natural number

n such that βnx−1 ∈ WL, then

NL/K(βnx−1) =
(

NL/K(β)
)n

x−d ∈ WK

and consequently d
n ρK(x) ∈ Z (Lemma 4). Thus 1/n ∈ 1

ρL(x) Z implies

1/n ∈ 1
dρK(x) Z.

Combined, these facts yield

1

ρK(x)
Z ⊂ 1

ρL(x)
Z ⊂ 1

dρK(x)
Z.

This implies the statement of the lemma.

2.4. An auxiliary proposition

Proposition 1. Let K be a finitely generated field extension of Q, K̄
an algebraic closure, S a finite subset of K∗ and Λ ⊂ K̄∗ a subset such that

the following properties are fulfilled :

(1) deg K(λ)/K ≤ 2 for every λ ∈ Λ,

(2) for every λ ∈ Λ there exists an element µ ∈ S and integers p, q ∈
Z \ {0} such that λp = µq.

Then there exists a finite subgroup W ⊂ K̄∗ and a finite subset S ′ ⊂ K̄∗

such that for every λ ∈ Λ there exists an element α ∈ S ′, an integer N ∈ Z

and an element w ∈ W such that αNw = λ.

Moreover, the set S ′ can be chosen in such a way that none of its

elements is a root of unity.
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Proof. For each element µ ∈ S which is not a root of unity we choose
an element αµ ∈ K̄∗ such that

(αµ)2ρK(µ) = µ.

Let S′ be the set of all these elements αµ. Evidently none of these elements
αµ is a root of unity. Let L denote the field generated by K and the elements
of S′. Note that L is a finitely generated field. Let L0 denote the algebraic
closure of Q in L. Then L0 is a number field. Let d0 denote its degree (over
Q). Recall that for any natural number, in particular for 2d0, there are only
finitely many roots of unity of degree not greater than this number. Let W
be the set of all roots of unity w in K̄∗ for which deg(L(w)/L) ≤ 2. Then
deg(Q(w)/Q) ≤ 2d0 for every w ∈ W . Therefore W is is a finite group.
By construction it contains every root of unity which is in L(λ) for some
λ ∈ Λ.

Now choose an arbitrary element λ ∈ Λ. If λ is a root of unity, it is
contained in W implying that λ = α0w for w = λ and α arbitrary. Thus we
may assume that λ is not a root of unity. There are integers p, q ∈ Z \ {0}
and an element µ ∈ S such that λp = µq. Since λ is not a root of unity, this
implies that neither µ can be a root of unity. Thus ρK(µ) < ∞ (Lemma 3)

and there is an element αµ ∈ S′ with α
2ρK(µ)
µ = µ.

By Lemma 4 the equality µq = λp implies

q

p
ρK(λ)(µ) ∈ Z.

Thanks to Lemma 5 we know that either ρK(λ)(µ) = ρK(µ) or ρK(λ)(µ) =
2ρK(µ). In both cases it follows that

2
q

p
ρK(µ) ∈ Z.

In other words, there is an integer N ∈ Z such that 2qρK(µ) = pN . There-
fore

(αN
µ )p = αpN

µ = α2qρK (µ)
µ = µq = λp.

Hence
(

α−N
µ λ

)p
= 1. Let w = α−N

µ λ. Then w is a root of unity which is
contained in the field L(λ). It follows that w ∈ W . Thus we have verified
that there exist elements α ∈ S ′, N ∈ Z and w ∈ W such that αNw = λ.
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2.5. Proof of Theorem 1

Proof. If Γ is a Zariski-dense subgroup of SL2(C), then Γ contains a
finitely generated torsion-free subgroup Γ0 which is still Zariski-dense (see
[9, Lemma 1.7.12 and Prop. 1.7.2]). Fix a finite set E of generators of Γ0.
Let k be the field generated by all the matrix coefficients of elements of E.
Then k is a finitely generated extension field of Q and Γ0 ⊂ SL2(k).

Let Λ be the set of all complex numbers other than 1 and −1 occuring
as an eigenvalue for an element γ ∈ Γ0. We observe that a number λ ∈
C∗ \ {1,−1} is contained in Λ if and only if there exists an element A ∈ Γ0

such that Tr(A) = λ + λ−1. Since Γ0 is Zariski dense, the set

{Tr (A) : A ∈ Γ0}

is Zariski dense in C. It follows that Λ is an infinite set.

