LINEAR RELATIONS BETWEEN FOURIER COEFFICIENTS OF SPECIAL SIEGEL MODULAR FORMS

WINFRIED KOHNEN

Abstract. In this paper we give certain linear relations between the Fourier coefficients of Siegel modular forms that are obtained from Ikeda lifts.

§1. Introduction

Let n and k be positive integers with $n \equiv k \pmod{2}$. In [5], T. Ikeda constructed a lifting map which associates to a cuspidal Hecke eigenform f of weight 2k with respect to $\Gamma_1 := SL_2(\mathbf{Z})$ a cuspidal Hecke eigenform F of weight k+n with respect to the Siegel modular group $\Gamma_{2n} := Sp_{2n}(\mathbf{Z}) \subset GL_{4n}(\mathbf{Z})$ of genus 2n. By Ikeda's construction, the Fourier coefficients of F are given in terms of (essentially) squarefree Fourier coefficients of modular forms of half-integral weight and products of special values of modified local singular series polynomials.

The existence of this lifting, in terms of a relation between associated zeta functions, was previously conjectured by Duke-Imamoglu and independently by Ibukiyama, in a somewhat different form.

If n=1, the lift comes down to the classical Saito-Kurokawa lift.

In [10], we gave a linear version of Ikeda's lifting map, as a linear map from half-integral weight modular forms to Siegel modular forms of genus 2n. If n=1, one recovers a formula given by Eichler-Zagier [4] for the Fourier coefficients of the Saito-Kurokawa lifting in terms of the Fourier coefficients of half-integral weight modular forms.

In the classical case n = 1, as is well-known the space generated by the lifted forms F has a nice description in terms of certain linear relations between Fourier coefficients ("Maass space"), cf. e.g. [4, sect. 6, formula (9)].

Received April 24, 2002.

²⁰⁰⁰ Mathematics Subject Classification: 11F03, 11F46.

154 W. KOHNEN

Let T be a positive definite, half-integral, symmetric matrix of size 2n and denote by $D_T := (-1)^n \det(2T)$ its discriminant. The aim of this paper is to show that also in the case n > 1 there exist linear relations of a similar kind between certain of the Fourier coefficients a(T) of F, for all F, at least if $n \not\equiv 2 \pmod{4}$. Indeed, this follows from the linear description of Ikeda's lifting map in terms of the coefficients c(m) $(m \in \mathbb{N})$ of half-integral weight modular forms given in [10], together with the fact the c(m) often can already be recovered from the a(T) for very special T. However, contrary to the case n = 1 it is hard to imagine that for general n > 1 these relations can be used to give a linear characterization of the space generated by the F.

In Section 3, we state Ikeda's lifting result and the linear version of it given in [10] in detail, after having recalled several preliminaries in Section 2. In Section 4 we explicitly state the linear relations addressed above in the case $n \equiv 1 \pmod{4}$ and give a detailled proof. Section 5 contains some remarks in the other cases $n \not\equiv 1 \pmod{4}$.

Acknowledgements. The author would like to thank the referee for a very useful suggestion.

§2. Preliminaries

We will recall several facts about local singular series polynomials. As references, the reader may consult [1,6,7]. We will also recall the definition of a certain number-theoretic function which enters into the formulas for the Ikeda lifting given in [10].

Let $T \in M_m(\mathbf{Q})$ be a rational, symmetric, non-degenerate, half-integral matrix of size m.

If m is even, we denote by

$$D_T := (-1)^{\frac{m}{2}} \det(2T)$$

the discriminant of T. Then $D_T \equiv 0,1 \pmod{4}$ and we write $D_T = D_{T,0}f_T^2$ with $D_{T,0}$ the corresponding fundamental discriminant and $f_T \in \mathbf{N}$.

Let us fix a prime p. Recall that one defines the local singular series of T at p by

$$b_p(T;s) := \sum_R \nu_p(R)^{-s} e_p(\operatorname{tr}(TR)) \qquad (s \in \mathbf{C})$$

where R runs over all symmetric (m, m)-matrices with entries in $\mathbf{Q}_p/\mathbf{Z}_p$ and $\nu_p(R)$ is a power of p equal to the product of denominators of elementary

divisors of R. Furthermore, for $x \in \mathbf{Q}_p$ we have put $e_p(x) := e^{2\pi i x'}$ where x' denotes the fractional part of x.

