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INVARIANT THEORY

FOR LINEAR DIFFERENTIAL SYSTEMS MODELED

AFTER THE GRASSMANNIAN Gr(n, 2n)

TAKESHI SASAKI and MASAAKI YOSHIDA

Abstract. We find invariants for the differential systems of rank 2n in n
2 vari-

ables with n unknowns under the linear changes of the unknowns with variable
coefficients. We look for a set of coefficients that determines the other coeffi-
cients, and give transformation rules under the linear changes above and coor-
dinate changes. These can be considered as a generalization of the Schwarzian
derivative, which is the invariant for second order ordinary differential equations
under the change of the unknown by multiplying a non-zero function. Special
treatment is done when n = 2: the conformal structure obtained through the
Plücker embedding is studied, and a relation with line congruences is discussed.

§1. Introduction

In order to help understand our result, we recall the prototype. Let us

consider linear ordinary differential equations

u′′ + αu′ + βu = 0

(u′ = du/dx) together with changes of unknown u → ku (k 6≡ 0). Two

such equations are said to be equivalent if one of such changes of unknown

takes one into the other, that is, the ratio of any two linearly independent

solutions of one equation relates projectively to that of the other. For a

given equation u′′ + αu′ + βu = 0, we can find a suitable nonzero function

k so that the equation changes into an equation of the form

u′′ + β̄u = 0;

the new coefficient β̄ is a rational function of α, β, and their derivatives:

actually we have β̄ = β − α′/2 − α2/4. For any equation equivalent to this

equation, the Schwarzian derivative {r;x} = 3
4

(

r′′/r
)2

− 1
2r′′′/r′ of the ratio
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r of any two linearly independent solutions is equal to β̄. The Schwarzian

derivative satisfies the following chain rule for coordinate change x ↔ y:

{z;x}(dx)2 = {y;x}(dx)2 + {z; y}(dy)2.

This prototype treats linear equations in 1 variable of rank (= dimen-

sion of local solutions around a nonsingular point) 2 with 1 unknown. Our

hope is to generalize the above theory of Schwarzian derivatives to sys-

tems of linear equations in m variables of rank r with n unknowns. The

corresponding Schwarz map is defined as

x = (x1, . . . , xm) 7−→ [u(1), . . . , u(r)] ∈ Gr(n, r),

where u(j) are linearly independent n-column solutions and Gr(n, r) is

the (n, r)-Grassmannian manifold; for example, Gr(1, r) is the (r − 1)-

dimensional projective space Pr−1. We are not so optimistic to believe the

existence of a sufficiently nice theory of Schwarzian derivatives for general

(m, r, n).

When (m ≥ 2, r = m + 1, n = 1), it is the well-known theory of

projective connections (see e.g. [5]). We treated in [3] the case (m ≥ 2,

r = m+2, n = 1), and studied the conformal connections when the image of

the Schwarz map is a quadratic hypersurface in Pm+1. Several differential-

geometric studies were made when (m = 1, r = 2n, n ≥ 2) in [2] and [4].

In the paper [1] we encountered a system with (m = 4, r = 6, n = 1) as the

uniformizing equation of a 4-parameter family of K3 surfaces; the geometry

appeared there strongly suggests that the target of the Schwarz map should

be Gr(2, 4) rather than a quadratic hypersurface in P5, that is, the system

should be tranformed into a system with (m = 4, r = 4, n = 2). In this

way, we are led to the study of systems in 4 variables of rank 4 with 2

unknowns. Meanwhile we realized that the study of systems with (m = n2,

r = 2n, n ≥ 2) is not more difficult (or rather more transparent) than that

of the restricted system with n = 2.

So, in this paper, we treat systems of linear differential equations in n2

variables xij (1 ≤ i, j ≤ n) of rank (= dimension of local solutions around

a nonsingular point) 2n with n unknowns uk (1 ≤ k ≤ n). We consider the

transformation K of unknowns

(uk) −→

(

∑

l

Kk
l ul

)

, det(Kk
l ) 6≡ 0;
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two systems related under such changes are said to be equivalent. Our

Schwarz map is defined on the n2-dimensional affine space with the coordi-

nates x = (xij) and the target is the Grassmannian manifold Gr(n, 2n); two

equivalent systems define the same Schwarz map. We assume that n ≥ 2

and the Schwarz map is nondegenerate.

To explain the result of this paper, we write down our system as

(E) = En(a, b, α, β)







uk
:11:11 =

∑

l αk
l ul

:11 +
∑

l βk
l ul,

uk
:ij =

∑

l ak
ijl u

l
:11 +

∑

l bk
ijl u

l,

1 ≤ k, l, i, j ≤ n, where f:ij stands for ∂f/∂xij , and

ak
11l = δk

l , bk
11l = 0.

We prove that two systems En(a, b, α, β) and En(ā, b̄, ᾱ, β̄) are equivalent if

and only if there is an invertible n × n matrix K = (Kk
l ) such that

Ā = KAK−1,

where

A = (ak
l ), ak

l =
∑

i,j

ak
ijl dxij .

That is,
{

ak
ijl

}

form the essential part of the coefficients. Though there is

no natural representative in an equivalence class, and so no counterpart of

the Schwarzian derivative either, the matrix 1-form A will play for it; we

call A the essential coefficients of the system. We also give transformation

formulas for A under coordinate changes.