We claim that Λ contains no root of unity. Indeed, assume that a root
of unity ω is contained in Λ. Then ω 6= 1,−1 and consequently ω 6= ω−1.
Therefore every element A ∈ SL2(C) with ω as an eigenvalue is conjugate
to

(

ω
ω−1

)

.

As a consequence, such a matrix A is of finite order. This contradicts the
assumption that Γ0 is torsion-free. Thus Λ can not contain any root of
unity.

Let Σ denote the set of all complex numbers which are roots of unity.
As remarked before, the notion of “multiplicative dependence” defines an
equivalence relation on C∗ \ Σ.

Let us assume that the statement of the theorem fails. Since Λ ⊂ C∗\Σ
and since “multiplicative dependence” defines an equivalence relation on
C∗ \Σ, it follows that there is a finite set S and complex numbers (µi)i∈S ∈
C∗ \ Σ such that for every λ ∈ Λ there exists an index i ∈ S and non-zero
integers p, q ∈ Z \ {0} with λp = µq

i .

Let K denote the field generated by k and all the elements µi (i ∈ S).
Recall that every element of Λ is an eigenvalue for a matrix in SL2(k) ⊂
SL2(K). Therefore deg(K(λ)/K) ≤ 2 for every λ ∈ Λ.

We may now invoke Proposition 1.

Thus we obtain the following statement: There are finitely many com-

plex numbers (αi)i∈S′ , none of which is a root of unity, and a finite subgroup

W of the multiplicative group C∗ such that for every λ ∈ Λ there are i ∈ S ′,

n ∈ Z and w ∈ W such that λ = αn
i w.
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Evidently we may assume that the numbers αi are pairwise multiplica-
tively independent. Thus we make this assumption.

By adjoining all the elements of W and all the αi (i ∈ S′) to K, we
also may deduce that in this case there exists a finitely generated field L
containing all the αi (i ∈ S′) and all λ ∈ Λ and w ∈ W .

Let λ ∈ Λ, ζ ∈ S ′, q ∈ Z \ {0} and w0 ∈ W such that λ = w0α
q
ζ .

Then, after replacing Γ0 by gΓg−1 for an appropriately chosen g ∈
SL2(C), we obtain

Γ0 3 γ =

(

λ
λ−1

)

=

(

w0α
q
ζ

w−1
0 α−q

ζ

)

.

By the assumption of Zariski density Γ0 must also contain an element
δ ∈ Γ0 which does not commute with γ. Let

δ =

(

a c
b d

)

be such an element. By the assumption of Zariski density of Γ0 we may
and do require that a, d 6= 0.

Let gn = γnδ for n ∈ N.
Using Lemma 1, we conclude that there exists a natural number N ,

an infinite subset A ⊂ N, an index ξ, an element w̃ ∈ W and sequences

of non-zero integers mk,m
′
k ∈ Z \ {0} such that w̃αmk

ξ resp. w̃α
m′

k
ξ is an

eigenvalue of gk resp. gk+N for all k ∈ A. Moreover, we may assume that
all the numbers mk and m′

k have the same sign.
Since w0 is a root of unity, we may invoke the pigeon-hole principle in

order to deduce that (by replacing A with an appropriate smaller set) we
may assume that there is an element w1 ∈ W such that wk

0 = w1 for all
k ∈ A. Let w2 = w1w

N
0 . Then w2 = wk+N

0 for all k ∈ N.
Now recall that for an element g ∈ SL2(C) with eigenvalues λ, λ−1 we

have Tr(g) = λ + λ−1.
It follows that

(1) Tr (γkδ) = w1α
qk
ζ a + w−1

1 α−qk
ζ d = w̃αmk

ξ + w̃−1α−mk
ξ

and

(2) Tr(γk+Nδ) = w2α
q(k+N)
ζ a + w−1

2 α
−q(k+N)
ζ d = w̃α

m′

k
ξ + w̃−1α

−m′

k
ξ

for all k ∈ A.
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Recall that αζ is contained in the finitely generated field L and is not
a root of unity. Therefore there exists an absolute value | | on L such
that |αζ | 6= 1. In what follows, | | always denotes this (possibly non-
archimedean) absolute value on L.

