
166-06 : 2002/6/10(22:24)

K. Ichihara
Nagoya Math. J.
Vol. 166 (2002), 93–115

BIRTH AND DEATH PROCESSES IN RANDOMLY

FLUCTUATING ENVIRONMENTS

KANJI ICHIHARA

Abstract. A birth and death process in a time-dependent random environment
is introduced. We will discuss the recurrence and transience properties for the
process.

§1. Introduction and results

Let E be a finite subset of a hyperplane in R
2d whose element has pos-

itive components. Each element in E is denoted by a = (λ1
+(a), λ1

−(a), . . . ,

λd
+(a), λd

−(a)) ∈ E.

Suppose we are given a stationary, continuous time, irreducible Markov

chain at on E. On a probability space (Ω,F, P ), construct a family of

independent copies of at, indexed by x ∈ Zd, the d-dimensional space lattice.

Call these processes at(x). Set at = (at(x))x∈
�

d.

For a given realization {at, t ≥ 0}, define a jump process Xt as the non-

stationary Markov process with state space Z
d and transition probability

determined by










P{Xt+h = x± ei | Xt = x} = hλi
±(at(x)) + o(h)

P{Xt+h=x | Xt=x}=1−h

d
∑

i=1

{λi
+(at(x))+λ

i
−(at(x))}+o(h)

(1)

where ei = (0, . . . ,
i

1̌, . . . , 0) ∈ Z
d. This process Xt is called a birth and

death process in the randomly fluctuating environment {at, t ≥ 0}. In this

paper we shall discuss the recurrence properties of the process Xt. The

paired process (Xt,at) will be used to investigate the problem.

It is to be mentioned that another type of processes in randomly fluc-

tuating environments have been introduced by Madras [4]. In the paper

the recurrence and transience problem in one dimension was treated.

Received February 8, 2001.
2000 Mathematics Subject Classification: 60K37.



166-06 : 2002/6/10(22:24)

94 K. ICHIHARA

Before proceeding to the existence of the above two processes, we shall

introduce some notations and definitions.

Let pt(a, b) be the transition probability of the Markov process at. Since

the process at is irreducible on the finite state space, it has the unique

invariant probability measure µ. It is well known that there exists a positive

constant α such that

|pt(a, b) − µ(b)| ≤ e−αt(2)

for t > 0 and a, b ∈ E. Define µ = µ

�
d

⊗ as the direct product of µ on Z
d. Let

E
� d

be the space of configurations of jump rates on Z
d and let it be endowed

with the usual direct topology. Then at is regarded as a Markovian system

as in e.g. Liggett [3] and µ is its unique invariant probability measure. Let

G be the infinitesimal generator of at. Pa denotes the probability law of at

starting at a0 = a. Set

P � (B1 ×B2) =

∫

B1

Pa(B2)µ(da).

Define a difference operator L on Z
d × E

� d
by

Lf (x,a) =

d
∑

i=1

{

λi
+(a(x))(f(x+ ei,a)− f(x,a))(3)

+λi
−(a(x))(f(x− ei,a)− f(x,a))

}

.

We now explain briefly about the existence of the above processes Xt

and (Xt,at). Let ηt(x), (t, x) ∈ [0,+∞) × Z
d be a function with values in

E which is right continuous and has left limits in t. Set ηt = {ηt(x)}x∈
�

d

and θ· denotes the shift of η i.e. θsηt(x) = ηt+s(x). Define

Lt

���
f(x) =

d
∑

i=1

{

λi
+(ηt(x))(f(x+ ei)− f(x))

+λi
−(ηt(x))(f(x− ei)− f(x))

}

.

Then as in Ethier and Kurtz [1], page 163–164, we can easily construct a

(nonstationary) Markov process on Z
d associated with the operator Lt

� �
.

Denote the process by Xt

���
and its transition probability by p

���
(s, x; t, y).

Then Xa·
t is nothing but the process introduced in (1).
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Define a family of operators {Tt, t ≥ 0} on C0 = C0(Z
d × E

� d
), the

space of all continuous functions on Z
d × E

�
d

vanishing at the infinity, by

Ttf(x,a) = Ea





∑

y∈
�

d

pa·(0, x; t, y)f(y,at)



 .(4)

Then {Tt}t≥0 is a Feller semigroup on C0(Z
d × E

�
d
). Indeed, we have

Tt+sf(x,a)(5)

= Ea





∑

y∈
�

d

pa·(0, x; t+ s, y)f(y,at+s)





= Ea





∑

y,z∈
�

d

pa·(0, x; s, z)pa·(s, z; t+ s, y)f(y,at+s)





= Ea





∑

y,z∈
�

d

pa·(0, x; s, z)pθsa·(0, z; t, y)f(y, θsat)





= Ea





∑

z∈
�

d

pa·(0, x; s, z)Ea





∑

y∈
�

d

pθsa·(0, z; t, y)f(y, θsat)
∣

∣ σ(ar; r ≤ s)









= Ea





∑

z∈
�

d

pa·(0, x; s, z)Ttf(z,as)





= Ts · Ttf(x,a).

It is also easy to see that Ttf ∈ C0 if f ∈ C0. Furthermore it can be shown

that the infinitesimal generator of {Tt} is ∆ = L + G. This semigroup is

associated with the bichain (Xa·
t ,at).

Set λi,0
± =

∫

E

λi
±(a)µ(da). Let Xi

t be the i-th component of Xt. Denote

by P a.
x ( · ) the probability law of the birth and death process Xa.

t starting

at x, in the randomly fluctuating environment {at, t ≥ 0}.

We are now in a position to state our first result.

