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A CANONICAL BUNDLE FORMULA FOR CERTAIN

ALGEBRAIC FIBER SPACES AND ITS APPLICATIONS

OSAMU FUJINO

Abstract. We investigate period maps of polarized variations of Hodge struc-
tures of weight one or two. We treat the case when the period domains are
bounded symmetric domains. We deal with a relationship between canonical
extensions of some Hodge bundles and automorphic forms. As applications,
we obtain a canonical bundle formula for certain algebraic fiber spaces, such
as Abelian fibrations, K3 fibrations, and solve Iitaka’s famous conjecture Cn,m

for some algebraic fiber spaces.

§1. Introduction

We start in recalling Kodaira’s canonical bundle formula:

Theorem 1.1. ([Kod]) If f : X → C is a minimal elliptic surface over

C, then the relative canonical divisor KX/C is expressed as

KX/C = f∗L+
∑

P

mP − 1

mP
f∗(P ),

where L is a nef divisor on C and P runs over the set of points such that

f∗(P ) is a multiple fiber with multiplicity mP > 1.

Furthermore, 12L is expressed as

12KX/C = f∗J∗OP1(1) + 12
∑

P

mP − 1

mP
f∗(P ) +

∑
σQf

∗(Q),

where σQ is an integer ∈ [0, 12) and J : C → P1 is the j-function [Ft,

Section 2] (see [Ft, (2.9)] and [U1]).

In our notation, the above formula means that

OC(12Lss
X/C ) ' J∗OP1(1),
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where the nef Q-divisor Lss
X/C is the semistable part of KX/C . For the

definition of Lss
X/Y , see Definition 3.5.

The main purpose of this paper is to generalize the above formula for

K3 and Abelian fibrations f : X → Y . The following is one of the main the-

orems (Theorem 5.1 and Remark 5.2) of this paper (see also Theorems 2.10,

2.11).

Theorem 1.2. Let f : X → Y be a surjective morphism between non-

singular projective varieties X and Y . Let L be an f -ample line bundle on

X. Assume that there exists a simple normal crossing divisor Σ on Y such

that every fiber of f over Y0 := Y \Σ is a K3 surface (resp. an n-dimensional

Abelian variety). Then we obtain a polarized variation of Hodge structures

of weight two (resp. one). Let D be the period domain and Γ the arithmetic

subgroup which fixes the polarized Hodge structure (for the details, see 2.4
(Period domains)). We put S := D/Γ. Let p0 : Y0 → S be the period map

of the weight two (resp. one) polarized Hodge structures and p : Y → S̄ be

the extension of p0. We note that the projective variety S̄ is the Baily-Borel-

Satake compactification of S, which is embedded into a projective space by

automorphic forms of the same weight, say k, and that p always exists by

Borel’s extension theorem. We define a = 19k (resp. a = k(n + 1)). Then

aLss
X/Y is a Weil divisor and

OY (aLss
X/Y ) ' p∗OS̄(1).

We note that a is decided only by the polarized Hodge structures of the fibers

of f and independent of Y .

We further assume that f is semistable in codimension one. Then we

obtain

(f∗ωX/Y )⊗a ' OY (aLss
X/Y ) ' p∗OS̄(1).

In Section 2, we treat the period map. The variation of Hodge struc-

tures in Section 2 doesn’t need to be geometric. We give a purely Hodge

theoretic proof of Theorem 1.2 in Section 5. Theorems 2.10 and 2.11 are

much stronger than the above stated theorem in some sense. However,

in order to state Theorems 2.10 and 2.11, we need various notation and

assumptions. So, we omit them here. Theorem 2.10 seems to have some

applications to the study of symplectic manifolds (see Theorem 5.6).

Combining this theorem with [FM, Proposition 2.8, Theorem 3.1], we

have the following formula.
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Corollary 1.3. Under the notation and assumptions of Theorem 1.2,
we have a canonical bundle formula

KX = f∗(KY + Lss
X/Y ) +

∑

P

sPf
∗P +B,

where P , B and Lss
X/Y are as follows.

(0) P runs through all the irreducible components of Σ.

(1) f∗OX(biB+c) = OY for all i ≥ 0, where B+ is the positive part of B.

(2) codimY f(SuppB−) ≥ 2, where B− is the negative part of B.

(3) OY (aLss
X/Y ) ' p∗OS̄(1) as in Theorem 1.2.

(4) Let

N := lcm
{
y ∈ Z>0

∣∣ ϕ(y) ≤ 22
(
resp. ϕ(y) ≤ (2n)!

n!n!

)}
,

where ϕ is the Euler function. Then NLss
X/Y is a Weil divisor, and

for each P , there exist uP , vP ∈ Z>0 such that 0 < vP ≤ N and

sP = (NuP − vP )/(NuP ).

For various applications of the (log-)canonical bundle formula, see [FM,

Sections 5, 6].

We note that the semistable part Lss
X/Y is semi-ample under certain

weaker assumptions. For the precise statement, see Section 6.

By an application of the semi-ampleness of the semistable part, we

deal with Iitaka’s conjecture Cn,m. The following is a very special case of

Theorem 7.4 (see also Corollary 7.6).

Theorem 1.4. Let f : X → Y be a surjective morphism with con-

nected fibers between non-singular projective varieties X and Y . Assume

that the Kodaira dimension of the generic fiber of f is one, that is, κ(Xη) =
1, where η is the generic point of Y . Let

f : X
g

−−−→ Z
h

−−−→ Y

be the relative Iitaka fiber space. Assume that general fibers of g are Abelian

varieties. Then the inequality κ(X) ≥ κ(Y ) + κ(Xη) holds.
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The proof of Theorem 1.4 (Theorem 7.4) is essentially the same as the

arguments in [Ka3, Section 5]. Since some modifications are needed, we

will explain the details in Section 7.

We summarize the contents of this paper: In Section 2, we treat polar-

ized variations of Hodge structures of weight one and two whose period do-

mains are bounded symmetric domains. We investigate the relation between

the canonical extension of some Hodge bundles and automorphic forms on

period domains. The main purpose of this section is to prove Theorems 2.10

and 2.11. In Section 3, we review the basic definitions and properties of

the semistable part Lss
X/Y , which was introduced in [FM]. Section 4 deals

with the behavior of Lss
X/Y under pull-backs. It will play important roles in

various applications of a canonical bundle formula. In Section 5, we apply

Theorems 2.10 and 2.11 to algebraic fiber spaces. In Section 6, we collect

the results about the semi-ampleness of Lss
X/Y . Theorem 6.3 is stated in

[Mo, (5.15.9)(ii)] with the idea of the proof. One of the starting points of

this paper is to give a precise proof of Theorem 6.3. Finally, in Section 7,

we explain an application of the semi-ampleness of the semistable part. We

prove Iitaka’s conjecture Cn,m for special fiber spaces.

Notation. Let Z>0 be the set of positive integers. We work over C,
the complex number field, in this paper.

We denote by ∆ := {t ∈ C | |t| < 1} a unit disc and by ∆∗ := ∆ \ {0}
a punctured disc.

Let X be a normal variety and B, B ′ Q-divisors on X. If B − B ′ is
effective, we write B � B ′ or B′ ≺ B. We write B ∼ B ′ if B − B′ is a
principal divisor on X (linear equivalence of Q-divisors).

Let B+, B− be the effective Q-divisors on X without common irre-
ducible components such that B+ − B− = B. They are called the positive

and the negative parts of B.

Let f : X → Y be a surjective morphism. Let Bh, Bv be the Q-
divisors on X with Bh + Bv = B such that an irreducible component of
SuppB is contained in SuppBh iff it is mapped onto Y . They are called
the horizontal and the vertical parts of B over Y . B is said to be horizontal

(resp. vertical) over Y if B = Bh (resp. B = Bv). The phrase “over Y ”
might be suppressed if there is no danger of confusion.

An algebraic fiber space f : X → Y is a surjective morphism between
non-singular projective varieties X and Y with connected fibers. We denote
dim f := dimX − dimY .
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Assume that there exists a simple normal crossing divisor Σ on Y such
that f0 : X0 → Y0 is smooth, where Y0 := Y \ Σ, X0 := f−1(Y0), and
f0 := f |X0

. Let π : Y ′ → Y be a projective morphism from a non-singular
variety Y ′ such that Σ′ := π−1(Σ) is a simple normal crossing divisor.
Let X ′ → (X ×Y Y ′)main be an arbitrary projective resolution such that
f ′ : X ′ → (X×Y Y

′)main → Y ′ is smooth over Y ′ \Σ′, where (X×Y Y
′)main

is the main component of X ×Y Y ′. We call f ′ : X ′ → Y ′ an algebraic
fiber space induced by π. We often use the notation f ′, X ′, etc. without
mentioning “induced by π” if there is no confusion.

We freely use covering constructions and base change theorems [Mo,
Section 4], [Ka1, Section 2] throughout this paper.

When we treat Iitaka’s fiber spaces, we always apply the elimination
of indeterminacy without mentioning it. For the basic results about Iitaka
fiberings, see [Mo, Sections 1, 2].

Acknowledgements. I would like to express my sincere gratitude to
Professors Shigefumi Mori and Noboru Nakayama, who gave me various
advice and useful comments. I would like to thank the following people,
who gave me some comments or answered my questions: Professors Hiroki
Aoki, Yoshio Fujimoto, Shigeyuki Kondo, Yoichi Miyaoka, Shigeru Mukai,
Atsushi Moriwaki, Kenji Ueno, and my colleague: Hiromichi Takagi.

I also like to thank Professor Daisuke Matsushita for reading a part of
the preliminary version of this paper and pointing out some ambiguities.

After this paper was circulated as a RIMS preprint: RIMS-1325, I
talked about it in the following places: Kyoto University, Osaka University,
the Newton Institute in the University of Cambridge, and Nagoya Univer-
sity. I am grateful to the audiences and appreciate their comments.

The papers [F1] and [F2] are continuations of this paper, in particu-

lar, Section 7. Recently, Florin Ambro treats related topics in [Am]. I

recommend the readers to see these preprints.

§2. Hodge structures

In this section, we use the following notation.

Notation. Let h be the upper half-plane, that is,

h := {z ∈ C | Im z > 0}.
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We define

Hg :=

{
Z

∣∣∣ Z is a g times g symmetric matrix and
ImZ is positive definite

}
.