Using |αζ | 6= 1 and a, d, q 6= 0 we obtain

lim
k→∞

∣

∣

∣
w1α

qk
ζ a + w−1

1 α−qk
ζ d

∣

∣

∣
= +∞.

Combined with eq. (1), this yields

lim
k→∞

∣

∣

∣
w̃αmk

ξ + w̃−1α−mk
ξ

∣

∣

∣
= +∞.

This is only possible if |αξ | 6= 1.
Without loss of generality we may assume that |αζ |, |αξ | > 1, q > 0 and

mk,m
′
k > 0 for all k ∈ A.

Then
lim

k→∞
α−qk

ζ = 0 = lim
k→∞

α−mk
ξ = lim

k→∞
α
−m′

k
ξ .

It follows that the quotient of the respective left hand sides of the equations
(2) and (1) converges to αqN

ζ
w2
w1

. Evidently the quotient of the respective
right hand sides converges to the same value. Hence:

αqN
ζ

w2

w1
= lim

k→∞,k∈A
α

m′

k−mk

ξ .

The set {αn
ξ : n ∈ Z} is discrete in L∗, because |αξ| 6= 1. Therefore

αqN
ζ

w2

w1
= α

m′

k−mk

ξ

for all sufficiently large k in A.
Recall that q,N 6= 0 and w1, w2 ∈ W . It follows that αζ and αξ are

multiplicatively dependent. But we assumed the numbers (αj)j∈S to be
multiplicatively independent. Therefore ξ = ζ.

By considering the quotient of the right hand side of eq. (1) and its left
hand side, we obtain:

1 = lim
k→∞,k∈A

w̃

w1a
αmk−qk

ξ .

Therefore:

(3) a = lim
k→∞,k∈A

w̃

w1
αmk−qk

ξ
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and consequently

a =
w̃

w1
αmk−qk

ξ

for all sufficiently large k in A.

Together with eq. (1) this implies that

w1α
qk
ξ a = w̃αmk

ξ and w−1
1 α−qk

ξ d = w̃−1α−mk
ξ .

Combining these two equalities we obtain ad = 1. Now recall that δ was an
arbitrarily chosen element in the intersection of Γ0 with the Zariski open
subset

Ω =

{

A =

(

a c
b d

)

∈ SL2 : a, d 6= 0, Aγ 6= γA

}

.

Note that the condition Aγ = γA implies that A is a diagonal matrix
and therefore implies that ad = 1.

Thus we have deduced: Every element of Γ0 is contained in the alge-

braic subvariety

{(

a c
b d

)

∈ SL2 : ad = 1 or ad = 0

}

.

But this contradicts the assumption that Γ0 is Zariski-dense.

2.6. On the absolute values of eigenvalues

For our main goal (i.e. studying elliptic curves in quotients of SL2(C))

we need only to consider the eigenvalues. However, from the point of view

of possible applications to the study of geodesic length spectra of real hy-

perbolic manifolds (see Section 6 below) it might be interesting to deduce a

similar result for the absolute values of the eigenvalues. This is the purpose

of this subsection.

Proposition 2. Let Γ be a subgroup of SL2(C) which is dense in the

algebraic Zariski topology.

Then there exist infinitely many pairwise multiplicatively independent

positive real numbers which occur as the absolute value of an eigenvalue for

an element of Γ.

Proof. First we note that |z| =
√

zz̄ for any complex number. Using
this fact, it is clear that for every finitely generated subgroup Γ of SL2(C)
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there is a finitely generated field k such that every absolute value of an
eigenvalue for an element of Γ is contained in a finite extension field of
degree at most 4 over k: We just have to take k to be the extension field
of Q generated by all the coefficients and their complex conjugates for all
elements in some fixed finite set of generators for Γ.

Thus the arguments in the proof of the preceding theorem can be ap-
plied to deduce the following conclusion:

Either the statement of the proposition holds,

or (after conjugation with an appropriate element of SL2(C)) we have

Γ ⊂
{(

a b
c d

)

∈ SL2(C) : |ad| ∈ {0, 1}
}

.

The condition |ad| ∈ {0, 1} is equivalent to |ad|2 ∈ {0, 1} which is a
real algebraic condition.

Hence we have to discuss the real algebraic Zariski topology. This is
the topology whose closed sets are given as the zero sets of polynomials in
the complex coordinates and their complex conjugates.

