SURJECTIVE ISOMETRIES ON *C* ¹ **SPACES OF UNIFORM ALGEBRA VALUED MAPS**

HIRONAO KOSHIMIZU AND TAKESHI MIURA

ABSTRACT. Let $C^1([0,1], A)$ be the Banach algebra of all continuously differentiable maps from the closed unit interval [0*,* 1] to a uniform algebra *A* with respect to certain norms. We prove that every surjective, not necessarily linear, isometry on $C^1([0,1], A)$ is represented by homeomorphisms on $[0,1]$ and the maximal ideal space of *A*.

1. Introduction and Preliminaries

The purpose of this paper is to characterize surjective isometries on $C^1([0,1], A)$, the set of all continuously differentiable maps from the closed unit interval [0*,* 1] to a uniform algebra *A* with respect to certain norms. The main result of this paper generalizes the result of [7] for some of those norms. We will investigate the structure of isometries on $C^1([0,1], A)$ to clarify the difference between the Banach algebra $C^1([0,1])$ and a uniform algebra A. For a strictly convex Banach space E , surjective linear isometries on $C¹$ spaces of E -valued continuously differentiable maps are characterized in [2, 9, 10]: uniform algebras are not strictly convex.

Let $C(X)$ be the Banach algebra of all continuous complex valued functions on a compact Hausdorff space *X* with respect to supremum norm $||u||_X = \sup_{x \in X} |u(x)|$ for $u \in C(X)$. A uniformly closed subalgebra A of $C(X)$ is said to be a *uniform algebra* on *X* if *A* contains the constants and separates the points of *X* in the following sense: For each distinct points $x, y \in X$ there exists $u \in A$ such that $u(x) \neq u(y)$. We denote by Ran(*u*) the range of a function $u \in A$. The *peripheral range* $\text{Ran}_{\pi}(u)$ of $u \in A$ is defined by $\text{Ran}_{\pi}(u) = \{z \in \text{Ran}(u) : |z| = ||u||_X\}$. An element $u \in A$ is said to be a *peaking function* of A if $\text{Ran}_{\pi}(u) = \{1\}$. A *peak set E* of *A* is a compact subset of *X* such that $E = \{x \in X : u(x) = 1\}$ for some peaking function $u \in A$. The strong boundary of *A*, denoted by $b(A)$, is the set of all $x \in X$ such that $\{x\}$ is the intersection of a family of peak sets of *A*. It is well-known that

²⁰¹⁰ *Mathematics Subject Classification.* 46J10.

Key words and phrases. Banach algebra, extreme point, isometry, maximal ideal space, uniform algebra.

the strong boundary $b(A)$ of A has the following properties (see, for example [12, Propositions 2.2 and 2.3]).

- (1) For each $\varepsilon > 0$, $x \in b(A)$ and open neighborhood *O* of *x* in *X* there exists a peaking function $u \in A$ such that $u(x) = 1 = ||u||_X$ and $|u| < \varepsilon$ on $X \setminus O$.
- (2) For each $u \in A$ there exists $x \in b(A)$ such that $|u(x)| = ||u||_X$.

We denote by *∂A* the Shilov boundary of *A*, i.e., the smallest closed subset of *X* with the property that $\sup_{x \in \partial A} |u(x)| = ||u||_X$ for $u \in A$. It is well known that $b(A)$ is contained in ∂A and that $b(A)$ is dense in ∂A (cf. [3, Corollary 2.2.10]).

If *A* is a uniform algebra on *X*, then it is a commutative Banach algebra with the supremum norm $\|\cdot\|_X$. We denote by \mathcal{M}_A the maximal ideal space of A, and then \mathcal{M}_A is a compact Hausdorff space with the relative weak *-topology. We may regard *X* as a subspace of M_A . The Gelfand transform \hat{u} of $u \in A$ is a continuous function on \mathcal{M}_A , defined by $\hat{u}(\eta) = \eta(u)$ for every $\eta \in \mathcal{M}_A$. Let e_x be the point evaluation functional, defined by $e_x(u) = u(x)$ for $u \in A$ and $x \in X$. Then the map $x \mapsto e_x$ is a homeomorphism from *X* onto $\{e_x : x \in X\} \subset \mathcal{M}_A$. Identifying *X* with ${e_x : x \in X}$, we may and do assume $X \subset \mathcal{M}_A$. Because $\|\hat{u}\|_{\mathcal{M}_A} = \|u\|_X = \|u\|_{\partial A}$ for $u \in A$, we observe that ∂A is a boundary for $A = \{\hat{u} : u \in A\}$.

For a uniform algebra A on X, we denote by $C^1([0,1], A)$ a complex linear space of all *A*-valued continuously differentiable maps on [0*,* 1] in the following sense: For each $F \in C^1([0,1], A)$ there exists a continuous map $F' : [0,1] \to A$ such that, for each $t \in [0, 1]$,

$$
\lim_{h \to 0} \left\| \frac{F(t+h) - F(t)}{h} - F'(t) \right\|_{X} = 0;
$$

if $t = 0, 1$, then the limit means the right-hand and left-hand one-sided limit, respectively. If *X* is a singleton, then we may regard *A* as \mathbb{C} , and we write $C^1([0,1])$ instead of $C^1([0,1], \mathbb{C})$. For each $F \in C^1([0,1], A)$ and $x \in X$, the mapping $F_x: [0,1] \to \mathbb{C}$, defined by $F_x(t) = F(t)(x)$, belongs to $C^1([0,1])$ with $(F_x)'(t) = F'(t)(x)$; in fact, for each $t \in [0, 1]$,

$$
\left|\frac{F_x(t+h) - F_x(t)}{h} - F'(t)(x)\right| \le \left|\left|\frac{F(t+h) - F(t)}{h} - F'(t)\right|\right|_X \to 0
$$

as $h \to 0$.

Let $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ be the unit circle and *D* a compact connected subset of $[0,1] \times [0,1]$. We denote by π_j the projection from *D* to the *j*-th coordinate of $[0,1] \times [0,1]$ for $j = 1,2$. For each $F \in C^1([0,1], A)$, we define $||F||_{\langle D \rangle}$ by

$$
||F||_{\langle D \rangle} = \sup_{(t_1, t_2) \in D} (||F(t_1)||_X + ||F'(t_2)||_X).
$$

If $\pi_2(D) = [0, 1]$, then we see that $\|\cdot\|_{\langle D \rangle}$ is a norm on $C^1([0, 1], A)$. For example, if $D_1 = \{(t, t) \in [0, 1] \times [0, 1] : t \in [0, 1]\}$ then $||F||_{\langle D_1 \rangle} = \sup_{t \in [0, 1]} (||F(t)||_X + ||F'(t)||_X)$.

Cambern [4] characterized surjective complex linear isometries on $C^1([0,1])$ with this norm. If $D_2 = [0,1] \times [0,1]$ then $||F||_{\langle D_2 \rangle} = \sup_{t_1 \in [0,1]} ||F(t_1)||_X + \sup_{t_2 \in [0,1]} ||F'(t_2)||_X$, for which Rao and Roy [14] gave the characterization of surjective complex linear isometries on $C^1([0,1])$. Kawamura and the authors [7] of this paper introduced the norm *∥ · ∥⟨D⟩* for unifying those norms.

The following is the main result of this paper. Theorem 1 says that every surjective isometry on $C^1([0,1], A)$ is represented by homeomorphisms on [0, 1] and the maximal ideal space of A. This implies that the Banach algebra $C^1([0,1])$ and a uniform algebra *A* have different structures. On the other hand, if we consider $C(X, C(Y))$, the Banach space of all $C(Y)$ valued continuous maps on X with the supremum norm, then we may regard $C(X, C(Y))$ as $C(X \times Y)$. By the Banach-Stone theorem, every unital, surjective complex linear isometry from $C(X_1 \times Y_1)$ onto $C(X_2 \times Y_2)$ is induced by a homeomorphism from $X_2 \times Y_2$ onto $X_1 \times Y_1$. Generally speaking, neither X_1 and X_2 nor Y_1 and Y_2 are homeomorphic to each other.