Theorem 1. Suppose λ
i0,0
+ > λ

i0,0
− for some i0 ∈ {1, . . . , d}. Then

there exists a positive constant αd
0 depending only on λi

±, i = 1, . . . , d, d
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and E such that if α > αd
0,

P a·
0

[

lim
t→+∞

Xi0
t = +∞

]

= 1 a.s. P�

The environment treated in Theorem 1 is biased in some sense to one

direction. Thus we shall next consider the case where the environment is

statistically balanced i.e. λi,0
+ = λ

i,0
− . This case is more delicate. Therefore

we need to put stronger assumptions on the environment;

There exist positive constants pi, qi(pi 6= qi), i = 1, . . . , d such that

E =
{

(λ1
+, λ

1
−, . . . , λ

d
+, λ

d
−) ; (λi

+, λ
i
−) = (pi, qi) or (qi, pi)

}

(I)

and the transition probability of the Markov chain at on E is given by

pt(a1, a2) =















1

2d
(1− e−αt), a1 6= a2

1

2d
(1 + (2d − 1)e−αt), a1 = a2.

(II)

In this case, µ(a) = 1
2d for a ∈ E. Under the assumptions (I) and (II),

λ
i,0
+ = λ

i,0
− =

pi + qi

2
, i = 1, . . . , d.

(≡ λi,0)

We have

Theorem 2. Let d = 1. Suppose the conditions (I) and (II) hold.
Then there exists a positive constant β1

0 depending only on p1, q1 such that
if α > β1

0 ,

P a·
0 [ Xt = x for some t > 0 ] = 1 a.s. P�

for any x ∈ Z
1.

Theorem 3. Let d ≥ 3. Suppose the conditions (I) and (II) hold.
Then there exists a positive constant βd

0 depending only on pi and qi, i =
1, . . . , d such that if α > βd

0 ,

P a·
0

[

lim
t→+∞

|Xt| = +∞

]

= 1 a.s. P�
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In order to handle the two dimensional case, a further restriction on

the environment is required.

p1 = p2(≡ p) and q1 = q2(≡ q).(I)′

Theorem 4. Let d = 2. Suppose the conditions (I), ((I)′) and (II)
hold. Then there exists a positive constant β2

0 depending only on p and q

such that if α > β2
0 ,

P a·
0 [Xt = x for some t > 0] = 1 a.s. P�

for any x ∈ Z
2.

It is to be remarked that all the constants αd
0, β

d
0 can be explicitly

identified.

Note that it suffices to prove all the theorems under the law of the

bichain (Xa·
t ,at) instead of the law of the original process.

The proofs of our theorems are based on Lyapunov’s method. We

shall construct Lyapunov functions by a perturbation of the ones for simple

random walks. The point is to apply a sort of renormalization technique

through the generator G.

§2. Proof of theorems

Let P(x,a) be the probability law of (Xt,at) starting at (x,a).

We start with;

[1] Proof of Theorem 1. Assume i0 = 1 and set x = (x1, . . . , xd). In

order to prove Theorem 1, we need the following two lemmas.

Lemma 1. We have

P(x,a)

[

X1
t = 0 for some t > 0

]

= 1

for any x = (x1, . . . , xd) ∈ Z
d with x1 < 0 and any a ∈ E

� d
.

Lemma 2. Let k be a positive number. Then there exist positive con-
stants Ci, i = 1, 2 such that

P(x,a)

[

X1
t ≤ C1 for some t > 0

]

≤
C2

xk
1

for any x = (x1, . . . , xd) with x1 > C1 and any a ∈ E
� d

.
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Proof of Lemma 1. For x = (x1, . . . , xd), set V0(x,a) = x1 + ϕ0(x,a),
where ϕ0 will be determined later on. Assuming ϕ0 belongs to the domain
of G, compute

∆V0(x,a) = LV0(x,a) +GV0(x,a)

= λ
1,0
+ − λ

1,0
− + λ̄1

+(a(x))− λ̄1
−(a(x)) + Lϕ0(x,a) +Gϕ0(x,a),

where λ̄1
±(a) = λ1

±(a)− λ1,0
± .

Since

∫

E

λ̄1
±(a)µ(da) = 0,

ϕ±(x,a) = −

∫ ∞

0
Ea(x)

[

λ̄1
±(at(x))

]

dt

is well defined. Let ϕ0(x,a) = ϕ+(x,a)− ϕ−(x,a). Obviously

Gϕ0(x,a) + λ̄1
+(a(x))− λ̄1

−(a(x)) = 0.

From (2),

|ϕ±(x,a)| ≤
M0

α

where M0 = max
{

∑

a∈E

∣

∣λ̄i
+(a)

∣

∣ ,
∑

a∈E

∣

∣λ̄i
−(a)

∣

∣ ; i = 1, . . . , d
}

.

Hence

|Lϕ0(x,a)| ≤
8M0M1d

α
,

with M1 = max
{

λ1
±(a), . . . , λd

±(a) ; a ∈ E
}

.

Thus if α > βd
0 =

8M0M1d

λ
1,0
+ − λ

1,0
−

, then ∆V0(x,a) ≥ 0 for any (x,a) ∈ Z
d×E

� d
.

Define stopping times by

σ0 = inf{t > 0 ; X1
t ≥ 0}

and

τ−N = inf{t > 0 ; X1
t ≤ −N}, N ≥ 1.