As is well-known, $b_p(T;s)$ is a product of two polynomials in p^{-s} with coefficients in **Z**. More precisely, one has

$$b_p(T;s) = \gamma_p(T;p^{-s})F_p(T;p^{-s})$$

where

$$\gamma_p(T;X) := \begin{cases} (1-X)(1-(\frac{D_{T,0}}{p})p^{m/2}X)^{-1} \prod_{j=1}^{m/2} (1-p^{2j}X^2), & \text{if } m \text{ is even} \\ (1-X) \prod_{j=1}^{(m-1)/2} (1-p^{2j}X^2), & \text{if } m \text{ is odd} \end{cases}$$

and $F_p(T;X) \in \mathbf{Z}[X]$ has constant term 1.

In the following we will suppose that m=2n is even. A fundamental result of Katsurada [6] then states that the Laurent polynomial

(1)
$$\tilde{F}_p(T;X) := X^{-\operatorname{ord}_p f_T} F_p(T;p^{-n-1/2}X)$$

is symmetric, i.e.

$$\tilde{F}_p(T;X) = \tilde{F}_p(T;X^{-1}).$$

(There is also a corresponding functional equation if T is of odd size, but we won't need it. For the functional equation cf. also [2].)

If p does not divide f_T , then $F_p(T;X) = \tilde{F}_p(T;X) = 1$.

Denote by $V = (\mathbf{F}_p^{2n}, q)$ the quadratic space over \mathbf{F}_p where q is the quadratic form obtained from the quadratic form $x \mapsto T[x]$ ($x \in \mathbf{Z}_p^{2n}$) by reducing modulo p. (For matrices A and B of appropriate sizes over a commutative ring we put $A[B] := B^t A B$ as usual.)

Let R(V) be the radical of V, put $s_p := \dim R(V)$ and denote by W an orthogonal complementary subspace of R(V).

According to [7], one defines a polynomial by

$$H_{n,p}(T;X) \qquad \text{if } s_p = 0 \\ := \begin{cases} 1 & \text{if } s_p = 0 \\ \prod_{j=1}^{\left[\frac{s_p-1}{2}\right]} (1-p^{2j-1}X^2) & \text{if } s_p > 0, \, s_p \text{ odd} \\ (1+\lambda_p(T)\,p^{\frac{s_p-1}{2}}X)\,\prod_{j=1}^{\left[\frac{s_p-1}{2}\right]} (1-p^{2j-1}X^2) & \text{if } s_p > 0, \, s_p \text{ even,} \end{cases}$$

where for s_p even we have put

$$\lambda_p(T) := \begin{cases} 1 & \text{if } W \text{ is a hyperbolic subspace or } s_p = 2n \\ -1 & \text{otherwise.} \end{cases}$$

156 w. kohnen

For $\mu \in \mathbf{Z}$, $\mu \geq 0$ define $\rho_T(p^{\mu})$ by

$$\sum_{\mu>0} \rho_T(p^{\mu}) X^{\mu} := \begin{cases} (1-X^2) H_{n,p}(T;X), & \text{if } p|f_T\\ 1, & \text{otherwise.} \end{cases}$$

We extend the function ρ_T multiplicatively to the whole of **N** by defining

$$\sum_{a\geq 1} \rho_T(a)a^{-s} := \prod_{p|f_T} ((1-p^{-2s})H_{n,p}(T;p^{-s})).$$

It follows from the definitions that $\sqrt{a} \rho_T(a)$ is an integer.

Finally, let

$$\mathcal{D}(T) := GL_{2n}(\mathbf{Z}) \setminus \{ G \in M_{2n}(\mathbf{Z}) \cap GL_{2n}(\mathbf{Q}) \mid T[G^{-1}] \text{ half-integral } \}$$

where $GL_{2n}(\mathbf{Z})$ operates by left-multiplication. Then $\mathcal{D}(T)$ is finite as is easy to see. For $a \in \mathbf{N}$ with $a|f_T$ put

(2)
$$\phi(a;T) := \sqrt{a} \sum_{d^2|a|} \sum_{G \in \mathcal{D}(T), |\det(G)| = d} \rho_{T[G^{-1}]}(\frac{a}{d^2}).$$

Note that on the right hand side of (2) we have $\frac{a}{d^2}|f_{T[G^{-1}]}$ and that $\phi(a;T) \in \mathbb{Z}$ for all a.