We call it the Siegel upper half-plane of degree g. In our notation, h = H1.
Let S be an n times n symmetric matrix and Z be an n-dimensional

column vector. Then we denote S[Z] := tZSZ.

First, we recall the definition of Hodge structures and variations of

Hodge structures (see [Sd, Sections 2, 3] or [GS, 1, 3]).

2.1. (Hodge structures) Let HR be a finite dimensional real vector
space with a Q-structure by a lattice HZ ⊂ HR, and let HC denote the
complexification of HR, HQ = HZ ⊗Q.

A Hodge structure is a decomposition

(1) HC =
⊕

p+q=k

Hp,q, with Hq,p = H̄p,q,

where ¯ means the complex conjugation. The integers hp,q = dimHp,q are
the Hodge numbers.

The Hodge structure (1) is said to have weight k if the subspace H p,q

are nonzero only when p+ q = k. To each Hodge structure of weight k one
assigns the Hodge filtration

(2) HC ⊃ · · · ⊃ F p−1 ⊃ F p ⊃ F p+1 ⊃ · · · ⊃ 0,

where F p =
⊕

i≥pH
i,k−i.

A polarization for a Hodge structure of weight k consists of the datum
of a bilinear form S on HC, which is defined over Q, and which is symmetric
for even k, skew for odd k, such that

S(Hp,q,Hr,s) = 0 unless p = s, q = r,

(
√
−1 )p−qS(v, v̄) > 0 if v ∈ Hp,q, v 6= 0.

We define

GC = {g ∈ GL(HC) | S(gu, gv) = S(u, v) for all u, v ∈ HC},

GR = {g ∈ GL(HR) | S(gu, gv) = S(u, v) for all u, v ∈ HR}.
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The bilinear form S was assumed to take rational values on the lattice HZ.
In particular, then,

GZ := {g ∈ GR | gHZ = HZ}

lies in GR as an arithmetic subgroup.

2.2. (Variation of Hodge structures) We introduce the notion of a (po-
larized) variation of Hodge structure. The ingredients are:

(a) a connected complex manifold M ;

(b) a flat complex vector bundle H = HC →M , with a flat real structure
HR ⊂ HC, and with a flat bundle of lattices HZ ⊂ HR;

(c) an integer k;

(d) a flat, non-degenerate bilinear form S on HC, which is rational with
respect to the lattice bundle HZ, and which is symmetric or skew,
depending on whether k is even or odd;

(e) and a descending filtration

HC ⊃ · · · ⊃ Fp−1 ⊃ Fp ⊃ Fp+1 ⊃ · · · ⊃ 0

of HC by holomorphic subbundles.

These objects are to satisfy the following two conditions:

(i) For each point t ∈M , the fibers F p
t of the bundles Fp constitute the

Hodge filtration of Hodge structure of weight k on the fiber of HC at
t, and S polarizes this Hodge structure.

(ii) For each p,
∇Fp ⊂ Fp−1 ⊗ Ω1

M ,

where ∇ is the canonical flat connection of HC and Ω1
M is the holo-

morphic cotangent bundle.

From now on, we mainly treat the following types of polarized Hodge

structures.

2.3. (Assumptions) We treat polarized Hodge structures of weight k
with the following numerical conditions;

(WII) k = 2, h1,1 = g ≥ 3, h2,0 = h0,2 = 1 and hp,q = 0 for other (p, q)’s, or
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(WI) k = 1, h1,0 = h0,1 = g ≥ 1 and hp,q = 0 for other (p, q)’s.

2.4. (Period domains) We recall the period domain of Hodge struc-
tures.

Case (WII). We define the bilinear form Q := −S. We put

Ď = {[v] ∈ P(HC) | Q(v, v) = 0}

and

D = {[v] ∈ P(HC) | Q(v, v) = 0 and Q(v, v̄) > 0}.
Then D consists of two connected components, which are mapped into each
other by complex conjugation.

We choose and fix D either one component of D, which is a bounded
symmetric domain of type IV and of dimension g. We call D a period

domain and Ď the compact dual ofD. For the details of bounded symmetric
domains of type IV , see [Ba, Chapter 6, Section 3, B], [Gr, Section 2], [Sa,
Appendix, Section 6], [Od, 1], or [Kon, 2].

The group GR acts on D as automorphisms. We denote by G0
R the

subgroup of GR of index two that consists of isometries preserving the
connected components of D. The stabilizer of the lattice HZ in the subgroup
G0

R is an arithmetic subgroup Γ = GZ ∩G0
R.

Let {h1, . . . , hn} be a basis of HR such that the bilinear form Q with
respect to {hi} is as follows;

Q =




0 0 H
0 −Ig−2 0
H 0 0


 =




0 0 1
0 −S1 0
1 0 0


 ,

where Ig−2 is the unit matrix of degree g − 2, H =

(
0 1
1 0

)
the hyperbolic

lattice, and

S1 =




0 0 −1
0 Ig−2 0
−1 0 0


 .

We realize D as a tube domain Hg in Cg. We consider the domain

Hg =

{
tZ = (ω, tζ, τ) ∈ h× Cg−2 × h

∣∣∣
1

2
S1[ImZ] > 0

}
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in Cg, where ImZ is the imaginary part of a column vector Z. The domain
is embedded in the projective space as follows:

pr(Z) = pr(t(ω, ζ1, . . . , ζg−2, τ))

= t

(
− 1

2
S1[Z] : ω : ζ1 : · · · : ζg−2 : τ : 1

)
.

Let γ be an element of the orthogonal group G0
R. Then a holomorphic

automorphy factor J(γ, Z) on G0
R×Hg is the n-th coordinate of

γ




− 1
2 S1[Z]
ω
ζ1
...

ζg−2

τ
1




.

If we denote γ = (γij)
n
i,j=1 ∈ G0

R, then

J(γ, Z) = − 1

2
γn,1S1[Z] + γn,2ω +

g∑

j=3

γn,jζj−2 + γn,n−1τ + γn,n.

For the details about J(γ, Z) and the actions of G0
R onHg, see [Gr, Section 2]

and [Od, 1].

Case (WI). (cf. [Ca, Section 1]) We putQ = S, where S is the bilinear
form in 2.1. The period domain of all such polarized Hodge structures of
weight one on HC is then

D = {F 1 ∈ G(g,HC) | Q(F 1, F 1) = 0,
√
−1Q(F 1, F̄ 1) > 0},

where G(g,HC) is a Grassmannian that parameterizes g-dimensional sub-
space of HC. We denote

Ď = {F 1 ∈ G(g,HC) | Q(F 1, F 1) = 0}

the compact dual of D. It is well-known that D is isomorphic to Hg, the
Siegel upper half-plane. In this case, we put Γ = GZ.
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We recall that the choice of a symplectic basis, that is, a rational basis
{h1, . . . , h2g} of HQ relative to which;

Q =

(
0 I
−I 0

)

gives rise to the usual realization of D as a Siegel upper half-plane. Let
F 1 ∈ D and {ω1, . . . , ωg} a basis of F 1; let

(
Ω1

Ω2

)

be the matrix whose columns give the coefficients of the ωi’s relative to the
basis {hj}. The second bilinear relation

√
−1Q(F 1, F̄ 1) > 0 guarantees

that detΩ2 6= 0, and therefore F 1 has a (unique) basis of the form

ωi =
∑

j

zjihj + hg+i.

It is easy to check that the bilinear relations imply that, denoting by Z the
matrix (zij), Z ∈ Hg.

2.5. (Baily-Borel-Satake compactification) Let Γ and D be as in 2.4.
Then Γ acts on D properly discontinuously, and hence S := D/Γ has a
canonical structure of normal analytic space by Cartan’s theorem.

Let D∗ be the union of D and the rational boundary components with
the Satake topology . The arithmetic subgroup Γ acts on D∗ and we obtain
the Baily-Borel-Satake compactification S̄ := D∗/Γ of S. It is well-known
that S̄ is a normal projective variety. In our situation, D is simple and
codimS̄(S̄ \ S) ≥ 2 except for the case when g = 1 in (WI). It is well-known
that S = C and S̄ = P1 if g = 1 in (WI).

The following is [BB, 10.11, Theorem] (for the precise statement, see
[BB]).

Theorem 2.6. There are finitely many integral automorphic forms of

the same weight, say l, which induce an embedding of S̄ into a projective

space.

Let S̄ ↪→ P be the above embedding. Then we define OS̄(1) = OP(1)|S̄ .

Let us recall automorphic forms. We adopt the following definition,

which is familiar to us.
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2.7. (Automorphic forms, cf. [BB, 7.3] or [AMRT, Section 1.1]) An
automorphic form f on D of weight l for Γ is a holomorphic section, invari-
ant under Γ, of the canonical line bundle lKD.

IfD is realized as a domain in CdimD, thenKD is canonically trivialized,
and f is represented by a holomorphic function f ′ on D that verifies

(F) f ′(γz)j(γ, z)l = f ′(z)

for z ∈ D and γ ∈ Γ, where j is the Jacobian of the map γ : D → D at z.

In this paper, an automorphic form means not a holomorphic section
of KD but a holomorphic function on D with the above property (F).

We omit the precise definition of integral automorphic forms (see [BB,
8.5]). Note that in our situation every automorphic form is integral, un-
less D = H1 and Γ = SL(2,Z) (see [BB, 10.14]). When D = H1 and
Γ = SL(2,Z), we assume that an automorphic form f is holomorphic at
infinity. This definition coincides with the definition of modular forms in
[Se, Chapter VII, Definition 4]. Roughly speaking, integral automorphic
forms on D extends to D∗ continuously and if we choose k sufficiently large
and divisible, there are many integral automorphic forms of weight k that
separate points on D∗/Γ.

2.8. (Universal subbundles) We will regard automorphic forms as a
global section of some line bundles.

Case (WII). Let F2 be the universal subbundle on P(HC). We note
that P(HC) parameterizes lines in HC. We will omit the restriction symbols
like |D if there is no danger of confusion.

By adjunction, we obtain an isomorphism KĎ ' OĎ(−g) ' (F2)⊗g

since Ď is a smooth quadric hypersurface in P(HC). Let {ui} be homoge-
neous coordinates of P(HC) with respect to the basis {hi} in 2.4. We define
a canonical free basis of F2 on D as follows;

Ω =
u1

un
h1 + · · ·+ un−1

un
hn−1 + hn.