By Dynkin’s formula, we get

E(x,a) [V0(Xτ−N∧σ0 ,aτ−N∧σ0)] ≥ V0(x,a)

for any x = (x1, . . . , xd) with x1 ∈ (−N, 0) and any a ∈ E
� d

.
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Therefore

(−N +
2M0

α
)P(x,a)(τ

−N < σ0) +
2M0

α
P(x,a)(τ

−N > σ0) ≥ V0(x,a)

for any (x,a) with x1 ∈ (−N,−1]. Letting N ↑ +∞, we obtain

lim
N→+∞

P(x,a)(τ
−N < σ0) = 0,

which implies P(x,a)(X
1
t = 0 for some t > 0) = 1 for x1 < 0.

Proof of Lemma 2. For a given positive constant k, set g1(x) = |x1|
−k

and

V1(x) = g1(x) + g1
1,+(x)ϕ+(x,a) + g1

1,−(x)ϕ−(x,a),

where g1
1,+(x) = g1(x+e1)−g1(x), g

1
1,−(x) = g1(x−e1)−g1(x) and ϕ±(x,a)

are the ones in the proof of Lemma 1.
Then it is easy to see;

E0 ≡ inf
(x,a)

x1=C1

V1(x,a) > 0 and ∆V1(x,a) ≤ 0, if x1 ≥ C1(6)

for some positive integer C1 and

lim
x1→+∞

V1(x,a) = 0.

Let

σN = inf{t > 0 ; X1
t ≥ N}, N > C1,

τC1 = inf{t > 0 ; X1
t ≤ C1}.

Apply Dynkin’s formula to obtain

E(x,a) [V1(XσN∧τC1 ,aσN∧τC1 )] ≤ V1(x,a)(7)

for any (x,a) with x1 ∈ (C1, N).
Letting N ↑ ∞ in (7), we get

P(x,a)(τ
C1 < +∞) ≤

V1(x,a)

E0
for x1 > C1.

Since V1(x,a) = O(|x1|
−k), the proof of Lemma 2 is complete.
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In order to prove Theorem 1, we first note that there exist a point

(x0
1,a

0
1) ∈ Z

d × E
� d

and an integer m1 such that

P(x0
1,a0

1)
(X1

t = m1 i.o. as t ↑ +∞) > 0

if the assertion in Theorem 1 is false.

We can assume m1 = C1 without loss of generality. Choose an integer

ρ0 > C1 such that C2

ρk
0
< 1.

Define a sequence of stopping times as follows;

τC1
1 = inf{t ≥ 0 ; X1

t ≤ C1}

σ
ρ0
1 = inf{t ≥ τC1

1 ; X1
t ≥ ρ0}

· · · · · ·

τC1
n = inf{t ≥ σρ0

n−1 ; X1
t ≤ C1}

σρ0
n = inf{t ≥ τC1

n ; X1
t ≥ ρ0}.

Note that σρ0
n is finite with probability one for all n from Lemma 1. We

want to estimate

P(x0
1,a0

1)
(τC1

n < +∞) = P(x0
1,a0

1)
[τC1

1 < σ
ρ0
1 < · · · < σ

ρ0
n−1 < τC1

n ].

By repeated use of the strong Markov property, the right-hand side is equal

to

E(x0
1,a0

1)

[

τC1
1 < +∞, E(X

τ
C1
1

,a
τ

C1
1

)

[

τC1
2 < +∞, E(X

τ
C1
2

,a
τ

C1
2

)

[

· · ·

· · ·

[

τC1
n−1 < +∞, E(X

τ
C1
n−1

, a
τ

C1
n−1

)

[

P(X
σ

ρ0
n−1

,a
σ

ρ0
n−1

)

[

τC1
n < +∞

]

· · ·

]

.

By Lemma 2, we get

P(x0
1,a0

1)
(τC1

n < +∞) ≤

(

C2

ρk
0

)n−1

P(x0
1,a0

1)

[

τC1
1 < +∞

]

.

Hence P(x0
1,a0

1)
(X1

t = m1 i.o. as t ↑ +∞) = 0. Thus the assertion of

Theorem 1 is valid.

[2] Proof of Theorem 2. The basic idea is the same as in the proof of

Theorem 1. To prove Theorem 2, we shall make use of a function V2(x,a),
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(x,a) ∈ Z
1 × E

� 1
such that

lim
|x|→+∞

inf
a

V2(x,a) = +∞(8)

∆V2(x,a) ≤ 0 for any |x| ≥ C3 and a ∈ E
� 1

(9)

with some positive constant C3.

Set g2(x) = log |x| and g1
2(x) = g2(x+ 1)− g2(x− 1). A function V2 as

above will be constructed in a form of

V2(x,a) = g2(x) + g1
2(x)

∞
∑

n=0

ϕn(x,a).(10)

For this V2, we first perform a heuristic computation.

∆V2(x,a) = Lg2(x,a) +

∞
∑

n=0

L(g1
2ϕn)(x,a) +

∞
∑

n=0

g1
2(x)Gϕn(x,a).

First of all,

Lg2(x,a) =−
λ1,0

x2
+ λ̄1

+(a(x))g1
2(x) +O(x−3)

and

L(g1
2ϕn)(x,a) = λ1

+(a(x))(g1
2(x+ 1)ϕn(x+ 1,a)− g1

2(x)ϕn(x,a))

+ λ1
−(a(x))(g1

2(x− 1)ϕn(x− 1,a) − g1
2(x)ϕn(x,a))

= Lϕn(x,a) + Pn(x,a)

where

Pn(x,a) = λ1
+(a(x))ϕn(x+ 1,a)(g1

2(x+ 1)− g1
2(x))

+ λ1
−(a(x))ϕn(x− 1,a)(g1

2(x− 1)− g1
2(x)).

