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Abstract. We show the twisted cohomology on P
1

has a natural polarized
Hodge structure and hence derive the analogues of Riemann’s equality and
inequailty.

§0. Introduction

Hypergeometric-type integrals, for example the Euler integral represen-

tation of the hypergeometric function

F (a, b, c;x) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0
ta(1− t)c−a(1− tx)−b dt

t(1− t) ,

can be considered as the dual pairing between twisted homologies and

twisted cohomologies. Various vanishing theorems, structure theorems and

intersection theories are established (cf. [AK], [KY], [CM], [M1], [M2]) for

twisted (co)homologies. These theories imply, in particular, a twisted ana-

logues of the Riemann equality for periods of algebraic curves. For example,

the quadratic relation (due to Gauss)

F (a, b, c;x)F (1 − a, 1− b, 2− c;x)
−F (a+ 1− c, b+ 1− c, 2 − c;x)F (c − a, c− b, c;x) = 0

for hypergeometric functions can be obtained systematically in this frame

work.

In this paper, we study the Hodge structure for twisted cohomologies on

curves, from which we derive a twisted analogue of the Riemann inequality.
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Our key tool is Zucker’s theorem ([Zuc]) for variations of Hodge structures.

Examples are given in the end of the paper (The case of a base of higher

dimension will be studied in our paper in preparation.)

Here we would like to explain briefly the meaning of twisted theories.

Let C be a Riemann surface defined by

sd =

n
∏

1

(t− xj)
nj ,

where d and nj are natural numbers. Since the covering surface C is uniquely

determined by the data {xj , d, nj} downstairs, every happening upstairs

should be described in terms of those downstairs — This is the heart of

the twisted theories. For example, though the genus of C can be very high,

H∗(C,Z) andH∗(C,Z) can be understood in terms of twisted (co)homologies

downstairs, i.e., on the t-space (cf. [CY]). Our twisted Riemann inequality

is essentially equivalent to that for the covering Riemann surface.

§1. Twisted (co)homology; complex conjugates

Let x1, . . . , xn be distinct points in the complex projective line P
1; for

simplicity, we assume none of these points is the point at infinity. For each

point xj, we give a real number j, called the exponent at xj . Throughout

this paper, we assume

j /∈ Z, 1 + · · ·+ n = 0.

Consider the multi-valued function

u :=

n
∏

j=1

(t− xj)
j on U := P

1 − {x1, . . . , xn}.

Let L = Lu be the local system on U determined by the function u; the stalk

at x ∈ U is Cv, where v is a branch of u, and the monodromy around xj is

exp 2πij. We are interested in the cohomology groups H∗(U,L) coefficients

in the sheaf L. Let us define a connection ∇ by

∇ = ∇u := d− d log u∧ ,

and fix some (standard) notation:

Γ(U,S): Space of sections of a sheaf S on U ,
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Ep: Sheaf of p-forms,

Ep(S): Sheaf of p-forms with coefficients in S.

Then the cohomology groups can be expressed as follows:

H∗(U,L) ∼= H∗(Γ(U, E•(L)), d ⊗ 1) ∼= H∗(Γ(U, E•),∇).

The second isomorphism is given by

ϕ⊗ v −→ ϕv, φv−1 ⊗ v ←− φ,

where v is a(ny) branch of the multi-valued function u. Compatibility of

the two derivations comes from the identity

(dϕ)v = ∇(ϕv), ϕ ∈ E .

In the intersection theory of twisted cohomology and homology (see

[AK], [KY] for details) there appear cohomology groups H1(U,L) and

H1(U, Ľ) and homology groups H1(U,L) and H1(U, Ľ). There are four du-

ality parings
H1(U,L) ←→ H1(U, Ľ)

l l
H1(U, Ľ) ←→ H1(U,L)

that are compatible. We will review the definitions of the pairings later.

In this paper we will also consider L, the complex conjugate of L, and

its cohomology and homology. If αj ’s are real, then L ∼= Ľ canonically, so

H1(U,L) ∼= H1(U, Ľ) and H1(U,L) ∼= H1(U, Ľ). Despite apparent redun-

dancy we will mostly use L instead of Ľ for the following reasons. First it

will keep track of complex conjugation which is part of Hodge structure.

Second the polarization can be expressed as an interesting integral (1.1) in

terms of representing forms.

