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MULTI-FLAG SYSTEMS AND ORDINARY

DIFFERENTIAL EQUATIONS

A. KUMPERA and J. L. RUBIN

Abstract. We discuss the Monge problem for under-determined systems of
ordinary differential equations with an arbitrary degree of freedom and give a
sufficient condition, in terms of truncated multi-flag systems, for the Monge
property to hold. This condition extends in a natural way the Cartan criterion
valid for systems with one degree of freedom.

§1. Introduction

The study of under-determined systems of ordinary differential equa-

tions seems to have been initiated by Gaspard Monge who exhibited, on

some specific examples, a very convenient parametrization of the general

solution evidencing its dependence on an arbitrary function of one variable

and on all its derivatives up to a certain order ([16]). Other authors have

also examined this problem ([7], [8], [19]) and, in 1914, Élie Cartan gave

a general criterion for the existence of such Monge parametrizations in the

case of under-determined systems with one degree of freedom ([1], [3], [4],

[12]). This criterion states that the canonical Pfaffian system associated to

the given equations must be a flag system.

Our purpose here is to extend this criterion to systems with an arbitrary

degree of indetermination and we are thus led to introduce multi-flag as well

as truncated multi-flag systems that are natural extensions of the above

mentioned flag systems. However, under-determined systems with just one

degree of freedom behave quite differently from those with a larger degree

since, for the former, the Cartan criterion provides a necessary and sufficient

condition whereas, for the latter, the condition is only sufficient.

The geometric fact underlying this distinction can be retraced in the

following group-theoretical argument. While the pseudogroup of all the
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local automorphisms of the single equation dx − y dt = 0 is the contact

pseudogroup in 3 variables, that of the system

dx1 − y1 dt = 0 , dx2 − y2 dt = 0 , · · · , dxk − yk dt = 0 , k ≥ 2 ,(1)

is locally equivalent, via prolongation, to the pseudogroup of all the local

diffeomorphisms of Rk+1 . More precisely, any finite (resp. infinitesimal)

automorphism of the system (1) is locally the prolongation of a diffeomor-

phism (resp. a vector field) of the space Rk+1 = {(t, x1, · · · , xk)} to the

projective bundle of all the tangent 1-spaces to Rk+1 ([14]). Both pseu-

dogroups are simple but have essentially different structures. Further, it

can be shown ([11], [17]) that the pseudoalgebra of all the infinitesimal

symmetries of a flag system is locally equivalent, via prolongation, to the

pseudoalgebra of the first pseudogroup and the corresponding pseudoalge-

bra of a multi-flag system is locally equivalent, via prolongation, to that of

the second pseudogroup.

The paper is organized as follows: We recall, in Section 2 , some basic

properties of Pfaffian systems and define their Martinet structure tensor,

their derived systems, their automorphisms and their characteristics. Next,

we define the polar spaces and the covariant systems, that become the main

tool in the subsequent discussion, and introduce the multi-flag and trun-

cated multi-flag systems. In Section 3 , we study the first systems and show

(Theorem 1) that under suitable conditions, called normality conditions,

they become transitive and reduce locally to a normal form. We also show

(Corollary 1) how the normality conditions simplify when the systems are

assumed to be transitive. In Section 4 , we extend the above results to

the truncated systems (Theorems 2 and 3 and Corollary 2). In Section

5 , we define Monge systems (also called Monge equations), examine their

associated Pfaffian systems, determine the rank of the first derived systems

(Proposition 4 and Corollary 3) and discuss Monge parametrizations. Fi-

nally, in Section 6 , we prove the extended Cartan criterion (Theorem 4)

that provides a sufficient condition for a Monge system to admit Monge

parametrizations.

The first named author wishes to thank Piotr Mormul for the enlight-

ening discussions on flags and related topics. He also wishes to thank the

Klingon Foundation for the support received.
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§2. Definitions and notations

For simplicity, we assume that all the data is C∞ smooth though of

course, in each specific case, Ck smoothness for some k suffices and as-

sume further that all the manifolds are connected and second countable. A

Pfaffian system on a manifold M is as a locally trivial vector sub-bundle

S ⊂ T ∗M = T ∗ . We write rankS = dim Sx , this dimension being indepen-

dent of x ∈M , and say that a linear differential form ω belongs to S when

ωx ∈ Sx for all x in the domain of ω . The annihilator Σ = S⊥ ⊂ TM = T

is a distribution on the manifold M , Σ⊥ = S and we say that a vector

field η belongs to Σ when ηx ∈ Σx , ∀x .

A Pfaffian system S is transitive when the pseudogroup of all its local

automorphisms operates transitively on M . It is infinitesimally transitive

when, at each point x ∈ M , the linear sub-space induced by all its local

infinitesimal automorphisms is equal to TxM . Infinitesimal transitivity

implies transitivity but the converse is not always true.

The set of all the local infinitesimal automorphisms of S that belong to

S⊥ is a pre-sheaf of Lie algebras known as the characteristic pseudoalgebra

associated to S . The field of linear sub-spaces x ∈ M 7−→ ∆x ⊂ TxM

induced by the elements of this pseudoalgebra need not be of constant di-

mension. However, when this is the case, ∆ is known as the characteristic

distribution associated to S , it is integrable and the integer q = rank ∆⊥

is the (Cartan) class of S . If we choose, in a neighborhood of an ar-

bitrary point x ∈ M , q independent first integrals {yj} of ∆ , we can

determine a local basis {ωi} of S such that each ωi has the expression

ωi =
∑
f i

j(y
1, · · · , yq) dyj . The system S is said to be of constant class

when dim ∆x is constant and, this being the case, ∆⊥ is generated by the

set {ω , i(η)dω} where ω is an arbitrary differential form belonging to S

and η an arbitrary vector field belonging to S⊥ .

Much in the same way, the set of all the local infinitesimal automor-

phisms ξ of a differential form ω that further verify i(ξ)ω = 0 is a pre-sheaf

of Lie algebras known as the characteristic pseudoalgebra associated to ω .

When the field x 7−→ ∆̄x induced by the above pseudoalgebra has con-

stant dimension, ∆̄ is the characteristic distribution associated to ω and

the integer q = rank ∆̄⊥ is its (Darboux) class. The form ω can then be

expressed, locally, in terms of the first integrals of ∆̄ and their differentials

and we say that ω has constant class. In particular, 1-forms and closed

two forms of constant class have well known local canonical expressions (the
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Darboux theorems). The following proposition relates the Cartan class with

the Darboux class ([9]).

Proposition 1. The Cartan class of any Pfaffian system S of rank 1
is odd. It is equal to 2 p+1 if and only if S is locally generated by 1-forms

of Darboux class equal to 2 p + 1 .

Let us recall that S is integrable if, for every form ω belonging to S ,

dω ≡ 0 mod S, i.e., d ω =
∑

σi ∧ ωi ,(2)

where the forms ωi belong to S .

The Martinet structure tensor ([13], [15]), is the vector bundle mor-

phism

δ : S −→ ∧2(T ∗/S)(3)

defined on the local sections of S by δ(ω) = dω mod S . Since d(fω) =

f dω + df ∧ ω ≡ f dω mod S , the above defined pre-sheaf morphism is

linear over the functions of M and therefore induces the desired vector

bundle morphism. We now assume that the rank of δ is constant and

define the derived system S1 = ker δ . Then S1 ⊂ S and the integrability

condition (2) reads S = S1 . We define inductively the ( ν + 1)-st derived

system Sν+1 = (Sν)1 by considering, at each step, the Martinet tensor

δν : Sν −→ ∧2(T ∗/Sν) of Sν and by assuming of course that the rank of

δν is constant. The previous construction yields a decreasing sequence of

Pfaffian systems that necessarily becomes stationary, namely:

S = S0 ⊃ S1 ⊃ S2 ⊃ · · · ⊃ S` = S`+1 = · · · .(4)

The integer ` is called the length of the Pfaffian system S , the last term

S` is integrable and is referred to it as the terminating system of S . Length

zero characterizes the integrability of S . We denote by [ω]ν ∈ T ∗/Sν the

equivalence class of ω ∈ T ∗ .