It is easily seen that

|Pn(x,a)| ≤ 2max(p1, q1) sup
(x,a)
|ϕn(x,a)| ·

(

2

x2
+O(x−3)

)

.

Thus it follows formally that

∆V2(x,a) = −
λ1,0

x2
+O(x−3) + g1

2(x)
{

λ̄1
+(a(x)) +Gϕ0(x,a)

}

+ g1
2(x)

∞
∑

n=0

{Lϕn(x,a) +Gϕn+1(x,a)} +

∞
∑

n=0

Pn(x,a).
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In order for V2 to satisfy the conditions (8) and (9), we shall construct an

infinite sequence of {ϕn} such that
{

λ̄1
+(a(x)) +Gϕ0(x,a) = 0

Lϕn(x,a) +Gϕn+1(x,a) = 0, n ≥ 0
(11)

and {ϕn} converges to zero sufficiently fast. Thus the following lemma is a

key to the proof of Theorem 2.

Lemma 3. For the equations (11), there exists a system of solutions
{ϕn, n ≥ 0} such that

|ϕn(x,a)| ≤
(p1 + q1)

n+1 · 5n

αn+1
, n ≥ 0.(12)

Before proceeding to the proof of Lemma, we give

Sublemma 1. Let m be a positive integer and x1, . . . , xm be m-distinct
points in Z

1. Set

f(a) =

m
∏

i=1

λ̄1
ji
(a(xi)), ji = + or − .

Then Ea [f(at)] = e−mαtf(a).

Proof of Lemma 3. Since

∫

E

λ̄1
+(a)µ(da) = 0, the first equation in (11)

has a solution ϕ0 given by

ϕ0(x,a) = −

∫ ∞

0
Ea(x)

[

λ̄1
+(at(x))

]

dt = −
1

α
λ̄1

+(a(x))

= −
1

2α

{

λ̄1
+(a(x))− λ̄1

−(a(x))
}

.

Based on the following claims, we can construct {ϕn}n≥1 by induction.

Claim 1. Let ϕ(x,a) be a polynomial of λ̄1
+(a(x + · )), λ̄1

−(a(x + · )).
Suppose there exist two polynomials ϕ+(x,a) and ϕ−(x,a) of λ̄1

+(a(x+ · ))
and λ̄1

−(a(x+ · )) such that

(i) ϕ(x,a) = ϕ+(x,a)− ϕ−(x,a)

(ii) by replacement between λ̄+(a(x + p)) and λ̄−(a(x − p)) (p ∈ Z), we
get ϕ−(x,a) from ϕ+(x,a).
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Then
∫

E � 1
Lϕ(x,a)µ(da) = 0

and hence

ϕ̃(x,a) = −

∫ ∞

0
Ea [Lϕ(x,at)] dt

is well defined. ϕ̃(x,a) is also a polynomial of λ̄1
+(a(x+· )) and λ̄1

−(a(x+· ))
and is decomposed into a difference of two polynomials as in (i) and (ii).

Claim 2. For a polynomial ψ of λ̄1
±(a(x+ · )) as

ψ(x,a) =
∑

cr1,... ,rt ; s1,... ,su

t
∏

i=1

λ̄1
+(a(x+ ri))

u
∏

j=1

λ̄1
−(a(x+ sj))

where integers r1, . . . , rt, s1, . . . , su are distinct each other and summation
is taken over distinct sets {r1, . . . , rt, s1, . . . , su}, define its norm by

‖ψ‖ =
∑

|cr1,... ,rt ; s1,... ,su| ·
|p1 − q1|

t+u

2t+u
.

Then for ϕ and ϕ̃ in Claim 1, we have

‖ϕ̃‖ ≤
5

α
(p1 + q1)‖ϕ‖.(13)

Proof of Claim 1. First note that the assumptions (i) and (ii) together
with the definition of L imply that Lϕ+ and Lϕ− are interchangeable as
in (ii). Indeed the following replacement enables Lϕ+ and Lϕ− to inter-
change each other;

λ̄1
+(a(x))

l1
∏

j=1

λ̄1
+(a(x+ rj + 1))

l2
∏

k=1

λ̄1
−(a(x+ sk + 1))

←→ λ̄1
−(a(x))

l1
∏

j=1

λ̄1
−(a(x− rj − 1))

l2
∏

k=1

λ̄1
+(a(x− sk − 1)).

Consequently, taking the configuration of environment into consideration,
we see that if any constant terms appear in Lϕ+(x,a) and Lϕ−(x,a), they
are the same. Thus it follows that

∫

E � 1
Lϕ(x,a)µ(da)

=

∫

E � 1
{Lϕ+(x,a)− Lϕ−(x,a)}µ(da) = 0
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Hence from Sublemma 1,

ϕ̃(x,a) = −

∫ ∞

0
Ea [Lϕ(x,at)] dt

is well defined. Now set

ϕ̃±(x,a) = −

∫ ∞

0
Ea

[

Lϕ±(x,at)−

∫

E � 1
Lϕ±(x,a)µ(da)

]

dt.

Obviously ϕ̃(x,a) = ϕ̃+(x,a) − ϕ̃−(x,a). Since Lϕ+ and Lϕ− are inter-
changeable, so are ϕ̃+ and ϕ̃− by virtue of Sublemma 1.

Proof of Claim 2. Note that

Lϕ(x,a) =λ̄1
+(a(x))ϕ(x + 1,a) + λ̄1

−(a(x))ϕ(x− 1,a)

+ λ1,0ϕ(x+ 1,a) + λ1,0ϕ(x− 1,a)− 2λ1,0ϕ(x,a).

Combining this with Sublemma 1, it is easy to see that (13) holds.