Theorem 1. *Let A be a uniform algebra on X, and D a compact connected subset* of $[0,1] \times [0,1]$ such that $\pi_1(D) = \pi_2(D) = [0,1]$. If $T: C^1([0,1], A) \to C^1([0,1], A)$ *is a surjective isometry with respect to*

$$
||F||_{\langle D \rangle} = \sup_{(t_1, t_2) \in D} (||F(t_1)||_X + ||F'(t_2)||_X)
$$

 $f \circ F \in C^1([0,1], A)$ *, then there exist an invertible element* $\beta \in A$ *with* $|\hat{\beta}| = 1$ *on* M_A *, a homeomorphism* $\sigma: M_A \to M_A$ *and closed and open, possibly empty, subsets* $M_1^+, M_1^-, M_{-1}^+, M_{-1}^- \subset \mathcal{M}_A$ with $M_1^+ \cup M_1^- \cup M_{-1}^+ \cup M_{-1}^- = \mathcal{M}_A$, $M_j^+ \cap M_j^- = \emptyset$ for $j = \pm 1$ *and* $M_{-1}^+ \cup M_{-1}^- = \mathcal{M}_A \setminus (M_1^+ \cup M_1^-)$ *, such that*

$$
\overline{T_0(F)(t)}(\rho) = \begin{cases}\n\widehat{\beta}(\rho)\widehat{F(t)}(\sigma(\rho)) & \rho \in M_1^+ \\
\widehat{\beta}(\rho)\overline{\widehat{F(t)}(\sigma(\rho))} & \rho \in M_1^- \\
\widehat{\beta}(\rho)\overline{F(1-t)}(\sigma(\rho)) & \rho \in M_{-1}^+ \\
\widehat{\beta}(\rho)\overline{\widehat{F(1-t)}(\sigma(\rho))} & \rho \in M_{-1}^- \\
\end{cases}
$$

for all $F \in C^1([0,1], A)$ *and* $t \in [0,1]$ *, where* $T_0 = T - T(0)$ *.*

Conversely, if T_0 *is a map of the above form, then* $T = T_0 + F_0$ *is a surjective isometry with respect to* $\|\cdot\|_{\langle D \rangle}$ *for every* $F_0 \in C^1([0,1], A)$ *.*

2. Characterization of extreme points

Throughout this paper, we denote $D \times K \times K \times T$ by \widetilde{D}_K for each subset K of \mathcal{M}_A . Then $D_{\partial A}$ is a compact Hausdorff space with respect to the product topology. For each $F \in C^1([0,1], A)$, we define the function \overline{F} on $D_{\partial A}$ by

$$
\widetilde{F}(t_1, t_2, x_1, x_2, z) = F(t_1)(x_1) + zF'(t_2)(x_2)
$$
\n(2.1)

for $(t_1, t_2, x_1, x_2, z) \in \widetilde{D}_{\partial A}$; for the sake of simplicity, we shall write (t_1, t_2, x_1, x_2, z) instead of $((t_1, t_2), x_1, x_2, z)$. Then \widetilde{F} is a continuous function on $\widetilde{D}_{\partial A}$ with

$$
\begin{aligned} \|\widetilde{F}\|_{\widetilde{D}_{\partial A}} &= \sup_{(t_1, t_2, x_1, x_2, z) \in \widetilde{D}_{\partial A}} |\widetilde{F}(t_1, t_2, x_1, x_2, z)| \\ &= \sup_{(t_1, t_2, x_1, x_2, z) \in \widetilde{D}_{\partial A}} |F(t_1)(x_1) + zF'(t_2)(x_2)|. \end{aligned}
$$

We may regard $F \in C^1([0,1], A)$ and $F' : [0,1] \to A$ as continuous functions on [0*,* 1] *× X*. Since *∂A* is a boundary for *A*, there exist (*s*1*, s*2) *∈ D* and *y*1*, y*² *∈ ∂A* such that

$$
\sup_{(t_1,t_2)\in D} (\|F(t_1)\|_X + \|F'(t_2)\|_X) = |F(s_1)(y_1)| + |F'(s_2)(y_2)|.
$$

We can choose $z_0 \in \mathbb{T}$ so that $|F(s_1)(y_1)| + |F'(s_2)(y_2)| = |F(s_1)(y_1) + z_0 F'(s_2)(y_2)|$, and thus

$$
||F||_{\langle D \rangle} = \sup_{(t_1, t_2) \in D} (||F(t_1)||_X + ||F'(t_2)||_X) = |F(s_1)(y_1) + z_0 F'(s_2)(y_2)|
$$

\n
$$
\leq \sup_{(t_1, t_2, x_1, x_2, z) \in \widetilde{D}_{\partial A}} |F(t_1)(x_1) + zF'(t_2)(x_2)|
$$

\n
$$
\leq \sup_{(t_1, t_2) \in D} (||F(t_1)||_X + ||F'(t_2)||_X) = ||F||_{\langle D \rangle}.
$$

Therefore, $||F||_{\langle D \rangle} = \sup_{(t_1, t_2, x_1, x_2, z) \in \tilde{D}_{\partial A}} |F(t_1)(x_1) + zF'(t_2)(x_2)|$, and hence

$$
||F||_{\langle D \rangle} = ||\widetilde{F}||_{\widetilde{D}_{\partial A}} \qquad (F \in C^1([0,1], A)). \tag{2.2}
$$

Let $\mathbf{1}_K$ be constant function on a set *K* such that $\mathbf{1}_K(x) = 1$ for all $x \in K$. Then **1**_[0,1] ∈ C ¹([0,1]) and **1**_{*X*} ∈ *A*. In the rest of this paper, we denote **1**_[0,1] ⊗ **1***x* by **1**. We set

$$
B = \{ \widetilde{F} \in C(\widetilde{D}_{\partial A}) : F \in C^1([0,1], A) \}.
$$

Then we see that *B* is a linear subspace of $C(\widetilde{D}_{\partial A})$ with $\widetilde{1} \in B$. We define the mapping $U: (C^1([0,1], A), \|\cdot\|_{\langle D \rangle}) \to (B, \|\cdot\|_{\widetilde{D}_{\partial A}})$ by

$$
U(F) = \tilde{F} \qquad (F \in C^1([0, 1], A)).
$$
\n(2.3)

Equalities (2.1) and (2.2) show that *U* is a surjective complex linear isometry.

For each $f \in C^1([0,1])$ and $u \in A$, we define $f \otimes u \in C^1([0,1], A)$ by

$$
(f \otimes u)(t)(x) = f(t)u(x) \qquad (t \in [0,1], \, x \in X).
$$

By the definition of the derivative, we see that

$$
(f \otimes u)'(t)(x) = f'(t)u(x)
$$

for all $f \in C^1([0,1])$, $u \in A, t \in [0,1]$ and $x \in X$.

We show that *B* separates the points of $D_{\partial A}$. Let $\mathbf{p} = (t_1, t_2, x_1, x_2, z) \in D_{\partial A}$ and $q = (s_1, s_2, y_1, y_2, w) \in D_{\partial A}$ with $p \neq q$.

If $t_1 \neq s_1$, then choose $f_1 \in C^1([0,1])$ so that $f_1(t_1) \neq f_1(s_1)$ and $f'_1(t_2) = f'_1(s_2)$ 0. Let $F_1 = f_1 \otimes \mathbf{1}_X \in C^1([0,1], A)$, and then $\tilde{F}_1 \in B$ satisfies $\tilde{F}_1(\mathbf{p}) = f_1(t_1) \neq$ $f_1(s_1) = F_1(q)$ by (2.1).

We now consider the case when $t_1 = s_1$ and $t_2 \neq s_2$. There exists $f_2 \in C^1([0,1])$ such that $f_2(t_1) = 0 = f_2(s_1)$, $f'_2(t_2) = 1$ and $f'_2(s_2) = 0$. For $F_2 = f_2 \otimes \mathbf{1}_X \in$ $C^1([0, 1], A)$, we have $\tilde{F}_2(\mathbf{p}) = z \neq 0 = \tilde{F}_2(\mathbf{q})$.

Suppose that $t_j = s_j$ for $j = 1, 2$ and $x_1 \neq y_1$. Since *A* separates the points of *X*, there exists $v_1 \in A$ such that $v_1(x_1) = 1$ and $v_1(y_1) = 0$. Then $G_1 = \mathbf{1}_{[0,1]} \otimes v_1 \in A$ $C^1([0, 1], A)$ satisfies $G_1(p) = 1 \neq 0 = G_1(q)$.

Now we suppose $x_2 \neq y_2$. We may assume that $t_j = s_j$ for $j = 1, 2$ and $x_1 = y_1$. We can choose $v_2 \in A$ with $v_2(x_2) = 1$ and $v_2(y_2) = 0 = v_2(x_1) = v_2(y_1)$. Let id be the identity function on [0*,* 1]. If we define $G_2 = (\text{id} - t_1 \mathbf{1}_{[0,1]}) \otimes v_2 \in C^1([0,1], A)$, then $G_2(p) = z \neq 0 = G_2(q)$.

Finally, if $z \neq w$, then we may and do assume that $t_j = s_j$ and $x_j = y_j$ for $j = 1, 2$. Then the function $G_3 = (\text{id} - t_1 \mathbf{1}_{[0,1]}) \otimes \mathbf{1}_X \in C^1([0,1], A)$ satisfies $G_3(p) = z \neq w = z$ $G_3(q)$. From the above arguments we have proven that *B* separates the points of $D_{\partial A}$, as is claimed.