Definition 1. A Pfaffian system is called totally regular when all the
successive structure tensors have constant rank.

Definition 2. A multi-flag system of width k (k-flag for short) is a
totally regular Pfaffian system of length ` for which rank δν = k , 0 ≤ ν ≤
`− 1 (δ0 = δ).
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A k -flag is also characterized by the conditions rank (Sν/Sν+1) = k . The

1-flag systems are the usual flag systems (système de Pfaff en drapeau, [13])

often referred to, in literature, as Goursat systems.

We define the polar space of S at the point x ∈M by the condition

Pol(S)x = {w ∈ T ∗
x/Sx |w ∧ δ (ω) = 0 , ∀ω ∈ Sx } .(5)

When Pol (S) is regular i.e., when dim Pol(S)x is constant, we also define

the covariant system associated to S as being the Pfaffian system Ŝ =

q∗( Pol(S)) , inverse image of Pol(S) relative to the quotient map q : T ∗ →

T ∗/S . In other terms, Pol(S) = Ŝ/S . When S is integrable, Pol(S) =

T ∗/S and Ŝ = T ∗ . However, the converse is not true as evidenced by the

Proposition 3 . The main feature of the covariant system is described by

the

Proposition 2. Let S be a Pfaffian system such that Pol(S) is reg-

ular and rankPol(S) ≥ 1 . Then (Ŝ)1 ⊃ S .

Proof. We set s = rankS , r = rank Ŝ and choose, in a neighborhood
of an arbitrary point x , a local field of co-frames {ω1 , · · · , ωn} , n =
dimM , such that the first s (resp. r ) forms (locally) generate S (resp.
Ŝ ). Then {[ωs+1] , · · · , [ωn]} , where [ωi] = q(ωi) , is a local basis of T ∗/S
and expressing each δ(ωi) , 1 ≤ i ≤ s , in terms of this basis, the conditions
(5) imply that all the terms in [ωj]∧ [ωk] , j , k ≥ r+ 1 , must vanish hence
d(ωi) ≡ 0 mod Ŝ .

We also mention the following result, a direct consequence of the Propo-

sition 3.3 in [13].

Proposition 3. The covariant system Ŝ associated to a 1-flag S of

length ` ≥ 2 is equal to its characteristic system ∆⊥ . When S` = 0 and

dimM = `+ 2 then Ŝ = T ∗ .

As for the 1-flags of length 1, the above result still holds when their

class is equal to 3 . For larger class values, Pol(S) = 0 and Ŝ = S is not

integrable.

The definition of a truncated system is somewhat more elaborate since

the only restriction on the ranks of the successive tensors is rank δν ≥

rank δν+1 . The definition stated below puts in evidence the main features

of such a system without referring though to any transitivity property (nor

to the above rank restriction). The reason for doing so lies in the fact that

Monge systems need not be transitive to have the Monge property.
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Definition 3. A truncated multi-flag system(truncated flag for short)
is a totally regular Pfaffian system S of length ` that satisfies the following
properties:

(tf1) S is not a 1-flag system i.e., there exists an integer ν , 0 ≤ ν ≤
`− 1 , such that rankSν/Sν+1 ≥ 2 . Let ν0 be the largest such integer.

(tf2) For each ν , 0 ≤ ν ≤ ν0 , such that rankSν/Sν+1 > rankSν+1/
Sν+2 , the covariant system Ŝν is integrable.

(tf3) Sν−1 ∩ Ŝν = Sν , 1 ≤ ν ≤ ν0 .
(tf4) If ν0 < `− 1 , then ( ̂Sν0+1)x 6⊂ (Sν0

)x , ∀x ∈M .

We shall see, in Section 4, that k-flags (k ≥ 2) satisfying the normality

conditions of the Theorem 1 are special cases of truncated multi-flags.

§3. Multi-flag systems

We now discuss the local structure of the k -flags of length ` defined in

Section 2 and always assume that k ≥ 2 . As mentioned in the introduction,

1-flags behave differently from k -flags and have their own specific structure

that requires an individual approach. It is worthwhile to mention briefly

their differences as well as their analogies. The transitive 1-flags are those

admitting, in a neighborhood of each point, the transitive von Weber model

([18]) and are characterized either by the property that the ranks of all their

reduced tensors κ(λ) are equal to 1 ([13]) or by the property that their

small growth vectors are equal to the big growth vectors ([5]). However,

these numerical invariants are not strong enough to assure the transitivity

of k -flags for which conditions on the covariant systems Ŝν are required (cf.

(20)). On the other hand, these covariant systems are quite irrelevant for

1-flags as evidenced by the Proposition 3 . A 1-flag of length 1 is transitive

if and only if its class is constant in which case it admits the Darboux local

model of the same class. A 1-flag of length 2 is always transitive (hence of

constant class) and admits the Engel local model ([6], [13]). Quite to the

contrary, none of these properties hold for k -flags. As for the analogies, we

can say that a k -flag of length ` admits locally an extended von Weber

model (10) if and only if it is transitive and the last non-vanishing derived

system has an integrable covariant system (Corollary 1).

Let us begin our discussion by first considering k -flags of length 1 and

let us assume, for simplicity, that S1 = 0 whereupon rankS = k (this

condition being withdrawn at the end of this section).

Lemma 1. If Ŝ is integrable then rank Ŝ = k + 1 .
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Proof. Whatever the point x ∈M , the system (Ŝ)x cannot be equal
to Sx since the later is everywhere non-integrable, hence rank Pol(S) ≥ 1 .
If this rank were greater than one, the 2-forms δ (ω) , ω ∈ S , would all
be, at each point x , multiples of a fixed 2-form Ωx whereupon rank δ ≤ 1
thus contradicting the assumptions k ≥ 2 .

Lemma 2. If Ŝ is integrable then the k-flag S of length 1 admits, in

a neighborhood of each point x0 ∈M , the following normal form

ω1 = dx1 + x2 dt , ω2 = dx3 + x4 dt , · · · , ωk = dx2k−1 + x2k dt ,(6)

where the coordinates xi and t vanish at x0 . The system S is transitive

and its class is equal to 2k + 1 .

Proof. We take, according to the previous lemma, a complete set of
first integrals {y1, y2, · · · , yk+1} of Ŝ defined in a neighborhood of a point
x0 and can assume, without loss of generality, that yj(x0) = 0 and that
{dy1, · · · , dyk}x0

generates Sx0
. The local generators of S can then be

expressed by
$i =

∑

1≤j≤k+1

ai
j dy

j ,(7)

with ai
j(x0) = δi

j , 1 ≤ i, j ≤ k and ai
k+1(x0) = 0 , and left multiplication

by the inverse of the matrix (ai
j)1≤i,j≤k yields the new generators

ωi = dyi + bik+1 dy
k+1(8)

of S that, together with ωk+1 = dyk+1 , also generate Ŝ , the coefficients
bik+1 vanishing at the point x0 . The injectivity of δ then implies the
non-vanishing of

d y1 ∧ · · · ∧ d yk+1 ∧ d b1k+1 ∧ · · · ∧ d bkk+1(9)

at the point x0 and consequently the functions

x2i−1 = yi , x2i = bik+1 , t = yk+1 ,

are the desired coordinates for the local model (6).