The annoying fact, which we always encounter when treating systems in

several variables, is that there are no canonical way to write such systems.

In this paper, we also treat such systems expressed in the following form

(E)







uk
:kk:kk =

∑

l α
k
l ul

:ll +
∑

l β
k

l
ul,

uk
:ij =

∑

l a
k
ijl u

l
:ll +

∑

l b
k
ijl u

l, 1 ≤ i, j, k ≤ n.

When we discuss the associated conformal structure in the case n = 2, this

form will be convenient.

When n = 2, as we mentioned above, the Plücker image of Gr(2, 4) is a

quadratic hypersurface, which naturally carries a conformal structure. We
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express the pull-back of the conformal structure in terms of the essential

coefficients. In order to get a converse expression, we define two differ-

ential 1-forms associated with the system, and compute the covariance of

these forms relative to linear change of unknowns and relative to coordi-

nate change. In view of the covariance, we give a procedure of deriving the

essential coefficients from the conformal structure.

When n = 2, the system (E) has a nice geometric interpretation. Since

each component of the unknowns is a vector in P3, the pair of fundamental

solutions defines a line that depends on the four variables x. Thus the

system can be seen as defining a 2-parameter family of line congruences;

here a line congruence is a 2-parameter family of lines in P3. With this

geometrical interpretation, we introduce a normal form of the system (E).

Relying on this normalization, we give a non-trivial example of 2-parameter

families of line congruences such that both associated focal surfaces are

quadratic surfaces.

§2. Non-degeneracy

Let us consider a system (E) = En(a, b, α, β). Since we can easily see

that every derivative of uk can be expressed in terms of ul and ul
:11, and

so that any system of this form is of rank at most 2n. We assume that

our system is of rank 2n. In other words, the corresponding matrix system

dU = ΩU with respect to the unknown 2n-vector

U = t(u1
:11, . . . , u

n
:11, u

1, . . . , un)

admits 2n linearly independent solutions. Let

u(j) = t(u1
(j), . . . , u

n
(j)), j = 1, . . . , 2n

be a basis of the solutions. We assume also that the Schwarz map

S : (xij) 7−→ [u(1), . . . , u(2n)] ∈ Gr(n, 2n)

from the x-space to the (n, 2n)-Grassmannian manifold

Gr(n, 2n) = GL(n) \ {n × 2n matrices of rank n}

is nondegenerate. Let us paraphrase this assumption.
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Proposition 1. The Schwarz map of the system (E) is nondegenerate

if and only if the n2 × n2-determinant

W = det(ak
ijl)(i,j),(k,l)

does not vanish identically.

A straightforward computation leads to

Lemma 1. The transformation

uk −→
∑

l

Kk
l ul, det Kk

l 6= 0

changes the coefficients a as

ak
ijl −→

∑

Kk
p ap

ijq (K−1)q
l
,

in other words,

A = (ak
l ) −→ KAK−1, ak

l =
∑

ak
ijl dxij ,

and α as

A = (αk
l ) −→ (2K:11 + KA)K−1.

The identity

det
(

Kk
p ap

ijq(K
−1)q

l

)

(i,j),(k,l)
= (det K)n det(ap

ijq)(i,j),(p,q)(det K−1)n

implies that W is invariant under the transformation K. Now take K the

n × n matrix consisting of n linearly independent solutions of the system.

Then the new system admits the n solutions

e(1) = t(1, 0, . . . , 0), . . . , e(n) = t(0, . . . , 0, 1);

this implies bk
ijl = 0. Let

v(1) = t(v1
(1), . . . , v

n
(1)), . . . , v(n) = t(v1

(n), . . . , v
n
(n))

be n solutions which together with e(1), . . . , e(n) form a basis of the solutions.

We have
∂vk

(l)

∂xij
=

∑

p

ak
ijp vp

(l):11, 1 ≤ k, l ≤ n
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so that the jacobian of the Schwarz map is given by

det

(∂vk
(l)

∂xij

)

(i,j),(k,l)

= W (det vp

(l):11)
n.

Since a fundamental solution of the corresponding matrix system dU = ΩU

can be given by
(

e(1):11 · · · e(n):11 v(1):11 · · · v(n):11

e(1) · · · e(n) v(1) · · · v(n)

)

=

(

0 v:11

In v

)

,

where v = (v(1), . . . , v(n)), we conclude that det v:11 6= 0. Thus the jacobian

vanishes if and only if W does; this completes the proof of Proposition 1.

§3. The model equation

Let us consider a system of linear homogeneous differential equations

in n2 independent variables xij with n unknowns uk

(E)







uk
:kk:kk =

∑

l αk
l ul

:ll +
∑

l βk

l
ul,

uk
:ij =

∑

l ak
ijl u

l
:ll +

∑

l bk
ijl u

l, 1 ≤ i, j, k ≤ n.

3.1. (E) versus (E)

Here we compare the coefficients of the two expressions (E) and (E).

The equations

uk
:kk =

∑

l

ak
kkl u

l
:11, uk

:11 =
∑

l

ak
11l u

l
:ll mod (u1, . . . , un)

lead to

Proposition 2. (ak
ijl) and (ak

ijl) as well as (ak
ijl, b

k
ijl) and (ak

ijl, b
k
ijl)

are birationally related. (αk
l , β

k

l
) can be expressed as rational functions of

(a, b, α, β) and their derivatives, and vice versa. The denominators are

det(ak
kkl)k,l and det(ak

11l)k,l, respectively.