By (2.1), we see that $\tilde{\mathbf{1}} \in B$ is the constant function with $\tilde{\mathbf{1}}(\mathbf{p}) = 1$ for all $\mathbf{p} \in \tilde{D}_{\partial A}$. In other words, *B* is a function space on $D_{\partial A}$. We denote by B_1^* the closed unit ball of the dual space B^* of $(B, \|\cdot\|_{\widetilde{D}_{\partial A}})$. The set of all extreme points of B_1^* is denoted by ext (B_1^*) . Let δ_p be the point evaluation at $p \in D_{\partial A}$, that is, $\delta_p(F) = F(p)$ for each $\widetilde{F} \in B$. We define the Choquet boundary for the function space *B* by the set of all points $p \in D_{\partial A}$ with the property that δ_p is an extreme point of B_1^* . We may regard uniform algebras as function spaces. By [3, Theorem 2.3.4], the strong boundary $b(A)$ coincides with the Choquet boundary $Ch(A)$ for a uniform algebra *A*.

By the Riesz representation theorem, for each $\eta \in B^*$ there exists a regular Borel measure μ on $\widetilde{D}_{\partial A}$ such that $||\eta||_{op} = ||\mu||$ and $\eta(\widetilde{F}) =$ *D*e*∂A F dµ* for all $F \in B$, where *∥ · ∥*op and *∥ · ∥* are the operator norm and the total variation of a measure, respectively.

Lemma 2.1. *Let* $p = (t_1, t_2, x_1, x_2, z_1) \in \widetilde{D}_{b(A)}$ and μ a representing measure for δ _{*p*}*. Then* $\mu({D \cap ([0, 1] \times \{t_2\})} \times \partial A \times \partial A \times \mathbb{T}) = 1$ *.*

Proof. Let $p = (t_1, t_2, x_1, x_2, z_1) \in \widetilde{D}_{b(A)} \subset \widetilde{D}_{\partial A}$ be an arbitrary point. There exists a regular Borel measure μ such that $||\mu|| = ||\delta_{p}||_{op}$ and $\delta_{p}(\widetilde{F}) = \int$ *D*e*∂A* $F d\mu$ for every

 $\widetilde{F} \in B$. Since $\delta_{p}(\widetilde{1}) = 1 = ||\delta_{p}||_{op}$, any representing measure for δ_{p} is a probability measure (see, for example, [3, p. 81]). Let $\varepsilon > 0$ be an arbitrary positive real number and $N_2 \subset [0,1]$ an open neighborhood of $t_2 \in [0,1]$. There exists a function $f_2 \in C^1([0,1])$ such that

$$
f_2|_{[0,1]\setminus N_2}=0
$$
, $||f_2||_{[0,1]}<\varepsilon$, and $f'_2(t_2)=1=||f'_2||_{[0,1]}$. (2.4)

Here we notice that

$$
f_2'|_{[0,1]\setminus N_2} = 0.\t\t(2.5)
$$

Let $F_2 = f_2 \otimes \mathbf{1}_X \in C^1([0,1], A)$, and then $F'_2 = f'_2 \otimes \mathbf{1}_X$. By the choice of μ ,

$$
\int_{\widetilde{D}_{\partial A}} \widetilde{F}_2 d\mu = \delta_{\mathbf{p}}(\widetilde{F}_2) = \widetilde{F}_2(t_1, t_2, x_1, x_2, z_1)
$$

= $F_2(t_1)(x_1) + z_1 F'_2(t_2)(x_2)$
= $f_2(t_1) + z_1 f'_2(t_2) = f_2(t_1) + z_1.$

Equality (2.4) shows that

$$
1 - \varepsilon \le \left| \int_{\widetilde{D}_{\partial A}} \widetilde{F}_2 \, d\mu \right|.
$$
 (2.6)

Recall that $\tilde{D}_{\partial A} = D \times \partial A \times \partial A \times \mathbb{T}$ with $D \subset [0,1] \times [0,1]$. Let $N_2^c = [0,1] \setminus N_2$ and set, for each $N \subset [0, 1]$,

$$
O_N = \{D \cap ([0,1] \times N)\} \times \partial A \times \partial A \times \mathbb{T}.
$$

Then $D_{\partial A} = O_{N_2} \cup O_{N_2^c}$ and $O_{N_2} \cap O_{N_2^c} = \emptyset$. By equalities (2.4) and (2.5), we obtain

$$
\int_{O_{N_2^c}} \widetilde{F}_2 d\mu = \int_{O_{N_2^c}} \left\{ (f_2 \otimes \mathbf{1}_X)(s)(x) + z(f_2' \otimes \mathbf{1}_X)(t)(y) \right\} d\mu = 0.
$$

Therefore, we have

$$
\int_{\widetilde{D}_{\partial A}} \widetilde{F}_2 \, d\mu = \int_{O_{N_2}} \widetilde{F}_2 \, d\mu + \int_{O_{N_2^c}} \widetilde{F}_2 \, d\mu = \int_{O_{N_2}} \{f_2(s) + z f_2'(t)\} \, d\mu.
$$

It follows from (2.4) and (2.6) that

$$
1 - \varepsilon \le \left| \int_{\widetilde{D}_{\partial A}} \widetilde{F}_2 \, d\mu \right| \le (\varepsilon + 1) \mu(O_{N_2}).
$$

By the liberty of the choice of ε , we get $1 \leq \mu(O_{N_2})$. Because μ is a probability measure, $\mu(O_{N_2}) \leq \mu(D_{\partial A}) = 1$, and hence $\mu(O_{N_2}) = 1$. Since μ is a regular measure and N_2 is an arbitrary open neighborhood of t_2 , we conclude $1 = \mu(O_{\{t_2\}})$ $\mu({D \cap ([0,1] \times \{t_2\}) \times \partial A \times \partial A \times \mathbb{T})}$.

Lemma 2.2. *Let* $p = (t_1, t_2, x_1, x_2, z_1) \in \widetilde{D}_{b(A)}$ and μ a representing measure for δ *p. Then* $\mu({t_1} \times {t_2} \times \partial A \times \partial A \times \mathbb{T}) = 1$ *.*

Proof. Let $N_1 \subset [0,1]$ be an open neighborhood of $t_1 \in [0,1]$ and $N_1^c = [0,1] \setminus N_1$. Choose a function $f_1 \in C^1([0,1])$ with

$$
f_1(t_1) = 1 = ||f_1||_{[0,1]}, \quad f_1|_{N_1^c} = a \quad \text{for some } 0 < a < 1,\tag{2.7}
$$

and

$$
f_1'(t_2) = f_1'|_{N_1^c} = 0.
$$
\n(2.8)

Let $F_1 = f_1 \otimes \mathbf{1}_X \in C^1([0,1], A)$. For each $N \subset [0,1]$, we set

$$
P_N = [D \cap (N \times \{t_2\})] \times \partial A \times \partial A \times \mathbb{T}.
$$

By Lemma 2.1, $\mu(P_{[0,1]}) = \mu(\tilde{D}_{\partial A}) = 1$. Equalities (2.1), (2.7) and (2.8) yield

$$
\int_{P_{[0,1]}} f_1(s) d\mu + \int_{P_{[0,1]}} z f_1'(t) d\mu = \int_{P_{[0,1]}} \widetilde{F}_1 d\mu = \int_{\widetilde{D}_{\partial A}} \widetilde{F}_1 d\mu
$$

$$
= \delta_{\mathbf{p}}(\widetilde{F}_1) = f_1(t_1) + z_1 f_1'(t_2) = 1.
$$

As $P_{N_1} \cup P_{N_1^c} = P_{[0,1]}$ and $P_{N_1} \cap P_{N_1^c} = \emptyset$, it follows from (2.7) and (2.8) that

$$
1 \leq \left| \int_{P_{[0,1]}} f_1(s) d\mu \right| + \left| \int_{P_{[0,1]}} z f'_1(t) d\mu \right|
$$

$$
\leq \left| \int_{P_{N_1}} f_1(s) d\mu \right| + \left| \int_{P_{N_1^c}} f_1(s) d\mu \right|
$$

$$
\leq \mu(P_{N_1}) + a\mu(P_{N_1^c}).
$$

Since $\mu(P_{N_1}) + \mu(P_{N_1^c}) = \mu(P_{[0,1]}) = 1$, we get $(1 - a)\mu(P_{N_1^c}) \leq 0$. Recall that $a < 1$, and thus $(1 - a)\mu(P_{N_1^c}) = 0$. Therefore, $\mu(P_{N_1^c}) = 0$, and hence $\mu(P_{N_1}) = 1$. By the regularity of μ , we have $\mu(P_{\{t_1\}}) = 1$, that is, $\mu(\{t_1\} \times \{t_2\} \times \partial A \times \partial A \times \mathbb{T}) = 1$. □

Lemma 2.3. *Let* $p = (t_1, t_2, x_1, x_2, z_1) \in \widetilde{D}_{b(A)}$ and μ a representing measure for δ_p *. Then* $\mu({t_1} \times {t_2} \times {x_1} \times \partial A \times \mathbb{T}) = 1$ *.*

Proof. Let $W_1 \subset X$ be an open neighborhood of $x_1 \in b(A)$. For each $W \subset X$, we define Q_W by

$$
Q_W = \{t_1\} \times \{t_2\} \times (W \cap \partial A) \times \partial A \times \mathbb{T}.
$$