Remark. Let S be any Pfaffian system of rank k defined on a manifold
M and let S̃ be an integrable Pfaffian system of rank k + 1 containing
S , i..e., S̃ ⊃ S . Then necessarily Ŝ ⊃ S̃ . In fact, if {ωi} is a local
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basis of S and {ωi , du} a local basis of S̃ , the integrability of S̃ reads
dωi ≡ 0 mod {ωj , du} and consequently δ(ωi) = [σi] ∧ [du] , δ being
the Martinet tensor of S . We infer that [du] ∈ Pol(S) hence du is a
local section of Ŝ . In particular, if S is a k-flags of length 1 and if Ŝ is
integrable, then Ŝ is the unique integrable Pfaffian system of rank k + 1
that contains S . We also observe that systems for which S1 = 0 and Ŝ is
not integrable behave quite differently ([2]).

We now turn our attention to general k -flags of length ` and assume,

as before, that S` = 0 whereupon rankS = k ` and rankSν = k (` − ν) ,

1 ≤ ν ≤ ` .

Theorem 1. Let S be a k-flag of length ` that satisfies the properties

(normality conditions)
(nc1) Ŝ`−1 is integrable,

(nc2) Sν−1 ∩ Ŝν = Sν , 1 ≤ ν ≤ `− 1 .

Then S admits, in a neighborhood of each point of M, the normal form

ωi
j = dxi

j + xi+1
j dt , 1 ≤ i ≤ ` , 1 ≤ j ≤ k ,(10)

where the derived systems Sν are generated by the forms ωi
j , 1 ≤ i ≤ `−ν ,

1 ≤ j ≤ k . Each covariant systems Ŝν−1 , 1 ≤ ν ≤ `− 1 , is an integrable

system of rank k (`− ν + 1) + 1 and is equal to Sν−1 + Ŝ`−1 . The system

S is transitive and its class is equal to k (`+ 1) + 1 .

Proof. The proof is by induction on the length ` of the flag. The case
` = 1 is considered in the Lemma 2 and the induction step is proved as
follows. We take a k -flag S of length `+1 that satisfies the corresponding
normality conditions, denote by δ its Martinet tensor and assume that S1

admits the local model (10) in a neighborhood of a point x0 . The condition
(tf1) for the system S and for ν = 1 , namely the condition S ∩ Ŝ1 = S1 ,
is equivalent at the point x0 to dtx0

6∈ Sx0
i.e., [dt]x0

6= 0 in the space
T ∗

x0
/Sx0

. Since δ(ω`
j) = [dx`+1

j ] ∧ [dt] ∈ ∧2(T ∗/S) vanishes for all the
indices j , we can write, in the space T ∗/S and in a neighborhood of x0 ,
[dx`+1

j ] = −αj [dt] and consequently the forms ω`+1
j = dx`+1

j +αj dt belong

to S . Replacing x`
j by y`

j = x`
j −

1
2 cj t

2 , x`+1
j by y`+1

j = x`+1
j + cj t and

setting y`+2
j = αj − cj , with ci = αi(x0) , we find that ω`

j = dy`
j + y`+1

j dt

and ω`+1
j = dy`+1

j + y`+2
j dt . Much in the same way, replacing x`−1

j by

y`−1
j = x`−1

j − 1
6 cj t

3 , we find that ω`−1
j = dy`−1

j + y`
j dt . Continuing this
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process and replacing x`−ν
j by y`−ν

j = x`−ν
j − 1

(ν+2)! cj t
ν+2 , we find that

ω`−ν
j = dy`−ν

j + y`−ν+1
j dt hence we can express all the forms {ωi

j , 1 ≤ i ≤
`+ 1} in terms of the functions {t , yr

j , 1 ≤ r ≤ `+ 2} obtaining thus the
model (10) for the k -flag S since all the above forms are independent. We
finally show that the functions {t , yr

j , 1 ≤ r ≤ `+2} are independent, this
resulting from the injectivity of δ on the sub-space generated by the forms
ω`+1

j at the point x0 . To see this, we consider the sub-space T ∗ ⊂ T ∗
x0

generated by the differentials {dt , dyr
j , 1 ≤ r ≤ `+ 2}x0

and observe that

δ ((ω`+1
j )x0

) ∈ (T ∗/Sx0
) ∧ [dt]x0

⊂ ∧2 (T ∗
x0
/Sx0

) .

If dimT ∗ ≤ k(`+ 2) , then dimT ∗/Sx0
≤ k and, since [dt]x0

6= 0 ,

dim(T ∗/Sx0
) ∧ [dt]x0

≤ k − 1 ,

whereafter the forms {δ(ω`+1
j )} become linearly dependent at the point x0 ,

which is not the case. The remaining assertions are immediate consequences
of the canonical expressions (10) hence the proof is complete.

Remark. The systems Ŝν , 0 ≤ ν ≤ ` − 1 , are the unique integrable
Pfaffian systems of ranks k (`−ν)+1 that contain respectively the systems
Sν .

Corollary 1. Let S be a k-flag of length ` , terminating by the null

system. Then the following assertions are equivalent :

(i) S admits locally the normal form (10),

(ii) S verifies the normality conditions of the theorem,

(iii) S is transitive and Ŝ`−1 is integrable.

Proof. The normal form obviously verifies the normality conditions.
Furthermore, if S is transitive and verifies the condition (nc1) of the theo-
rem then it also verifies the condition (nc2). In fact, if this latter condition
failed, taking the maximum value of the integer ν , say ν1 , for which it
fails, the k -flag Sν1

would still verify the normality conditions and conse-
quently the covariant system Ŝν1

would be integrable. On the other hand,
there would be a point x1 such that (Ŝν1

)x1
⊂ (Sν1−1)x1

, the same in-
clusion holding at every other point due to transitivity. Consequently, the
integrable system Ŝν1

would be contained in Sν1−1 and the rank of Sν1

would be at least equal to k (`− ν) + 1 which is not the case.
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Remark. In general, without any transitivity hypothesis, the condition
(nc2) can fail at most on a closed subset with void interior and it cannot be
withdrawn from the normality conditions as evidenced by the non-transitive
2-flag S of length 2

ω1 = dx1 + x2 dt , $1 = dy1 + y2 dt ,
ω2 = dt+ x3 dx2 , $2 = dy2 + y3 dx2 .

(11)

Along the hyperplane {x3 = 0 } , S ∩ Ŝ1 = Ŝ1 and Ŝ 6= S + Ŝ1 . The
system (11) cannot be equivalent to the corresponding transitive model
(10) and it can be shown that any 2-flag of length 2 terminating by the null
system and satisfying the condition (nc1) is locally equivalent either to the
above model or to the transitive model (10). The condition (nc1) cannot be
dropped either since k -flags can be transitive without admitting the normal
form (10). The system

dx1 + x2 dx3 , dx4 + x5 dx6 ,

is a transitive 2-flag of class 6 equal to its covariant system (the correspond-
ing normal form has class 5) and

dx1 + (x3 +
1

2
x4 x5) dx4 , dx2 + (x3 −

1

2
x4 x5) dx5 ,

is a transitive 2-flag with a non-integrable covariant system of rank 3 ([2],
[10], sect. 15). The 2-flag

ω1 = dx1 − x5 dt , ω2 = dx2 − x6 dt ,
ω3 = dx3 − x2 dt , ω4 = dx4 − (x6)2 dt ,

(12)

fulfills none of the two normality conditions since S1 = {ω3 , 1
2 ω

4 − x6 ω2}

has a non-integrable covariant system Ŝ1 = {ω2 , ω3 , ω4} contained in S .