By definition L = Lu is the local system determined by u. If αj ’s are

real, there is a canonical isomorphism

Ľ ∼= L, αv−1 7−→ αv (α ∈ C) .

The map is well-defined because another branch of u is of the form λv,

|λ| = 1. (That there is an isomorphism of local systems can be seen by

looking at the monodromies of L and Ľ, which are respectively e2πiαj and

e−2πiαj . In the above we have specified an isomorphism.)

This isomorphism can be extended to an isomorphism of twisted de

Rham complexes:
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Proposition 1.1. Through the quasi isomorphisms Ľ ' (E•,∇1/u)

and L ' (E•,∇u) the isomorphism Ľ ∼= L can be expressed by

(E•,∇1/u) 3 φ←→ φ|u|2 ∈ (E•,∇u).

Indeed, we have

d(φ|u|2)− d log u ∧ φ|u|2 = d(φ|u|2)− du

u
∧ φ|u|2

= |u|2
{

dφ+
du

u
∧ φ

}

= |u|2
{

dφ− d log
1

u
∧ φ

}

.

The non-degenerate pairing

〈 , 〉 : H1(U,L)⊗H1(U, Ľ) −→ C

is defined as

〈[φ], [ψ]〉 =

∫

P1

φ ∧ ψ

where either φ or ψ is compactly supported. (Note H1
c (U,L) = H1(U,L);

for a proof see Proposition 2.2.) Via the isomorphism H1(U, Ľ)→ H1(U,L)

the pairing

Q : H1(U,L)⊗H1(U,L) −→ C, Q([φ], [ψ]) =

∫

P1

φ ∧ ψ
|u|2(1.1)

is obtained. The Q will be part of a polarization of a Hodge structure, see

§2.

An element of the homology H1(U,L) can be represented by

∑

j

ajρj ⊗ vj ,

where aj ∈ C, ρj are smooth paths in U and vj are branches of u defined

on ρj. Similarly elements of H1(U,L) has representatives
∑

j ajρj ⊗ vj.

There is a conjugate linear isomorphism (the complex conjugation)

: H1(U,L) −→ H1(U,L)

given by
[

∑

j

ajρj ⊗ vj

]

=

[

∑

j

ajρj ⊗ vj

]
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(complex conjugation acting just on coefficients and vj ’s; ρj not to be re-

placed by ρj). There is also a C-linear isomorphism induced from Ľ ∼= L:

H1(U,L) −→ H1(U, Ľ)
[

∑

j

ajρj ⊗ vj

]

7−→
[

∑

j

ajρj ⊗ v−1
j

]

.

The non-degenerate pairing H1(U,L) ⊗ H1(U, Ľ) → C is defined as

follows:
[

∑

ajρj ⊗ vj

]

·
[

∑

bkσj ⊗ v′−1
k

]

=
∑

j,k

ajbk
∑

p∈ρj∩σk

Ip(ρj , σk)vj(p)v
′−1
k (p).

Here the intersections of ρj and σk are transversal and Ip(ρj , σk) is the

topological intersection number. Via the isomorphism H1(U,L)→ H1(U, Ľ)

induced is the pairing H1(U,L)⊗H1(U,L) −→ C,

[

∑

ajρj ⊗ vj

]

·
[

∑

bkσj ⊗ v′k
]

=
∑

j,k

ajbk
∑

p∈ρj∩σk

Ip(ρj , σk)vj(p)v
′−1
k (p).

Similarly there is H1(U, Ľ)⊗H1(U, Ľ)→ C.

We recall that a basis of H1(U,L) is given as follows. Assume just for

simplicity x1, . . . , xn are all real and x1 < x2 < · · · < xn. Let ρj = −−−−→xj xj+1

and v a branch of u defined on the lower half plane. Then

γj = ρj ⊗ v ∈ H1(U,L) (j = 1, . . . , n− 2)

is for example a basis. Similarly one has a basis

γ̌j = ρj ⊗ v−1 ∈ H1(U, Ľ)

Taking complex conjugates one obtains bases

γj = ρj ⊗ v ∈ H1(U,L);

γ̌j = ρj ⊗ v−1 ∈ H1(U, Ľ).

Under the isomorphism H1(U,L) → H1(U, Ľ) there correspond γj and γ̌j

so

γ̌i · γ̌j = γ̌i · γj .(1.2)
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Similarly γi · γj = γi · γ̌j.