3.2. The model equation

The system with a fundamental set of solutions






u1

...
un






=







1
...
0






, . . . ,







0
...
1






,







x11

...
xn1






, . . . ,







x1n

...
xnn






,
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can be written as

{

uk
:kk:kk = 0,

uk
:ij = δk

i uj
:jj, 1 ≤ i, j, k ≤ n.

This system is the model equation of the system (E) above, which means

that every system of the form (E) satisfying

det(ak
ijl)(i,j),(k,l) 6= 0

is equivalent to the model system through a transformation K and a coor-

dinate change. In fact, if we take K the n×n matrix consisting of n linearly

independent solutions, and transform the system, then the new system has

linearly independent solutions e(1), . . . , e(n) and, say, v(1), . . . , v(n). Now we

have only to change the coordinates as xij → vi
(j).

§4. The transformation formula under changes of unknowns

4.1. A set of essential coefficients

We assumed that the rank of the system E is 2n; this implies that the

coefficients of the system must satisfy the so-called integrability condition.

We analyze this condition and see that the coefficients ak
ij almost determine

the remaining ones. Thanks to Lemma 1, we may assume A = (αk
l ) = 0.

Note that we still have a freedom of transformations K satisfying K:11 = 0.

Define 1-forms as

ak
p =

∑

i,j

ak
ijp dxij , bk

p =
∑

i,j

bk
ijp dxij .

Then we have

duk =
∑

ak
p up

:11 +
∑

bk
p up,

duk
:11 =

∑

ak
p:11 up

:11 +
∑

ak
p up

:11:11 +
∑

bk
p:11 up +

∑

bk
p up

:11

=
∑

(ak
p:11 + bk

p)u
p
:11 +

∑

(ak
l βl

p + bk
p:11)u

p.

Thus the matrix 1-form Ω defined by dU = ΩU can be expressed as

Ω =

(

ak
p:11 + bk

p

∑

ak
l βl

p + bk
p:11

ak
p bk

p

)

.
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The integrability condition is given by

dΩ = Ω ∧ Ω;

let us check its entries: left-bottom, left-top and right-bottom.

The left-bottom reads

dak
p =

∑

ak
q ∧ aq

p:11 +
∑

ak
q ∧ bq

p +
∑

bk
q ∧ aq

p,

which implies

∑

ak
q ∧ bq

p +
∑

bk
q ∧ aq

p = ck
p (:= dak

p −
∑

ak
q ∧ aq

p:11).

To show the above, we need the following lemma which will be proved later.

Lemma 2. Let

Ak
p =

∑

Ak
ijp dxij (k, p = 1, . . . , n)

be 1-forms in variables xij (i, j = 1, . . . , n) satisfying det(Ak
ijp)(i,j),(k,p) 6= 0,

and

Ck
p (k, p = 1, . . . , n)

2-forms satisfying
∑

Ck
k = 0. Then equations

Ek
p : Ak

q ∧ Bq
p + Bk

q ∧ Aq
p = Ck

p , k, p = 1, . . . , n

for the unknown 1-forms Bq
p in x determine

Bk
q (k 6= q) and Bk

k − Bp
p .

That is, they can be expressed in terms of A and C.

The left-top reads

dak
p:11 + dbk

p =
∑

(ak
q:11 + bk

q) ∧ (aq
p:11 + bq

p) +
∑

(ak
l β

l
q + bk

q:11) ∧ aq
p;

in particular, their coefficients of dxij ∧ dx11 imply

−ak
ijp:11:11 − bk

ijp:11 =
∑

ak
ijl β

l
p + bk

ijp:11 −
∑

βk
q aq

ijp.
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When k 6= p, since bk
p are already expressed in terms of a (and their deriva-

tives), these identities can be regarded as equations for βk
p . A scalar version

of the lemma above says that

βk
p (k 6= p) and βk

k − βp
p

can be expressed in terms of a.

When k = p, since

∑

ak
ijl β

l
p −

∑

βk
q aq

ijp =
∑

l 6=k

ak
ijl β

l
p −

∑

q 6=k

βk
q aq

ijp,

(so βk
k do not appear,) the identities above give expressions of 2bk

k:11 in

terms of a.

The right-bottom reads

dbk
p =

∑

ak
q ∧ (aq

l β
l
p + bq

p:11) +
∑

bk
q ∧ bq

p.

When k 6= p, since

∑

bk
q ∧ bq

p =
∑

q 6=k,p

bk
q ∧ bq

p + bk
p ∧ (bp

p − bk
k),

the equality determines βp
p , if ak

q∧aq
p 6= 0 for some k. Note that, since βk

k−βp
p

are expressed in terms of a, this condition is equivalent to A∧A 6= 0, where

A = (ak
l ) is the matrix of essential coefficients.

When k = p, since the right hand-side is already determined, this gives an

expression of dbk
k.

In this way, the coefficients

bk
p (k 6= p), bk

k − bp
p, βl

p (l 6= p), bk
k:11, βk

k , dbk
k

are determined, that is, expressed in terms of a, in this order. Thus we get

Proposition 3. Under the assumptions det(ak
ijp)(i,j),(k,p) 6= 0 and A∧

A 6= 0, where A = (ak
l ), ak

l =
∑

ak
ijl dxij, the coefficients a determine the

other coefficients b and β up to adding an exact 1-form dk(x), where k(x)
is independent of x11, to bk

k (k = 1, . . . , n). This ambiguity is caused by the

scalar transformation K = k(x)In.