Remark. The previous discussion can be extended to k -flags that ter-
minate by integrable systems. Taking a complete set of first integrals
{z1, · · · , zµ0} of S` , we can repeat all the previous arguments incorpo-
rating the parameters zµ much in the same way as is done in the proof of
the Theorem 4.2 in [13]. Essentially, this amounts to restrict all the data to
the slices zµ = cµ . A local model for such flags is obtained by completing
(10) with the first integrals dzµ . We observe that a direct proof of the
Lemma 2 and the Theorem 1 , in which we carry along the first integrals
dzµ , is feasible though rather awkward.
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§4. Truncated multi-flag systems

In this section we discuss the Pfaffian systems S that under appro-

priate hypotheses admit a local model equal to the normal form (10) with

some of the generating forms omitted. The basic assumptions (tf1) in the

Definition 3 states that these systems are not 1-flags and the condition

(tf4) is motivated by the Proposition 3 since it implies in particular that

class S`−1 = 3 when ν0 = ` − 2 , this being required by the local model.

The k-flags (k ≥ 2) that satisfy the normality conditions of the Theorem

1 are special cases of truncated multi-flags since, for such k-flags, the con-

dition (tf1) is always satisfied with ν0 = ` − 1 , (tf2) and (tf3) are the

normality conditions and the last condition is void. As in the previous

section, we assume that S` = 0 , this restriction being removed later. We

set rankS = r` , rankS`−µ = rµ , sµ = rµ − rµ−1 = rank (S`−µ/S`−µ+1)

(S0 = S, s1 = r1, r0 = 0) and first examine the case ν0 = `−1 i.e., r1 ≥ 2 .

Theorem 2. Let S be a truncated flag of length ` and ν0 = ` − 1 .

Then S admits, in a neighborhood of each point of M, the normal form

ωi
j = dxi

j + xi+1
j dt , 1 ≤ i ≤ ` , 1 ≤ j ≤ si ,(13)

where 2 ≤ s1 ≤ s2 ≤ · · · ≤ s` ,
∑
si = rankS , and where Sν is generated

by the forms ωi
j , 1 ≤ i ≤ `− ν . The system S is always transitive.

Proof. By the condition (tf2) and the Lemma 2 , we can find a sys-
tem of coordinates, defined in a neighborhood of any given point x0 (and
vanishing at this point), such that S`−1 is locally represented by the set of
linear forms

ω1
j = dx1

j + x2
j dt , 1 ≤ j ≤ s1 .(14)

We next consider the system S`−2 . The initial argument in the proof of the
Theorem 1 leading towards the determination of the forms ω`+1

j = dx`+1
j +

αj dt shows, in the present context and on account of the condition (tf3),
that we can determine s1 independent linear forms ω2

j belonging to S`−2

which, together with the forms (14) and upon rescaling the coordinates,
yield a sub-system

ω1
j = dx1

j + x2
j dt ,

ω2
j = dx2

j + x3
j dt , 1 ≤ j ≤ s1 ,

(15)

of S`−2 . Consequently, s2 ≥ s1 . If s2 = s1 , then S`−2 is an s1-flag of
length 2 that verifies the normality conditions of the Theorem 1 and (15)
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becomes its normal form. On the other hand, if s2 > s1 , we complete the
forms (15) to a local basis

{ω1
j , ω

2
j , Ωs1+1, · · · , Ωs2} , 1 ≤ j ≤ s1 ,(16)

of S`−2 . Since s1 ≥ 2 , the expressions of the forms ω2
j in (15) show that

[dt]`−2 generates Pol(S`−2) hence Ŝ`−2 is locally generated by S`−2 and
dt . Furthermore, since dt is a first integral of Ŝ`−2 then so are the forms
{dx1

j , dx
2
j , 1 ≤ j ≤ s1} . We now complete these first integrals by addi-

tional s2 − s1 independent first integrals {dyj} of Ŝ`−2 and proceed as in
the proof of the Lemma 2 , expressing the forms (16) as linear combinations
of all the above first integrals. Since the forms ωi

j are already written in the
appropriate manner, we find expressions of the type (7) for the forms (16)
with a coefficient matrix displaying, in the left upper corner, the identity
matrix of order 2 s1 , all the remaining entries in the first 2 s1 lines being
null except for those in the last (r2 + 1)-column. Furthermore, since the
inverse of the matrix (ai

j)1≤i,j≤r2
also displays, in the left upper corner,

the identity matrix of order 2 s1 , all the remaining entries in the first 2 s1
lines being null, we infer that left multiplication by this inverse matrix does
not change the forms ωi

j and brings the forms Ωs1+µ to the appropriate

expressions (8) with dyk+1 = dt . Furthermore, since δ is injective on the
sub-bundle generated by the forms {ω2

j ,Ω
s1+µ , 1 ≤ µ ≤ s2 − s1} , the

new coefficients are necessarily independent from the coordinates {xi
j , t} ,

1 ≤ i ≤ 3 , 1 ≤ j ≤ s1 , and can be chosen as additional coordinates. In
conclusion, the system S`−2 can be represented locally by the forms

ω1
j = dx1

j + x2
j dt , 1 ≤ j ≤ s1 ,

ω2
j = dx2

j + x3
j dt , 1 ≤ j ≤ s2 .

(17)

Using a similar argument, we obtain by induction the normal form (13).

Next, we examine the case ν0 < `− 1 .

Lemma 3. Let S be a truncated flag of length ` and ν0 < `−1 . Then

S contains a unique 1-flag T of length ` , Tν−1 = Sν−1 ∩ T̂ν , ν ≤ ν0 + 1 ,

and Tν0+1 = Sν0+1 .

Proof. The system Sν0+1 is a 1-flag of length ρ = rρ = ` − ν0 − 1
and, as indicated in the proof of the Proposition 3.3 in [13], it is (locally)
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generated by Sν0+2 and a Darboux class 3 differential form that we write
ωρ = df+g dh . By the Proposition 3 , ̂Sν0+1 is generated by Sν0+1 , dg and
dh hence rank ̂Sν0+1 = ρ+2 . The condition (tf4) requires accordingly that
rank ̂Sν0+1 ∩ Sν0

≤ ρ + 1 . Since δν0
(ωρ) = [dg]ν0

∧ [dh]ν0
= 0 (δν0

is the
Martinet tensor associated to Sν0

) and since (dg)x0
and (dh)x0

cannot
both belong to Sν0

, we infer that either [dg]ν0
= a [dh]ν0

or [dh]ν0
=

b [dg]ν0
. Consequently, we can find a linear differential form ωρ+1 = α dg+

β dh , (ωρ+1)x0
6= 0 , that belongs to Sν0

, does not belong to Sν0+1 and
such that {ω1, · · · , ωρ, ωρ+1} generates T = ̂Sν0+1∩Sν0

. The system T is
a 1-flag of length ρ+1 contained in Sν0

that extends Sν0+1 . Furthermore,
if T̄ is any 1-flag of length ρ+ 1 contained on Sν0

then T̄1 = Sν0+1 and
any generator ω̄ρ+1 ∈ T̄ − Sν0+1 is of the form

ω̄ρ+1 ≡ Adg +B dh mod Sν0+1 .