The pairing between cohomology and homology is the map

H1(U,L)⊗H1(U, Ľ) −→ C ,

[φ]⊗ [∆⊗ v−1] 7−→
∫

∆⊗v−1

φ =

∫

∆
v−1φ

(either φ or ∆ is compactly supported). Similarly one may define

H1(U,L)⊗H1(U, Ľ) −→ C ,

[φ]⊗ [∆⊗ v−1] 7−→
∫

∆⊗v−1
φ =

∫

∆
v−1φ .

From the definitions one has for [φ] ∈ H1(U,L) and γ′ ∈ H1(U, Ľ)

∫

γ′

φ =

∫

γ′

φ .(1.3)

Remark. If αj /∈ R, the local systems Ľ and L are unrelated, and

the integral (1.1) is not defined (|u|2 is multi-valued). This paper will have

nothing to say in that case. (The period relation in the first half in §5 is

the only exception.)

§2. Hodge structure on twisted cohomologies

We recall some basic definitions from Hodge theory. See [G] for more

information.

Recall that for a projective complex algebraic variety X its cohomol-

ogy Hm(X,C) decomposes as
⊕

p+q=mHp,q where Hp,q is the subspace

represented by harmonic (p, q)-forms. In other words, Hm(X,C) has R-

Hodge structure (in fact Z-Hodge structure). If L ∈ H2(X,C) is the class

of a hyperplane section divisor and d = dimX then the kernel of the map

Ld−m+1 : Hm(X,C) → H2d−m+2(X,C) is by definition the primitive co-

homology Hm
prim(X,C). It is not only Hodge structure but also a polarized

one.

A polarized R-Hodge structure of weight m is a finite dimensional C-

vector space H together with

(1) an R-structure on H, i.e., an R-subspace HR ⊂ H such that HR ⊗
C = H (so there is complex conjugation on H),

(2) a direct sum decomposition H =
⊕

p+q=m, p,q≥0H
p,q such that

Hp,q = Hq,p, and
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(3) a (−1)m-symmetric C-bilinear pairing (called the polarization) Q :

H ⊗ H → C defined over R (i.e., Q(x, y) = Q(x, y)) satisfying (called the

Riemann-Hodge bilinear relations)

(a) Q(Hp,q,Hp′,q′) = 0 unless p+ p′ = q + q′ = m, and

(b) for any non-zero x ∈ Hp,q,

ip−qQ(x, x) > 0 .

In the example H = Hm
prim(X,C), the polarization is given by

Q(x, y) = (−1)m(m−1)/2x · y · Ld−m .

The following generalization is due to Griffiths.

A variation of polarized R-Hodge structure of weight m on a smooth

complex algebraic variety S is a C-local system of finite rank M with the

data:

(1) An R-local subsystem MR ⊂M such that MR ⊗ C =M.

(2) A direct sum decomposition of the C∞-vector bundle M⊗E (E =

C∞-functions on S) into C∞-subbundles

M⊗E =
⊕

p+q=m

Mp,q

satisfying the conditions:

(a) One hasMp,q =Mq,p.

(b) If F p(M⊗E) :=
⊕

p′≥pMp′,q′ , they are holomorphic subbundles of

M⊗E .
(c) If ∇ : M⊗C E → M⊗C E1 is the flat connection, then ∇(F p) ⊂

F p−1 ⊗ E1 (the Griffiths transversality).

(3) a (−1)m-symmetric bilinear pairing Q :M⊗M→ CS of local sys-

tems defined over R, which satisfies the condition for polarization fiberwise.

We make use of

Theorem 2.1. ([Zuc]) Let a C-local systemM over an algebraic curve

S is a variation of polarized R-Hodge structure of weight n, and j : S
→⊂ S

be the completion. Then H1(S, j∗M) has a polarized R-Hodge structure of

weight n + 1. Moreover, each cohomology class has a unique L2-harmonic

representative. Here ψ ⊗m ∈ E(M) is harmonic if and only if ψ is holo-

morphic when ψ ∈ E10, and ψ is anti-holomorphic when ψ ∈ E01. The
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polarization on H1(S, j∗M) is the bilinear form induced naturally by the po-

larization on M and a Kähler metric on S which is equivalent to Poincaré

metric at each point of S − S.

Proposition 2.2. Let S be an algebraic curve, U = S−{x1, . . . , xN}
and j : U → S the open immersion. If M be a C-local system of finite rank

on U whose monodromy at each xj has no eigenvalue 1, then we have

H1
c (U,M) = H1(U,M) = H1(S, j∗M) .