§3. Lifting maps

Let f be a normalized cuspidal Hecke eigenform of even integral weight 2k with respect to Γ_1 . For a prime p, let $\lambda(p)$ and α_p be the p-th Fourier coefficient and the Satake p-parameter of f, respectively. Thus

$$1 - \lambda(p)X + p^{2k-1}X^2 = (1 - p^{k-1/2}\alpha_p X)(1 - p^{k-1/2}\alpha_p^{-1}X).$$

Note that α_p is determined only up to inversion.

Let

$$g = \sum_{m \ge 1, (-1)^k m \equiv 0, 1 \pmod{4}} c(m) e^{2\pi i m z} \qquad (z \in \mathcal{H} = \text{upper half-plane})$$

be a cuspidal Hecke eigenform of weight $k + \frac{1}{2}$ and level 4 contained in the "plus" space which corresponds to f under the Shimura correspondence [9,12].

Let $n \in \mathbb{N}$ with $n \equiv k \pmod{2}$. For T a positive definite, symmetric, half-integral matrix of size 2n define

(3)
$$a_f(T) := c(|D_{T,0}|) f_T^{k-1/2} \prod_{p|f_T} \tilde{F}_p(T; \alpha_p)$$

where we have used the notation explained in Section 2. Note that for n and k of the same parity $(-1)^k D_{T,0} > 0$.

Theorem [5]. The function

$$F(Z) := \sum_{T>0} a_f(T)e^{2\pi i t T(TZ)}$$

$$(Z \in \mathcal{H}_{2n} = Siegel \ upper \ half\text{-space of genus } 2n),$$

where T runs over all positive definite, symmetric, half-integral matrices of size 2n, is a cuspidal Siegel-Hecke eigenform of weight k+n with respect to Γ_{2n} .

Theorem [10]. With the notation of Section 2, one has

(4)
$$a_f(T) = \sum_{a|f_T} a^{k-1} \phi(a; T) c(\frac{|D_T|}{a^2}).$$

§4. Linear relations

We keep all notations of the preceding sections.

If T_1 and T_2 are quadratic matrices over a commutative ring, we write $T_1 \oplus T_2$ for the diagonal block matrix $\begin{pmatrix} T_1 & 0 \\ 0 & T_2 \end{pmatrix}$.

Let $n \in \mathbb{N}$ with $n \equiv 1 \pmod{4}$. Let T_0 be a positive definite, integral, even, symmetric, unimodular matrix of size 2n-2. (Note that $2n-2 \equiv 0 \pmod{8}$; for example, one can take for T_0 the matrix of $\frac{n-1}{4}$ copies of the standard E_8 -lattice.)

For $m \in \mathbf{N}$ with $m \equiv 0, 3 \pmod{4}$, let \mathcal{T}_m be any positive definite, half-integral, symmetric (2,2)-matrix of discriminant -m whose associated quadratic form represents the number 1. Note that for given m all such forms are equivalent; for \mathcal{T}_m one can take for example $\begin{pmatrix} \frac{m}{4} & 0 \\ 0 & 1 \end{pmatrix}$ or

158 w. kohnen

 $\begin{pmatrix} \frac{m+1}{4} & 1/2 \\ 1/2 & 1 \end{pmatrix}$ according as $m \equiv 0 \pmod{4}$ or $m \equiv 3 \pmod{4}$, respectively.

THEOREM. Let $n, k \in \mathbb{N}$ with $n \equiv k \pmod{2}$. Suppose that $n \equiv 1 \pmod{4}$. Let f be a normalized cuspidal Hecke eigenform of weight 2k with respect to Γ_1 . Then with the above notation, for each positive definite, symmetric, half-integral matrix T of size 2n the Fourier coefficients of the Ikeda lift F of f given by (3) satisfy the linear relation

$$a_f(T) = \sum_{a|f_T} a^{k-1} \phi(a;T) a_f(\mathcal{T}_{|D_T|/a^2} \oplus \frac{1}{2} T_0).$$

Proof. Note that by our assumption $D_T < 0$. In view of (4), it is sufficient to prove that

(5)
$$a_f(\mathcal{T}_m \oplus \frac{1}{2}T_0) = c(m)$$

for all $m \in \mathbf{N}$ with $m \equiv 0, 3 \pmod{4}$.