We can therefore replace ω̄ρ+1 by Adxρ+1 + B dψ . However, the forms
ω̄ρ+1

x0
and ωρ+1

x0
are linearly dependent otherwise left multiplication by the

inverse of the matrix with coefficients α , β , A and B would show that
(dg)x0

, (dh)x0
∈ (Sν0

)x0
, thus contradicting (tf4). In conclusion, the 1-flag

T of length ρ+ 1 contained in Sν0
is unique and extends Sν0+1 . Let us

next assume that T is the unique 1-flag of length ρ = ` − ν contained
in Sν , ν ≤ ν0 , and let us take a class 3 generator ωρ = df + g dh ∈
T − T1 . Then T̂ is generated by T , dg and dh and we have to show
that (dg)x0

and (dh)x0
cannot both belong to Sν−1 or, equivalently, that

rank T̂ ∩ Sν−1 ≤ ρ + 1 . If Ŝν is generated by Sν and an additional form
$ , since [$]ν ∧ δν(ω

ρ) = [$]ν ∧ [dg]ν ∧ [dh]ν = 0 , we infer that

$ ≡ a dg + b dh mod Sν ,

hence we can replace $ by a dg+b dh . If both (dg)x0
and (dh)x0

belonged
to Sν−1 then (Ŝν)x0

would be contained in Sν−1 thus contradicting (tf3).
Using exactly the same arguments as before, we can extent T to a 1-flag
U of length ρ+ 1 contained in Sν−1 by setting U = T̂ ∩ Sν−1 .

The canonical 1-flag T of length ` is called the spine of S .

Theorem 3. Let S be a truncated flag of length ` , with ν0 < `− 1 ,

that verifies the properties (normality conditions)
(tnc1) Tν0

is transitive, where T is the spine of S ,

(tnc2) Ŝν0
⊃ ̂Sν0+1 .

Then, in a neighborhood of each point of M , S admits the normal

form (13), with 1 ≤ s1 ≤ s2 ≤ · · · ≤ s` .
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Proof. Since the 1-flag Tν0
is transitive, it admits the standard local

model

ω1 = dx1 + x2 dt , ω2 = dx2 + x3 dt , · · · , ωρ+1 = dxρ+1 + xρ+2 dt ,(18)

where ρ+1 = `−ν0 . Observing that ̂Sν0+1 = (̂T1) contains the differential
dt , the condition (tnc2) implies that Ŝν0

also contains dt . Furthermore,
if (dt)x1

∈ (Sν0
)x1

, at some point x1 , then (dxρ+1)x1
∈ (Sν0

)x1
thus

contradicting the condition (tf4). Let us now apply the condition (tf2). The
covariant system Ŝν0

is generated by Sν0
and dt hence all the differentials

dxi , 1 ≤ i ≤ ρ + 1 , in the expressions (18) are also first integrals of Ŝν0
.

We can now argue as in the proof of the Theorem 2 and, setting yk+1 = dt
( k = ρ+ sρ+1 = rankSν0

), complete the set (18) to a system of generators

{ω1, · · · , ωρ, $1, · · · , $sρ+1}(19)

of Sν0
, where

$1 = dxρ+1+xρ+2 dt , $2 = dy3+y4 dt , · · · , $sρ+1 = dy2sρ+1−1+y2sρ+1 dt ,

this being a normal form for Sν0
. Let us now assume that Sν , ν ≤

ν0 , has locally the normal form (13) and let us consider Sν−1 . Since
rankSν/Sν+1 = sρ+ν0−ν+1 and rankSν−1/Sν = sρ+ν0−ν+2 , we can use
the condition (tf3) and argue as in the case ν0 = `−1 (or as in the proof of
the Theorem 1) so as to obtain sρ+ν0−ν+1 linear forms having expressions
of the type dyi+αj dt . Finally, using the condition (tf2), we can determine,
as previously, sρ+ν0−ν+2 − sρ+ν0−ν+1 additional forms having expressions

of the type (8) in terms of the first integrals of Ŝν−1 , with dyk+1 = dt ,
and consequently obtain, after a suitable re-scaling of the coordinates, the
normal form (13) for the system Sν−1 .

Corollary 2. Let S be a truncated flag of length ` with ν0 < `−1 .

Then the following assertions are equivalent :
(i) S admits locally the normal form (13) with 1 ≤ s1 ≤ s2 ≤ · · · ≤ s` ,

(ii) S verifies the normality conditions of the theorem,

(iii) S is transitive and the condition (tnc2) holds.

Proof. If S is transitive then so is its spine T as well as Tν0
. If S

verifies (i) then it is transitive, the integers si being determined by the
ranks of the derived systems Sν .
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Remark. The previous discussion can be extended to truncated flags
that terminate by integrable systems. Taking a complete set of first integral
{dzµ} of S` , the local models for such flags are obtained by adding to (13)
the above first integrals.

Examples and counter-examples. The system

ω1 = dx1 + x2 dt ,
ω2 = dx2 + x3 dt , $1 = dy1 + y2 dx3 ,

(20)

is a transitive truncated 2-flag of length 2 that has a transitive spine and
does not fulfill the condition (tnc2) hence cannot be locally equivalent to the
normal form (13) where $1 is replaced by dy1+y2 dt . It is noteworthy that
the usual numerical invariants such as the ranks of the reduced tensors or the
small growth vectors, proper to the theory of 1-flags, do not distinguish (13)
from (20). Given an arbitrary point p ∈ R6 and setting xi = x̄i + xi(p) =
x̄i + ci , yj = ȳ j +yj(p) = ȳ j +γj and t = t̄+ t(p) , the forms (20) re-write
by

ω1 = d(x̄ 1 + c2 t̄−
1

2
c3 (t̄ )2) + (x̄ 2 + c3 t̄ )dt̄ ,

ω2 = d(x̄ 2 + c3 t̄ ) + x̄ 3 dt̄ , $1 = d(ȳ1 + γ2 x̄ 3) + ȳ 2 dx̄ 3 .

A re-scaling of the coordinates shows that the system (20) is transitive.

The transitive truncated flag (20) admits the two non-equivalent ex-
tensions

ω1 = dx1 + x2 dt ,

ω2 = dx2 + x3 dt , $1 = dy1 + y2 dx3 ,

ω3 = dt+ (x4 + 1) dx3 , $2 = dy2 + y3 dx3 ,

ω1 = dx1 + x2 dt ,

ω2 = dx2 + x3 dt , $1 = dy1 + y2 dx3 ,

ω3 = dt+ x4 dx3 , $2 = dy2 + y3 dx3 .

The first one is transitive (x4 6= −1) and the second is not, its spine being
also non-transitive.

The system

ω1 = dx1 + x2 dt ,

ω2 = dx2 + x3 dy1 , $1 = dt+ y2 dy1 ,
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does not fulfill the condition (tf4) whenever x3 = y2 = 0 and S1 = {ω1}
does not extend to a 1-flag of length 2 contained in S . In fact, if {ω1, ω̄2}
were such a 1-flag, then the condition dω1 ∧ ω1 ∧ ω̄2 = 0 would imply that
ω̄2 ≡ Adx2+B dt mod (ω1) and therefore we could replace ω̄2 by Adx2+
B dt . However, the latter form belongs to S and a simple calculation shows
that A = B = 0 whenever x3 = y2 = 0 hence this form cannot be a (free)
generator.