We now complete the proof of Lemma 3.
The existence of {ϕn} follows from repeated use of Claim 1 started with

ϕ0(x,a) = − 1
2α

{

λ̄1
+(a(x))− λ̄1

−(a(x))
}

. As for the upper bounds, we apply

(13) with ‖ϕ0‖ ≤
p1+q1

α
.

Back to the proof of Theorem 2, we first assume 5(p1+q1)
α

< 1. Then
∞
∑

n=0

ϕn(x,a) is convergent uniformly in (x,a).

Since |Pn(x,a)| ≤ 4max(p1, q1) · sup |ϕn(x,a)| · (x−2 + O(x−3)), the con-

ditions (8), (9) are fulfilled provided that α > 13(p1 + q1). Under this

condition,

∞
∑

n=0

ϕn(x,a) belongs to the domain of G (See Liggett [3] for its

definition.), since ϕn(x,a) depends only on at most (2n+1) distinct points

in Z
1. This makes the computation for ∆V2 rigorous.

To complete the proof of Theorem 2, we introduce

τC3 = inf{t > 0 ; |Xt| ≤ C3}

σN = inf{t > 0 ; |Xt| ≥ N}, N > C3.

Apply Dynkin’s formula to get

E(x,a)V2(XτC3
∧σN

,aτC3
∧σN

) ≤ V2(x,a)
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for C3 < |x| < N . Therefore for C3 < |x| < N ,
{

inf
|x|≥N

a∈E � 1

V2(x,a)
}

· P(x,a)(τC3 > σN ) +
{

inf
|x|≤C3

a∈E � 1

V2(x,a)
}

·P(x,a)(τC3 < σN )

≤ V2(x,a).

Notice that P(x,a)(τC3 > σN ) + P(x,a)(τC3 < σN ) = 1. Letting N ↑ ∞, we

obtain

P(x,a)(τC3 < +∞) = 1.

Thus Theorem 2 is valid.

[3] Proof of Theorem 3. We shall find a function V3(x,a), (x,a) ∈

Z
d × E

�
d

such that

V3(x,a) ≥ 0 and ∆V3(x,a) ≤ 0(14)

for any |x| ≥ C4 and a ∈ E
� d

with a positive constant C4 and

lim
|x|→+∞

V3(x,a) = 0.(15)

For a given constant k ∈ (0, d − 2), set g3(x) = r−k, r2 =
x2
1

λ1,0 +
x2
2

λ2,0 +

· · ·+
x2

d

λd,0 , x = (x1, . . . , xd) and gi
3(x) = g3(x+ ei)− g3(x− ei). A Lyapunov

function V3 as above will be constructed in the following form,

V3(x,a) = g3(x) +
d

∑

i=1

gi
3(x)

∞
∑

n=0

ϕd,i
n (x,a).(16)

By a heuristic computation,

∆V3(x,a) = Lg3(x,a) +

d
∑

i=1

gi
3(x)

∞
∑

n=0

Gϕd,i
n (x,a) +

d
∑

i=1

∞
∑

n=0

L(gi
3ϕ

d,i
n )(x,a).

On the other hand,

Lg3(x,a) = −
k(d− k − 2)

rk+2
+O(r−k−3) +

d
∑

i=1

λ̄i
+(a(x))gi

3(x)

with λ̄i
+(a) = λi

+(a)− λi,0 and

L(gi
3ϕ

d,i
n )(x,a) = Lϕd,i

n (x,a) +Qi
n(x,a)
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where

Qi
n(x,a) =

d
∑

j=1

{

λ
j
+(a(x))(gi

3(x+ ej)− g
i
3(x))ϕ

d,i
n (x+ ej ,a)

+ λ
j
−(a(x))(gi

3(x− ej)− g
i
3(x))ϕ

d,i
n (x− ej ,a)

}

.

Note that

|Qi
n(x,a)| ≤ sup

x,a,i

∣

∣

∣ϕ
d,i
n (x,a)

∣

∣

∣ ·

(

C5

rk+2
+O(r−k−3)

)

with a positive constant C5.

Thus we have

∆V3(x,a) = −
k(d− k − 2)

rk+2
+O(r−k−3)

+

d
∑

i=1

gi
3(x)

{

λ̄i
+(a(x)) +Gϕ

d,i
0 (x,a)

}

+

d
∑

i=1

gi
3(x)

∞
∑

n=0

{

Lϕd,i
n (x,a) +Gϕ

d,i
n+1(x,a)

}

+
d

∑

i=1

∞
∑

n=0

Qi
n(x,a)

As in the proof of Theorem 2, the following lemma is a key to the proof of

Theorem 3.

Lemma 4. The following d-systems of equations ;







λ̄i
+(a(x)) +Gϕ

d,i
0 (x,a) = 0

Lϕ
d,i
n (x,a) +Gϕ

d,i
n+1(x,a) = 0, n ≥ 0 and i = 1, . . . , d

have solutions
{

ϕ
d,i
n

}i=1,... ,d

n=0,1,...
such that

∣

∣

∣ϕ
d,i
n (x,a)

∣

∣

∣ ≤
(pi + qi) {max{pj + qj ; j = 1, . . . , d}}n (4d+ 1)n

αn+1
.

For the proof of Lemma 3, we need the next claims.
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Claim 3. Let ϕ(x,a) be a polynomial of λ̄i
±(a(x + · )), i = 1, . . . , d.

Suppose there exist two polynomials ϕ+(x,a), ϕ−(x,a) of λi
±(a(x + · )),

i = 1, . . . , d such that

(i) ϕ(x,a) = ϕ+(x,a)− ϕ−(x,a)

(ii) by replacement between λ̄i
+(a(x + p)) and λ̄i

−(a(x − p)) (p ∈ Z
d, i =

1, . . . , d) we get ϕ−(x,a) from ϕ+(x,a).