Proof. We have H1(U,M) = H1(S, Rj∗M) and H1
c (U,M) =

H1(S, j!M). Since R
0j∗M = j∗M it suffices to show R

qj∗M = 0 for q > 0

and j!M = j∗M.

The question is local. (Rqj∗M)xj
= Hq(S1,M) where S1 is a small

circle around xj. So it is zero if q ≥ 2. If q = 1, H1(S,M) is dual to

H0(S1,M∗), which is zero by assumption. Moreover (j∗M)xj
= H0(S1,M)

= 0 so j!M = j∗M.

Our key idea of studying the cohomology groups H∗(U,L) is to consider

the cohomology groups

H∗(U,L ⊕ L) (= H∗(U,L)⊕H∗(U,L)).

Our goal is

Theorem 2.3. H1(U,L ⊕ L) has a polarized R-Hodge structure of

weight 1. The Hodge decomposition is compatible with the decomposition

H1(U,L)⊕H1(U,L), namely

H1(U,L) = H10 ∩H1(U,L)⊕H01 ∩H1(U,L) ,

and similarly for H1(U,L). The polarization is the skew-symmetric bilinear

form

Q : (H1(U,L)⊕H1(U,L))⊗ (H1(U,L)⊕H1(U,L)) −→ C,

where

H1(U,L)⊗H1(U,L) −→ 0, H1(U,L)⊗H1(U,L) −→ 0
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and H1(U,L)⊗H1(U,L)→ C is the pairing

H1(U,L)⊗H1(U,L) −→ C

(ψ,φ) 7−→ i

∫

P1

ψ ∧ φ
|u|2 ,

where ψ, φ are certain representatives for which the integral converges. (Via

the isomorphism L it is compatible with the pairing H1(U,L)⊗H1(U, Ľ)→
C up to the factor of i.)

We apply Theorem 2.1 for S = U,S = P
1 andM = L⊕L. Let us briefly

see that L ⊕ L is a polarized variation of R-hodge structure of weight 0:

1) Complex conjugation L → L is given by v 7→ v. The real structure

MR is the fixed part of M under the complex conjugation. This is a 2-

dimensional R-local system; indeed, its local monodromy around the point

xj is given by

(

v + v

i(v − v)

)

#

(

cos 2παj sin 2παj

− sin 2παj cos 2παj

)(

v + v

i(v − v)

)

.

2) Let us define a C-bilinear form

Q : (L ⊕ L)⊗ (L ⊕ L) −→ CU

by

(αv + βv)⊗ (γv + δv) 7−→ αδ + βγ, α, β, γ, δ ∈ C.

This is induced by the natural pairing L⊗Ľ → C through the isomorphism

L ∼= Ľ above. One can readily check that this is well-defined (i.e., single-

valued), defined over R (i.e., Q(x, y) = Q(x, y)), and Q(x, x) > 0, x 6= 0.

The other conditions forM to be a polarized variation of Hodge struc-

ture are just trivial. Thus Theorem 2.1 tells us that H1(P1, j∗(L ⊕ L)) has

a polarized Hodge structure of weight 1, where j : U → P
1 is the inclusion.

Under the condition αj /∈ Z, by Proposition 2.2 we have the isomor-

phism

H1(P1, j∗(L ⊕ L)) = H1(U,L ⊕ L).

We verify the last statement about the polarization. Suppose F is a

Hermitian vector bundle over a Riemann surface, φ and ψ are 1-forms with
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values in F and a Kähler matric on the base is given. Let {u1, . . . , ur} be a

local frame of F and write

φ =
∑

φi ⊗ ui ,

ψ =
∑

ψi ⊗ ui ,

where φi, ψi are 1-forms. Then the bilinear pairing is given by

(φ,ψ) = i
∑

i,j

∫

φi ∧ ψj(ui, uj)

where (ui, uj) is the bilinear form giving the Hermitian metric. In particular

it is independent of the choice of a Kähler matric. From this it is clear that

the paring among H1(U,L)’s and H1(U,L)’s are zero. If ψ ∈ H1(U,L) and

φ ∈ H1(U,L), then writing them locally

ψ = ψv−1 ⊗ v, φ = φv−1 ⊗ v,

since Q(v, v) = 1, one has

Q(ψ, φ) = i

∫

ψ ∧ φ|v|−2 .