Set $W_1^c = X \setminus W_1$, and then $Q_{W_1} \cup Q_{W_1^c} = Q_{\partial A}$ and $Q_{W_1} \cap Q_{W_1^c} = \emptyset$. Since $x_1 \in b(A)$ there exists $v_1 \in A$ such that

$$
v_1(x_1) = 1 = ||v_1||_X \text{ and } |v_1| < \varepsilon \text{ on } W_1^c. \tag{2.9}
$$

We set $G_1 = \mathbf{1}_{[0,1]} \otimes v_1 \in C^1([0,1], A)$. By Lemma 2.2, $\mu(Q_{\partial A}) = 1 = \mu(D_{\partial A})$, and then

$$
\int_{Q_{\partial A}} \widetilde{G}_1 d\mu = \int_{\widetilde{D}_{\partial A}} \widetilde{G}_1 d\mu = \delta_{\mathbf{p}}(\widetilde{G}_1) = v_1(x_1) = 1
$$

 $-47-$

by (2.1). According to (2.9), $|\hat{G}_1| = |(\mathbf{1}_{[0,1]} \otimes v_1) + z_1(\mathbf{1}_{[0,1]}' \otimes v_1)| \le 1$ on Q_{W_1} , and $|G_1| < \varepsilon$ on $Q_{W_1^c}$. These imply that

$$
1 = \left| \int_{Q_{\partial A}} \widetilde{G}_1 d\mu \right| \le \left| \int_{Q_{W_1}} \widetilde{G}_1 d\mu \right| + \left| \int_{Q_{W_1^c}} \widetilde{G}_1 d\mu \right|
$$

\$\le \mu(Q_{W_1}) + \varepsilon \mu(Q_{W_1^c}).

Since $\varepsilon > 0$ is arbitrary, we obtain $1 \leq \mu(Q_{W_1})$, and then $\mu(Q_{W_1}) = 1$. By the regularity of μ , we get $\mu(Q_{\{x_1\}})=1$, that is, $\mu({t_1} \times {t_2} \times {x_1} \times \partial A \times \mathbb{T})=1$. □

Lemma 2.4. *Let* $p = (t_1, t_2, x_1, x_2, z_1) \in D_{b(A)}$ *. Then the Dirac measure concentrated at* p *is the unique representing measure for* δ_p *.*

Proof. Let $W_2 \subset X$ be an open neighborhood of $x_2 \in b(A)$, and let μ be a representing measure for δ_p . We will prove that μ is the Dirac measure concentrated at *p*. For each $W \subset X$, we set $R_W = \{t_1\} \times \{t_2\} \times \{x_1\} \times (W \cap \partial A) \times \mathbb{T}$ and $W_2^c = X \setminus W_2$. Then $R_{W_2} \cup R_{W_2^c} = R_{\partial A}$ and $R_{W_2} \cap R_{W_2^c} = \emptyset$. For each $\varepsilon > 0$ there exist $g \in C^1([0,1])$ and $v_2 \in A$ such that

$$
||g||_{[0,1]} < \varepsilon, \quad g'(t_2) = 1 = ||g'||_{[0,1]}, \quad v_2(x_2) = 1 = ||v_2||_X \quad \text{and} \quad |v_2| < \varepsilon \quad \text{on } W_2^c.
$$

We set *G*₂ = *g* ⊗ *v*₂ ∈ *C*¹([0, 1], *A*), and then $R_{W_2^c}$ $G_2 d\mu$ $≤$ 2*ε*μ($R_{W_2^c}$). Lemma 2.3

shows $\mu(R_{\partial A}) = 1 = \mu(\widetilde{D}_{\partial A})$, and hence

$$
\int_{R_{W_2}} \widetilde{G}_2 d\mu + \int_{R_{W_2^c}} \widetilde{G}_2 d\mu = \int_{R_{\partial A}} \widetilde{G}_2 d\mu = \delta_{\mathbf{p}}(\widetilde{G}_2) = g(t_1)v_2(x_1) + z_1.
$$

It follows that

$$
1 - \varepsilon - 2\varepsilon \mu(R_{W_2^c}) \le \left| \int_{R_{W_2}} \widetilde{G}_2 \, d\mu \right| \le (\varepsilon + 1) \mu(R_{W_2}).
$$

Since $\varepsilon > 0$ is arbitrary, $1 \leq \mu(R_{W_2})$ and thus $\mu(R_{W_2}) = 1$. By the regularity of μ , we conclude $\mu({t_1} \times {t_2} \times {x_1} \times {x_2} \times \mathbb{T}) = 1.$

Let $J = \{t_1\} \times \{t_2\} \times \{x_1\} \times \{x_2\}$, and then $\mu(J \times \mathbb{T}) = 1$. We finally prove that $\mu(J \times \{z_1\}) = 1$. If we choose $f_3 \in C^1([0,1])$ so that

$$
f_3(t_1) = 0
$$
, and $f'_3(t_2) = 1$,

then the function $F_3 = f_3 \otimes \mathbf{1}_X \in C^1([0,1], A)$ satisfies

$$
z_1 = \delta_{\mathbf{p}}(\widetilde{F}_3) = \int_{\widetilde{D}_{\partial A}} \widetilde{F}_3 d\mu
$$

=
$$
\int_{J \times \mathbb{T}} \{ (f_3 \otimes \mathbf{1}_X)(t_1)(x_1) + z(f_3 \otimes \mathbf{1}_X)'(t_2)(x_2) \} d\mu = \int_{J \times \mathbb{T}} z d\mu.
$$

Since $\mu(J\times\mathbb{T})=1$, we obtain ∫ *J×*T $(z-z_1) d\mu = 0$, and therefore *J×*T $(1-\overline{z_1}z) d\mu = 0.$ Because μ is a probability measure,

$$
\int_{J\times\mathbb{T}} (1 - \text{Re}(\overline{z_1}z)) d\mu = \text{Re} \int_{J\times\mathbb{T}} (1 - \overline{z_1}z) d\mu = 0.
$$

Note that $1 - \text{Re}(\overline{z_1}z) \ge 0$ for all $z \in \mathbb{T}$, and thus there exists $Z \subset J \times \mathbb{T}$ such that

 $\mu(Z) = 0$ and $1 - \text{Re}(\overline{z_1}z) = 0$ on $(J \times \mathbb{T}) \setminus Z$.

This shows $Z = J \times (\mathbb{T} \setminus \{z_1\})$. Since $\mu(Z) = 0$ and $\mu(J \times \mathbb{T}) = 1$, we obtain $\mu(\mathbf{p}) = \mu(J \times \{z_1\}) = 1$. We have proven that μ is a Dirac measure concentrated at $p = (t_1, t_2, x_1, x_2, z_1)$, as is claimed.

Lemma 2.5. *The Choquet boundary* $\text{Ch}(B)$ *contains* $D_{b(A)}$ *.*

Proof. Let $p \in D_{b(A)}$. We will prove $\delta_p \in ext(B_1^*)$. Let $\eta_1, \eta_2 \in B_1^*$ be such that $\delta_{\bf p} = (n_1 + n_2)/2$. Recall that $\mathbf{1} = \mathbf{1}_{[0,1]} \otimes \mathbf{1}_{X} \in C^1([0,1], A)$. Then $\eta_1(\tilde{\mathbf{1}}) + \eta_2(\tilde{\mathbf{1}}) =$ $2\delta_{\mathbf{p}}(\mathbf{1}) = 2$ by (2.1). Because $\eta_j \in B^*_1$, $|\eta_j(\mathbf{1})| \leq 1$ and thus $\eta_j(\mathbf{1}) = 1 = ||\eta_j||$ for $j = 1, 2$, where $\|\cdot\|$ is the operator norm on B^* . Let ν_j be a representing measure for η_j , that is, $\eta_j(\tilde{F}) = \int$ *D*e*∂A F* $d\nu_j$ for *F* \in *B*. Then ν_j is a probability measure as mentioned in Proof of Lemma 2.1. Because $(\nu_1 + \nu_2)/2$ is also a representing measure for δ_p , it follows from Lemma 2.4 that $(\nu_1 + \nu_2)/2 = \tau_p$, the Dirac measure concentrated at **p**. Since ν_j is a positive measure, $\nu_j(E) = 0$ for each Borel set E with $p \notin E$. Hence $\nu_j = \tau_p$ for $j = 1, 2$, and consequently $\eta_1 = \eta_2$. Therefore, δ_p is an extreme point of B_1^* , and thus $D_{b(A)} \subset \text{Ch}(B)$ as is claimed. □

Lemma 2.6. *The set* $ext(B_1^*)$ *is* $\{\lambda \delta_p : \lambda \in \mathbb{T}, p \in D_{b(A)}\}$ *.*