Then
∫

E � d
Lϕ(x,a)µ(da) = 0

and hence

ϕ̃(x,a) = −

∫ ∞

0
Ea[Lϕ(x,at)]dt

is well defined. ϕ̃(x,a) is also a polynomial of λi
±(a(x+ · )) and is decom-

posed into a difference of two polynomials as in (i) and (ii).

Claim 4. For a polynomial ψ of λ̄i
±(a(x+ · )), i = 1, . . . , d as

ψ(x,a) =
∑

cr1
1,... ,r1

t1
,s1

1,... ,s1
u1

;r2
1,... ,r2

t2
,s2

1,... ,s2
u2

;··· ;rd
1 ,... ,rd

td
,sd

1,... ,sd
ud

×

d
∏

j=1





tj
∏

i=1

λ̄
j
+

(

a
(

x+ r
j
i

))

uj
∏

k=1

λ̄
j
−

(

a
(

x+ s
j
k

))





where for each j, integers r
j
1, . . . , r

j
tj
, sj

1, . . . , s
j
uj are distinct and sum-

mation is taken over distinct direct products {r11 , . . . , r
1
t1
, s11, . . . , s

1
u1
} ×

{r21, . . . , r
2
t2
, s21, . . . , s

2
u2
} × · · · × {rd

1 , . . . , r
d
td
, sd

1, . . . , s
d
ud
},

define

‖ψ‖ =
∑

|cr1
1 ,... ,r1

t1
,s1

1,... ,s1
u1

;··· ;rd
1 ,... ,rd

td
,sd

1,... ,sd
ud

| ×

d
∏

j=1

|pj − qj|
tj+uj

2tj+uj
.

Then for ϕ and ϕ̃ in Claim 3,

‖ϕ̃‖ ≤
(4d+ 1)max{pj + qj ; j = 1, . . . , d}

α
‖ϕ‖.
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Since the proofs of Claim 3, 4 and Lemma 4 are similar to those of

Claim 1, 2 and Lemma 3, they are omitted.

The rest of the proof of Theorem 3 is also worked out as in the proof

of Theorem 1. Therefore we omit it, too.

[4] Proof of Theorem 4. As in the proof of Theorem 2, the crucial step

is to construct a Lyapunov function V4(x,a), (x,a) ∈ Z
2 × E

� 2
such that

∆V4(x,a) ≤ 0 for |x| ≥ C6 and a ∈ E
� 2

(17)

with a positive constant C6 and

lim
|x|→∞

inf
a∈E � 2

V4(x,a) = +∞.(18)

However we need a more elaborate argument for this case.

Putting g4(x) = log2 |x| = log(log |x|), |x| =
√

x2
1 + x2

2, a function V4

as above will be constructed in the following form;

V4(x,a) = g4(x) + g1
4(x)

∞
∑

n=0

ψ1
n(x,a) + g2

4(x)

∞
∑

n=0

ψ2
n(x,a)

+ g
1,1
4 (x)

∞
∑

n=0

∞
∑

m=0

ψ1
n,m(x,a)

+ g
1,2
4 (x)

∞
∑

n=0

∞
∑

m=0

ψ2
n,m(x,a)

where

g1
4(x) = g4(x+ e1)− g4(x− e1),

g
1,1
4 (x) =

2(x2
2 − x

2
1)

|x|4 log |x|
,

g2
4(x) = g4(x+ e2)− g4(x− e2),

g
1,2
4 (x) = −

4x1x2

|x|4 log |x|
.
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A heuristic computation shows,

∆V4(x,a) = Lg4(x,a) +

∞
∑

n=0

g1
4(x)Gψ

1
n(x,a) +

∞
∑

n=0

g2
4(x)Gψ

2
n(x,a)

+
∞

∑

n=0

L(g1
4ψ

1
n)(x,a) +

∞
∑

n=0

L(g2
4ψ

2
n)(x,a)

+

∞
∑

n=0

∞
∑

m=0

g
1,1
4 (x)Gψ1

n,m(x,a) +

∞
∑

n=0

∞
∑

m=0

g
1,2
4 (x)Gψ2

n,m(x,a)

+
∞

∑

n=0

∞
∑

m=0

L(g1,1
4 ψ1

n,m)(x,a) +
∞
∑

n=0

∞
∑

m=0

L(g1,2
4 ψ2

n,m)(x,a).

It is easy to see,

Lg4(x,a) = L0g4(x,a) + L1g4(x,a)

where

L0g4(x) = λ0{(g4(x+ e1)− g4(x)) + (g4(x− e1)− g4(x))

+ (g4(x+ e2)− g4(x)) + (g4(x− e2)− g4(x))}

= −
λ0

|x|2(log |x|)2
+O

(

1

|x|3 log |x|

)

and

L1g4(x,a) = λ̄1
+(a(x))g1

4(x) + λ̄2
+(a(x))g2

4(x)

with λ0 = λ1,0 = λ2,0 and λ̄i
+(a) = λi

+(a)− λ0 (i = 1, 2).