Since Γ is Zariski-dense, the real Zariski -closure S of Γ in SL2(C) is
either the whole of SL2(C) or a real form of SL2(C). Now |ad|2 ∈ {0, 1}
defines a real algebraic subset of SL2(C). Hence the real Zariski closure
S of Γ cannot be the whole of SL2(C). Furthermore, since Γ is discrete
and infinite, S cannot be compact. Thus S must be conjugate to SL2(R).
However, this leads to a contradiction thanks to the lemma below.

Lemma 6. There is no element A ∈ SL2(C) such that

A · SL2(R) · A−1 ⊂
{(

a b
c d

)

∈ SL2(C) : |ad| ∈ {0, 1}
}

.

Proof. Let ρ : SL2(C) → R denote the function given by

ρ

(

a b
c d

)

= |ad|.

Now let us assume that the assertion of the lemma is wrong. In other words:
we assume that there exists an element

A =

(

x y
z w

)

∈ SL2(C)
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such that ρ(g) ∈ {0, 1} for every g ∈ A · SL2(R) · A−1.
Since SL2(R) is connected, this implies that ρ is constant, and its value

either 0 or 1.
However, ρ cannot be constantly zero, because |ad| = 0 is equivalent

to ad = 0 and this is a complex algebraic condition. Thus {g ∈ SL2(C) :
ρ(g) = 0} is a complex algebraic subvariety and therefore cannot contain
the group A · SL2(R) · A−1 which is dense in SL2(C) with respect to the
complex Zariski topology.

This leaves the case where ρ is constantly 1.
Here explicit calculations show the following:

ρ

(

A ·
(

1 t
0 1

)

· A−1

)

= |1 − (txz)2|,

and

ρ

(

A ·
(

1 0
t 1

)

· A−1

)

= |1 − (tyw)2|.

Thus xz and yw are complex numbers with the property that

|1 − (txz)2| = 1 = |1 − (tyw)2|

for every real number t. This implies xz = yw = 0. But now

ρ

(

A ·
(

1 1
−1 0

)

· A−1

)

= |(xw − yw − xz)(−yz + yw + xz)|

= | − xwyz| = 0 6= 1

and we obtain a contradiction to the assumption that ρ(ABA−1) = 1 for
all B ∈ SL2(R).

§3. Equivalence of elliptic curves

3.1. Isogeny criteria

An elliptic curve is a one-dimensional abelian variety, or, equivalently

a projective smooth algebraic curve of genus 1 (with a basepoint). There

are two natural equivalence relations between elliptic curves: isomorphism

(as algebraic variety) or isogeny. Two varieties V and W are isogenous if

there exists a variety Z and unramified coverings π : Z → V , ρ : Z → W .

Over the field of complex numbers, every elliptic curve can be realized

as the complex quotient manifold C/〈1, τ〉Z where τ ∈ H+ = {z : =(z) > 0}.
Two elements τ, τ ′ ∈ H+ define isomorphic resp. isogenous elliptic curves if
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both are contained in the same SL2(Z)- resp. GL+
2 (Q)-orbit for the action

on H+ given by
(

a b
c d

)

: z 7−→ az + b

cz + d
.

Here GL+
2 (Q) denotes the subgroup of GL2(Q) containing all elements with

positive determinant.

We need some reformulations of these criteria.

Lemma 7. Let Λ, Γ be lattices in C, and ΛQ = Λ ⊗ Q, ΓQ = Γ ⊗ Q.

Consider the natural map Φ : ΛQ⊗Q ΓQ → C induced by the inclusion maps

Γ ↪→ C, Λ ↪→ C.

Then C/Λ and C/Γ are isogenous iff dimQ ker Φ > 0.

Proof. We may assume Γ = 〈1, τ〉Z, Λ = 〈1, σ〉Z. The kernel ker Φ is
positive-dimensional iff there is a linear relation

a + bτ + cσ + dτσ = 0

with (a, b, c, d) ∈ Q4 \ {(0, 0, 0, 0)}. Using σ, τ ∈ H+, one verifies that

−
(

a b
c d

)

∈ GL+
2 (Q).

Thus

σ = − a + bτ

c + dτ
= −

(

a b
c d

)

(τ),

i.e. dimkerΦ > 0 iff τ and σ are contained in the same GL+
2 (Q)-orbit.