The systems

ω1 = dx1 + x2 dt ,

ω2 = dx2 + x3 dt , $1 = dy1 + y2 dt ,

ω3 = dt+ x4 dx3 , $2 = dy2 + y3 dx3 ,

ω1 = dx1 + x2 dt ,

ω2 = dx2 + x3 dt , $1 = dy1 + y2 dt ,

ω3 = dx3 + x4 dy2 , $2 = dt+ y3 dy2 ,

do not fulfill the condition (tf3). The first one has a non-transitive spine
whereas the second does not have a spine since (T̂ )x ⊂ (S)x whenever
x4 = y3 = 0 , T = {ω1, ω2} .

§5. Monge systems

A Monge system of ordinary differential equations (Monge equations

for short) is an under-determined first order system of the form

F i(x, y1, · · · , ys, y1
1, · · · , y

s
1) = 0 , 1 ≤ i ≤ s− σ , yλ

1 =
dyλ

dx
.(21)

The integer σ indicates the degree of freedom (indetermination) of the

system and of course σ = 0 means that the system is determined. We

assume the following regularity condition:

rank
∂ (F 1, · · · , F s−σ)

∂ (y1
1 , · · · , y

s
1)

= s− σ .(22)

In terms of the space J1(π) of 1-jets of local sections of a fibration π : P −→

R , a Monge system can be defined as a sub-manifold R ⊂ J1(π) for which

the target map β : R −→ P is a submersion. For simplicity, we assume that

R is regularly embedded and that β is also surjective. The condition (22)
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translates precisely the rank maximality of β and σ is equal to the dimen-

sion of the β-fibre. Equivalently, codimR = dimP − (σ + 1) . We further

assume that dimR < dimJ1(π) since not much can be said about a trivial

equation i.e., an open subset of J1(π) (the set of equations (21) is empty).

Taking adapted coordinates (x, y1, · · · , ys) in P (x is a coordinate in R)

and the corresponding coordinates (x, y1, · · · , ys, y1
1, · · · , y

s
1) in J1(π) ,

the canonical contact structure Ss,1 on J1(π) is (locally) generated by the

forms

{dy1 − y1
1 dx , · · · , dy

s − ys
1 dx} ,

and the canonical Pfaffian system S associated to R i.e., the restricted

system S = Ss,1|R is (locally) generated by the forms

{ω1 = dy1 − Y 1 dx , · · · , ωs = dys − Y s dx} ,(23)

where the coefficients Y i are the restrictions, to R , of the coordinate

functions (first derivatives) yi
1 and the functions x and yi are as well

the restrictions of the coordinate functions with the same label. Since the

restricted target map β : R −→ P is a submersion, the above restricted

functions {x, yi} as well as the linear forms (23) are independent and

rankS = s .

We observe that dωi = dx ∧ dY i hence [dx] ∧ δ (ω) = 0 , ∀ ω ∈ S ,

and consequently [dx] ∈ Pol(S) , with [dx] 6= 0 since dx 6∈ S . However,

this property does not hold, in general, for the derived systems Sν .

If we represent, locally, the Monge equation R by (21), then:

Lemma 4. The linear forms {π1, · · · , πs−σ} defined by

πj =
∑

1≤i≤s

(∂F j

∂yi
1

|R
)
ωi , 1 ≤ j ≤ s− σ ,(24)

are independent and belong to the derived system S1 .

Proof. Let us consider the forms

π̄j =
∑

1≤i≤s

∂F j

∂yi
1

(dyi − yi
1 dx) , 1 ≤ j ≤ s− σ ,

defined on an open set of J1(π) . Then

dπ̄j ≡
∑

1≤i≤s

∂F j

∂yi
1

d(dyi − yi
1 dx) mod Ss,1
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and the right hand side re-writes by

∑

1≤i≤s

−
∂F j

∂yi
1

dyi
1 ∧ dx = −dF j ∧ dx+

∑

1≤i≤s

∂F j

∂yi
dyi ∧ dx

= −dF j ∧ dx+
∑

1≤i≤s

∂F j

∂yi
(dyi − yi

1 dx) ∧ dx .

Since π̄j |R = πj , (dyi − yi
1)|R = ωi and dF j |R = 0 , we infer that

dπj ≡ 0 mod S as desired. The forms {πj} are independent due to (22).

For Monge equations with one degree of indetermination rankS1 =

rankS − 1 (cf. [12]). In general, the following proposition holds, where S

is the Pfaffian system associated to a Monge equation R with s dependent

variables and σ degrees of freedom.

Proposition 4. rankS1 = s− σ and Ŝ is integrable.

Proof. When s = 1 , an arbitrary system R is either trivial (i.e., no
equation and σ = 1) or determined (one equation and σ = 0) and the case
dimR = 1 (two equations) violates the requirement that β : R −→ P be a
submersion. We can therefore assume that s ≥ 2 . This being so, the
sub-manifold R admits local coordinates (x, y1, · · · , ys, Y i1 , · · · , Y iσ)
obtained by restricting, to R , some of the jet coordinates (x, yj, yj

1) of
J1(π) , 1 ≤ j ≤ s . Permuting the indices of the dependent variables yj ,
we can assume that (x, y1, · · · , ys, Y 1, · · · , Y σ) is a system of coordinates
on the manifold R and then consider the sub-bundle B ⊂ T ∗(R) generated
by the contact forms

ωj = dyj − Y j dx , 1 ≤ j ≤ σ .(25)

We claim that the restriction of δ to B is injective and consequently that
rankS1 ≤ s− σ . In fact, let Aj be an array of coefficients such that

δ
( ∑

1≤j≤σ

Aj ω
j
)

= 0 .

Then,

0 = d
( ∑

1≤j≤σ

Aj ω
j
)
∧ ω1 ∧ · · · ∧ ωs =

( ∑

1≤j≤σ

Aj dω
j
)
∧ ω1 ∧ · · · ∧ ωs

=
( ∑

1≤j≤σ

Aj dx ∧ dY j
)
∧ dy1 ∧ · · · ∧ dys

=
∑

1≤j≤σ

(−1)s Aj dx ∧ dy1 ∧ · · · ∧ dys ∧ dY j ,
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hence Aj = 0 , ∀ j . The equality holds due to the previous lemma. Apply-
ing δ to the forms (25), we infer that Pol(S) is (locally) generated by [dx]
and consequently that Ŝ is (locally) generated by {dx , dy1 , · · · , dys} (cf.
(23)).

Corollary 3. The forms (24) are local generators of S1 .

The system S1 can be integrable, as evidenced by the Monge system

R = { yk
1 = 0 , σ + 1 ≤ k ≤ s} .

Let us next inquire about conditions enabling us to express, at least locally

(i.e., in a neighborhood of each point X0 ∈ R ), the general solution of

a Monge system R with σ degrees of freedom by means of parametrized

formulas of the form:

x(t) = ϕ(t, f1(t), f
′
1(t), · · · , f

(µ1)
1 (t), · · · , fσ(t), f ′σ(t), · · · ,

f (µσ)
σ (t), c1, · · · , cµ0

) ,

y1(t) = ψ1(t, f1(t), f
′
1(t), · · · , f

(µ1)
1 (t), · · · , fσ(t), f ′σ(t), · · · ,

f (µσ)
σ (t), c1, · · · , cµ0

) ,(26)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

ys(t) = ψs(t, f1(t), f
′
1(t), · · · , f

(µ1)
1 (t), · · · , fσ(t), f ′σ(t), · · · ,

f (µσ)
σ (t), c1, · · · , cµ0

) ,

where the functions f1 , · · · , fσ are arbitrary functions of the parameter

t , the integers µ0 , µ1 , · · · , µσ are fixed though arbitrary, the functions ϕ

and ψj are given functions of
∑
µi +σ+1 variables and the f

(h)
λ are the

h-th order derivative of the functions fλ .