Hence we have the following main theorem.
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Theorem 1. Two systems En(a, b, α, β) and En(ā, b̄, ᾱ, β̄) are equiv-

alent if only if there is an invertible n × n matrix K such that

Ā = K−1AK

provided that det(ak
ijp)(i,j),(k,p) 6= 0 and A ∧ A 6= 0. Here A and Ā are

the matrices of the essential coefficients of the systems En(a, b, α, β) and

En(ā, b̄, ᾱ, β̄), respectively.

4.2. Sketch of the proof of Lemma 2

Note that

∧

k,p

Ak
p = det(Ak

ijp)(i,j),(k,p) dx, dx =
∧

i,j

dxij.

For each unknown 1-form B := Bk
p , we derive from the equations Ek

p in

Lemma 2

X :
(

∧

(p,q)6=(i,j)

Ap
q

)

∧ B = Xij dx,

for every i, j, where Xij is a function expressible in terms of A and C. These

will determine B.

Let us work on the unknown 1-form Bk
p (k 6= p). The equations Ek

k ,

Ep
p , Ek

p , and Ep
k read

Ek
k :

∑

q 6=k,p

(Ak
q ∧ Bq

k
− Aq

k
∧ Bk

q ) + Ak
p ∧ Bp

k
− Ap

k
∧ Bk

p = Ck
k ,

Ep
p :

∑

q 6=p,k

(Ap
q ∧ Bq

p − Aq
p ∧ Bp

q ) + Ap
k
∧ Bk

p − Ak
p ∧ Bp

k
= Cp

p ,

Ek
p :

∑

q 6=k,p

(Ak
q ∧ Bq

p − Aq
p ∧ Bk

q ) + (Ak
k − Ap

p) ∧ Bk
p + Ak

p ∧ (Bp
p − Bk

k) = Ck
p .

We multiply some 1-forms A∗
∗ to each equation to kill terms containing B∗

∗

except the multiple of the Bk
p , and we get the equation of the form

F :
(

∧

A∗
∗

)

∧ Bk
p = a form expressed in terms of A and C.

The coefficients of Bk
p in the three equations thus obtained, call them F k

k ,

F p
p , and F k

p , have the unique factor Ak
p in common. To get such an equation
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that the coefficients of Bk
p does not have Ak

p as a factor, we make use of the

equation

Ep
k

:
∑

q 6=p,k

(Ap
q ∧ Bq

k
− Aq

k
∧ Bp

q ) + (Ap
p − Ak

k) ∧ Bp
k

+ Ap
k
∧ (Bk

k − Bp
p) = Cp

k
,

which does not contain the term Bk
p . To eliminate the last terms in the left

hand-sides of Ek
p and Ep

k
, we form Ap

k
Ek

p − Ak
pE

p
k
:

Ap
k
∧

∑

q 6=k,p

(Ak
q ∧ Bq

p − Aq
p ∧ Bk

q ) − Ak
p ∧

∑

q 6=k,p

(Ap
q ∧ Bq

k
− Aq

k
∧ Bp

q )

+ Ap
k
∧ (Ak

k − Ap
p) ∧ Bk

p − Ak
p ∧ (Ap

p − Ak
k) ∧ Bp

k

= Ap
k ∧ Ck

p − Ak
p ∧ Cp

k .

To eliminate the last term of the left hand-side of this equation, we add

(Ap
p − Ak

k) ∧ Ep
p and get

(Ap
p − Ak

k) ∧
∑

q 6=k,p

(Ap
q ∧ Bq

p − Aq
p ∧ Bp

q ) + Ap
k ∧

∑

q 6=k,p

(Ak
q ∧ Bq

p − Aq
p ∧ Bk

q )

− Ak
p ∧

∑

q 6=k,p

(Ap
q ∧ Bq

k − Aq
k ∧ Bp

q ) + Ap
k ∧ (Ak

k − Ap
p) ∧ Bk

p

= (Ap
p − Ak

k) ∧ Cp
p + Ap

k ∧ Ck
p − Ak

p ∧ Cp
k .

We multiply some 1-forms A∗
∗ to this equation to kill terms containing B∗

∗

except the multiple of the Bk
p and we get the equation of the form F . The

coefficient of Bk
p in this equation and those of F k

k , F p
p , and F k

p have no factor

in common. Thus by multiplying some 1-forms A∗
∗ to these four equations,

we can get a system of the form X.

§5. Coordinate changes

Let us consider a coordinate transformation from x = (xij) to y = (yij).

Put ūk(y) = uk(x(y)), and

ak
l =

∑

ak
ijl dxij , āk

l =
∑

āk
ijl dyij .

Then the equations of the first order of (E) can be written as

∑

ak
l u

l
:11 = duk =

∑

āk
l ū

l
:11.
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Substituting

ūl
:11 =

∑

i,j

ul
:ij

∂xij

∂y11
=

∑

i,j,p

al
ijpu

p
11

∂xij

∂y11
mod (u1, . . . , un)

into the above identity, we have

∑

l

ak
l u

l
:11 =

∑

p,l

∑

i,j

āk
pa

p
ijl

∂xij

∂y11
ul

:11.