Lemma 8. For a lattice 〈α, β〉Z = Λ ⊂ C let KΛ denote the subfield of

C given by KΛ = Q(α/β).
Then KΛ depends only on Λ and not of the choice of the basis (α, β).
Let Λ and Λ̃ be lattices in C.

If trdeg KΛ/Q > 0, then C/Λ and C/Λ̃ are isogenous elliptic curves if

and only if KΛ = KΛ̃.

Proof. The independence of the choice of the basis is easily verified.
Furthermore, without loss of generality we may assume Λ = 〈1, τ〉 and

Λ̃ = 〈1, σ〉 for some τ, σ ∈ H+. Now the statement follows from the fact
that for transcendental complex numbers τ, σ we have Q(τ) = Q(σ) iff there
are rational numbers a, b, c, d such that τ = (a + bσ)/(c + dσ).

Thus Q(τ) = Q(σ) iff σ and τ are in the same GL+
2 (Q)-orbit in H+.
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3.2. Conjectures

We now formulate a conjecture about an isogeny criterion for certain

elliptic curves:

Conjecture A. Let α1, α2 ∈ C be algebraic numbers with |αi| > 1.
Let Ei be the quotient manifold C∗/{αk

i : k ∈ Z}. Then the following

conditions are equivalent :

(i) The numbers α1, α2 are multiplicatively dependent (in the sense of

Def. 2.1).

(ii) The elliptic curves E1 and E2 are isogenous.

We reformulate the above conjecture into terms of group actions on the

upper half plane H+.

Conjecture A′. Let

B+(Q) =

{(

a b
0 1

)

: a ∈ Q+, b ∈ Q

}

.

Let β1, β2 ∈ H+ and assume that both e2πiβ1 and e2πiβ2 are algebraic.

Then the following conditions are equivalent :

(i′) The number β1, β2 ∈ H+ are contained in the same B+(Q)-orbit.

(ii′) The number β1, β2 ∈ H+ are contained in the same GL+
2 (Q)-orbit.

We may further reformulate this conjecture in a number-theoretic fash-

ion:

Conjecture A′′. Let β1, β2 ∈ H+ and assume that both e2πiβ1 and

e2πiβ2 are algebraic. Then the following conditions are equivalent :

(i′′) dimQ〈1, β1, β2〉 < 3.

(ii′′) dimQ〈1, β1, β2, β1β2〉 < 4.

Let us verify that these conjectures are equivalent:

Proposition 3. Let β1, β2 ∈ H+ and define αj = e2πiβj (j = 1, 2).
Assume that α1, α2 ∈ Q̄.

The conditions (i), (i′) and (i′′) in the preceding conjectures are all

equivalent. Similarily the conditions (ii), (ii′) and (ii′′) are equivalent.

Therefore the Conjectures A, A′ and A′′ are equivalent.
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Proof. Since =(βj) > 0, the condition dimQ〈1, β1, β2〉 < 3 implies that
there exists a ∈ Q+, d ∈ Q such that β1 = aβ2 + d. Furthermore, there
are numbers (a, d) ∈ Q+ × Q with β1 = aβ2 + d if and only if there are
integers n,m ∈ Z \ {(0)} such that 2πi(nβ1 − mβ2) ∈ 2πiZ. Using these
observations, it is easy to verify (i) ⇐⇒ (i′) ⇐⇒ (i′′).

The equivalence (ii) ⇐⇒ (ii′) is standard, while the equivalence
(ii) ⇐⇒ (ii′′) is a consequence of Lemma 7.

Next we prove that these three equivalent conjectures of ours are true

provided the famous Schanuels conjecture is right.

Proposition 4. The three equivalent conjectures above hold, if

Schanuels conjecture is true.

Schanuels Conjecture is the far-reaching conjecture from transcendental

number theory which encompasses many important conjecture in this area.

It states the following:

Schanuel’s Conjecture. If x1, . . . , xn are Q-linearly independent

complex numbers, then the transcendence degree of Q(x1, . . . , xn, ex1 , . . . ,
exn) over Q is at least n.

Now we prove the proposition.

Proof. Indeed, let x1 = 2πi, x2 = log α1, x3 = log α2. Schanuels
conjecture then implies that either

(1) dimQ〈2πi, log α1, log α2〉 ≤ 2, or

(2) 2πi, log α1, log α2 are all three algebraically independent.