Proof. According to the Arens-Kelley theorem, we see that $ext(B_1^*) = {\lambda \delta_p : \lambda \in \mathbb{R}^+}$ T*, p ∈* Ch(*B*)*}* (see [5, Corollary 2.3.6 and Theorem 2.3.8]). By Lemma 2.5, we need to prove that $Ch(B) \subset D_{b(A)}$. To this end, let $p \in Ch(B)$, and then δ_p is an extreme point of B_1^* . There exist $(t_1, t_2) \in D$, $x_1, x_2 \in \partial A$ and $z_0 \in \mathbb{T}$ such that $p = (t_1, t_2, x_1, x_2, z_0)$. Let e_x be a point evaluational functional on *A* at $x \in X$, defined by $e_x(u) = u(x)$ for $u \in A$. We denote by A_1^* the closed unit ball of the dual space of *A*. Let $\zeta_j, \zeta_j \in A_1^*$ be such that $e_{x_1} = (\zeta_1 + \zeta_2)/2$ and $e_{x_2} = (\zeta_1 + \zeta_2)/2$. We show that $\zeta_1 = \zeta_2$ and $\xi_1 = \xi_2$. We define $\eta_j : B \to \mathbb{C}$ by

$$
\eta_j(\widetilde{F}) = \zeta_j(F(t_1)) + z_0 \xi_j(F'(t_2)) \qquad (j = 1, 2)
$$
\n(2.10)

for $F \in C^1([0,1], A)$. Here, we recall that the map $U: C^1([0,1], A) \to B$, defined by $U(F) = \tilde{F}$, is a surjective complex linear isometry (see (2.1), (2.2) and (2.3)). Then

*η*_{*j*} is a well defined, complex linear functional on *B*. Since ζ_j , $\zeta_j \in A^*_1$, we have, for each $\tilde{F} \in B$,

$$
|\eta_j(\widetilde{F})| = |\zeta_j(F(t_1)) + z_0 \xi_j(F'(t_2))|
$$

\n
$$
\leq ||\zeta_j|| ||F(t_1)||_X + ||\xi_j|| ||F'(t_2)||_X
$$

\n
$$
\leq ||F(t_1)||_X + ||F'(t_2)||_X \leq ||F||_{\langle D \rangle} = ||\widetilde{F}||_{\widetilde{D}_{\partial A}},
$$

where we have used (2.2). Therefore, $\eta_j \in B_1^*$ for $j = 1, 2$. Since $e_{x_1} = (\zeta_1 + \zeta_2)/2$ and $e_{x_2} = (\xi_1 + \xi_2)/2$,

$$
(\eta_1 + \eta_2)(\widetilde{F}) = (\zeta_1 + \zeta_2)(F(t_1)) + z_0(\xi_1 + \xi_2)(F'(t_2))
$$

= $2e_{x_1}(F(t_1)) + 2z_0e_{x_2}(F'(t_2))$
= $2F(t_1)(x_1) + 2z_0F'(t_2)(x_2)$
= $2\widetilde{F}(\mathbf{p}) = 2\delta_{\mathbf{p}}(\widetilde{F})$

for all $\widetilde{F} \in B$, where we have used (2.1). It follows that $\delta_p = (\eta_1 + \eta_2)/2$. By the choice of p , δ_p is an extreme point of B_1^* , and thus $\eta_1 = \eta_2$. Let $F_u = \mathbf{1}_{[0,1]} \otimes u \in$ $C^1([0,1], A)$ for each $u \in A$. Taking $F = F_u$ in (2.10), we have $\eta_j(F_u) = \zeta_j(u)$. As $\eta_1 = \eta_2$, $\zeta_1(u) = \zeta_2(u)$ for all $u \in A$, and hence $\zeta_1 = \zeta_2$. This implies that e_{x_1} is an extreme point of A_1^* , i.e. $x_1 \in b(A)$. By the help of (2.10), we now derive $\xi_1(F'(t_2)) = \xi_2(F'(t_2))$ for all $F \in C^1([0,1], A)$. Taking $F = id \otimes u \in C^1([0,1], A)$ in the last equality, we obtain $\xi_1(u) = \xi_2(u)$ for all $u \in A$. This shows $\xi_1 = \xi_2$, and therefore e_{x_2} is an extreme point of A_1^* as well. Hence $x_2 \in b(A)$, and consequently $p = (t_1, t_2, x_1, x_2, z) \in D_{b(A)}$. We have shown that $Ch(B) \subset D_{b(A)}$, as is claimed. □

3. Auxiliary lemmas

Let *T* be a surjective isometry on $(C^1([0,1], A), \| \cdot \|_{\langle D \rangle})$. Recall that $B = \{F \in$ $C(\tilde{D}_{\partial A}) : F \in C^1([0,1], A)$ *}*. Define a mapping $T_0 : C^1([0,1], A) \to C^1([0,1], A)$ by

$$
T_0 = T - T(0). \t\t(3.1)
$$

By the Mazur-Ulam theorem [11, 17], *T*⁰ is a surjective, *real linear* isometry on $(C^1([0,1], A), \|\cdot\|_{\langle D \rangle})$. Recall, by (2.3), that $U: (C^1([0,1], A), \|\cdot\|_{\langle D \rangle}) \to (B, \|\cdot\|_{\widetilde{D}_{\partial A}})$ is the surjective complex linear isometry, defined by $U(F) = F$ for $F \in C^1([0,1], A)$. Denote UT_0U^{-1} by *S*; the mapping $S: B \to B$ is well defined since *U* is a surjective complex linear isometry.

$$
C^{1}([0, 1], A) \xrightarrow{T_0} C^{1}([0, 1], A)
$$

\n
$$
U \downarrow \qquad \qquad \downarrow U
$$

\n
$$
B \xrightarrow{\qquad S} B
$$

The equality $S = UT_0U^{-1}$ is equivalent to

$$
S(\widetilde{F}) = \widetilde{T_0(F)} \qquad (\widetilde{F} \in B). \tag{3.2}
$$

By the definition of *S*, we see that *S* is a surjective *real linear* isometry on $(B, \|\cdot\|_{\widetilde{D}_{\partial A}})$.

We define $S_*: B^* \to B^*$ by

$$
S_*(\chi)(\widetilde{F}) = \text{Re}\left[\chi(S(\widetilde{F}))\right] - i\text{Re}\left[\chi(S(i\widetilde{F}))\right] \qquad (\chi \in B^*, \widetilde{F} \in B),\tag{3.3}
$$

where $\text{Re } z$ is the real part of a complex number *z*. We see that S_* is a surjective real linear isometry with respect to the operator norm (see [15, Proposition 5.17]).

Let $\mathfrak{B} = {\lambda \delta_p \in B_1^* : \lambda \in \mathbb{T}, p \in D_{\partial A}}$ be a topological subspace of B_1^* with the relative weak *-topology. We define a map $h: \mathbb{T} \times \widetilde{D}_{\partial A} \to \mathfrak{B}$ by $h(\lambda, p) = \lambda \delta_p$ for $(\lambda, \mathbf{p}) \in \mathbb{T} \times \widetilde{D}_{\partial A}$.

Lemma 3.1. *The map* **h**: $\mathbb{T} \times \widetilde{D}_{\partial A} \rightarrow \mathfrak{B}$ *is a homeomorphism. In particular,* $h(\mathbb{T} \times D_{\partial A}) = \mathfrak{B}.$

Proof. Since *B* contains the constant function $\tilde{\mathbf{1}}$ and separates the points of $\tilde{D}_{\partial A}$, we see that **h** is injective. By the definition of the map **h**, we observe that **h** is continuous from the compact space $\mathbb{T} \times \widetilde{D}_{\partial A}$ with the product topology onto the Hausdorff space \mathfrak{B} with the relative weak *-topology. Hence it is a homeomorphism. \Box

Lemma 3.2. *The map* S_* *preserves* \mathfrak{B} *, that is,* $S_*(\mathfrak{B}) = \mathfrak{B}$ *.*

Proof. Since S_* is a surjective real linear isometry on B_1^* , we see that $S^*(ext(B_1^*))$ $ext(B₁[*])$. Let **h** be the homeomorphism defined in Lemma 3.1. By Lemma 2.6, $ext(B_1^*) = {\lambda \delta_p : \lambda \in \mathbb{T}, p \in D_{b(A)}} = \mathbf{h}(\mathbb{T} \times D_{b(A)})$. Hence $S_*(\mathbf{h}(\mathbb{T} \times D_{b(A)})) =$ **h**(T × $\widetilde{D}_{b(A)}$) ⊂ **h**(T × $\widetilde{D}_{\partial A}$) = **B**, and therefore, $S_*(\mathbf{h}(T \times D_{b(A)})) \subset \mathfrak{B}$. We denote by cl(*E*) the closure of a set *E*. Because $b(A)$ is dense in ∂A , we obtain $\mathfrak{B} =$ $h(\mathbb{T} \times \widetilde{D}_{\partial A}) = h(\mathbb{T} \times cl(\widetilde{D}_{b(A)})) = cl(h(\mathbb{T} \times \widetilde{D}_{b(A)}))$, and thus $\mathfrak{B} = cl(h(\mathbb{T} \times \widetilde{D}_{b(A)})).$ Since $S_*: B_1^* \to B_1^*$ is a surjective isometry with respect to the operator norm, it is a homeomorphism with the relative weak *-topology on *B[∗]* 1 . It follows that $S_*(\mathfrak{B}) = S_*(\text{cl}(\mathbf{h}(\mathbb{T} \times \widetilde{D}_{b(A)}))) = \text{cl}(S_*(\mathbf{h}(\mathbb{T} \times \widetilde{D}_{b(A)}))) \subset \text{cl}(\mathfrak{B}) = \mathfrak{B}.$ Therefore, $S_*(\mathfrak{B}) \subset \mathfrak{B}$. By the same arguments, applied to $(S_*)^{-1}$, we see that $(S_*)^{-1}(\mathfrak{B}) \subset \mathfrak{B}$, and consequently $S_*(\mathfrak{B}) = \mathfrak{B}$.