Thus we get the following theorem giving the transformation formula.

Theorem 2. Let A be the matrix of the essential coefficients of a sys-

tem (E) in x-coordinates. If Ā denotes the matrix in y-coordinates, then

they are related as

A = ĀL, where L =

(

∑

i,j

ap
ijl

∂xij

∂y11

)

p,l

.

§6. Conformal structures through the Plc̈ker embeddings

From now on up to the end of this paper, assume n = 2.

6.1. Plücker embedding

When n = 2, the target space of the Schwarz map S is the Grassman-

nian Gr(2, 4), which can be embedded (the so-called Plücker embedding)

into the 5-dimensional projective space as a quadratic hypersurface. The

pull-back of the natural conformal structure on the quadratic hypersurface

defines a conformal structure on the source space, the x = (xij)-space. In

this section, we see how this conformal structure on the x-space can be

expressed in terms of the coefficients a of the system.

We work on the system (E), and change notation as follows: The un-

knowns u1 and u2 are denoted by u and v, and the variables are

x1 = x11, x2 = x12, x3 = x21, x4 = x22.

We in this section omit colons in differentiation. Thus we write the system

as

(E)























u11 = Au1 + Bv4 + Cu + Ev,

uk = aku1 + bkv4 + cku + ekv, k = 1, . . . , 4

vk = pku1 + qkv4 + rku + skv, k = 1, . . . , 4

v44 = Pu1 + Qv4 + Ru + Sv,
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where

a1 = 1, b1 = 0, c1 = 0, e1 = 0, p4 = 0, q4 = 1, r4 = 0, s4 = 0.

The determinant W is now equal to the determinant of the matrix









a1 q1 p1 b1

a2 q2 p2 b2

a3 q3 p3 b3

a4 q4 p4 b4









.

Given a fundamental set of solutions
(

u1 u2 u3 u4

v1 v2 v3 v4

)

,

define two vectors u = [u1, u2, u3, u4] and v = [v1, v2, v3, v4] and put

f = u ∧ v

which takes values in P5. Derivatives of f can be written as linear combi-

nations of six vectors u ∧ v, u1 ∧ v, u ∧ v4, u ∧ u1, v4 ∧ v, and u1 ∧ v4. The

coefficients are listed below:

u ∧ v u1 ∧ v u ∧ v4 u ∧ u1 v4 ∧ v u1 ∧ v4

f 1 0 0 0 0 0
f1 s1 1 q1 p1 0 0
f2 c2 + s2 a2 q2 p2 b2 0
f3 c3 + s3 a3 q3 p3 b3 0
f4 c4 a4 1 0 b4 0
f14 σ1 σ2 σ3 σ4 σ5 σ6,

where

σ1 = U3 + p1U4 + q1S + s1c4 + s14,

σ2 = U1 + s1a4,

σ3 = p1U2 + q1Q + q1c4 + q14 + s1,

σ4 = p14 + p1c4 + p1U1 + q1P,

σ5 = U2 − q1d4 + s1b4,

σ6 = 1 − p1b4 + q1a4;



176 T. SASAKI AND M. YOSHIDA

As usual, the subindex denotes the differentiation relative to x: f1 =

∂f/∂x1, s14 = ∂s1/∂x4, and so on. The list above implies that the vectors

f , f1, f2, f3, f4, and f14 can be a basis if and only if

(1 − p1b4 + q1a4)W 6= 0.

Under this condition, the second derivatives fij can be expressed as linear

combinations of fk and f :

(CE) : fij = Cijf14 +
∑

k

P k
ijfk + Pijf.

Then, the matrix C = (Cij) represents the conformal tensor induced by

the embedding f [3]. We know that the associated metric
∑

Cij dxidxj

is conformally flat because the image of the Plücker embedding f is in a

quadratic hypersurface.

A computation shows the following expression of the matrix C =






2q1 q2−p1b2+q1a2 q3−p1b3+q1a3 1−p1b4+q1a4

q2−p1b2+q1a2 2(a2q2−b2p2) a2q3+a3q2−b2p3−b3p2 a2−p2b4+q2a4

q3−p1b3+q1a3 a2q3+a3q2−b2p3−b3p2 2(a3q3−b3p3) a3−p3b4+q3a4

1−p1b4+q1a4 a2−p2b4+q2a4 a3−p3b4+q3a4 2a4






.

Note that (ij) component is equal to aiqj + ajqi − bipj − bjpi where a1 = 1,

q4 = 1, p4 = 0, and b1 = 0. We can see that det C = W 2.

Remark 1. For the model system we have

C =









0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0









.

6.2. Invariant differential forms

Using the convention

a1 = 1, b1 = 0, c1 = 0, d1 = 0, p4 = 0, q4 = 1, r4 = 0, s4 = 0,

as before, we define 1-forms as

a = a1 dx1 + a2 dx2 + a3 dx3 + a4 dx4,

...

s = s1 dx1 + s2 dx2 + s3 dx3 + s4 dx4.
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We occasionally use the matrices ω and θ defined as

ω =

(

a b
p q

)

, θ =

(

c e
r s

)

.

With this notation, the equations of the first order of (E) can be written

as

du = au1 + bv4 + cu + ev,

dv = pu1 + qv4 + ru + sv.