Since < log αi = log |αi| > 0 (recall that we assumed |αi| > 1) for
i = 1, 2, in the first case there exist integers n,m ∈ Z \ {0} such that
αn

1 = αm
2 , i.e. α1 and α2 are multiplicatively dependent.

In the second case we can conclude that log α1/2πi and log α2/2πi are
both transcendental and Q(log α1/2πi) 6= Q(log α2/2πi). Hence C∗/〈α1〉 is
not isogenous to C∗/〈α2〉 in this case.

Thus we have shown that either α1 and α2 are multiplicatively depen-
dent, or C∗/〈α1〉 must be isogenous to C∗/〈α2〉.

Remark. Actually we do not use Schanuels conjecture in its full streng-
th, but only a special case of it. However, even the special statement we
need is not yet proven.
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§4. Elliptic curves in SL2(C)/Γ

Let Γ be a discrete cocompact subgroup of SL2(C) and X = SL2(C)/Γ

the quotient manifold. We are interested in elliptic curves embedded into

X. Every elliptic curve embedded into X is an orbit of a reductive Lie

subgroup H of SL2(C) with H ' C∗ (see [9]). Conversely, if H is a Lie

subgroup of SL2(C) with H ' C∗ and #(H ∩ Γ) = ∞, then H/(H ∩ Γ) is

an elliptic curve embedded into X as an H-orbit. If γ ∈ Γ is an element of

infinite order in a discrete cocompact subgroup Γ, then γ is a semisimple

element of SL2(C), and the connected component of the centralizer

C(γ) = {g ∈ SL2(C) : gγ = γg}

is such a Lie subgroup of SL2(C) which has an elliptic curve as a closed orbit

in X. Moreover this elliptic curve is isogenous to the quotient manifold of

C∗ by the infinite cyclic subgroup generated by λ where λ is an eigenvalue

of γ ∈ SL2(C).

These facts (for which we refer to [9]) establish the relationship between

isogeny classes of elliptic curves embedded in X on one side and eigenvalues

of elements of Γ on the other side.

Proposition 5. If Conjecture A holds, then for every discrete cocom-

pact subgroup Γ ⊂ SL2(C) there exist infinitely many isogeny classes of

elliptic curves embedded in X = SL2(C)/Γ.

Proof. If Γ is discrete and cocompact in SL2(C), then it must be
Zariski-dense. Hence by Thm. 1 there are infinitely many complex numbers
λ1, λ2, . . . which are pairwise multiplicatively independent and which occur
as eigenvalue for elements γ1, γ2, . . . in Γ.

Being multiplicatively independent implies in particular that none of
these numbers λi is a root of unity.

Furthermore, Γ is conjugate to a subgroup of SL2(k) for some number
field k (see [5, Thm. 7.67]), hence all the numbers λi are algebraic numbers.

Let Hi be the centralizer of γi in SL2(C). An element of SL2(C) with
an eigenvalue different from 1 and −1 is semisimple. Hence Hi ' C∗. Now
Hi ∩ Γ is discrete and contains the element γi. Because λi is not a root of
unity, γi is of infinite order. It follows that 〈γi〉 ' Z and that Hi/(Γ ∩ Hi)
is an elliptic curve which is isogenous to C∗/〈λi〉.

Thus the quotients Hi/(Γ ∩ Hi) are elliptic curves embedded in X =
SL2(C)/Γ and, provided Conj. A holds, these elliptic curves are pairwise
non-isogenous since the λi are pairwise multiplicatively independent.
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In particular:

Corollary 2. If Schanuel’s conjecture holds, then for every discrete

cocompact subgroup Γ ⊂ SL2(C) there exists infinitely many isogeny classes

of elliptic curves embedded in X = SL2(C)/Γ.

4.1. The case where Γ ∩ SL2(R) is Zariski dense

Theorem 2. Let Γ be a discrete subgroup of SL2(C) and assume that

Γ ∩ SL2(R) is Zariski-dense in SL2.

Then there exists infinitely many isogeny classes of elliptic curves em-

bedded in X = SL2(C)/Γ.

Proof. By Thm. 1 there are infinitely many pairwise multiplicatively
independent complex numbers λi occuring as eigenvalues for elements γ ∈
Γ ∩ SL2(R). None of these λi is a root of unity.

If λ is an eigenvalue for a matrix SL2(R), then either λ is real or |λ| = 1.
If λ is an eigenvalue for an element of a discrete subgroup of SL2(R) with
|λ| = 1, then λ must be a root of unity.