Furthermore,

L(g1
4ψ

1
n)(x,a) = g1

4(x)Lψ
1
n(x,a) + g

1,1
4 (x)T1ψ

1
n(x,a)

+ g
1,2
4 (x)T2ψ

1
n(x,a) + En

1 (x,a),

L(g2
4ψ

2
n)(x,a) = g2

4(x)Lψ
2
n(x,a) + g

1,2
4 (x)T1ψ

2
n(x,a)

− g1,1
4 (x)T2ψ

2
n(x,a) + En

2 (x,a),

L(g1,1
4 ψ1

n,m)(x,a) = g
1,1
4 (x)Lψ1

n,m(x,a) + E
n,m
3 (x,a),

L(g1,2
4 ψ2

n,m)(x,a) = g
1,2
4 (x)Lψ2

n,m(x,a) + E
n,m
4 (x,a)

where

T1ψ(x,a) = λ1
+(a(x))ψ(x + e1,a)− λ1

−(a(x))ψ(x − e1,a),

T2ψ(x,a) = λ2
+(a(x))ψ(x + e2,a)− λ2

−(a(x))ψ(x − e2,a),
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and the error terms satisfy,

|En
1 (x,a)| ≤ C7

sup
x,a
|ψ1

n|

|x|2(log |x|)2
,

|En
2 (x,a)| ≤ C7

sup
x,a
|ψ2

n|

|x|2(log |x|)2
,

|En,m
3 (x,a)| ≤ C7

sup
x,a
|ψ1

n,m|

|x|3 log |x|
,

|En,m
4 (x,a)| ≤ C7

sup
x,a
|ψ2

n,m|

|x|3 log |x|
,

for a ∈ E
� 2

and |x| ≥ 2 with a positive constant C7 independent of n, m.

Thus we have shown,

∆V4(x,a) = L0g4(x) + g1
4(x)(λ̄

1
+(a(x)) +Gψ1

0(x,a))

+ g2
4(x)(λ̄

2
+(a(x)) +Gψ2

0(x,a)) + g1
4(x)

∞
∑

n=0

(Lψ1
n(x,a) +Gψ1

n+1(x,a))

+ g2
4(x)

∞
∑

n=0

(Lψ2
n(x,a) +Gψ2

n+1(x,a))

+ g
1,1
4 (x)

∞
∑

n=0

{

(T1ψ
1
n(x,a)− T2ψ

2
n(x,a) +Gψ1

n,0(x,a))

+
∞

∑

m=0

(Lψ1
n,m(x,a) +Gψ1

n,m+1(x,a))
}

+ g
1,2
4 (x)

∞
∑

n=0

{

(T2ψ
1
n(x,a) + T1ψ

2
n(x,a) +Gψ2

n,0(x,a))

+
∞

∑

m=0

(Lψ2
n,m(x,a) +Gψ2

n,m+1(x,a))
}

+

∞
∑

n=0

{

En
1 (x,a) +En

2 (x,a) +

∞
∑

m=0

E
n,m
3 (x,a) +

∞
∑

m=0

E
n,m
4 (x,a)

}

.

To obtain a desired Lyapunov function in (17), (18), we first give,
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Lemma 5. There exist two infinite sequences of solutions {ψi
n}

i=1,2
n≥0 for

the following equations ; for i = 1, 2,

{

λ̄i
+(a(x)) +Gψi

0(x,a) = 0

Lψi
n(x,a) +Gψi

n+1(x,a) = 0, n ≥ 0,

which have the following upper bounds,

|ψi
n(x,a)| ≤

9n(p+ q)n+1

αn+1
, n ≥ 0.

This lemma is a special case of Lemma 4.

For the solutions {ψi
n} obtained in Lemma 5, we have

Lemma 6. For each n ≥ 0, there exists an infinite sequence of solu-
tions {ψ1

n,m}m≥0 for the equations ;

{

T1ψ
1
n(x,a)− T2ψ

2
n(x,a) +Gψ1

n,0(x,a) = 0

Lψ1
n,m(x,a) +Gψ1

n,m+1(x,a) = 0, m ≥ 0,

which have the following upper bounds,

|ψ1
n,m(x,a)| ≤

4 · 9m+n(p+ q)m+n+2

αn+m+2
.

Lemma 7. For each n ≥ 0, there exists an infinite sequence of solu-
tions {ψ2

n,m}m≥0 for the equations ;

{

T2ψ
1
n(x,a) + T1ψ

2
n(x,a) +Gψ2

n,0(x,a) = 0

Lψ2
n,m(x,a) +Gψ2

n,m+1(x,a) = 0, m ≥ 0,

which have the following upper bounds,

|ψ2
n,m(x,a)| ≤

4 · 9m+n(p+ q)m+n+2

αn+m+2
.

For the proof of the above three lemmas, the following is also necessary.

Sublemma 2. For the Markov chain at on E, we have

Ea0

[

λ̄1
j1

(at)λ̄
2
j2

(at)
]

= e−αtλ̄1
j1

(a0)λ̄
2
j2

(a0)

with j1, j2 = + or −.
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Proof of Lemma 6. From the definitions of Ti and ψi
n(x,a), i = 1, 2,

n ≥ 0, we can easily see that T1ψ
1
n(x,a) and T2ψ

2
n(x,a) interchange each

other through replacement;

{

λ̄1
+(a(x+ αe1 + βe2))←→ λ̄2

+(a(x+ βe1 + αe2))

λ̄1
−(a(x+ αe1 + βe2))←→ λ̄2

−(a(x+ βe1 + αe2)),
(19)

α, β ∈ Z. Taking this into account, the next claim implies that the assertion

of Lemma 6 is valid.

Claim 5. Let ϕ be a polynomial of λ̄1
±(a(x+· )), λ̄2

±(a(x+· )). Suppose
there exist two polynomials ϕ+ and ϕ− of λ̄1

±(a(x+ · )), λ̄2
±(a(x+ · )) such

that

(i) ϕ(x,a) = ϕ+(x,a)− ϕ−(x,a)

(ii) by the replacement (19), we get ϕ−(x,a) from ϕ+(x,a).