When u and v denote fundamental vectors of solutions, we have

du ∧ dv = (a · q − b · p)u1 ∧ v4 + (a · r − c · p)u1 ∧ u

+ (a · s − q · c)u1 ∧ v + (b · r − p · e)v4 ∧ u

+ (b · s − q · e)v4 ∧ v + (c · s − e · r)u ∧ v,

where the dot product · means the symmetric product of 1-forms. By

definition, the conformal structure is equal to a · q − b · p.

We will check the covariance of the forms above relative to linear change

of unknowns and to coordinate change. First, consider a transformation K

of the unknown (u, v) to (U, V ) by

U = k1u + k2v, V = k3u + k4v.

Since

U1 = (k2r1 + k11)u + (k2s1 + k21)v + (k1 + k2p1)u1 + k2q1v4,

V4 = (k3c4 + k34)u + (k3d4 + k44)v + k3a4u1 + (k3b4 + k4)v4,

we have the formula of change of the frames as t(U, V, U1, V4) = k t(u, v,

u1, v4);

k =









k1 k2 0 0
k3 k4 0 0

k2r1 + k11 k2s1 + k21 k1 + k2p1 k2q1

k3c4 + k34 k3d4 + k44 k3a4 k3b4 + k4









=:

(

K 0
M L

)

,

where K, L, and M are 2 × 2 matrices. From this expression, the two

conditions

detK 6= 0 and δ := det L = (k1 + k2p1)(k4 + k3b4) − k2k3a4q1 6= 0
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are necessary for the new system relative to (U, V ) to be written in the same

form as for (u, v), which we assume in the following. Now, introducing the

notation Ω and Θ for U and V in place of ω and θ, we have

Θ = dK · K−1 + K(θ − ωL−1M)K−1, Ω = KωL−1.

From this identity, by writing the equations of the first order relative to

(U, V ) as

Ui = AiU1 + BiV4 + CiU + DiV,

Vj = PjU1 + QjV4 + RjU + SjV,

we have the following formulas:

A1 = 1,

A2 = (k1k4a2 + k1k3(a2b4 − a4b2) + k2k3(p2b4 − q2a4) + k2k4p2)/δ,

A3 = (k1k4a3 + k1k3(a3b4 − a4b3) + k2k3(p3b4 − q3a4) + k2k4p3)/δ,

A4 = a4(k1k4 − k2k3)/δ,

B1 = 0,

B2 = (k2
1b2 + k1k2(q2 + b2p1 − a2q1) + k2

2(q2p1 − q1p2))/δ,

B3 = (k2
1b3 + k1k2(q3 + b3p1 − a3q1) + k2

2(q3p1 − q1p3))/δ,

B4 = (k2
1b4 + k1k2(1 − a4q1 + b4p1) + k2

2p1)/δ,

P1 = (k2
3b4 + k3k4(1 − a4q1 + b4p1) + k2

4p1)/δ,

P2 = (k2
3(a2b4 − a4b2) + k3k4(a2 + p2b4 − q2a4) + k2

4p2)/δ,

P3 = (k2
3(a3b4 − a4b3) + k3k4(a3 + p3b4 − q3a4) + k2

4p3)/δ,

P4 = 0,

Q1 = q1(k1k4 − k2k3)/δ,

Q2 = (k1k3b2 + k2k3(b2p1 − a2q1) + k2k4(q2p1 − q1p2) + k1k4q2)/δ,

Q3 = (k1k3b3 + k2k3(b3p1 − a3q1) + k2k4(q3p1 − q1p3) + k1k4q3)/δ,

Q4 = 1.

Second, the formulas similar to those in Section 6 relative to a coordinate

transformation from x = (x1, x2, x3, x4) to y = (y1, y2, y3, y4) is given as

follows. Denote by (yk
i ) = (∂yk/∂xi) the Jacobian matrix and put u(y) =
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u(x(y)) and v(y) = v(x(y)). By a simple calculation, we have

∂u

∂y1
=

c

dy1
u +

e

dy1
v +

a

dy1
u1 +

b

dy1
v4,

∂v

∂y4
=

r

dy4
u +

s

dy4
v +

p

dy4
u1 +

q

dy4
v4,

where we use the notation

τ

dyi
= c1

∂x1

∂yi
+ c2

∂x2

∂yi
+ c3

∂x3

∂yi
+ c4

∂x4

∂yi
,

for 1-form τ = c1 dx1 + c2 dx2 + c3 dx3 + c4 dx4. Then, the change of frame

is written as t(u, v, u1, v4) = g t(u, v, u1, v4), where

g =









1 0 0 0
0 1 0 0

c/dy1 e/dy1 a/dy1 b/dy1

r/dy4 s/dy4 p/dy4 q/dy4









=

(

I 0
B A

)

.

Letting Ω and Θ denote the matrix 1-forms ω and θ for the coordinate

system (y1, y2, y3, y4), we have

Θ = θ − ωA−1B, Ω = ωA−1.

6.3. How to get a, b, p, and q from Cij

Recall the transformation formulas

B4 = (k2
1b4 + k1k2(1 − a4q1 + b4p1) + k2

2p1)/δ,

P1 = (k2
3b4 + k3k4(1 − a4q1 + b4p1) + k2

4p1)/δ

of the coefficients under K in the previous subsection. We see that if δ =

det L 6= 0 and

disc := (1 − a4q1 + b4p1)
2 − 4p1b4 6= 0,

then, by solving the quadratic equation in k1, . . . , k4, we have K such that

det K 6= 0 and B4 = P1 = 0. Note that we still have a transformation K of

diagonal form.