Definition 4. Parametrizations of the form (26) are called Monge
parametrizations and equations admitting such Monge parametrizations are
said to have the Monge property.

Let µ = max {µi , 1 ≤ i ≤ σ } . Then, much in the same way as in [12], we

can consider the functions (26) as the scalar components of a map

G : Jµ(π1) × Rµ0 −→ U ⊂ Rs+1 ,(27)

where π1 : Rσ+1 → R is the projection onto the first factor and (U, x , yj)

is a coordinate patch on the manifold P adapted to the fibration π : P −→



166-01 : 2002/6/10(22:26)

20 A. KUMPERA AND J. L. RUBIN

R , i.e., x is a coordinate in R . Since for each choice of the functions fλ

and of the constants cη the resulting map

t 7−→ x(t) = ϕ(t, · · · , fj(t), · · · , f
(µ)
j (t), · · · , cη , · · · )(28)

represents a change of parameter on the corresponding integral curve (solu-

tion) of R and consequently has a non-vanishing derivative, we can extend

(27) to a map

G : Jµ+1(π1) × Rµ0 −→ R ⊂ J1(π)(29)

by setting

G (X, cη) = (G (Y, cη), ∂t ψ
j (X, cη)/∂t ϕ (X, cη)) , Y = ρµ+1,µX ,(30)

where ∂t denotes the total derivative with respect to the variable t . Fur-

thermore, since any Z ∈ R is the 1-jet of a solution of R and since the

expressions (26) provide, locally, the general solution of this equation, G is

locally surjective (in order to avoid the rather painful explanation of what

the “general solution” is, we could just assume that G is locally surjec-

tive. Inasmuch, we could assume that ∂t ϕ (X, cη) 6= 0 ). For simplicity,

we assume that G is surjective and set Ψj = ∂t ψ
j/∂t ϕ . When G is a

submersion, the Pfaffian system S̃ = G∗ S inherits all the properties of

S and, for each fixed array of constants c = (cη) , the system S̃c = G∗
c S

is a sub-system of the canonical contact structure of Jµ+1(π1) . In fact,

since the image, by Gc , of a holonomic section of Jµ+1(π1) is a solution

of R and since the system S vanishes on these solutions, we infer that S̃c

vanishes on the image of every holonomic section. When R is represented

locally by the equations (21), the components of a Monge parametrization

must fulfill the equations F i(ϕ, ψ1, · · · , ψs, Ψ1, · · · , Ψs) = 0 , hence they

fulfill a closed condition.

§6. The Cartan criterion

When the canonical Pfaffian system S associated to a Monge system

R is a transitive truncated flag terminating eventually by an integrable

`-th derived system S` , it admits the normal form (13) to which we add a

complete set of first integrals of S` and consequently admits a parametriza-

tion of the solutions, where we can take the coordinates xi
j as the arbitrary

functions of the parameter t , subject to the restrictions indicated below:
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x1
j = f1

j , x1+k
j = (−1)k

∂kx1
j

∂tk
, 1 ≤ j ≤ s1 , 1 ≤ k ≤ ` ,

x2
j = f2

j , x2+k
j = (−1)k

∂kx2
j

∂tk
, s1 < j ≤ s2 , 1 ≤ k ≤ `− 1 ,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·(31)

xi
j = f i

j , xi+k
j = (−1)k

∂kxi
j

∂tk
, si−1 < j ≤ si , 1 ≤ k ≤ `− i+ 1 ,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

x`
j = f `

j , x`+1
j = (−1)k

∂x`
j

∂t
, s`−1 < j ≤ s` ,

zµ = cµ , 1 ≤ µ ≤ µ0 .

Let us denote by Fj , 1 ≤ j ≤ s` , each 1-flag branch of the normal form

and let `j be its length. Apart the canonical 1-flag T of maximum length,

when ν0 < `− 1 , the 1-flag sub-systems Fj ⊂ S do not have an intrinsic

meaning since they are tied up with the coordinate expressions of the model.

However, the integers `j are invariants of S and are determined by the

ranks of the successive derived systems Sν . Each flag Fj displays, besides

the variable t , `j + 1 coordinates xi
j and, according to the Proposition 4 ,

s` = σ . Consequently, the total number of coordinates in the normal form

expressions completed by the first integrals of S` is equal to
∑

1≤j≤σ

`j + µ0 + σ + 1 = s+ σ + 1 = dimR ,

hence the parametrization (31) does take care of all the coordinates of R .

The number of arbitrary functions is equal to

s1 + (s2 − s1) + · · · + (si − si−1) + · · · + (s` − s`−1) = s` = σ ,

as desired. Returning to the original coordinates, we find a Monge param-

etrization of the form (26) and so R has the Monge property.

Definition 5. A Monge equation R is said to be transitive when the
pseudogroup of all the local diffeomorphism of P that (after prolongation
to J1(π)) leave invariant the sub-manifold R , operates transitively on R .

We need not consider first order contact transformations of J1(π) since

(s ≥ 2) any such transformation is, locally, the prolongation of a base space

local diffeomorphism ([14]). The transitivity of R is equivalent to the

transitivity of the associated Pfaffian system S .
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Theorem 4. Let R be a Monge equation whose associated Pfaffian

system S is a truncated flag of length ` .

(i) If ν0 = `− 1 , then R has always the Monge property.

(ii) If ν0 < `− 1 and if S verifies (tnc1) and (tnc2), then R has

also the Monge property.

In both cases R is transitive.

In particular, if R is transitive and if S verifies (tnc2) then R has the

Monge property since S and its spine also become transitive.

Corollary 4. Let R be a transitive Monge equation whose associ-

ated Pfaffian system S is a k-flag of length ` . If Ŝ`−1 is integrable then

R has the Monge property.

Remark. According to the standard definitions, a solution of any differ-
ential equation is always transversal to the fibres of the source map, which
is not the case above since we are dealing with the set of all the integral
curves of the Pfaffian system S . We could straighten up this imprecision by
restricting the arbitrary functions f1 , · · · , fσ to those yielding transversal
curves but this is a rather inconvenient though calculable option. The best
attitude seems to simply accept this slight misdemeanor.

Some more examples and counter-examples. We now take the
fibration π : R4 −→ R (s = 3) and consider Monge equations with two
degrees of freedom (σ = 2). The 7-dimensional jet space J1(π) has lo-
cal coordinates {x, y1, y2, y3, y1

1 , y
2
1, y

3
1 } , dimR = 6 and we assume (as

in the proof of the Proposition 4 ) that the restrictions to R of the jet
space coordinates {x, y1, y2, y3, y1

1 , y
2
1 } are local coordinates denoted by

{x, y1, y2, y3, Y 1, Y 2 } , the restriction of y3
1 being indicated by U . In

this context, rankS = 3 , a local basis is given by

{ω1 = dy1 − Y 1 dx , ω2 = dy2 − Y 2 dx , ω3 = dy3 − U dx } ,(32)

rankS1 = 1 and rankT ∗(R)/S = rank∧2(T ∗(R)/S) = 3 . If S1 is inte-
grable then S is a 2-flag of length 1 terminating by the integrable system
S1 and, since Ŝ is integrable, it admits the normal form (6) completed by
a first integral dz of S1 namely

$1 = dz ,

ω1 = dy1 − Y 1 dx , ω2 = dy2 − Y 2 dx .
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The equation R has the Monge property, its general integral only depend-
ing upon the two arbitrary functions y1 = f(x) , y2 = g(x) and an arbitrary
constant c corresponding to the integral sub-manifold z = c . If S1 is not
integrable (S2 = 0), the Corollary 3 provides the generator

π = −
∂U

∂Y 1
ω1 −

∂U

∂Y 2
ω2 + ω3(33)

of S1 hence we can represent the system S by

π
ω1 = dy1 − Y 1 dx , ω2 = dy2 − Y 2 dx ,

(34)

this representation not being, in general, a normal form. Nevertheless, since
rankS1 = 1 , the nature of S1 is determined by its (Cartan) class that is
equal to the (Darboux) class of π when the latter is odd. This fact enables
us to study, in more detail, Monge equations of the above special type. For
example, it can be shown that the equation R has the Monge property
whenever π = c1 ω

1 + c2 ω
2 + ω3 , the ci being constant. However, a full

classification of such equations is still beyond reach.