Of course, F2 ' OD ·Ω on D. Then γ ∈ G0
R acts on Ω as a multiplication by

J(γ, Z)−1. On the other hand, γ ∈ G0
R acts on the form $ = dω ∧ dζ ∧ dτ

as a multiplication by j(γ, Z), that is, γ∗$ = j(γ, Z)$. Since j(γ, Z) =
J(γ, Z)−g, we obtain a G0

R-equivariant isomorphism KD ' (F2)⊗g on D.
(cf. [Gr, Section 5, p. 1201], [Od, 1, pp. 100–101].)
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So, we will consider an automorphic form f of weight k as a holomorphic
section of (F2)⊗a, where a = gk. That is, if f is an automorphic form of
weight k, then

f · Ω⊗a ∈ H0(D, (F2)⊗a).

Case (WI). Let m be a natural number such that mQ is integral on
HZ. By choosing the basis {e1, . . . , en} of HZ suitably, we can assume that

Q =

(
0 δ
−δ 0

)
,

where

δ :=
1

m



δ1

. . .

δg




is a g × g diagonal matrix such that δi ∈ Z>0 for every i and δi|δi+1 for
1 ≤ i ≤ g − 1. We define

Sp(δ,Z) :=

{
M ∈ GL(2g,Z)

∣∣∣ M
(

0 δ
−δ 0

)
tM =

(
0 δ
−δ 0

)}
,

and

Sp(2g,Q) :=

{
M ∈ GL(2g,Q)

∣∣∣ M
(

0 I
−I 0

)
tM =

(
0 I
−I 0

)}
,

where I means the g×g unit matrix. If δ = I, we write Sp(δ,Z) = Sp(2g,Z)
the symplectic group.

In this realization, Γ = Sp(δ,Z). Replacing the basis {ei} with the
Q-basis {hi} such that

(h1, . . . , hn) = (e1, . . . , en)

(
1 0
0 δ−1

)
,

we regard Γ as a subgroup of Sp(2g,Q) by the following embedding;

(
1 0
0 δ−1

)
Γ

(
1 0
0 δ

)
⊂ Sp(2g,Q).

Let F1 be the universal subbundle on the Grassmannian G(g,HC). Let

γ =

(
A B
C D

)
∈ Sp(2g,R). Then the Jacobian of γ at Z ∈ Hg is j(γ, Z) =
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det(CZ +D)−(g+1). We define

(
ω̃1, . . . , ω̃g

)
=

(
h1, . . . , hn

)(
Z
I

)
,

where Z ∈ Hg, and
Ω = ω̃1 ∧ · · · ∧ ω̃g

a free basis of
∧g F1 on D, that is,

∧g F1 ' OD · Ω. We call Ω a canonical

free basis of
∧g F1. On the other hand, γ operates on Ω as a multiplication

by det(CZ +D)−1.
Therefore, we will consider an automorphic form f of weight k as a

holomorphic section of
(∧g F1

)⊗a
, where a = k(g + 1). That is, if f is an

automorphic form of weight k, then

f · Ω⊗a ∈ H0
(
D,

(∧gF1
)⊗a)

.

2.9. (Main Theorems) The following two theorems are the main re-
sults of this section. In the theorems, F 2(H) (resp. F1(H)) is the canonical
extension of F2 (resp. F1) (see 2.14 below).

Theorem 2.10. Let HC →M be a polarized variation of Hodge struc-

tures of type (WII). Assume that M is a Zariski open set of a complex

manifold M such that M \M is a simple normal crossing divisor in M .

We further assume that local monodromies around every irreducible compo-

nent of M \M are unipotent. Then

p∗OS̄(1) ' F2(H)⊗a,

where S̄ is embedded into a projective space by automorphic forms of weight

k and a = gk. We note that p : M → S̄ is Borel’s extension of the period

map. We also note that a depends only on polarized Hodge structures.

Theorem 2.11. Let HC →M be a polarized variation of Hodge struc-

tures of type (WI). Assume that M is a Zariski open set of a complex

manifold M such that M \M is a simple normal crossing divisor. We fur-

ther assume that local monodromies around every irreducible component of

M \M are unipotent. Then

p∗OS̄(1) '
(∧gF1(H)

)⊗a
,

where S̄ is embedded into a projective space by automorphic forms of weight

k and a = k(g + 1). We note that p : M → S̄ is Borel’s extension of the

period map. We also note that a depends only on polarized Hodge structures.
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2.12. (Local analysis) Let HC be a polarized variation of Hodge struc-
tures of type (WII) or (WI) over S0 = (∆∗)l×∆d−l. Let e : U := hl×∆d−l →
(∆∗)l ×∆d−l be a universal cover. It is given by

e(z1, . . . , zl, tl+1, . . . , td) = (t1, . . . , td),

where ti = exp(2π
√
−1 zi) for 1 ≤ i ≤ l. We put

F :=

{
F1 Case (WI)

F2 Case (WII).

Since the pull-back e∗HC is trivial, e∗F ⊂ e∗HC induces a holomorphic
mapping (the period mapping) Φ : U → D of the Hodge structures and a
group representation ρ : π1(S0)→ Γ that satisfy Φ(γu) = ρ(γ)Φ(u), where
u ∈ U and γ ∈ π1(S0).

We consider the following commutative diagram of the period map of
the Hodge structures

U
Φ

−−−→ D

e

y
y

S0 −−−→
p0

D/Γ = S.

It is well-known that p0 can be extended to p : S → S̄ by Borel’s extension
theorem [Bo, Theorem A]. By patching together, we obtain p : M → S̄.

Enlarge h to h∗ = h ∪ {i∞}, where a fundamental system of neighbor-
hoods of i∞ is given by

Wc = {z ∈ h | Im z > c} ∪ {i∞}.
Extend the map e : h→ ∆∗ to e : h∗ → ∆ by e(i∞) = 0.

By [AMRT, p. 278, Proposition], the map p lifts to a continuous map
Φ̃ : U∗ → D∗, extending a map Φ : U → D, where U ∗ = (h∗)l ×∆d−l.

U∗
eΦ

−−−→ D∗

e

y
y

S −−−→
p

D∗/Γ = S̄

Here, we put on D∗ the Satake topology. We note that Γ is assumed to be
neat in [AMRT, Chapter III, Section 7], but the above claim is true without
this assumption (see the proof of [AMRT, p. 278]).
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2.13. (Monodromies) The fundamental group π1(S0) is isomorphic to
Z⊕l. We note that π1(S0) = 〈γ1, . . . , γl〉, where γi corresponds to a path
that circles around i-th coordinate counter-clockwise.

We define the monodromy matrix Tγ corresponding to γ ∈ π1(S0) as
follows;

γ(e1, . . . , en) = (e1, . . . , en)T−1
γ ,

where {e1, . . . , en} is a basis of HZ. Let {f1, . . . , fn} be another basis of HR

such that
(f1, . . . , fn) = (e1, . . . , en)P−1

for P ∈ GL(HR). Then the monodromy matrix with respect to the basis
{fi} is PTγP

−1. We will omit P · P−1 for simplicity if there is no danger
of confusion.

From now on, we put the following assumption:

(U) Ti := Tγi
is unipotent for every i.

Under this assumption (U), we define Ni = log Ti for 1 ≤ i ≤ l.

2.14. (Canonical extensions) We define

vj := (f1, . . . , fn) exp

( l∑

i=1

ziNi

)




0
...
0
1
0
...
0




for 1 ≤ j ≤ n, where the column vector on the right hand side is the j-th
unit vector with respect to the basis {fi}. Then, by the definition of vj , vj

is invariant under the monodromy actions. So there exists vj ∈ H0(S0,HC)
such that vj = e∗vj for 1 ≤ j ≤ n. We define

H = OSv1 ⊕ · · · ⊕ OSvn.

Then we call H the canonical extension of H. Of course, H does not depend
on the choice of the basis {fi}.

We define F(H)
p

:= j∗Fp ∩ H the canonical extension of F p, where
j : S0 → S.

The local canonical extensions are patched together. Thus we can define
globally the canonical extensions on M .
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2.15. (Monodromy weight filtrations) In this paragraph, we will inves-
tigate the monodromies Ti and Ni.

Cutting the base space S0 generally, we can assume that S0 is one-
dimensional. So we omit the subscript i.

By the monodromy theorem, N k+1 = 0, where k is the weight of the
Hodge structure (see [Sd, Section 6]).

In this case, there exists a unique ascending filtration {Wl} of HQ,
called the monodromy weight filtration,

0 ⊂W0 ⊂W1 ⊂ · · · ⊂W2k = HQ,

satisfying
N : Wi −→Wi−2,

N l : Wk+l/Wk+l+1 'Wk−l/Wk−l−1

for each l ≥ 0 (see [Sd, (6.4) Lemma]). On the other hand, by the nilpotent
orbit theorem, Ψ := exp(−zN)Φ descends to a single-valued map Ψ : S0 →
Ď and extends across the origin to a map Ψ : S → Ď.

Definition 2.16. The filtration Ψ(0) ∈ Ď will be called the limiting

filtration and will be denoted by {F p
∞}

Theorem 2.17. ([Sd, (6.16) Theorem]) The limiting filtration {F p
∞}

together with the monodromy weight filtration {Wl} gives a mixed Hodge

structure on the vector space HQ.

We describe the monodromy weight filtration.

Case (WII). (cf. [Ku, Section 2].) Setting

F i
k := F i

∞ ∩Wk/F
i
∞ ∩Wk−1,

and
f i

k := dimF i
k,

we have f 2
4 + f2

3 + f2
2 = h2,0 = 1. We note that f i

k = 0 for i > k since the
filtration induces a pure Hodge structure of weight k on GrW

k = Wk/Wk−1.
Therefore,

f2
4 = dimW4/W3 = dimW0

since N 2 : W4/W3 'W0 is an isomorphism and GrW
4 = F 2

4 . Similarly,

f2
3 =

1

2
dimW3/W2 = dimW1/W0

since N : W3/W2 'W1/W0 is an isomorphism and GrW
3 = F 2

3 ⊕ F̄ 2
3 .
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Type (I). If N = 0, then T = I and Ψ(0) = Φ(0) ∈ D.

Type (II). Assume that N 6= 0, N 2 = 0. By the assumption and the
definition of the monodromy weight filtration, W0 = 0 and W1 6= 0. The
subspace W1 is totally isotropic and dimW1 ≤ 2 since the signature of Q is
(2, g). Therefore, dimW1 = 2 since dimW1 is even by the above argument.
Thus,

0 = W0 ( W1 ⊂W2 = W⊥
1 ⊂W3 = W4 = HQ.