§3. L2-harmonic basis

Let
(

H1(U,L)⊕H1(U,L) =
)

H1(U,L ⊕ L) = H10 ⊕H01

be the Hodge decomposition of the cohomology group in question.

Let us represent a cohomology class of H1(U,L) by a form φ ∈ Γ(U, E1).

Then φ is harmonic if and only if φ is holomorphic when φ ∈ E10, and φu−1

is anti-holomorphic, i.e., φ|u|−2 is anti-holomorphic when φ ∈ E01. Moreover

φ is L2 if and only if

Int :=

∫

φ ∧ φ
|u|2

is convergent. That is, we have the isomorphisms

H10 ∩H1(U,L) ∼=
{

[φ]

∣

∣

∣

∣

φ is a 1-form holomorphic on U , and
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meromorphic on P
1, such that

∫

φ ∧ φ
|u|2 converges

}

,

H01 ∩H1(U,L) ∼=
{

[

φ|u|2
]

∣

∣

∣

∣

φ is a 1-form holomorphic on U , and

meromorphic on P
1, such that

∫

φ∧φ|u|2 converges

}

.

Indeed, it can be easily seen that if one of the above integrals converges, φ

can not have an essential singularity at xj.

Let us examine the convergence conditions above. Let z be a local

coordinate around the point xj, and express φ as f(z)dz. Let n be the

order of zeros of f ; the order of |u| is αj. The integral Int converges locally

at xj if and only if 2n− 2αj > −2, i.e., n > αj − 1.

We rename the points xj as follows: For i ∈ Z, if there are pi exponents

αk in the interval (i, i+ 1), we name them as

αij , j = 1, . . . , pi,

and call the corresponding points xk as xij. By the definition of the αij and

the pi, we have

ipi <
∑

j

αij < (i+ 1)pi.

Thus the identity
∑

i,j αij = 0 (recall the assumption
∑

αj = 0) leads to

Lemma 3.1.

−
∑

ipi − 1 ≥ 0,
∑

(i+ 1)pi − 1 ≥ 0.

Let nij be the order of zeros of φ = f(t) dt at xij. Then the integral Int

converges if and only if nij > αij − 1, i.e., nij ≥ i. Since we assumed that

non of the xij is at infinity, the 1-form φ is regular at infinity, i.e., f has at

least double zero at infinity. So we have the expression

φ =
∏

i

pi
∏

j=1

(t− xij)
iP dt,

where P is a polynomial of degree not greater than −∑

ipi − 2. Thus we

have
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Proposition 3.2.

H10 ∩H1(U,L) =

{[

∏

i

pi
∏

j=1

(t− xij)
iP dt

] ∣

∣

∣

∣

degP ≤ −
∑

ipi − 2

}

.

In particular,

dimH10 ∩H1(U,L) = −
∑

ipi − 1.

Now we turn to (01)-type. Let φ|u|2 represents a class ofH01∩H1(U,L),

where φ is a holomorphic 1-form on U . Let nij be the order of zero of φ at

xij as before. Then φ|u|2 is of L2-class, i.e.,
∫

φ|u|2 ∧ φ|u|2
|u|2 =

∫

φ ∧ φ|u|2

is finite if and only if nij > −αij − 1, that is, nij ≥ −i− 1. Thus we have

Proposition 3.3.

H01 ∩H1(U,L) =

{

[

φ|u|2
]

∣

∣

∣

∣

φ =
∏

i

pi
∏

j=1

(t− xij)
−i−1P dt,

degP ≤
∑

(i+ 1)pi − 2

}

.

In particular,

dimH01 ∩H1(U,L) =
∑

(i+ 1)pi − 1.

Remark. The propositions above yield the well known fact

dimH1(U,L) = n− 2,

where n is the number of points xj.

§4. Generalization to Riemann surfaces of arbitrary genus

Let X be a compact Riemann surface of genus g, x1, . . . , xn distinct

points in X and U = X − {x1, . . . , xn}. Let αj ∈ R − Z (j = 1, . . . , n) be

exponents such that
∑

αj = 0. Suppose given a multivalued holomorphic

function u on U such that du/u has only logarithmic singularities at xj’s

and Resxj
du/u = αj (the reader may verify such u exists uniquely up to

multiples by nowhere vanishing multi-valued homomorphic functions on X).

Denote by L the local system determined by u; similarly for Ľ and L.