Then
∫

E � 2
Lϕ(x,a)µ(da) = 0,

and hence

ϕ̃(x,a) = −

∫ ∞

0
Ea[Lϕ(x,at)]dt

is well defined. ϕ̃(x,a) is also a polynomial as in (i), (ii). And we have for
the above ϕ, ϕ̃,

‖ϕ̃‖ ≤
9

α
(p+ q)‖ϕ‖

with respect to the same norm as in Claim 4.

The proof of Claim 5 and the rest of the proof of Lemma 6 are basically

the same as before. Therefore we omit the details. However we only note

that under the assumption (ii) in Claim 5, Lϕ+ and Lϕ− interchange each
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other through the following replacement;

λ1
+

(−)
(a(x))

t1
∏

j1=1

λ̄1
+

(

a
(

x+ (α1
j1 (−)

+ 1)e1 + β1
j1
e2

))

(20)

×

t2
∏

j2=1

λ̄1
−

(

a
(

x+ (α2
j2 (−)

+ 1)e1 + β2
j2
e2

))

×

t3
∏

j3=1

λ̄2
+

(

a
(

x+ (α3
j3 (−)

+ 1)e1 + β3
j3
e2

))

×

t4
∏

j4=1

λ̄2
−

(

a
(

x+ (α4
j4 (−)

+ 1)e1 + β4
j4
e2

))

←→

λ2
+

(−)
(a(x))

t1
∏

j1=1

λ̄2
+

(

a
(

x+ β1
j1
e1 + (α1

j1 (−)
+ 1)e2

))

×

t2
∏

j2=1

λ̄2
−

(

a
(

x+ β2
j2
e1 + (α2

j2 (−)
+ 1)e2

))

×

t3
∏

j3=1

λ̄1
+

(

a
(

x+ β3
j3
e1 + (α3

j3 (−)
+ 1)e2

))

×

t4
∏

j4=1

λ̄1
−

(

a
(

x+ β4
j4
e1 + (α4

j4 (−)
+ 1)e2

))

.

Proof of Lemma 7. From the definition of ψ1
n, ψ1

n(x+e2,a) and ψ1
n(x−

e2,a) interchange one another through replacement;






λ̄1
+

(−)

(a(x+ αe1 + βe2))←→ λ̄1
+

(−)

(a(x+ αe1 − βe2))

λ̄2
+(a(x+ αe1 + βe2))←→ λ̄2

−(a(x+ αe1 − βe2)),
(21)

so do λ2
+(a(x))ψ1

n(x+ e2,a) and λ2
−(a(x))ψ1

n(x− e2,a).
Similarly we see that λ1

+(a(x))ψ2
n(x+ e1,a) and λ1

−(a(x))ψ2
n(x− e1,a)

interchange one another through replacement;






λ̄2
+

(−)

(a(x+ αe1 + βe2))←→ λ̄2
+

(−)

(a(x− αe1 + βe2))

λ̄1
+(a(x+ αe1 + βe2))←→ λ̄1

−(a(x− αe1 + βe2)).
(22)
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This combined with the next claim implies that Lemma 7 is valid.

Claim 6. Let ϕ be a polynomial of λ̄1
±(a(x+· )), λ̄2

±(a(x+· )). Suppose
there exist two polynomials ϕ+ and ϕ− of λ̄1

±(a(x+ · )), λ̄2
±(a(x+ · )) such

that

(i) ϕ(x,a) = ϕ+(x,a)− ϕ−(x,a)

(ii) by the replacement (20), we get ϕ−(x,a) from ϕ+(x,a).

Then
∫

E � 2
Lϕ(x,a)µ(da) = 0,

hence

ϕ̃(x,a) = −

∫ ∞

0
Ea[Lϕ(x,at)]dt

is well defined. ϕ̃(x,a) is also a polynomial as in (i), (ii). And we have for
the above ϕ, ϕ̃,

‖ϕ̃‖ ≤
9

α
(p+ q)‖ϕ‖,

with respect to the same norm ‖ · ‖ as in Claim 2.

Note that all the assertions in Claim 6 hold under another replace-
ment (21) instead of (20).

The proof of Claim 6 is also similar to that of Claim 1. Therefore the
detail is omitted.

We now complete the proof of Theorem 4. First note that by what has
been proved above, the Lyapunov function V4 satisfies all the conditions
(17), (18) and that V4(x, · ) belongs to the domain of G for all sufficiently
large α.

Define

τC6 = inf{t > 0 ; |Xt| ≤ C6}

and

σN = inf{t > 0 ; |Xt| ≥ N}.

Apply Dynkin’s formula to obtain,

E(x,a)

[

V4(XτC6
∧σN

,aτC6
∧σN

)
]

≤ V4(x,a) for C6 < |x| < N.
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Therefore

P(x,a)(τC6 < σN ) inf
a∈E � 2

|x|≤C6

V4(x,a)+P(x,a)(τC6 > σN ) inf
a∈E � 2

|x|≥N

V4(x,a) ≤ V4(x,a).

Letting N → +∞, we get

P(x,a)(τC6 = +∞) = 0 for |x| > C6.

Thus
P(x,a)(τC6 < +∞) = 1.

On the other hand, it is easy to show

inf
|x|≤C6

a∈E � 2

P(x,a)(Xt = 0 for some t > 0) > 0.

This combined with an argument in the proof of Lemma 1.1, [2] shows

P(x,a)(Xt = 0 for some t > 0) = 1.

Thus the proof of Theorem 4 is complete.
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