Type (III). Assume that N 2 6= 0, N3 = 0. Since N 2 6= 0, W0 6= 0.
By the above relations, dimW0 = f2

4 = 1 and f 2
3 = f2

2 = 0. So, we get the
filtration;

0 ( W0 = W1 ( W2 = W3 = W⊥
1 ⊂W4 = HQ.

Case (WI). By the monodromy theorem, N 2 = 0. The monodromy
weight filtration {Wl} of N is the filtration

0 ⊂W0 ⊂W1 ⊂W2 = HQ

given by: W0 = ImN ; W1 = KerN . It is easy to check that W0 is a totally
isotropic Q-subspace and W1 = W⊥

0 .

2.18. (Rational boundary components) Let F be a rational boundary
component of D. We denote by N(F ) (⊂ GR), W (F ) and U(F ), the stabi-
lizer subgroup of F , the unipotent radical of N(F ), and the center of W (F ),
respectively. We define D(F ) := U(F )CD ⊂ Ď.

There are various ways of characterizing the rational boundary compo-
nents. For our purpose, the following is the most convenient. The rational
boundary components correspond to totally isotropic Q-subspaces of HQ

bijectively.

Case (WII). We recall the above correspondence in the case (WII)
(cf. [Sc, 2.1], [Kon, 2]).

Proposition 2.19. The set of all rational boundary components of D
corresponds to the set of all totally isotropic Q-subspaces of HQ. If E is a

totally isotropic Q-subspace of HQ, then the corresponding rational boundary

component is defined by P(E ⊗ C) ∩D, where D is the topological closure

of D in Ď.
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Remark 2.20. By the theorem of Mayer [Se, p. 43, Corollary 2], there
exists an isotropic Q-vector since dimHQ ≥ 5 (see 2.3 (Assumptions)
(WII)). Therefore, D/Γ is not compact.

Type (II). Let F1 be a 1-dimensional rational boundary component
corresponding to the totally isotropic Q-subspace W1. We take a Q-basis
{f1, . . . , fn} ofHQ such that F1 corresponds to the totally isotropic subspace
Qf1 ⊕Qf2 and the intersection matrix Q with respect to {fi} is

Q =




0 0 H
0 K 0
H 0 0


 ,

where K is a negative definite matrix of degree g − 2, H =

(
0 1
1 0

)
the

hyperbolic lattice. By changing the basis {f3, . . . , fg} linearly on R, we
obtain a basis {fi} of HR such that K = −Ig−2.

An elementary calculation shows;

N(F1) =







U V W
0 X Y
0 0 Z




∣∣∣∣
detU > 0, tUHZ = H, tXKX = K,
tXKY + tV HZ = 0,
tY KY + tZHW + tWHZ = 0



 ,

where U , W , Z are 2 by 2 matrices, X is (g− 2) by (g− 2) matrix and tV ,
Y are (g − 2) by 2 matrices;

W (F1) =







I2 V W
0 Ig−2 Y
0 0 I2




∣∣∣∣
KY + tV H = 0,
tY KY + tHW + tWH = 0



 ,

U(F1) =







I2 0 W
0 Ig−2 0
0 0 I2




∣∣∣∣ W =

(
0 c
−c 0

)
, c ∈ R



 .

By the construction of the monodromy weight filtration and T = I+N , we
obtain that T ∈ U(F1).

We put D(F1) = U(F1)CD. It can be checked easily that D ⊂ D(F1) ⊂
Cg+1 = {(t1 : · · · : tg+2) ∈ P(HC) | tg+2 6= 0}.

We define Ψ = exp(−zN)Φ as above. Then Ψ descends to a single-
valued map Ψ : S0 → Ď. By the nilpotent orbit theorem, Ψ is holo-
morphically extended to Ψ : S → Ď. Since exp(−zN) ∈ U(F1)C and
exp(zN)Ψ(0) ∈ D for Im z � 0, we obtain Ψ : S → D(F1) ⊂ Ď.
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Type (III). Let F0 be a 0-dimensional rational boundary component
corresponding to the totally isotropic Q-subspace W0. We take a Q-basis
{f1, . . . , fn} ofHQ such that F0 corresponds to the totally isotropic subspace
Qf1 and the intersection matrix Q with respect to {fi} is

Q =




0 0 1
0 K ′ 0
1 0 0


 ,

where K ′ has the signature (1, g − 1). As in the type (II), by replacing
{f2, . . . , fg+1}, we obtain a basis {fi} of HR such that

K ′ =




0 0 1
0 −Ig 0
1 0 0




with respect to the basis {fi}.
A direct calculation shows;

N(F0) =







U V W
0 X Y
0 0 Z




∣∣∣∣
UZ = 1, tXK ′X = K ′,
tXK ′Y + tV Z = 0,
tY K ′Y + 2ZW = 0



 ,

where U,W,Z ∈ R, X is g by g matrix and tV , Y are g by 1 matrices;

W (F0) = U(F0) =








1 V W
0 Ig Y
0 0 1




∣∣∣∣ K
′Y + tV = 0, tY K ′Y + 2W = 0



 .

By the construction of the filtration and T = I +N + 1
2 N

2, we can check
that T ∈ U(F0).

By the same argument as in the type (II), we obtain D(F0) = U(F0)CD
⊂ Cg+1 = {tg+2 6= 0} and Ψ = exp(−zN)Φ : S → D(F0) ⊂ Ď.

Case (WI). By choosing the Q-basis {fi} of HQ suitably, we can as-
sume that W0 = Qfg′+1 ⊕ · · · ⊕Qfg and

Q =

(
0 I
−I 0

)
.
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We denote the rational boundary component corresponding to W0 by Fg′ .
Then

N(Fg′) =








A′ 0 B′ ∗
∗ u ∗ ∗
C ′ 0 D′ ∗
0 0 0 tu−1




∣∣∣∣∣

(
A′ B′

C ′ D′

)
∈ Sp(2g′,R),

u ∈ GL(g′′,R)




,

where g′′ = g − g′, and

W (Fg′) =








Ig′ 0 0 n
tm Ig′′

tn b
0 0 Ig′ −m
0 0 0 Ig′′




∣∣∣∣∣
tnm+ b = tmn+ tb




,

U(Fg′) =








Ig′ 0 0 0
0 Ig′′ 0 b
0 0 Ig′ 0
0 0 0 Ig′′




∣∣∣∣∣
tb = b




.

For the details, see [Nm2, Section 4], [Nm1, 2].
Then, we can check that the monodromy matrix T is contained in U(F ),

where F is the rational boundary component corresponding to the totally
isotropic Q-subspace W0.

So, by the nilpotent orbit theorem, we obtain Ψ : S → D(F ) ⊂ Ď as
in the above case.

2.21. (Proof of theorems) Let π : UM →M be a universal cover of M .
Then we obtain a commutative diagram of the period map;

UM

ΦM−−−→ D

π

y
y

M −−−→
p0

D/Γ = S.

Let {ϕ0, . . . , ϕb} be a system of integral automorphic forms of weight k
which induces the embedding of S̄ ⊂ Pb (see Theorem 2.6). We note that
the projective embedding of S̄ on S is defined by

Z mod Γ −→ (ϕ0(Z) : · · · : ϕb(Z)) ∈ Pb

for Z ∈ D.
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Case (WII). Let Ω be the canonical free basis of F2 on D. Then we
have

ϕi · Ω⊗a ∈ H0(D, (F2)⊗a)

for a = gk, and

Φ∗
M (ϕi · Ω⊗a) ∈ H0(UM , π∗(F2)⊗a)

by the universality of F2. Since ϕi · Ω⊗a is Γ-invariant by the definition of
automorphic forms, Φ∗

M(ϕi ·Ω⊗a) is invariant under the monodromy actions
and hence

Φ∗
M(ϕi · Ω⊗a) = π∗ξi for ξi ∈ H0(M, (F2)⊗a).

Then, {ξ0, . . . , ξb} induces a morphism

(ξ0 : · · · : ξb) : M −→ Pb

that factors through S. We note that

(Φ∗
Mϕ0 : · · · : Φ∗

Mϕb)

= (Φ∗
M (ϕ0 · Ω⊗a) : · · · : Φ∗

M (ϕb · Ω⊗a))

= (π∗ξ0 : · · · : π∗ξb) : UM → S ⊂ Pb.

Therefore, (F2)⊗a ' p∗0OS(1). We note that in the above argument, we
didn’t use the monodromy condition (U) (cf. Proof of Theorem 5.1).

If we prove that ξi extends to a holomorphic section ξ̄i of F2(H)⊗a on
M for every i and {ξ̄i} generates F2(H)⊗a, then we obtain a holomorphic
map

(ξ̄0 : · · · : ξ̄b) : M −→ Pb

that is an extension of (ξ0 : · · · : ξb) : M → Pb. So, we obtain

F2(H)⊗a ' p∗OS̄(1).

Therefore, it is sufficient to check that ξi can be extended to a holomorphic
section of F2(H)⊗a and {ξi} generates F2(H)⊗a.

Case (WI). In the above argument, it is sufficient to replace F2 with∧g F1 and a = gk with a = k(g + 1).
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2.22. (Proof of theorems continued) We go back to the local setting;

U
Φ

−−−→ D

e

y
y

S0 −−−→
p0

D/Γ = S.

For the proof of theorem, it is obvious that we can assume that l = 1.

Case (WII). By the definition and construction of the canonical ex-
tension, Φ∗Ω is a free basis of e∗F2 on U and Ψ∗Ω is a free basis of F2(H)
on S such that e∗Ψ∗Ω = Φ∗Ω.

More concretely, we choose an R-basis {fi} as in 2.18 such that the
corresponding rational boundary component is F1 = Qf1⊕Qf2 or F0 = Qf1.
Then, we can write

Φ = t(Z1, . . . , Zn)

with respect to the basis {fi} and

Ψ = exp(−zN)Φ = t(W1, . . . ,Wn),

where Wi is holomorphic on S, Wn = Zn on S0, and Wn = 1 on S. Thus,

(f1, . . . , fn)




Z1
...

Zn−1

1


 = (f1, . . . , fn) exp(zN)




W1
...

Wn−1

1


 .