Assuming p1 = b4 = 0, our problem is to solve the following system:

2q1 = C11, q2 + q1a2 = C21, 2(a2q2 − b2p2) = C22,
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q3 + q1a3 = C31, a2q3 + a3q2 − b2p3 − b3p2 = C32,

2(a3q3 − b3p3) = C33, 1 + q1a4 = C41, a2 + q2a4 = C42,

a3 + q3a4 = C43, 2a4 = C44.

Let us normalize the conformal tensor Cij so that C41 = 1 + C11C44/4 holds;

we multiply the tensor by α satisfying the quadratic equation: αC41 =

1 + α2C11C44/4. Then we have

q1 = C11/2, a4 = C44/2.

The linear equations in a2, a3, q2, q3:

q1a2 + q2 = C21,
q1a3 + q3 = C31,

a2 + a4q2 = C42,
a3 + a4q3 = C43

are solved as

aj = (a4Cj1 − C4j)/(q1a4 − 1), qj = (q1C4j − Cj1)/(q1a4 − 1), j = 2, 3.

Now it remains to solve the quadratic system

b2p2 = x := a2q2 − C22/2,

b3p3 = y := a3q3 − C33/2,

b2p3 + b3p2 = z := a2q3 + a3q2 − C32.

We have

p2 = x/b2, p3 = y/b3,

and the ratio β := b2/b3 is determined by the quadratic equation

yβ2 − zβ + x = 0,

of which discriminant can be checked to be a constant times of det(Cij).

Recall that the transformation k = diag(k1, k4) takes b3 to b3k4/k1; it means

that we can normalize b3 = 1.

Proposition 4. Assume δ 6= 0 and disc 6= 0. Then the coefficients a,
b, p, and q can be derived from Cij by solving two quadratic equations.

Remark 2. The uniformizing equation of a 4-dimensional orbifold is
obtained in [1]. This equation is given in the form (CE). Thus Proposition 4
gives a method to rewrite it into a system in the form (E)
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§7. Families of line congruences defined by (E)

We discuss the relation between our system (E) and a differential geo-

metric object known by the name of line congruences.

7.1. A geometric interpretation and a normalization of the

system

We give a geometric interpretation to the system written in terms of

(u, v, u1, v4) as follows. Let u and v be vectors defined by a fundamental set

of solutions as in 6.1; then the pair u and v determines a line that combines

these points and, by fixing x2 and x3, we have a 2-parameter family of

lines parameterized by x1 and x4, which is usually called a line congruence.

Thus, the system we are considering is geometrically a 2-parameter family

of line congruences LC = LC(x2, x3) depending on x2 and x3. Each line

congruence is described by the subsystem

u11 = Au1 + Bv4 + Cu + Dv,

u4 = a4u1 + b4v4 + c4u + d4v,

v1 = p1u1 + q1v4 + r1u + s1v,

v44 = Pu1 + Qv4 + Ru + Sv;

the remaining equations describe the dependence of the family on x2 and

x3.

Generally, a line congruence is better understood as a congruence of

lines connecting two focal surfaces, which we now explain. Consider a curve

I : t → (x1(t), x4(t)) in the parameter space and the corresponding ruled

surface LC|I , the restriction of the congruence onto this curve. This ruled

surface LC|I is developable only when u ∧ v ∧ (du/dt) ∧ (dv/dt) = 0 by

definition. This condition is equivalent to

q1

(dx1

dt

)2
+ (1 + a4q1 − b4p1)

dx1

dt

dx4

dt
+ a4

(dx4

dt

)2
= 0.

Hence, by assuming

(1 + a4q1 − b4p1)
2 − 4a4q1 6= 0,

which coincides with the condition disc 6= 0 in 6.3, we have two directions

at each point on the parameter space called the asymptotic directions, and

so the two integral curves passing through the point. Let us consider one

of the two integral curves and call it I, and map this curve by u (we may
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take v instead, of course) then the ruled surface LC|I is developable along

the image curve u ◦ I. By the way, since any developable ruled surface is

generally obtained as a family of tangent lines of a certain curve, which is

called the directrix curve, we can associate to each line the point where the

line is tangent to the directrix curve. Thus, since there are two asymptotic

directions at each point, we get two points on each line of the congruence.

These two points generate two surfaces, called the focal surfaces. The con-

dition above on coefficients, which we assume in the following, is necessary

for the system to define the focal surfaces.

Now choose the coordinates x1 and x4 so that the coordinate lines are

the integral curves above and let u and v be so chosen, by a linear change

of the unknowns if necessary, that they generate the focal surfaces. Then,

we must have the expressions

u4 = c4u + d4v, v1 = r1u + s1v;

Namely, a4 = b4 = p1 = q1 = 0. Further, by multiplying some factors to u

and v separately, we can normalize the system so that c4 = 0 and s1 = 0.

7.2. An example

We have seen that we can generally normalize the system so that

u4 = d4v, v1 = r1u.

Assuming that d4 = 1 and r1 = 1, we give an example in this subsection.

We start with a seemingly simple system

u4 = v, v1 = u, u11 = v4, v44 = u1.

The focal surface u is described by the induced system

u11 = u44, u14 = u,

which admits a fundamental system of solutions defined by

{X = exp(x1 + x4), Y = exp(−x1 − x4),

Z = cos(−x1 + x4), U = sin(−x1 + x4)}.