Definition 3.1. Suppose that **h**: $\mathbb{T} \times \widetilde{D}_{\partial A} \rightarrow \mathfrak{B}$ is the homeomorphism defined in Lemma 3.1. Let $p_1: \mathbb{T} \times D_{\partial A} \to \mathbb{T}$ and $p_2: \mathbb{T} \times D_{\partial A} \to D_{\partial A}$ be the natural projections from $\mathbb{T} \times \widetilde{D}_{\partial A}$ to the first and second coordinate, respectively. We define two maps $\alpha: \mathbb{T} \times D_{\partial A} \to \mathbb{T}$ and $\Phi: \mathbb{T} \times D_{\partial A} \to D_{\partial A}$ by $\alpha = p_1 \circ \mathbf{h}^{-1} \circ S_* \circ \mathbf{h}$ and $\Phi = p_2 \circ \mathbf{h}^{-1} \circ S_* \circ \mathbf{h}.$

By the definitions of maps α and Φ , $(\mathbf{h}^{-1} \circ S_* \circ \mathbf{h})(\lambda, \mathbf{p}) = (\alpha(\lambda, \mathbf{p}), \Phi(\lambda, \mathbf{p}))$ for all $(\lambda, \mathbf{p}) \in \mathbb{T} \times D_{\partial A}$. Thus, $(S_* \circ \mathbf{h})(\lambda, \mathbf{p}) = \mathbf{h}(\alpha(\lambda, \mathbf{p}), \Phi(\lambda, \mathbf{p}))$, which is described as $S_*(\lambda \delta_p) = \alpha(\lambda, p) \delta_{\Phi(\lambda, p)}$. For the sake of simplicity of notation, we shall write $\alpha(\lambda, \mathbf{p}) = \alpha_{\lambda}(\mathbf{p})$. Then we can write

$$
S_*(\lambda \delta_p) = \alpha_\lambda(p) \delta_{\Phi(\lambda, p)} \tag{3.4}
$$

for all $(\lambda, p) \in \mathbb{T} \times \tilde{D}_{\partial A}$. Here, we notice that both α and Φ are surjective continuous maps since **h** and *S[∗]* are homeomorphisms.

Lemma 3.3. For each $p \in \widetilde{D}_{\partial A}$, $\alpha_i(p) = i\alpha_1(p)$ or $\alpha_i(p) = -i\alpha_1(p)$.

Proof. Let $p \in D_{\partial A}$, and we set $\lambda_0 = (1 + i)$ / *√* $2 \in \mathbb{T}$. By the real linearity of S_* , we obtain

$$
\sqrt{2} \alpha_{\lambda_0}(\mathbf{p}) \delta_{\Phi(\lambda_0, \mathbf{p})} = S_*(\sqrt{2} \lambda_0 \delta_{\mathbf{p}}) = S_*(\delta_{\mathbf{p}}) + S_*(i\delta_{\mathbf{p}})
$$

= $\alpha_1(\mathbf{p}) \delta_{\Phi(1, \mathbf{p})} + \alpha_i(\mathbf{p}) \delta_{\Phi(i, \mathbf{p})}.$

Hence $\sqrt{2} \alpha_{\lambda_0}(\mathbf{p}) \delta_{\Phi(\lambda_0, \mathbf{p})} = \alpha_1(\mathbf{p}) \delta_{\Phi(1, \mathbf{p})} + \alpha_i(\mathbf{p}) \delta_{\Phi(i, \mathbf{p})}$. Evaluating this equality at **1 1E** *B*, we get $\sqrt{2} \alpha_{\lambda_0}(p) = \alpha_1(p) + \alpha_i(p)$. Since $|\alpha_{\lambda}(p)| = 1$ for $\lambda \in \mathbb{T}$, we have $\sqrt{2} = |\alpha_1(\mathbf{p}) + \alpha_i(\mathbf{p})| = |1 + \alpha_i(\mathbf{p})\overline{\alpha_1(\mathbf{p})}|$. Then we see that $\alpha_i(\mathbf{p})\overline{\alpha_1(\mathbf{p})} = i$ or $\alpha_i(\mathbf{p})\overline{\alpha_1(\mathbf{p})} = -i$, which implies that $\alpha_i(\mathbf{p}) = i\alpha_1(\mathbf{p})$ or $\alpha_i(\mathbf{p}) = -i\alpha_1(\mathbf{p})$. □

Lemma 3.4. *There exists a continuous function* ε_0 : $\widetilde{D}_{\partial A} \to {\pm 1}$ *such that* $S_* (i \delta_p) =$ $i\varepsilon_0(\boldsymbol{p})\alpha_1(\boldsymbol{p})\delta_{\Phi(i,\boldsymbol{p})}$ for every $\boldsymbol{p} \in D_{\partial A}$.

Proof. For each $p \in \widetilde{D}_{\partial A}$, $\alpha_i(p) = i\alpha_1(p)$ or $\alpha_i(p) = -i\alpha_1(p)$ by Lemma 3.3. We define I_+ and I_- by

$$
I_+ = \{ \boldsymbol{p} \in \widetilde{D}_{\partial A} : \alpha_i(\boldsymbol{p}) = i\alpha_1(\boldsymbol{p}) \} \quad \text{and} \quad I_- = \{ \boldsymbol{p} \in \widetilde{D}_{\partial A} : \alpha_i(\boldsymbol{p}) = -i\alpha_1(\boldsymbol{p}) \}.
$$

Then $D_{\partial A} = I_+ \cup I_-$ and $I_+ \cap I_- = \emptyset$. By the continuity of the functions $\alpha_1 = \alpha(1, \cdot)$ and $\alpha_i = \alpha(i, \cdot)$, we observe that I_+ and I_- are both closed subsets of $\widetilde{D}_{\partial A}$. Hence, the function ε_0 : $\widetilde{D}_{\partial A} \to {\pm 1}$, defined by

$$
\varepsilon_0(\boldsymbol{p}) = \begin{cases} 1 & \boldsymbol{p} \in I_+ \\ -1 & \boldsymbol{p} \in I_- \end{cases}
$$

is continuous on $\widetilde{D}_{\partial A}$. We obtain $\alpha_i(\mathbf{p}) = i\varepsilon_0(\mathbf{p})\alpha_1(\mathbf{p})$ for every $\mathbf{p} \in \widetilde{D}_{\partial A}$. This shows $S_*(i\delta_p) = i\varepsilon_0(p)\alpha_1(p)\delta_{\Phi(i,p)}$ for all $p \in D_{\partial A}$.

Lemma 3.5. *Suppose that* ε_0 *is the continuous function defined in Lemma 3.4. For each* $\lambda = a + ib \in \mathbb{T}$ *with* $a, b \in \mathbb{R}$ *and* $p \in D_{\partial A}$ *,*

$$
\lambda^{\varepsilon_0(\boldsymbol{p})}\widetilde{F}(\Phi(\lambda,\boldsymbol{p})) = a\widetilde{F}(\Phi(1,\boldsymbol{p})) + ib\varepsilon_0(\boldsymbol{p})\widetilde{F}(\Phi(i,\boldsymbol{p}))
$$
\n(3.5)

for all $\widetilde{F} \in B$ *.*

Proof. Let $\lambda = a + ib \in \mathbb{T}$ with $a, b \in \mathbb{R}$ and $p \in \widetilde{D}_{\partial A}$. Recall that $S_*(\delta_p) =$ $\alpha_1(\mathbf{p})\delta_{\Phi(1,\mathbf{p})}$, and $S_*(i\delta_{\mathbf{p}}) = i\varepsilon_0(\mathbf{p})\alpha_1(\mathbf{p})\delta_{\Phi(i,\mathbf{p})}$ by Lemma 3.4. Because S_* is real linear,

$$
\alpha_{\lambda}(\mathbf{p})\delta_{\Phi(\lambda,\mathbf{p})} = S_{*}(\lambda\delta_{\mathbf{p}}) = aS_{*}(\delta_{\mathbf{p}}) + bS_{*}(i\delta_{\mathbf{p}})
$$