Therefore, Φ∗Ω =
∑
Zifi =

∑
Wie

∗vi = e∗Ψ∗Ω.
On the other hand, let ϕ be one of the {ϕi}. The pull-back Φ∗ϕ is a

holomorphic function on U and

Φ∗ϕ · Φ∗Ω⊗a ∈ H0(U, (e∗F2)⊗a),

where a = gk.
Since the local monodromies are unipotent, Φ∗ϕ is invariant under the

monodromy actions. Thus, Φ∗ϕ = e∗ϕ̃, where ϕ̃ is a holomorphic function
on S0. Then ξ = ϕ̃ ·Ψ∗Ω⊗a. Let (i∞, t02, . . . , t0d) ∈ U∗ be a point. We define

Φ̃(i∞, t02, . . . , t0d) = x ∈ D∗
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and

e(i∞, t02, . . . , t0d) = (0, t02, . . . , t
0
d) =: y.

Let N(x) be a good neighborhood of x. For the definition of the good neigh-
borhood, see [BB, 8.1, 4.9(iv), and 4.10]. Since Φ̃ is continuous with respect
to the Satake topology, the image of a small neighborhood of (i∞, t02, . . . , t0d)
by Φ̃ is in N(x). Since ϕ is integral, ϕ̃ is bounded around the point y and
extends to a holomorphic function on S by Riemann’s extension theorem.
Thus, we obtain an extension ξ̄ of ξ, that is,

ξ̄ = ϕ̃ · (Ψ∗Ω)⊗a ∈ H0(S,F2(H)⊗a).

By the choice of {ϕi}, there exists i such that ϕi(x) 6= 0 for the prescribed
point x ∈ D∗. Therefore, {ξ̄i} generates F2(H)⊗a on S. Thus, by the above
argument, we obtain the required results.

Case (WI). We choose a Q-basis {fi} as in 2.18. Let

Φ =

(
Z
I

)

be the period map with respect to the basis {fi}. Then

Ψ =

(
W
I

)
= exp(−zN)Φ.

Therefore,

(f1, . . . , fn)

(
Z
I

)
= (f1, . . . , fn) exp(zN)

(
W
I

)

= (e∗v1, . . . , e
∗vn)

(
W
I

)
.

Then, we obtain Φ∗Ω = e∗Ψ∗Ω. By the same argument as in the type
(WII), we obtain the required results. Details are left to the readers.

§3. Semistable part Lss
X/Y

We review the basic definitions and properties of the semistable part

Lss
X/Y without proof. For details, we recommend the reader to see [FM,

Sections 2, 4].
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3.1. Let f : X → Y be an algebraic fiber space with dimX = n + d
and dimY = d such that the Kodaira dimension of the generic fiber of f
is zero, that is, κ(Xη) = 0. We fix the smallest b ∈ Z>0 such that the b-th
plurigenus Pb(Xη) is non-zero.

Proposition 3.2. ([FM, Proposition 2.2]) There exists one and only

one Q-divisor D modulo linear equivalence on Y with a graded OY -algebra

isomorphism ⊕

i≥0

OY (biDc) '
⊕

i≥0

(f∗OX(ibKX/Y ))∗∗,

where M ∗∗ denotes the double dual of M .

Furthermore, the above isomorphism induces the equality

bKX = f∗(bKY +D) +B,

where B is a Q-divisor on X such that f∗OX(biB+c) = OY (∀i > 0) and

codimY f(SuppB−) ≥ 2.
If furthermore b = 1 and fibers of f over codimension one points of Y

are all reduced, then the divisor D is a Weil divisor.

Remark 3.3. In Proposition 3.2, we note that for an arbitrary open set
U of Y , D|U and B|f−1(U) depend only on f |f−1(U).

Definition 3.4. Under the notation of 3.2, we denote D by LX/Y . It
is obvious that LX/Y depends only on the birational equivalence class of X
over Y .

The following definition is a special case of [FM, Definition 4.2] (see

also [FM, Proposition 4.7]).

Definition 3.5. We set sP := b(1− tP ), where tP is the log-canonical
threshold of f ∗P with respect to (X,−(1/b)B) over the generic point ηP of
P , where P is an irreducible Weil divisor on Y :

tP := max{t ∈ R | (X,−(1/b)B + tf ∗P ) is log-canonical over ηP }.

Note that tP ∈ Q and that sP 6= 0 only for a finite number of codimen-
sion 1 points P because there exists a nonempty Zariski open set U ⊂ Y
such that sP = 0 for every prime divisor P with P ∩ U 6= ∅. We note that
sP depends only on f |f−1(U) where U is an open set containing P .



A CANONICAL BUNDLE FORMULA 153

We set Lss
X/Y := LX/Y −

∑
P sPP and call it the semistable part of

KX/Y .
We note that D, LX/Y , sP , tP and Lss

X/Y are birational invariants of X
over Y .

Putting the above symbols together, we have the canonical bundle for-

mula for X over Y :

bKX = f∗(bKY + Lss
X/Y ) +

∑

P

sPf
∗P +B,

where B is a Q-divisor on X such that f∗OX(biB+c) = OY (∀i > 0) and
codimY f(SuppB−) ≥ 2.

The next proposition follows from the definition of sP easily.

Proposition 3.6. Under the notation and the assumptions of 3.1,
sP = 0 if f : X → Y has a semistable resolution in a neighborhood of

P . Furthermore, if b = 1, then LX/Y = Lss
X/Y is a Weil divisor and

OY (Lss
X/Y ) ' (f∗ωX/Y )∗∗.

The following proposition explains the Hodge theoretic properties of

LX/Y and Lss
X/Y (see [FM, Corollay 2.5]). For the definition and properties

of canonical extensions, see [Kol, 2], [Mw, 2], and [Ny1].

Proposition 3.7. (See also Corollary 4.5) Under the notation and the

assumptions of 3.1, we assume that there exists a simple normal crossing

divisor Σ on Y such that f0 : X0 → Y0 is smooth and that b = 1. Then

bLX/Y c is the upper canonical extension and bLss
X/Y c is the lower canonical

extension of f0∗ωX0/Y0
. Therefore, if the local monodromies around Σ are

unipotent, then bLX/Y c = bLss
X/Y c.

Definition 3.8. (Canonical cover of the generic fiber) Under the no-
tation of 3.1, consider the following construction. Since dim |bKXη | = 0,
there exists a Weil divisor W on X such that

(i) W h is effective and f∗OX(iW h) = OY for all i > 0, and

(ii) bKX−W is a principal divisor (ψ) for some non-zero rational function
ψ on X.

Let s : Z → X be the normalization of X in C(X)(ψ1/b). We call
Z → X → Y a canonical cover of X → Y . We often call Z ′ → X a
canonical cover after replacing Z with its resolution Z ′.
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The following lemma is easy but useful. We will use it in Section 7.

Lemma 3.9. Let f : X → Y be as in 3.1. Let π : Y ′ → Y be a

birational morphism from a non-singular projective variety Y ′ such that

(X ×Y Y ′)main → Y ′ is equi-dimensional. Let X ′ → (X ×Y Y ′)main be any

resolution. Applying the canonical bundle formula for f ′ : X ′ → Y ′, we

obtain

bKX′ = f ′
∗
(bKY ′ + Lss

X′/Y ′) +
∑

P ′

sP ′f ′
∗
P ′ +B′.

Since codimY ′ f ′(SuppB′
−) ≥ 2, B′

− is µ-exceptional, where µ : X ′ → X.

§4. Pull-back of Lss
X/Y

In this section, we investigate the behavior of the semistable part Lss
X/Y

under pull-backs.

The following lemma is essentially the same as [Mo, (5.15.8)].

Lemma 4.1. Let f : X → Y and h : W → Y be algebraic fiber spaces

such that

(i) the Kodaira dimension of the generic fiber of f is zero and b is the

smallest positive integer such that the b-th plurigenus Pb(Xη) is non-

zero,

(ii) h factors as

h : W
g

−−−→ X
f

−−−→ Y,

where g is generically finite,

(iii) there is a simple normal crossing divisor Σ on Y such that f and h
are smooth over Y0 := Y \ Σ,

(iv) the Kodaira dimension of the generic fiber Wη is zero and the geomet-

ric genus pg(Wη) = 1, where η is the generic point of Y ,

Then bLss
W/Y = Lss

X/Y .

Sketch of the proof. By the same argument as in [Mo, (5.15.5)], that is,
taking a finite covering of Y , we can assume that h : W → Y is semistable
in codimension one and the singularities of X over codimension one point of
Y are at most rational Gorenstein and OY (Lss

X/Y ) = (f∗ω
⊗b
X/Y )∗∗ (see [Mo,

(5.15.6)(i)]).
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Let Y † be an open dense subset of Y with codim(Y −Y †) ≥ 2 such that
h is flat over Y †, h∗ω

⊗b
W/Y = OY (bLss

W/Y ) on Y †, the singularities of f−1(Y †)

are at most rational Gorenstein, and OY (Lss
X/Y ) = f∗ω

⊗b
X/Y on Y †. Let X†

be an open dense subset of f−1(Y †) such that codim(f−1(Y †) − X†) ≥ 2
and g is finite flat over X†. Let W † := g−1(X†) and let g† : W † → X†

be the induced morphism. We note that g†∗ωX†/Y † = ωW †/Y †(−R) for an

effective divisor R that is a sum of irreducible divisors dominating Y † (see
[Mo, (5.15.6)(ii)]).

Since κ(Wη) = κ(Xη) = 0, bR|Wη is the fixed part of |bKWη |. Then the
same argument as in [Mo, (5.15.8)] holds. Therefore, we obtain Lss

X/Y =

bLss
W/Y .

The following is very useful for applications. We will often use it in

Section 7.

Proposition 4.2. Under the notation and assumptions of Lemma 4.1,
let π : Y ′ → Y be a morphism from a non-singular projective variety Y ′

such that Σ′ := π−1(Σ) is a simple normal crossing divisor on Y ′. We

assume that κ(W ′
η) = κ(X ′

η) = 0, where

h′ : W ′
g′

−−−→ X ′
f ′

−−−→ Y ′

is induced by π and W ′
η (resp. X ′

η) is the generic fiber of h′ (resp. f ′). We

note that, when π is surjective, κ(W ′
η) = κ(X ′

η) = 0 is always true.

Then we obtain π∗Lss
X/Y = Lss

X′/Y ′ . In particular, if Lss
X/Y is semi-

ample, then so is Lss
X′/Y ′. Furthermore, we assume that π is surjective.

Then Lss
X/Y is semi-ample if and only if so is Lss

X′/Y ′.