We first claim that

(6)
$$\tilde{F}_p(\mathcal{T} \oplus \frac{1}{2}T_0; X) = \tilde{F}_p(\mathcal{T}; X)$$

for any rational, symmetric, non-degenerate, half-integral matrix \mathcal{T} and all p, where for our purposes it is sufficient to prove (6) only for \mathcal{T} of even rank, say 2r.

Indeed, for fixed p let L and U be the lattices over \mathbf{Z}_p corresponding to \mathcal{T} and $\frac{1}{2}T_0$, respectively. Then U is an even unimodular hyperbolic lattice. The set $\mathcal{D}_p(\mathcal{T})$ (defined in the same way as $\mathcal{D}(\mathcal{T})$ in Section 3, but with \mathbf{Z} replaced by \mathbf{Z}_p) can be identified with the set of isomorphism classes of \mathbf{Z}_p -integral lattices $\tilde{L} \subset L \otimes \mathbf{Q}_p$ containing L, and as is well-known the map from $\mathcal{D}_p(\mathcal{T})$ to $\mathcal{D}_p(\mathcal{T} \oplus \frac{1}{2}T_0)$ induced by $\tilde{L} \mapsto \tilde{L} \oplus U$ is a bijection. In fact, the surjectivity is a consequence of Propos. 5.2.2 in [8] and the injectivity follows from Lemma 5.3.1 in [8] (cf. also [11; 82:15, 92:3 and 93.14a]).

On the other hand, by [7, Thm. 2] (compare also [9, Propos. 1]) one has the identity

$$\tilde{F}_{p}(\mathcal{T}; X) = X^{-\operatorname{ord}_{p} f_{\mathcal{T}}} \sum_{G \in \mathcal{D}_{p}(\mathcal{T})} X^{2\operatorname{ord}_{p} |\det G|} \cdot (1 - (\frac{D_{\mathcal{T}, 0}}{p}) p^{-\frac{1}{2}} X) \cdot H_{r, p}(\mathcal{T}[G^{-1}]; X).$$

Hence (6) follows.

From (6), in particular we obtain that

$$\tilde{F}_p(\mathcal{T}_m \oplus \frac{1}{2}T_0; X) = \tilde{F}_p(\mathcal{T}_m; X).$$

Thus by (3), the proof of (5) is reduced to the case n = 1, i.e. to showing that

(7)
$$a_f(\mathcal{T}_m) = c(m)$$

for all m. This, however, is the situation of the Maass space and (7), of course, is well-known (cf. [4; 5, sect. 16; 9, sect. 6]). Note that (6) also follows easily from certain recursion formulas for the local singular series polynomials given in [6], cf. in particular [6; Thm. 2.6 (1), proof of Thm. 4.1 and p. 418].

§5. Complements

Suppose that $n \equiv 0 \pmod{4}$ and let T_0 now be a positive definite, integral, even, symmetric, unimodular matrix of size 2n - 8. Then one can show in a similar way as above that

$$a_f(\mathcal{S}_m \oplus \frac{1}{2}T_0) = c(m) \qquad (m \equiv 0, 1 \pmod{4})$$

where

$$2S_m = \begin{pmatrix} 2 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & -1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 2 & -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{m}{2} \end{pmatrix}$$

if $m \equiv 0 \pmod{4}$ and

$$2\mathcal{S}_m = \begin{pmatrix} 2 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & -1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 2 & -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & \frac{m+3}{2} \end{pmatrix}$$

160 w. kohnen

if $m \equiv 1 \pmod{4}$, respectively. We leave the details to the reader.

Note that the lattice attached to $2S_4$ is just the E_8 -lattice and that the matrices S_m are simple analogues in the case of rank 8 of the special matrices $\begin{pmatrix} \frac{m'}{4} & 0 \\ 0 & 1 \end{pmatrix}$ etc. $(m' \equiv 0, 3 \pmod{4})$ of Section 4.

Thus from (4) we again obtain certain linear relations among the Fourier coefficients $a_f(T)$.