= $a\alpha_{1}(\mathbf{p})\delta_{\Phi(1,\mathbf{p})} + ib\varepsilon_{0}(\mathbf{p})\alpha_{1}(\mathbf{p})\delta_{\Phi(i,\mathbf{p})},$

and thus $\alpha_{\lambda}(p)\delta_{\Phi(\lambda,p)} = \alpha_1(p)\{a\delta_{\Phi(1,p)} + ib\varepsilon_0(p)\delta_{\Phi(i,p)}\}$. The evaluation of this equality at $\mathbf{1} \in B$ shows that $\alpha_{\lambda}(\mathbf{p}) = \alpha_1(\mathbf{p})(a + ib\varepsilon_0(\mathbf{p}))$. Because $\lambda = a + ib \in \mathbb{T}$ and $\varepsilon_0(\mathbf{p}) \in {\pm 1}$, we can write $a + i b \varepsilon_0(\mathbf{p}) = \lambda^{\varepsilon_0(\mathbf{p})}$. Hence $\alpha_\lambda(\mathbf{p}) = \lambda^{\varepsilon_0(\mathbf{p})} \alpha_1(\mathbf{p})$. We obtain $\lambda^{\varepsilon_0(p)} \delta_{\Phi(\lambda, p)} = a \delta_{\Phi(1, p)} + i b \varepsilon_0(p) \delta_{\Phi(i, p)}$, which implies $\lambda^{\varepsilon_0(p)} F(\Phi(\lambda, p)) =$ $a\widetilde{F}(\Phi(1,\boldsymbol{p})) + ib\varepsilon_0(\boldsymbol{p})\widetilde{F}(\Phi(i,\boldsymbol{p}))$ for all $\widetilde{F} \in B$.

Definition 3.2. Let q_k be the projection from $D_{\partial A} = D \times \partial A \times \partial A \times \mathbb{T}$ onto the *k*-th coordinate of $\widetilde{D}_{\partial A}$ for *k* with $1 \leq k \leq 4$. For the map $\Phi: \mathbb{T} \times \widetilde{D}_{\partial A} \to \widetilde{D}_{\partial A}$, as in Definition 3.1, we define $\phi: \mathbb{T} \times \widetilde{D}_{\partial A} \to D$, $\psi: \mathbb{T} \times \widetilde{D}_{\partial A} \to \partial A$, $\varphi: \mathbb{T} \times \widetilde{D}_{\partial A} \to \partial A$, and $\omega: \mathbb{T} \times \widetilde{D}_{\partial A} \to \mathbb{T}$ by $\phi = q_1 \circ \Phi$, $\psi = q_2 \circ \Phi \varphi = q_3 \circ \Phi$ and $\omega = q_4 \circ \Phi$, respectively.

For each $\lambda \in \mathbb{T}$, we also write $\phi(\lambda, \mathbf{p}) = \phi_{\lambda}(\mathbf{p}), \psi(\lambda, \mathbf{p}) = \psi_{\lambda}(\mathbf{p}), \varphi(\lambda, \mathbf{p}) = \varphi_{\lambda}(\mathbf{p})$ and $\omega(\lambda, \mathbf{p}) = \omega_{\lambda}(\mathbf{p})$ for all $\mathbf{p} \in D_{\partial A}$.

Recall that $\pi_j: D \to [0,1]$ is the natural projection of $D \subset [0,1] \times [0,1]$ to the *j*-th coordinate for $j = 1, 2$. By the definition of ϕ , ψ , φ and ω , we have $(\pi_1(\phi_\lambda(\mathbf{p})), \pi_2(\phi_\lambda(\mathbf{p}))) \in D$ and

$$
\Phi(\lambda,\bm p)=(\phi_\lambda(\bm p),\psi_\lambda(\bm p),\varphi_\lambda(\bm p),\omega_\lambda(\bm p))
$$

for every $(\lambda, \mathbf{p}) \in \mathbb{T} \times \widetilde{D}_{\partial A}$. By (2.1) ,

$$
\widetilde{F}(\Phi(\lambda,\mathbf{p})) = F(\pi_1(\phi_{\lambda}(\mathbf{p})))(\psi_{\lambda}(\mathbf{p})) + \omega_{\lambda}(\mathbf{p})F'(\pi_2(\phi_{\lambda}(\mathbf{p})))(\varphi_{\lambda}(\mathbf{p})) \qquad (3.6)
$$

for all $F \in C^1([0,1], A)$ and $(\lambda, p) \in \mathbb{T} \times D_{\partial A}$. Note that ϕ, ψ, φ and ω are surjective and continuous since so is Φ (see Definition 3.1).

Lemma 3.6. *The function* $\pi_1 \circ \phi_1$: $D_{\partial A} \rightarrow [0, 1]$ *is a surjective continuous function with* $\pi_1(\phi_1(\mathbf{p})) = \pi_1(\phi_\lambda(\mathbf{p}))$ *for all* $\mathbf{p} \in \widetilde{D}_{\partial A}$ *and* $\lambda \in \mathbb{T}$ *.*

Proof. Let $p \in \widetilde{D}_{\partial A}$. We will prove $\pi_1(\phi_\lambda(p)) \in \{\pi_1(\phi_1(p)), \pi_1(\phi_i(p))\}$ for all $\lambda \in \mathbb{T}$. To do this, suppose, on the contrary, that there exists $\lambda_0 \in \mathbb{T} \setminus \{1, i\}$ such that $\pi_1(\phi_{\lambda_0}(\mathbf{p})) \notin \{\pi_1(\phi_1(\mathbf{p})), \pi_1(\phi_i(\mathbf{p}))\}$. Choose $f_0 \in C^1([0,1])$ so that

$$
f_0(\pi_1(\phi_{\lambda_0}(\boldsymbol{p}))) = 1, \quad f_0(\pi_1(\phi_1(\boldsymbol{p}))) = 0 = f_0(\pi_1(\phi_i(\boldsymbol{p})))
$$

and
$$
f'_0(\pi_2(\phi_{\mu}(\boldsymbol{p}))) = 0 \qquad (\mu = \lambda_0, 1, i).
$$

 $\text{We set } F_0 = f_0 \otimes \mathbf{1}_X \in C^1([0,1], A)$. By $(3.6), F_0(\Phi(\lambda_0, \mathbf{p})) = 1$ and $F_0(\Phi(1, \mathbf{p})) =$ $0 = \widetilde{F_0}(\Phi(i, \mathbf{p}))$. Substituting these equalities into (3.5) to get $\lambda_0^{\varepsilon_0(\mathbf{p})} = 0$, which contradicts $\lambda_0 \in \mathbb{T}$. Consequently, we obtain $\pi_1(\phi_\lambda(\mathbf{p})) \in \{\pi_1(\phi_1(\mathbf{p})), \pi_1(\phi_i(\mathbf{p}))\}$ for all $\lambda \in \mathbb{T}$.

We next prove that $\pi_1(\phi_1(\mathbf{p})) = \pi_1(\phi_i(\mathbf{p}))$. To this end, suppose that $\pi_1(\phi_1(\mathbf{p})) \neq \phi_1(\phi_1(\mathbf{p}))$. $\pi_1(\phi_i(\mathbf{p}))$. We set $\lambda_1 = (1+i)/\sqrt{2} \in \mathbb{T}$. We obtain $\pi_1(\phi_{\lambda_1}(\mathbf{p})) \in \{\pi_1(\phi_1(\mathbf{p})), \pi_1(\phi_i(\mathbf{p}))\}$ as proved above. We consider the case when $\pi_1(\phi_{\lambda_1}(\mathbf{p})) = \pi_1(\phi_1(\mathbf{p}))$. Choose $f_1 \in C^1([0,1])$ so that

$$
f_1(\pi_1(\phi_i(\mathbf{p}))) = 1
$$
, $f_1(\pi_1(\phi_1(\mathbf{p}))) = 0$
and $f'_1(\pi_2(\phi_\mu(\mathbf{p}))) = 0$ $(\mu = \lambda_1, 1, i)$.

Let $F_1 = f_1 \otimes \mathbf{1}_X \in C^1([0,1], A)$. Substituting these equalities into (3.6), we get $\widetilde{F}_1(\Phi(i, \mathbf{p})) = 1$ and $\widetilde{F}_1(\Phi(\lambda_1, \mathbf{p})) = 0 = \widetilde{F}_1(\Phi(1, \mathbf{p}))$. By (3.5), we obtain $0 = i\varepsilon_0(\mathbf{p})$, which contradicts $\varepsilon_0(\mathbf{p}) \in \{\pm 1\}$. By a similar arguments, we reach a contradiction $\mathbf{F}(\mathbf{F}(\mathbf{p})) = \pi_1(\phi_i(\mathbf{p}))$. Thus, we get $\pi_1(\phi_1(\mathbf{p})) = \pi_1(\phi_i(\mathbf{p}))$ for all $\mathbf{p} \in D_{\partial A}$, and consequently $\pi_1(\phi_1(\mathbf{p})) = \pi_1(\phi_1(\mathbf{p}))$ for all $\lambda \in \mathbb{T}$ and $\mathbf{p} \in D_{\partial A}$.