Since none of the λi is a root of unity, it follows that all the numbers
λi are real.

Thus there are infinitely many elliptic curves Ei in X = SL2(C)/Γ
which are isogenous to C∗/〈λi〉 where the numbers λi are all real and pair-
wise multiplicatively independent.

We claim that at most two of these Ei can be isogenous. Assume the
converse, i.e., let λi, λj and λk be pairwise multiplicatively independent
real numbers larger than 1 such that the three elliptic curves Ei, Ej and
Ek are all isogenous.

Note that Ei = C/〈2πi, log λi〉 and similarily for Ej and Ek. Isogeny of
Ei and Ej implies that there is a Q-linear relation between 4π2, log λi log λj,
2πi log λi and 2πi log λj (see Lemma 7). Now 4π2 ∈ R and log λi log λj ∈ R,
while 2πi log λi and 2πi log λj are Q-linearly independent elements of iR.
Therefore a Q-linear relation can only exists if 4π2/(log λi log λj) ∈ Q.

Similarily the existence of an isogeny of between Ej and Ek implies
4π2/(log λj log λk) ∈ Q.

Combined, this yields (log λi log λj)/(log λj log λk) = log λi/ log λk ∈
Q which contradicts the assumption of λi and λk being multiplicatively
independent.

This proves the claim.
Thus we obtain an infinite family of elliptic curves in SL2(C)/Γ such

that for each of these curves there is at most one other curve in this family
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to which it is isogenous. It follows that there are infinitely many isogeny
classes.

§5. Existence of Γ for which Γ ∩ SL2(R) is cocompact in SL2(R)

From a differential geometric point of view the torsion-free discrete

cocompact subgroups of SL2(C) are precisely those groups which occur as

fundamental group of compact real hyperbolic threefolds M . The condition

that Γ ∩ SL2(R) is cocompact in SL2(R) translates into the condition that

there is a real hyperbolic surface geodesically embedded into M .

However, we use a different point of view to show the existence of such

Γ. There is an arithmetic way to produce discrete cocompact subgroups in

SL2(C) which we employ.

This arithmetic construction (see e.g. [8]) is the following: Let K be

either Q or a totally imaginary quadratic extension of Q, K̄ the unique

archimedean completion of K, L/K a quadratic extension, λ ∈ K ∗ such

that λ 6∈ NL/K(L∗). Then a central simple K-algebra can be defined by A =

{a + bt : a, b ∈ L} with multiplication given by at = taσ (for Gal(L/K) =

{id , σ}) and t2 = λ. The elements of norm one constitute a K-anisotropic

simple K-group S. Now S(OK) becomes a discrete cocompact subgroup

of S(K̄). If K̄ = R, then S(K̄) = SL2(R) if A ⊗ R ' Mat(2, R) and

S(K̄) = SU(2) if A ⊗ R is isomorphic to the algebra of quaternions.

We use this in the following way: Let F1 = Q[
√

2], F2 = Q[i], F3 =

Q[i,
√

2] and p = 5. We observe that the prime ideal (5) splits in F2:

5 = (2 + i)(2 − i). Now (2 + i) is prime in Z[i] and both residue class fields

for 5 in Z resp. 2 + i (or 2 − i) in Z[i] are isomorphic to the finite field

F5 = Z/5Z. Note that 2 is not a square in F5. As a consequence the prime

ideals (5) and (2+i) (and similarily for (2−i)) are totally inert with respect

to the the field extensions Q[
√

2]/Q resp. Q[i,
√

2]/Q[i]. It follows that 5

is not contained in the image of the norm for either the field extension

Q[i,
√

2]/Q[i] or the field extension Q[
√

2]/Q.

Thus we may use the above construction with

(K,L, λ) = (Q[i], Q[i,
√

2], 5)

resp. = (Q, Q[
√

2], 5) to obtain a discrete cocompact subgroup Γ resp. Γ1

in S(C) ' SL2(C) resp. S(R). Evidently Γ1 = Γ ∩ S(R). Now observe that

Q[
√

2] ⊂ R implies A ⊗ R ' Mat(2, R). Thus S(R) ' SL2(R).

We have thus established:
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Proposition 6. There exists a discrete subgroup Γ in SL2(C) such

that both SL2(C)/Γ and SL2(R)/(SL2(R) ∩ Γ) are compact.