To proceed in the general case in a similar way, for each $m \in \mathbf{N}$ with $(-1)^n m \equiv 0, 1 \pmod{4}$ one would like to find a positive definite, symmetric, half-integral matrix R_m of size 2n which satisfies the following condition:

i) if $m \equiv 0 \pmod{4}$, then

$$R_m \sim (-1)^{n-1} u_p \begin{pmatrix} (-1)^{n-1} m/4 & 0 \\ 0 & 1 \end{pmatrix} \oplus \begin{pmatrix} 0 & 1/2 \\ 1/2 & 0 \end{pmatrix}^{\oplus (n-1)}$$

with some $u_p \in \mathbf{Z}_p^*$ for all primes p;

ii) if $(-1)^n m \equiv 1 \pmod{4}$, then

$$R_m \sim (-1)^{n-1} u_p \begin{pmatrix} ((-1)^{n-1}m+1)/4 & 1/2 \\ 1/2 & 1 \end{pmatrix} \oplus \begin{pmatrix} 0 & 1/2 \\ 1/2 & 0 \end{pmatrix}^{\oplus (n-1)}$$

with some $u_p \in \mathbf{Z}_p^*$ for all primes p. Here \sim means equivalence over \mathbf{Z}_p .

One can construct such an R_m at least unless $n \equiv 2 \pmod{4}$ and m is a perfect square. Indeed, denote by $(\ ,\)_p$ the Hilbert symbol relative to \mathbf{Q}_p . Clearly the Hasse invariant of the quadratic form $Q_{m,p}$ over \mathbf{Z}_p defined by the right-hand side of i) resp. ii) is equal to

$$c_p(Q_{m,p}) = (-1, -1)_p^{n(n-1)/2} (u_p, (-1)^n m)_p$$

$$= \begin{cases} (u_p, (-1)^n m)_p, & \text{if } p > 2\\ (-1)^{n(n-1)/2} (u_p, (-1)^n m)_p & \text{if } p = 2. \end{cases}$$

Suppose that m is not a square. Then we can choose a prime ℓ such that $\operatorname{ord}_{\ell} m$ is odd and $u_{\ell} \in \mathbf{Z}_{\ell}^*$ such that

$$(u_{\ell}, (-1)^n m)_{\ell} = (-1)^{n(n-1)/2}.$$

We put $u_p = 1$ for $p \neq \ell$. Then $c_p(Q_{m,p}) = 1$ for almost all p and

$$\prod_{p} c_{p}(Q_{m,p}) = 1.$$

Hence the existence of R_m follows from [3; chap. 6, Thm. 1.3 and chap. 9, Thm. 1.2].

Similarly, if m is a square and n is odd, then we can find $u_2 \in \mathbf{Z}_2^*$ such that

$$(u_2, -1)_2 = (-1)^{(n-1)/2}$$

and put $u_p = 1$ for p > 2. Finally, if m is a square and $n \equiv 0 \pmod{4}$, we put $u_p = 1$ for all p.

References

- [1] S. Böcherer, Über die Fourierkoeffizienten der Siegelschen Eisensteinreihen, manuscripta math., 45 (1984), 273–288.
- [2] S. Böcherer and W. Kohnen, On the functional equation of singular series, Abh. Math. Sem. Univ. Hamburg, 70 (2000), 281–286.
- [3] J.W.S. Cassels, Rational quadratic forms, Academic Press, London New York San Francisco, 1978.
- [4] M. Eichler and D. Zagier, The theory of Jacobi forms: Progress in Math., vol. 55, Birkhäuser, Boston, 1985.
- [5] T. Ikeda, On the lifting of elliptic modular forms to Siegel cusp forms of degree 2n, Ann. Math., **154**, no. 3 (2001), 641–681.
- [6] H. Katsurada, An explicit form for Siegel series, Amer. J. Math., 121 (1999), 415–452.
- [7] Y. Kitaoka, Dirichlet series in the theory of Siegel modular forms, Nagoya Math. J., 95 (1984), 73–84.
- [8] ______, Arithmetic of quadratic forms: Cambridge Texts in Math., vol 106, Cambridge Univ. Press, Cambridge, 1999.
- [9] W. Kohnen, Modular forms of half-integral weight on Γ₀(4), Math. Ann., 248 (1980), 249–266
- [10] _____, Lifting modular forms of half-integral weight to Siegel modular forms of even genus, Math. Ann., **322** (2002), 787–809.
- [11] O.T. O'Meara, Introduction to quadratic forms: Grundl. d. Math. Wiss., vol. 117, Springer, Berlin Heidelberg New York, 1963.
- [12] G. Shimura, On modular forms of half-integral weight, Ann. of Math., 97 (1973), 440–481.

Universität Heidelberg
Mathematisches Institut
INF 288
D-69120 Heidelberg
Germany
winfried@mathi.uni-heidelberg.de