We note that when π is not surjective, we have to choose Lss
W/Y , which is

unique modulo linear equivalence, such that SuppbLss
W/Y c does not contain

π(Y ′).

Proof. By Lemma 4.1, it is sufficient to prove that π∗Lss
W/Y = Lss

W ′/Y ′ .

Once we fix an embedding f∗ωW/Y ⊂ C(Y ) such that SuppbLss
W/Y c

does not contain π(Y ′), we obtain f ′∗ωW ′/Y ′ ⊂ π∗f∗ωW/Y ⊂ C(Y ′). We note
that f∗ωW/Y (resp. f ′∗ωW ′/Y ′) is the upper canonical extension of f0∗ωW0/Y0

(resp. f ′0∗ωW ′
0
/Y ′

0
). Therefore, π∗Lss

W/Y −Lss
W ′/Y ′ is determined as Q-divisor.

Let α : Ỹ → Y be a finite covering that induces a semistable resolution
in codimension one to W ×Y Ỹ → Ỹ such that the union of the branch
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locus and Σ is simple normal crossing. We can also assume that the union
of Σ′ and the branch locus of Ỹ ×Y Y

′ → Y ′ is simple normal crossing. We
take a finite cover β : Ỹ ′ → Ỹ ×Y Y ′ → Y ′ such that Ỹ ′ is non-singular
and the union of the branch locus of β and Σ′ is simple normal crossing.
We can further assume that W ′×Y ′ Ỹ ′ → Ỹ ′ has a semistable resolution in
codimension one. We have α∗Lss

W/Y = Lss
fW/eY

, β∗Lss
W ′/Y ′ = Lss

fW ′/eY ′
by [FM,

Corollary 2.5 (ii)]. By the following lemma, we have γ∗f̃∗ωfW/eY
= f̃ ′∗ω eX′/eY ′ ,

where γ : Ỹ ′ → Ỹ ×Y Y ′ → Ỹ . Therefore, we get β∗Lss
W ′/Y ′ = β∗π∗Lss

W/Y .

Thus, we obtain the required equality Lss
W ′/Y ′ = π∗Lss

W/Y .

Remark 4.3. In Proposition 4.2, the assumption κ(W ′
η) = κ(X ′

η) = 0
is unnecessary if the invariance of the Kodaira dimension under smooth
deformations is true (cf. [Ny2, Theorem (5.6, 5.10)]).

It is not difficult to see that κ(W ′
η) = κ(X ′

η) = 0 if π(Y ′) is in a
sufficiently general position in Y , that is, π(Y ′) is not contained in the
countable union of certain proper Zariski closed subsets of Y .

The next lemma is well-known. It is an easy consequence of the theory

of the canonical extension of VHS.

Lemma 4.4. Let f : X → Y be an algebraic fiber space with dim f = n.
Let Σ be a simple normal crossing divisor such that f is smooth over Y0 :=
Y \ Σ. Assume that all the local monodromies of H := OY0

⊗ Rnf0∗ZX0

around Σ are unipotent. Let π : Y ′ → Y be a projective morphism from

a non-singular projective variety Y ′ such that π−1(Σ) is a simple normal

crossing divisor. Then π∗(f∗ωX/Y ) ' f ′∗ωX′/Y ′, where f ′ : X ′ → Y ′ is an

algebraic fiber space induced by π.

Proof. Under the assumption of this lemma, the canonical extension
and the pull-back by π are commutative (see [Ka3, Proposition 1]). Hence,
π∗(f∗ωX/Y ) ' f ′∗ωX′/Y ′ .

The following is a supplement to Proposition 3.7.

Corollary 4.5. Under the same notation and assumptions as in Pro-

position 3.7, we assume that the local monodromies around Σ are unipotent,

then Lss
X/Y = bLss

X/Y c = bLX/Y c, that is, Lss
X/Y is a Weil divisor.
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Proof. Let π : Y ′ → Y be a finite Kummer covering that induces
f ′ : X ′ → Y ′ a semistable reduction in codimension one. Of course, we can
assume that π−1(Σ) is simple normal crossing. Then π∗Lss

X/Y = f ′∗ωX′/Y ′ =

π∗bLss
X/Y c by Proposition 3.7 and Lemma 4.4. So, we obtain the required

equality Lss
X/Y = bLss

X/Y c.

§5. Applications to algebraic fiber spaces

In this section, we apply Theorems 2.10 and 2.11 for algebraic fiber

spaces. There are many applications of Theorems 2.10 and 2.11, but we

restrict to the following ones.

The next theorem already appeared in the introduction (see Theo-

rem 1.2).

Theorem 5.1. Let f : X → Y be a surjective morphism between non-

singular projective varieties X and Y . Let L be an f -ample line bundle on

X. Assume that there exists a simple normal crossing divisor Σ on Y such

that every fiber of f over Y0 := Y \Σ is a K3 surface (resp. an n-dimensional

Abelian variety). Then we obtain a polarized variation of Hodge structures

of weight two (resp. one). Let p0 : Y0 → S be the period map of the

weight two (resp. one) polarized Hodge structures and p : Y → S̄ be the

extension of p0. We note that the projective variety S̄ is the Baily-Borel-

Satake compactification of S, which is embedded into a projective space by

automorphic forms of weight k, and that p always exists by Borel’s extension

theorem. We define a = 19k (resp. a = k(n + 1)). Then aLss
X/Y is a Weil

divisor and

OY (aLss
X/Y ) ' p∗OS̄(1).

We note that a is decided by the polarized Hodge structures of the fibers of

f .

Proof. If f : X → Y is a K3 fibration, then we define H := OY0
⊗

(R2f0∗ZX0
)prim and F2 := f0∗ωX0/Y0

, where prim means the primitive part
with respect to the fixed polarization L.

When f : X → Y is an Abelian fibration, we put H := R1f0∗ZX0
⊗OY0

and F1 := f0∗Ω
1
X0/Y0

. Then f0∗ωX0/Y0
' ∧n F1. We note that f∗ωX/Y is

the canonical extension of f0∗ωX0/Y0
if the local monodromies around Σ are

unipotent.

Let π : M → Y be a finite Kummer covering such that the algebraic
fiber space g : Z →M induced by π is semistable in codimension one. We
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denote Σ′ = π−1(Σ), Y0 = Y \Σ, M0 = M \Σ′, and π0 : M0 → Y0. We can
assume that Z is isomorphic to M ×Y X over M0. By pulling back the po-
larized variation of Hodge structures by π0, we obtain a polarized variation
of Hodge structures on M0. When f : X → Y is a K3 (resp. an Abelian)
fibration, the corresponding polarized variation of Hodge structures is type
(WII) and g = 19 (resp. type (WI) and g = n) by the notation in 2.3. So,
we use the same notation as in Section 2. We give names as follows;

q : M
π

−−−→ Y
p

−−−→ S̄,

and q0 := q|M0
. By 2.21, we obtain isomorphisms ρM0

: q∗0OS(1) '
(g0∗ωZ0/M0

)⊗a and ρY0
: p∗0OS(1) ' (f0∗ωX0/Y0

)⊗a, which are compati-
ble, that is, ρM0

= π∗0ρY0
. By 2.22, the above isomorphism ρM0

extends
to ρM : q∗OS̄(1) ' (g∗ωZ/M )⊗a. So, this isomorphism is Galois invariant.
Taking the Galois invariant part, we obtain p∗OS̄(1) ' OY (baLss

X/Y c). We
note that π ◦ p = q and π∗Lss

X/Y = g∗ωZ/M . Therefore, aLss
X/Y is a Weil

divisor and p∗OS̄(1) ' OY (aLss
X/Y ).

Remark 5.2. In Theorem 5.1, we further assume that f is semistable
in codimension one. Then the left hand side is (f∗ωX/Y )⊗a (cf. Proposi-
tion 3.6). So we obtain (f∗ωX/Y )⊗a ' p∗OS̄(1).

Theorem 5.3. Let f : X → Y be a surjective morphism between non-

singular projective varieties X and Y with connected fibers. Assume that

there exists a simple normal crossing divisor Σ on Y such that every fiber

of f over Y0 := Y \ Σ is a smooth curve of genus g ≥ 1. If f is semistable

in codimension one, then we obtain

(det f∗ωX/Y )⊗a ' p∗OS̄(1),

where p0 : Y0 → S is the period map of weight one polarized Hodge structures

and p : Y → S̄ is the extension of p0. Note that S = Hg/Sp(2g,Z) and S̄ is

the Satake compactification of S, which is embedded into a projective space

by automorphic forms of weight k, and that a = k(g + 1).

Proof. We use the same notation as in the proof of Theorem 2.11.
Let H := R1f0∗ZX0

and H := H ⊗ OY0
. We put F1 := f0∗ωX0/Y0

⊂
H. We consider the period map of polarized Hodge structures of weight
one. In this case, it is well-known that D = Hg, Γ = Sp(2g,Z), and
S = Hg/Sp(2g,Z), where g is the genus of general fibers. Thus, we obtain

p∗OS̄(1) '
(∧g F1(H)

)⊗a ' (det f∗ωX/Y )⊗a by Theorem 2.11.
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Remark 5.4. Since we have the global Torelli theorem for curves, The-
orem 5.3 implies that the Conjecture Qn,n−1 is true (see [Mo, (7.2) Theo-
rem]). For the conjectures Qn,m, C+

n,m, and Cn,m, see [Mo, (7.1), (7.3)] and

Conjecture 7.1 below. Therefore, we obtain C+
n,n−1 (cf. [V1]).

Remark 5.5. If f : X → Y is an elliptic fibration in Theorem 5.1, it
is well-known that p = J , S̄ = P1, and a can be taken to be 12, where J
is the j-function (see [U1], [Ft, Section 2], [Ka3, Theorem 20], and [Ny3,
Chapter 3]).

Theorem 5.1 for semistable families of Abelian varieties and Theo-
rem 5.3 are more or less known to specialists, see [Ar, Theorem 1.1], [U2,
Theorem 2.1], and [BPV, III 17].

The next theorem directly follows from Theorem 2.10. It may be useful

for the study of symplectic manifolds. We use the same notation as in

Section 2.

Theorem 5.6. Let f : X → Y be an algebraic fiber space. Assume that

there exists a simple normal crossing divisor Σ on Y such that f0 : X0 → Y0

is smooth and h2,0(Xy) = h0,2(Xy) = 1 and h1,1(Xy) ≥ 4 for every y ∈ Y0.