In combination with Thm. 2 this implies the following:

Corollary 3. There exists a discrete cocompact subgroup Γ in SL2(C)
such that the complex quotient manifold X = SL2(C)/Γ contains infinitely

many pairwise non-isogenous elliptic curves.

§6. Geodesic length spectra for hyperbolic manifolds

Here we want to relate our results on eigenvalues of elements of discrete

groups to the study of closed geodesics on real hyperbolic manifolds (As

standard references for hyperbolic manifolds, see [2], [6]).

A real hyperbolic manifold is a complete Riemannian manifold with

constant curvature −1. In each dimension n there is a unique simply-

connected real hyperbolic manifold Hn.

Let H = {z+wj : z, w ∈ C} denote the division algebra of quaternions,

i.e., the algebra given by j2 = −1 and zj = jz̄ for all z ∈ C.

Now H2 can be realized as H2 ' {z + tj ∈ H : z ∈ R, t ∈ R+} and H3

as H3 ' {z + tj ∈ H, z ∈ C, t ∈ R+}. In both cases the hyperbolic metric

is obtained from the euclidean metric by multiplication with 1/t. Let ρ

denote the induced distance function.

The isometry group G of H2 resp. H3 is PSL2(R) resp. PSL2(C) with

the action given by

(

a b
c d

)

: ζ 7−→ (aζ + b)(cζ + d)−1

where the calculations take place in the algebra of quaternions.

Explicit calculations show that for any A ∈ G we have

inf
x∈H

ρ(x,Ax) = log(max{|λ|2, |λ−2|})

where the infimum is taken over all points of H2 resp. H3 and (λ, λ−1) are

the roots of the characteristic polynomial of Ã where Ã is an element of

SL2(C) which projects onto A ∈ G ⊂ PSL2(C) = SL2(C)/{I,−I}.
For a complete Riemannian manifold with strictly negative curvature

there is a unique closed geodesic for every element of the fundamental group.
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Therefore: If Γ is a torsion-free discrete subgroup of G then the set of

lengths of closed geodesics of H/Γ coincides with the set of logarithms of

absolute values of squares of eigenvalues of elements of Γ.

Moreover, if H = H3, one can show that the logarithm of the eigenvalue

of an element g ∈ Γ is the “complex length” of the corresponding closed

geodesic in the following sense: Let γ be a closed geodesic in a compact

hyperbolic 3-fold M . Let s be the length of γ in the usual sense. If we fix

a point p ∈ γ, then the holonomy along γ defines an orthogonal transfor-

mation of the normal space Tp(M)/Tp(γ). This normal space is isomorphic

to R2, thus an orthogonal transformation is simply a rotation by an angle

θ. Now the “complex length” of γ is defined to be s + iθ ([7]).

The set of all real resp. complex numbers occuring as (complex) length

for a closed geodesic is denoted as (complex) geodesic length spectrum.

(In the literature, usually multiplicities are taken into account, and some-

times only simple closed geodesics are considered. For our point of interest

(the Q-linear independence of geodesic lengths) these distinctions are of no

relevance.)

Therefore we obtain:

Proposition 7. Assume that M is a compact real hyperbolic 3-mani-

fold. Then there exist infinitely many closed geodesics on M such that their

complex lengths are pairwise Q-linearly independent.

Using the results of Subsection 2.4. on the absolute values of the eigen-

values we also obtain:

Theorem 3. Let M be a compact real hyperbolic manifold of dimen-

sion two or three and Λ its geodesic length spectrum.

Then Λ contains infinitely many pairwise Q-linearly independent ele-

ments.

Another consequence is the following:

Corollary 4. Let Γ be a Zariski-dense subgroup in SL2(C).

Then there exist two elements γ1, γ2 ∈ Γ with respective eigenvalues

λ1, λ2 ∈ R such that the numbers | log λ1|, | log λ2| generate a dense subgroup

of the additive group (R,+).
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There is a related a result of Benoist ([1]) which implies that the sub-

group of (R,+) generated by all the logarithms of the absolute values of

eigenvalues of elements of Γ is dense. Thus, for SL2(R) and SL2(C) we can

improve this result of Benoist. However, Benoist’s work applies to other

semisimple Lie groups as well where our results concern only SL2(R) and

SL2(C).
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