These solutions define a quadratic surface XY = Z 2 + U2 in the projective

space with homogeneous coordinates (X,Y,Z, U). The surface for v is seen

to be also a quadratic surface defined by −XY = Z2 + U2. The induced

conformal structure is (dx1)2 + (dx4)2 for both surfaces. See Figure 1 and

Figure 2.
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Figure 1 Figure 2

The upper surface in each figure represents the surface XY = Z 2 + U2

and the lower surface represents the surface −XY = Z 2 + U2. The curves

drawn on the surfaces are x1-curves and x4-curves. The bold linesegments

denote linesegments joining two points where the lines belonging to the

line congruence are tangent to the focal surfaces. Those in Figure 1 are

tangent to x4-curves of the upper surface and those in Figure 2 are tangent

to x1-curves of the lower surface.

We next try to deform the system above by considering the system

u4 = v, v1 = u,

u11 = v4 + ku, v44 = u1 − kv,

uj = aju1 + bjv4 + cju + djv, j = 2, 3,

vj = pju1 + qjv4 + rju + sjv, j = 2, 3.

The integrability condition of this system has fortunately a fairly simple

form, though we do not reproduce it here. Assuming that k is a constant

not depending on any of the coordinates, we can see that the following set

of coefficients solves the integrability condition.

a2 = (aS + bC)Eh,

b2 = −(−2aSf3 − 2bCf3 − 2abSh + a2Ch − b2Ch)E/2,

c2 = −(a2S − 2abC + b2S)Eh/2

+ (bS − aC − a3S − 3a2bC + 3ab2S + b3C + kaS + kbC)Ef3 + g2,

d2 = −(−2abS + a2C − b2C)Ef3

+ (a3S + 3a2bC − 3ab2S − b3C − 2bS + 2aC)hE/2,

a3 = 0,
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b3 = (aS + bC)Ef2,

c3 = (aC − bS)Ef2 + g3,

d3 = −(a2C − 2abS − b2C)Ef2,

p2 = (2aSf3 + 2bCf3 − 2abSh + a2Ch − b2Ch)E/2,

q2 = −(−bS + aC)hE,

r2 = −(a2S + 2aCb − Sb2)Ef3

− (−3a2bS + a3C − 3ab2C + b3S − 2aS − 2bC)hE/2,

s2 = (bS − aC)Ef3 + g2 + (−a2S − 2abC + b2S)hE/2,

p3 = (aS + bC)Ef2,

q3 = 0,

r3 = −(2abC + a2S − b2S)Ef2,

s3 = (aC − bS + 3a2bC + a3S − 3ab2S − b3C − k(bC + aS))Ef2 + g3,

where h = h(x2), f = f(x2, x3) and g = g(x2, x3) are arbitrary functions

satisfying f22 = f33; E, C, and S denote the functions exp(ax1 − bx4),

cos(bx1 + ax4), and sin(bx1 + ax4), respectively; a, b, and k are constant

related as b = −1/a and k = a2 − 1/a2. The system is nondegenerate.

When

k = 0, a = 1, f = ((x2)2 + (x3)2)/2, g = x2x3, h = 1,

we see that any solution (u, v) has the form

u = PX + QY + RZ + TU, v = PX − QY + TZ − RU,

where X, Y , Z, and U are given above, the coefficients are defined by

P = (4b0(x
2)2x3 + b1(x

2 + 2x2x3) + b2x
2 + b3)ϕ,

Q = b0ϕ,

R = (2b0x
2 + b1)ϕ,

T = (b0(4x
2x3 − 2x2) + b2)ϕ,

and b0, b1, b2, and b3 are constants; ϕ denotes exp(x2x3). Hence, the
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following is a set of four independent solutions:

u0 = (4(x2)2x3X + Y + 2x2Z + (4x2x3 − 2x2)U)ϕ,

v0 = (4(x2)2x3X − Y − 2x2U + (4x2x3 − 2x2)Z)ϕ,

u1 = ((x2 + 2x2x3)X + Z)ϕ, v1 = ((x2 + 2x2x3)X − U)ϕ,

u2 = (x2X + U)ϕ, v2 = (x2X + Z)ϕ,

u3 = ϕX, v3 = ϕX.

The surface defined by u = [u0, u1, u2, u3] for each fixed x2 and x3 is a

projective transformation of the quadratic surface XY = Z 2 + U2:








u0

u1

u2

u3









= ϕ









1 2x2 4x2x3 − 2x2 4(x2)2x3

0 1 0 2x2x3 + x2

0 0 1 x2

0 0 0 1

















Y
Z
U
X









.

The surface defined by v = [v0, v1, v2, v3] is a projective transformation of

the quadratic surface −XY = Z2 + U2:








v0

v1

v2

v3









= ϕ









−1 4x2x3 − 2x2 −2x2 4(x2)2x3

0 0 −1 2x2x3 + x2

0 1 0 x2

0 0 0 1

















Y
Z
U
X









.

Note that the initial line congruence when x2 = x3 = 0 is deformed so that

the two focal surfaces are transformed by two different projective transfor-

mations.

Figure 3 and Figure 4 describe the congruence when x2 = 6 and x3 = 1.

Figure 4 is the rotation of Figure 3 by 90 degrees.
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