Let L be an f -ample line bundle on X. We define H = OY0
⊗(R2f0∗ZX0

)prim
and F2 = f0∗Ω

2
X0/Y0

. Then H → Y0 is a polarized variation of Hodge

structures of type (WII). We assume that the local monodromies around Σ
on H are unipotent. Then we obtain

F2(H)⊗a ' p∗OS̄(1).

The following remark is well-known.

Remark 5.7. In Theorem 5.6, we further assume that Y is a curve and
f is semistable. Then

F2(H) = f∗Ω
2
X/Y (log V ),

where V = f ∗Σ.

§6. Remarks on the semi-ampleness of Lss
X/Y

In this section, we generalize the semi-ampleness of the semistable part

Lss
X/Y for more general fiber spaces.
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Theorem 6.1. Let f : X → Y be an algebraic fiber space as in 3.1.
Assume that the geometric generic fiber Xη̄ has a generically finite cover

that is birationally equivalent to an Abelian variety. We further assume

that there exists a generically finite cover g : W → X and a simple normal

crossing divisor Σ on Y as in Lemma 4.1. Then the semistable part Lss
X/Y

is semi-ample.

Proof. By the assumption, there exists a surjective morphism π : Y ′ →
Y from a non-singular projective variety such that Σ′ := π−1(Σ) is a simple
normal crossing divisor and f ′ : X ′ → Y ′ is an algebraic fiber space induced
by π with the following properties:

(i) there exists a generically finite morphism Z → X ′ from a non-singular
projective variety Z,

(ii) there is an algebraic fiber space Z ′ → Y ′, which is birationally equiv-
alent to Z → Y ′,

(iii) there is a simple normal crossing divisor D ⊃ Σ′ such that Z → Y ′

and Z ′ → Y ′ are smooth over Y ′ \D,

(iv) every closed fiber of Z ′ → Y ′ over Y ′ \D is an Abelian variety.

We note that Abelian variety V is characterized by the conditions that
KV ∼ 0 and the irregularity q(V ) = dimV .

Applying Theorem 5.1 to Z ′ → Y ′, we obtain that Lss
Z′/Y ′ is semi-ample

and Lss
Z/Y ′ is so since Lss

Z/Y ′ = Lss
Z′/Y ′ . By Proposition 4.2, π∗Lss

X/Y =

Lss
X′/Y ′ , where f ′ : X ′ → Y ′ is induced by π. By Lemma 4.1, Lss

X′/Y ′ =

bLss
Z/Y ′ . Therefore, the semistable part Lss

X/Y is semi-ample.

Remark 6.2. By taking a canonical cover introduced in Definition 3.8,
we can always take a required cover W → X and a simple normal crossing
divisor Σ on Y as in Lemma 4.1 if we modify f : X → Y birationally.

By the same argument as in Theorem 6.1, we obtain the following

theorem. It is stated in [Mo] with the idea of the proof.

Theorem 6.3. (cf. [Mo, Part II (5.15.9)(ii)]) Let f : X → Y be an al-

gebraic fiber space such that the generic fiber is a surface with the Ko-

daira dimension zero. Assume that there exists a generically finite cover

g : W → X and a simple normal crossing divisor Σ on Y as in Lemma 4.1.
Then the semistable part Lss

X/Y is semi-ample.
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Sketch of the proof. By the same argument as in Theorem 6.1, we can
reduce it to the case where general fibers are K3 or Abelian surfaces. Thus
we obtain the result by Theorem 5.1.

By the above theorem and Remark 6.2, we obtain the following corol-

lary.

Corollary 6.4. Let f : X → Y be an algebraic fiber space such that

the generic fiber is a surface with the Kodaira dimension zero. After we

modify f : X → Y birationally, we obtain that Lss
X/Y is semi-ample.

6.5. If dimY = 1, then the semi-ampleness of Lss
X/Y holds without

extra assumptions. The next theorem is a reformulation of Kawamata’s
result.

Theorem 6.6. (cf. [Ka2]) Let f : X → Y be an algebraic fiber space as

in 3.1. Assume that dimY = 1. Then Lss
X/Y is semi-ample.

Proof. By Lemma 4.1, Definition 3.8, and Proposition 4.2, we can
assume that b = 1 and f : X → Y is semistable. So we have OY (Lss

X/Y ) '
f∗ωX/Y by Proposition 3.6. Thus, it is sufficient to prove κ(Lss

X/Y ) ≥ 0. We
note that Lss

X/Y is nef.

If degLss
X/Y > 0, then κ(Lss

X/Y ) = 1. So we assume that degLss
X/Y = 0.

In this case, OY (kLss
X/Y ) ' OY for some positive integer k (see [Ka2, p. 69,

lines 12–16]). Therefore, we obtain the required result.

§7. Applications to Iitaka’s conjecture

The following is a famous conjecture by Iitaka [Ii]. For the details, see

[Mo, Sections 6, 7] (see also Remark 5.4).

Conjecture 7.1. (Conjecture Cn,m) Let f : X → Y be an algebraic

fiber space with dimX = n and dimY = m. Then we have

κ(X) ≥ κ(Y ) + κ(Xη).

The next theorem claims that κ(Lss
X/Y ) ≥ 0 implies Cn,m is true when

the Kodaira dimension of the generic fiber is zero.

Theorem 7.2. Let f : X → Y be an algebraic fiber space as in Lem-

ma 4.1. Then κ(KX/Y ) ≥ κ(Lss
X/Y ). If κ(Lss

X/Y ) ≥ 0 and κ(Y ) ≥ 0,

then κ(X) ≥ max{κ(Y ), κ(Lss
X/Y )}. In particular, κ(Lss

X/Y ) ≥ 0 implies

κ(X) ≥ κ(Y ).
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Proof. By applying the flattening theorem, we obtain a birational mor-
phism π : Y ′ → Y from a non-singular projective variety Y ′ such that
π−1(Σ) is simple normal crossing and the following diagram;

X
µ

←−−− X ′

f

y
yf ′

Y ←−−−
π

Y ′,

as in Lemma 3.9. So we use the same notation as in Lemma 3.9. By
Lemma 3.9 and Proposition 4.2, we obtain κ(KX/Y ) = κ(KX′/Y ) =
κ(KX′/Y (B′

−)) ≥ κ(KX′/Y ′(B′
−)) ≥ κ(Lss

X′/Y ′) = κ(Lss
X/Y ). We note that

B′
− is effective and µ-exceptional. The latter part of the statement is obvi-

ous.

By the above theorem, Theorem 6.1, and Remark 6.2, we obtain:

Corollary 7.3. (cf. [Ka3, Theorem 13]) Let f : X → Y be an alge-

braic fiber space whose generic fiber has the Kodaira dimension zero. As-

sume that the geometric generic fiber has a generically finite cover that is

birationally equivalent to an Abelian variety. Then κ(X) ≥ max{κ(Y ),
κ(Lss

X/Y )} if κ(Y ) ≥ 0.

We prove Conjecture 7.1 for special fiber spaces. The following argu-

ment heavily relies on [Ka3].

Theorem 7.4. Let f : X → Y be an algebraic fiber space. Assume that

the Kodaira dimension of the generic fiber of f is one, that is, κ(Xη) = 1.
Let

f : X
g

−−−→ Z
h

−−−→ Y

be the relative Iitaka fibering. Assume the following condition;

(♦) By replacing g : X → Z birationally, there exists a proper surjective

morphism α : W → X → Z with connected fibers such that

(i) W is a non-singular projective variety, and W → X is generi-

cally finite,

(ii) the Kodaira dimension of the generic fiber of α is zero, that is,

κ(Wη) = 0, and the geometric genus pg(Wη) = 1,
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(iii) there exists a simple normal crossing divisor D on Z, such that

g and α are smooth over Z \D,

(iv) the semistable part Lss
X/Z is semi-ample.

Then the inequality κ(X) ≥ κ(Y ) + κ(Xη) = κ(Y ) + 1 holds.

Remark 7.5. If the geometric generic fiber of g has a generically finite
cover that is birationally equivalent to an Abelian variety, then the condition
(♦) is satisfied (see Theorem 6.1 and Remark 6.2).

Therefore, we obtain

Corollary 7.6. Let f : X → Y be an algebraic fiber space. Assume

that the Kodaira dimension of the generic fiber of f is one. Let

f : X
g

−−−→ Z
h

−−−→ Y

be the relative Iitaka fibering. If the geometric generic fiber of g has a

generically finite cover that is birationally equivalent to an Abelian variety,

then κ(X) ≥ κ(Y ) + 1.

The following proposition is a consequence of the easy addition theorem

(see, for example, [Ka1, Theorem 11]). For the proof, see [Ka3].

Proposition 7.7. ([Ka3, Proposition 6]) Let X, Y , and Z be non-sin-

gular projective algebraic varieties, and let f : X → Y and g : X → Z be

surjective morphisms with g∗OX ' OZ . Then for a sufficiently general

point z of Z,

dimY − κ(Y ) ≥ dim(f(Xz))− κ(f(Xz)),

where f(Xz) is considered as an irreducible algebraic variety and κ is defined

as the Kodaira dimension of its non-singular model.

Lemma 7.8. Let f : X → Y be an algebraic fiber space that factors as

X −−−→ Y ′
µ

−−−→ Y,

where µ is a proper birational morphism from a non-singular projective

variety Y ′. Then κ(KX/Y ′) ≤ κ(KX/Y ).
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Proof. It is obvious since KY ′ − µ∗KY is effective.

The following lemma is a modified version of [Ka3, Lemma 19].

Lemma 7.9. (Induction Lemma) For the proof of Theorem 7.4, it is

enough to prove that

(♠) κ(X) > 0 if κ(Y ) ≥ 0.