There is a canonical isomorphism Ľ → L. The first half of the following

theorem is proved as for the case X = P
1.
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Theorem 4.1. The C-vector space H1(U,L)⊕H1(U,L) has polarized

R-Hodge structure of weight 1.

We have

H10 ∩H1(U,L) ∼= H0

(

X,Ω1
(

−
∑

i,j

ixi,j

)

)

where {xi,1, . . . , xi,pi
} are the singular points with exponents in the interval

(i, i + 1), and

dimH10 ∩H1(U,L) = g − 1−
∑

ipi .

Similarly

H01 ∩H1(U,L) ∼= H0

(

X,Ω1
(

∑

i,j

(i+ 1)xi,j

)

)

and

dimH01 ∩H1(U,L) = g − 1 +
∑

(i+ 1)pi .

In particular dimH1(U,L) = 2g − 2 + n.

Proof. By the same argument as in §3, we have

H10 ∩H1(U,L) =
{

[φ]
∣

∣

∣ φ holomorphic on U and ord
xj

(φ) > αj − 1
}

∼= H0

(

X,Ω1
(

−
∑

i,j

ixi,j

)

)

.

Since deg(
∑−ixi,j) > 0 by Lemma 3.1 in §3 one hasH1(X,Ω1(−∑

i,j ixi,j))

= 0 and

dimH10 ∩H1(U,L) = χ

(

X,Ω1
(

−
∑

i,j

ixi,j

)

)

= 1− g + (2g − 2)−
∑

ipi

by Riemann-Roch formula.

Similarly

H01 ∩H1(U,L) ∼= H0

(

X,Ω1
(

∑

i,j

(i+ 1)xi,j

)

)

and again by using deg(
∑

(i + 1)xi,j) > 0 and Riemann-Roch, we get the

result.
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§5. Period relations and Riemann’s (in)equalities

In this section we discuss period relations and Riemann’s (in)equalities.

The former has nothing to do with Hodge structure, and (with obvious

modifications) the argument goes through if αj /∈ R.

To formulate the period relations in a general form, let V be a finite

dimensional C-vector space equipped with a non-degenerate bilinear pairing

(not necessarily symmetric or skew-symmetric)

Q : V ⊗ V −→ C .

If V ∗ denotes the dual of V , there is an isomorphism

f : V −→ V ∗

such that f(v)(w) = Q(v,w). Denote by Q∗ : V ∗⊗V ∗ → C the pairing that

Q induces via the isomorphism f .

Let {α1, α2, . . . , αr} (r = dimV ) be a basis of V ∗ and v,w ∈ V . Then

one has

(
∫

α1

v,

∫

α2

v, . . . ,

∫

αr

v

)

t(αi · αj)
−1







∫

α1
w

...
∫

αr
w






w = Q(v,w) .

Here
∫

α v = α(v). To derive this write ({α′
i} is the dual basis of {αi})

v =
∑

(

∫

αi

v
)

α′
i, w =

∑

(

∫

βi

v
)

β′i

and use (α′
i · β′j) = t(αi · βj)

−1.

We apply this to

V = H1(U,L)⊕H1(U,L) , V ∗ = H1(U, Ľ)⊕H1(U, Ľ) ,

and the basis {γ̌j , γ̌j} of V ∗. (dimV = 2(n − 2).) The matrix t(αi · αj)
−1

equals
t (

0 (γ̌i · γ̌j)

(γ̌i · γ̌j) 0

)−1

=

(

0 tI−1
h

−I−1
h 0

)

where by (1.2)

Ih := (γ̌i · γ̌j) = (γ̌i · γj) .
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For [φ] ∈ H1(U,L) and [ψ] ∈ H1(U,L) we have

(
∫

γ̌1

φ, . . . ,

∫

γ̌r

φ, 0, . . . , 0

) (

0 tI−1
h

−I−1
h 0

)





















0
...

0
∫

γ̌1
ψ

...
∫

γ̌r
ψ





















= Q([φ], [ψ])

namely the period relations

(∫

γ̌1

φ, . . . ,

∫

γ̌r

φ

)

tI−1
h







∫

γ̌1
ψ

...
∫

γ̌r
ψ






= Q([φ], [ψ]) .(5.1)

This is the twisted Riemann’s equality in [CM]. (Precisely speaking the

result in [CM] — which holds without the assumption αj ∈ R — is obtained

by the above argument applied to V = H1(U,L)⊕H1(U, Ľ).) It has nothing

to do with Hodge structure.)