The first remark is that a Monge equation can have several apparently
unrelated Monge parametrizations as evidenced by the equation R defined
by y3

1 − y2 = 0 . For this equation, U = y2 and S is represented by

π = dy3 − y2 dx ,

ω2 = dy2 − Y 2 dx , ω1 = dy1 − Y 1 dx ,

this being a transitive truncated 2-flag of length 2 . An obvious parametriza-
tion is given by G1 :

x = t , y1 = z2 , y2 = z1
1 , y3 = z1 ,

defined on J1(π1) , in which case

G∗
1(π) = dz1 − z1

1 dt , G∗
1(ω

2) = dz1
1 − z1

2 dt , G∗
1(ω

1) = dz2 − z2
1 dt ,

where (t, z1, z2, z1
1 , z

2
1 , z

1
2 , z

2
2) are the coordinates of J2(π1) . A less ob-

vious parametrization is given by G2 :

x = z2 , y1 = z1 , y2 = z2
2 and y3 =

1

2
(z2

1)2 (z2
1 6= 0) ,
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defined on J2(π1) and mapping into the open subset of R4 where y3 6= 0 .
In this case,

G∗
2(π) = z2

1 dz
2
1−z

2
2 dz

2 , G∗
2(ω

1) = dz1−
z1
1

z2
1

dz2 , G∗
2(ω

2) = dz2
2−

z2
3

z2
1

dz2 ,

the above contact forms being defined on J3(π1) . We observe that these
or any other generators of S̃ = G∗

2 S cannot be written with dt acting as
the independent variable differential (i.e., written under the form df−g dt )
since [dt] /∈ Pol(S̃) and [dt]1 /∈ Pol(S̃1) .

The second remark is that a Monge equation R can have the Monge
property even if S does not fulfill the condition (tnc2), as evidenced by
the transitive equation y3

1 − 1
2 (y1

1)
2 = 0 . In this case, U = 1

2 (Y 1)2 and
π = d(y3−y1 Y 1+ 1

2 x (Y 1)2)−(xY 1−y1) dY 1 hence class S1 = 3 . Setting
Z1 = xY 1 − y1 and observing that −ω1 = dZ1 − x dY 1 , we obtain the
local model

π1 = dW 1 − Z1 dY 1 ,

−ω1 = dZ1 − x dY 1 , ω2 = dy2 − Y 2 dx ,

where W 1 = y3−y1 Y 1+ 1
2 x (Y 1)2 . The system S is a transitive truncated

2-flag of length 2 that does not fulfill the condition (tnc2) but the equation
R admits nevertheless a Monge parametrization. In fact, taking two arbi-
trary functions f and g of the parameter t , with the sole restriction that
f ′′′ 6= 0 , we can write

Y 1 = t , W 1 = f(t) , Z1 = f ′(t) ,

x = f ′′(t) , y2 = g(t) , Y 2 =
g′(t)

f ′′′(t)
,

(35)

since then dx = f ′′′(t) dt and consequently ω2 = dy2 −Y 2 f ′′′(t) dt . Let us
check the above calculations.

G∗(π1) = dz1 − z1
1 dt, G∗(−ω1) = dz1

1 − z1
2 dt ,

G∗(ω2) = dz2 −
z2
1

z1
3

dz1
2 = (dz2 − z2

1 dt) −
z2
1

z1
3

(dz1
2 − z1

3 dt) ,
(36)

where the {t, z1, z2, z1
1 , z

2
1 , z

1
2 , z

2
2 , z

1
3 , z

2
3} are the coordinates of J3(π1)

and π1 : R3 −→ R .
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The third remark is that a Monge equation can have the Monge prop-
erty even though its associated Pfaffian system is not a truncated flag.
This is evidenced by the equation y3

1 − y2 − ln (Y 1 + 1) = 0 in which case
π = ω1 + (Y 1 + 1)ω3 is a form of class 5 and consequently Pol(S1) = 0 .
The Monge parametrization

x = t ,

y1 = z1 , y2 = ln (z1
1 + 1) + z2

2 , y3 = z2
1 ,

y1
1 = z1

1 , y2
1 = (z1

1 + 1)−1 z1
2 + z2

3 , y3
1 = z2

2 ,

yields

G∗ (ω1) = $1 , G∗ (ω2) = (z1
1 + 1)−1$1

1 +$2
2 , G∗ (ω3) = $2

1 ,

where the {t, z1, z2, z1
1 , z

2
1 , z

1
2 , z

2
2 , z

1
3 , z

2
3} are still the coordinates of

J3(π1) and where the forms

$1 = dz1 − z1
1 dt , $2 = dz2 − z2

1 dt ,

$1
1 = dz1

1 − z1
2 dt , $2

1 = dz2
1 − z2

2 dt ,

$1
2 = dz1

2 − z1
3 dt , $2

2 = dz2
2 − z2

3 dt ,

generate the canonical contact structure on this jet bundle. The sub-system
S̃ = G∗ S is then generated by

$1 , $2
1 , $1

1 + (z1
1 + 1)$2

2(37)

and its derived system by G∗ (π) = $1 + (z1
1 + 1)$2

1 .
The last remark is that a Monge equation need not have the Monge

property. This is evidenced by the equation y3
1 − y1

1 y
2
1 = 0 in which case

π = d(y3 − y1 Y 2 − y2 Y 1 + xY 1 Y 2) + (y2 − xY 2) dY 1 + (y1 − xY 1) dY 2

is a form of class 5 . Setting Z1 = xY 1 − y1 and Z2 = xY 2 − y2 , we can
re-write the generators of S by

π = d(y3 − y1 Y 2 − y2 Y 1 + xY 1 Y 2) − Z2 dY 1 − Z1 dY 2 ,

−ω1 = dZ1 − x dY 1 , −ω2 = dZ2 − x dY 2 .

Replacing (x, y1, y2, y3, Y 1, Y 2) by (φ, ψ1, ψ2, ψ3, Ψ1, Ψ2) and ignoring
for a moment the term dy3 , a (rather long) calculation will show that the
differential form G∗ (π− dy3) must be corrected by a non-exact term (i.e.,
a term of the form f dt with df ∧ dt 6= 0 ) in order to become a contact
form on some jet bundle Jµ+1(π1) . However, this cannot be achieved since
the only possible correction consists in adding the exact term dψ3 .
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[14] R. Kumpera, Sur la géométrie de contact d’ordre supérieur, Portugal. Math., 44

(1987), 199–212.
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