Proof. If κ(Y ) = −∞, then there is nothing to prove. Suppose κ(Y ) ≥
0. Let Φ : X → V be the Iitaka fibering of X. By (♠), dimV > 0 and
hence Xv 6= X, where Xv is a sufficiently general fiber of Φ. Let

f : X
g

−−−→ Z
h

−−−→ Y

be the relative Iitaka fibering. Since Φ : X → V is the Iitaka fibering,
we can assume that Φ factors as X → Z → V (see [Mo, (2.4)(ii)]). By
Proposition 7.7,

dimY − κ(Y ) ≥ dim(f(Xv))− κ(f(Xv)),

where v is a sufficiently general point of V . By the Stein factorization of
Xv → f(Xv), we obtain an algebraic fiber space fv : Xv → Yv. Since κ(Y ) ≥
0, we have κ(f(Xv)) ≥ 0, and hence κ(Yv) ≥ 0. We note that κ(Xv) = 0. If
dim fv = dim f , then the fiber of fv is the fiber of f . By applying (♠), we
obtain κ(Xv) > 0, which contradicts κ(Xv) = 0. Therefore, dim fv < dim f .
Since dimh = 1, dim fv = dim f − 1. So the fiber of fv is the fiber of
Xv → Zv. Therefore, 0 = κ(Xv) ≥ κ(Yv) ≥ κ(f(Xv)) ≥ 0 (see Theorem 7.2
and Proposition 4.2). By Proposition 7.7,

dimY − κ(Y ) ≥ dimXv − dim fv

= dimX − κ(X) − (dim f − 1)

= dimX − κ(X) − dim f + 1.

Thus, we obtain the required inequality κ(X) ≥ κ(Y ) + 1.

Proof of Theorem 7.4. Let q be the genus of the general fiber of h. If
q ≥ 2, then κ(X) ≥ κ(Z) ≥ κ(Y ) + 1 (see Corollary 7.2) and we are
done. By the same way, if q = 1 and h have non-constant moduli, then
κ(X) ≥ κ(Z) ≥ κ(Y ) +Var(h) ≥ κ(Y ) + 1 (for the definition of Var(h), see
[V2], and see also Remark 5.4). Thus, what are remaining are the following
two cases:
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(i) q = 1, and h have the constant moduli, or

(ii) q = 0.

Proof of Case (i). We shall prove that κ(X,KX/Y ) > 0 for a suitable
birational model of f : X → Y . Using Lemma 7.8 and [Ka3, Theorems 8,
9], we reduce it to the case where Z is birationally equivalent to a product
Y ×E for an elliptic curve E. Thus we come to the following situation:

f : X
g

−−−→ Z
ν

−−−→ Y ×E
h1−−−→ Y,

where

(a) E is an elliptic curve,

(b) f is the given fiber space, h1 is the projection, and ν is a proper
birational morphism,

(c) g is the fiber space satisfying (♦), and f factors as

X
µ

−−−→ X̃ −−−→ Y,

where µ is birational and X̃ is a non-singular projective variety such
that B− is an effective µ-exceptional divisor (see Lemma 3.9). We
note that

bKX = g∗(bKZ + Lss
X/Z) +

∑

Di

sDi
g∗Di +B,

(d) there exists a simple normal crossing divisor D on Z as in (iii) of (♦),

(e) the horizontal part Dh with respect to Z → Y is smooth.

By the canonical bundle formula, we have

g∗K
⊗m
X/Z((m/b)B−) ' OZ

(∑

i

(m/b)sDi
Di + (m/cb)A

)
,

where m is a positive integer such that (m/b)sDi
, m/b, and m/cb are in-

tegers, and A is a general member of the free linear system |cLss
X/Z |. By

restricting the canonical bundle formula to Xy → Zy, where y is a suffi-
ciently general point of Y , we obtain an irreducible component D1 of Dh

such that sD1
6= 0 or an irreducible component of Ah since κ(Xy) = 1. We
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denote such an irreducible horizontal divisor as D0. If D0 is an irreducible
component of Ah (resp. D0 = D1), we define sD0

:= 1/c (resp. sD0
:= sD1

).
Let D0 be the image of D0 on Y × E. Then κ(Y × E,D0) > 0 by

Lemma 7.10. On the other hand, every irreducible component of ν ∗D0−D0

is ν-exceptional and H0(Z,OZ ((msD0
/b)(D0 − ν∗D0) ⊗ K⊗mk

Z/Y ) 6= 0 for a

sufficiently large integer k. We note that KY ×E = h∗1KY . Combining the
above, we obtain

H0(Z, g∗K
⊗mk
X/Y (k(m/b)B−)⊗OZ(−(msD0

/b)ν∗D0)) 6= 0.

Therefore,

κ(X,KX/Y ) ≥ κ(Z, ν∗D0) = κ(Y ×E,D0) > 0.

We note that B− is effective and exceptional over X̃ . Thus, we finish the
proof of Case (i).

The following lemma was already used in the proof of Case (i).

Lemma 7.10. Let Y be a non-singular projective variety and E is an

elliptic curve. Let p : Y ×E → Y be the first projection and D an irreducible

divisor that is mapped onto Y by p. Then the Kodaira dimension κ(Y ×
E,D) > 0.

Proof. This directly follows from the next lemma: Lemma 7.11.

The following lemma is a variant of the theorem of cube.

Lemma 7.11. Under the notation and assumptions of Lemma 7.10, we

have 2D ∼ T ∗
xD+T ∗

−xD, where x ∈ E and Tx is the translation +x : E → E.

Proof. See [F1, Section 5]. It is a special case of [F1, Corollary 5.6].

Proof of Case (ii). By the same argument as in Case (i), we reduce it
to the following situation:

f : X
g

−−−→ Z
ν

−−−→ Y × P1
h1−−−→ Y,

where

(a) f is the given algebraic fiber space, h1 is the projection, and ν is a
proper birational morphism,
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(b) g is the fiber space satisfying (♦),

(c) there is a simple normal crossing divisor D on Z as in (iii) of (♦),

(d) the horizontal part Dh with respect to Z → Y is smooth.

Let A be a general member of the free linear system |cLss
X/Z |, where c ≥ 2.

We denote the irreducible decomposition A :=
∑
D′

j . By Lemma 7.8,
[Ka3, Theorems 8, 9], Lemma 3.9, and Proposition 4.2, we can assume that
degY Di ≤ 1 and degY D

′
j ≤ 1 for every i and j. By the canonical bundle

formula, we have

g∗K
⊗m
X/Z

((m/b)B−) ' OZ

(∑

i

(m/b)sDi
Di + (m/cb)A

)

by Proposition 4.2, where m is a sufficiently divisible positive integer such
that (m/b)sDi

, m/b, and m/cb are integers. We further assume that

(i) f : X → Y factors as

f : X
µ

−−−→ X̃ −−−→ Y

such that B− is µ-exceptional (see Lemma 3.9),

(ii) SuppDh ∪ SuppAh is smooth.

By restricting the canonical bundle formula to Xy → Zy, where y is a
sufficiently general point of Y , we have

degZy

(∑
(m/b)sDi

Di + (m/cb)
∑

D′
j

)
> 2m,

since κ(Xy) = 1.
Since (m/b)sDi

< m and m/cb < m, we can make a sequence
(C1, C2), . . . , (C2m+1, C2m+2) of divisors on Z such that

(1) Ck is an irreducible component of either Dh or Ah, and degY Ck = 1
for 1 ≤ k ≤ 2m+ 2,

(2) C2k+1 6= C2k+2 for 0 ≤ k ≤ m, and C2m−1 6= C2m+1, C2m = C2m+2,

(3)
∑2m+1

k=1 Ck ≤
∑

(m/b)sDi
Di + (m/cb)

∑
D′

j .

We note that
∑
Ck is smooth. We shall show that

h0(Z,KZ/Y ⊗OZ(C2m−1 + C2m + C2m+1)) ≥ 2
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and
h0(Z,KZ/Y ⊗OZ(C2k−1 + C2k)) ≥ 1

for 1 ≤ k ≤ m− 1. Since

f∗K
⊗m
X/Y ((m/b)B−) = h∗

(
g∗K

⊗m
X/Z((m/b)B−)⊗K⊗m

Z/Y

)
,

and
g∗K

⊗m
X/Z((m/b)B−) ⊃ OZ

(∑
Ck

)
,

it follows that

h0
(
X,K⊗m

X/Y

)
= h0

(
X̃,K⊗m

eX/Y

)
= h0

(
X,K⊗m

X/Y ((m/b)B−)
)
≥ 2

and we are done. We note that B− is effective and exceptional over X̃.
Let Y ′ → Y be a birational morphism from a non-singular projective

variety Y ′ and Z ′ a resolution of Z ×Y Y ′. We obtain the following com-
mutative diagram;

Z ′
α

−−−→ Z

h′

y
yh

Y ′ −−−→ Y.

We can assume that there exists a simple normal crossing divisor Σ on Y ′

such that
ϕk : Z ′

0 := (h′)−1(Y ′
0) ' Y ′

0 × P1

with ϕk(C ′
2k−1|Z′

0
) = Y ′

0×{0} and ϕk(C
′
2k|Z′

0
) = Y ′

0×{∞} for 1 ≤ k ≤ m+1,
where Y ′

0 := Y ′ \ Σ and C ′
k is the proper transform of Ck. By eliminating

the indeterminacy, we can further assume that there exists ψk : Z ′ → P1

such that ψk|Z′
0

= p2 ◦ ϕk, where p2 is the second projection Y ′
0 × P1 → P1.

We also assume that C ′
2k−1∪C ′

2k ∪ ((h′)∗Σ)red is simple normal crossing for
every k. We note that

KZ′/Y ′(C ′
2k−1 + C ′

2k) ≺ KZ′/Y (C ′
2k−1 + C ′

2k) ≺ α∗(KZ/Y (C2k−1 + C2k)).

So, for our purpose, we can replace Y , Z, Ck etc. with Y ′, Z ′, C ′
k. Therefore,

we omit ′ for simplicity.
The following lemma corresponds to [Ka3, Claim]. In our formulation,

the proof is obvious. We note that C2k−1 ∪C2k ∪ (h∗Σ)red is simple normal
crossing and Z \ (C2k−1 ∪ C2k ∪ (h∗Σ)red) ' Y0 × C×.
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Lemma 7.12. Under the same notation and assumptions, we have

∧
ψ∗

k

( dz

z

)
∈ Hom(h∗(KY + Σ),KZ + C2k−1 + C2k + (h∗Σ)red)

= H0(Z,KZ/Y (C2k−1 + C2k + (h∗Σ)red − h∗Σ))

⊂ H0(Z,KZ/Y (C2k−1 + C2k)).

for 1 ≤ k ≤ m+ 1, where z denotes a suitable inhomogeneous coordinate of

P1.

Therefore, h0(Z,KZ/Y (C2k−1 + C2k)) ≥ 1 for 1 ≤ k ≤ m − 1 and
h0(Z,KZ/Y (C2m−1 +C2m +C2m+1)) ≥ 2. Thus, we finish the proof of Case
(ii).

Thus, we obtain Theorem 7.4.
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