There is another equality resulting from Hodge structure: if [φ] ∈ H10∩
H1(U,L) and [ψ] ∈ H10 ∩H1(U,L) then Q([φ], [ψ]) = 0.

If [φ] ∈ H1(U,L) then
∫

γ̌j
φ =

∫

γ̌j
φ by (1.3). Thus we obtain twisted

Riemann’s inequality:

Theorem 5.1. For any non-zero [φ] ∈ H10 ∩H1(U,L),

√
−1

(
∫

γ̌1

φ, . . . ,

∫

γ̌r

φ

)

tI−1
h







∫

γ̌1
φ

...
∫

γ̌r
φ






> 0 .

§6. Applications

We follow the argument in the preceding section by setting

V = H1(U,L)⊕H1(U,L) = H10 ⊕H01, r = 2(n− 2),

δi ∈ H1(U,L), basis dual to γ̌i ∈ H1(U, Ľ),

and [φ] ∈ H10 ∩H1(U,L). Then there is an L2-harmonic element φ0 ∈ [φ],

and we have
√
−1Q([φ], [φ]) =

√
−1

∫

φ0 ∧ φ0

|u|2 > 0.
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If we write

[φ] =

g
∑

i=1

λiδi, λi =

∫

γ̌i

[φ],

then the above inequality becomes

√
−1

g
∑

i−1

λiλjQ(δi, δj) > 0.

Example 1. We consider four points x1, . . . , x4, exponents α1, α2 ∈
(0, 1), α3, α4 ∈ (−1, 0) — so p0 = p1 = 2, n = 4 — and

u = (t− x1)
α1 · · · (t− x4)

α4 .

We have

H01 ∩H1(U,L) = C
dt

(t− x3)(t− x4)
.

Take

φ =
dt

(t− x3)(t− x4)
∈ H01 ∩H1(U,L)

and the twisted cycles γj (j = 1, 2) with supports on the edge joining xj

and xj+1 as in [Y, p. 94], and put

λj =

∫

γj

u−1φ.

The inverse matrix of the intersection matrix ((Q(δi, δj)) is given ([Y,

p. 102]) as

H := −
(

d23/d2d3 1/d2

c2/d2 d12/d1d2

)

,

where dj = cj−1, djk = cjck−1, cj = exp 2πiαj . Then we have the inequality

√
−1(λ1, λ2)H

t(λ1, λ2) > 0.

If one normalizes, for example, x1 = 0, x2 = 1, x3 = ∞, x4 = x, and put

α1 = −a, α2 = a − c, α3 = b, α4 = c − b, then λj can be expressed by the

hypergeometric series F (a, b, c;x).
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Example 2. If one specializes further by putting α1 = α2 = 1/2, α3 =

α4 = −1/2, then H =

(

0 i

−i 0

)

, and λ1 and λ2 turn out to be two periods

of the elliptic curve defined as the double cover of P
1 branching at the four

points xj. The inequality obtained implies that the imaginary part of the

ratio of the two periods is positive; this is a classical fact.

References

[AK] K. Aomoto and M. Kita, Hypergeometric functions, Springer-Verlag, Tokyo, 1994,

(Japanese).

[CM] K. Cho and K. Matsumoto, Intersection theory for twisted cohomologies and twisted

Riemann’s period relation I, Nagoya Math. J., 139 (1995), 67–86.

[CY] K. Cho and M. Yoshida, Comparison of (co)homologies of branched covering spaces

and twisted ones of basespaces, Kyushu J. Math., 45 (1994), 111–122.

[G] Ph. Griffiths, ed., Topics in Transcendental Algebraic Geometry, Princeton Univ.

Press, 1984.

[KY] M. Kita and M. Yoshida, Intersection theory for twisted cycles, Math. Nachr., 166

(1994), 287–304.

[M1] K. Matsumoto, Quadratic identities for hypergeometric series of type (k, l), Kyushu

J. of Math., 48 (1994), 335–345.

[M2] K. Matsumoto, Intersection numbers for logarithmic k-forms, Preprint (1996).

[Y] M. Yoshida, Hypergeometric Functions, My Love, Vieweg, Wiesbaden, 1997.

[Zuc] S. Zucker, Hodge theory with degenerating coefficients: L2 cohomology in the
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