We show that $\pi_1 \circ \phi_1$ is surjective. Let $t_1 \in \pi_1(D)$, and then $\pi_1(\mathbf{t}) = t_1$ for some $t \in D$. Since ϕ is surjective, there exists $(\mu, \mathbf{q}) \in \mathbb{T} \times D_{\partial A}$ such that $\mathbf{t} = \phi(\mu, \mathbf{q}) =$ $\phi_{\mu}(\mathbf{q})$. By the fact proved in the last paragraph, $\pi_1(\phi_1(\mathbf{q})) = \pi_1(\phi_{\mu}(\mathbf{q})) = \pi_1(\mathbf{t}) = t_1$. This yields the surjectivity of $\pi_1 \circ \phi_1$. □

By a similar argument to Lemma 3.6, we can prove that $\pi_2(\phi_\lambda(\mathbf{p})) = \pi_2(\phi_1(\mathbf{p}))$ for all $\lambda \in \mathbb{T}$ and $p \in D_{\partial A}$. Just for the sake of completeness, here we give its proof.

Lemma 3.7. *The function* $\pi_2 \circ \phi_1$: $\widetilde{D}_{\partial A} \to [0,1]$ *is a surjective continuous function with* $\pi_2(\phi_1(\mathbf{p})) = \pi_2(\phi_\lambda(\mathbf{p}))$ *for all* $\mathbf{p} \in \widetilde{D}_{\partial A}$ *and* $\lambda \in \mathbb{T}$ *.*

Proof. Let $p \in D_{\partial A}$. By Lemma 3.6, $\phi_{\lambda}(p) = (\pi_1(\phi_1(p)), \pi_2(\phi_{\lambda}(p)))$ and $\Phi(\lambda, p) =$ $(\phi_{\lambda}(\mathbf{p}), \psi_{\lambda}(\mathbf{p}), \varphi_{\lambda}(\mathbf{p}), \omega_{\lambda}(\mathbf{p}))$ for $\lambda \in \mathbb{T}$. Equality (3.6) is reduced to

$$
\widetilde{F}(\Phi(\lambda,\mathbf{p})) = F(\pi_1(\phi_1(\mathbf{p})))(\psi_\lambda(\mathbf{p})) + \omega_\lambda(\mathbf{p})F'(\pi_2(\phi_\lambda(\mathbf{p})))(\varphi_\lambda(\mathbf{p})) \qquad (3.7)
$$

for all $F \in C^1([0, 1], A)$ and $\lambda \in \mathbb{T}$.

First, we show that $\pi_2(\phi_\lambda(\mathbf{p})) \in {\pi_2(\phi_1(\mathbf{p}))}, \pi_2(\phi_i(\mathbf{p}))\}$ for all $\lambda \in \mathbb{T}$. Suppose, on the contrary, that $\pi_2(\phi_{\lambda_0}(\boldsymbol{p})) \notin \{\pi_2(\phi_1(\boldsymbol{p})), \pi_2(\phi_i(\boldsymbol{p}))\}$ for some $\lambda_0 \in \mathbb{T} \setminus \{1, i\}$.

Then there exists $f_0 \in C^1([0,1])$ such that

$$
f_0(\pi_1(\phi_1(\mathbf{p}))) = 0
$$
, $f'_0(\pi_2(\phi_{\lambda_0}(\mathbf{p}))) = 1$
and $f'_0(\pi_2(\phi_1(\mathbf{p}))) = 0 = f'_0(\pi_2(\phi_i(\mathbf{p}))).$

 $\text{For} \ \ F_0 = f_0 \otimes \mathbf{1}_X \in C^1([0,1], A), \ \ F_0(\Phi(\lambda_0, \mathbf{p})) = \omega_{\lambda_0}(\mathbf{p}) \ \ \text{and} \ \ F_0(\Phi(1, \mathbf{p})) = 0 = 0$ $\widetilde{F_0}(\Phi(i, \mathbf{p}))$ by (3.7). If we substitute these equalities into (3.5), we have $\lambda_0^{\varepsilon_0(\mathbf{p})}\omega_{\lambda_0}(\mathbf{p})=$ 0 , which contradicts $\lambda_0, \omega_{\lambda_0}(\mathbf{p}) \in \mathbb{T}$. Consequently, $\pi_2(\phi_\lambda(\mathbf{p})) \in \{\pi_2(\phi_1(\mathbf{p})), \pi_2(\phi_i(\mathbf{p}))\}$ for all $\lambda \in \mathbb{T}$.

We next prove $\pi_2(\phi_1(\mathbf{p})) = \pi_2(\phi_i(\mathbf{p}))$. Suppose that $\pi_2(\phi_1(\mathbf{p})) \neq \pi_2(\phi_i(\mathbf{p}))$. For $\lambda_1 = (1 + i)/\sqrt{2} \in \mathbb{T}$, $\pi_2(\phi_{\lambda_1}(\mathbf{p})) \in {\pi_2(\phi_1(\mathbf{p}), \pi_2(\phi_i(\mathbf{p}))}$ by the last paragraph. If we assume $\pi_2(\phi_{\lambda_1}(\mathbf{p})) = \pi_2(\phi_1(\mathbf{p}))$, then we can choose $f_1 \in C^1([0,1])$ so that

$$
f_1(\pi_1(\phi_1(\mathbf{p}))) = 0 = f'_1(\pi_2(\phi_1(\mathbf{p})))
$$
 and $f'_1(\pi_2(\phi_i(\mathbf{p}))) = 1$.

Applying these equalities to (3.7), we obtain $\widetilde{F}_1(\Phi(i, \mathbf{p})) = \omega_i(\mathbf{p})$ and $\widetilde{F}_1(\Phi(1, \mathbf{p})) =$ $0 = F_1(\Phi(\lambda_1, \mathbf{p}))$ for $F_1 = f_1 \otimes \mathbf{1}_X \in C^1([0, 1], A)$, where we have used $\pi_2(\phi_{\lambda_1}(\mathbf{p})) =$ $\pi_2(\phi_1(\mathbf{p}))$. By (3.5), we have $0 = i\varepsilon_0(\mathbf{p})\omega_i(\mathbf{p})$, which is impossible. We reach a similar contradiction even if $\pi_2(\phi_{\lambda_1}(\mathbf{p})) = \pi_2(\phi_i(\mathbf{p}))$. Therefore, we conclude $\pi_2(\phi_1(\mathbf{p})) = \pi_2(\phi_i(\mathbf{p}))$. Consequently $\pi_2(\phi_1(\mathbf{p})) = \pi_2(\phi_2(\mathbf{p}))$ for all $\lambda \in \mathbb{T}$.

Finally, since ϕ is surjective, for each $t_2 \in [0,1] = \pi_2(D)$ there exists $(\mu, \mathbf{q}) \in$ $\mathbb{T} \times \widetilde{D}_{\partial A}$ such that $\pi_2(\phi(\mu, \boldsymbol{q})) = t_2$. By the last paragraph, we see that $t_2 =$ $\pi_2(\phi_\mu(\boldsymbol{q})) = \pi_2(\phi_1(\boldsymbol{q}))$, which shows the surjectivity of $\pi_2 \circ \phi_1$. □

Notation. For the sake of simplicity of notation, we will write $\pi_1(\phi_1(\mathbf{p})) = d_1(\mathbf{p})$ and $\pi_2(\phi_1(\mathbf{p})) = d_2(\mathbf{p})$ for $\mathbf{p} \in D_{\partial A}$. Then $\phi_1(\mathbf{p})$ is written as $(d_1(\mathbf{p}), d_2(\mathbf{p}))$.

Lemma 3.8. *The function* $\psi_1: \widetilde{D}_{\partial A} \to \partial A$ *is a surjective continuous function with* $\psi_1(\mathbf{p}) = \psi_\lambda(\mathbf{p})$ *for all* $\mathbf{p} \in \widetilde{D}_{\partial A}$ *and* $\lambda \in \mathbb{T}$ *.*

Proof. Let $p \in \widetilde{D}_{\partial A}$. By Lemma 3.7, equality (3.7) is reduced to

$$
\widetilde{F}(\Phi(\lambda,\mathbf{p})) = F(d_1(\mathbf{p}))(\psi_\lambda(\mathbf{p})) + \omega_\lambda(\mathbf{p})F'(d_2(\mathbf{p}))(\varphi_\lambda(\mathbf{p})) \tag{3.8}
$$

for all $F \in C^1([0,1], A)$ and $\lambda \in \mathbb{T}$.

First, we show that $\psi_{\lambda}(\mathbf{p}) \in {\psi_1(\mathbf{p}), \psi_i(\mathbf{p})}$ for all $\lambda \in \mathbb{T}$. Suppose, on the contrary, that there exists $\lambda_0 \in \mathbb{T} \setminus \{1, i\}$ such that $\psi_{\lambda_0}(p) \notin \{\psi_1(p), \psi_i(p)\}$. Then there exists $u_0 \in A$ such that

$$
u_0(\psi_{\lambda_0}(\mathbf{p}))) = 1
$$
 and $u_0(\psi_1(\mathbf{p})) = 0 = u_0(\psi_i(\mathbf{p})).$

 $\text{For } G_0 = \mathbf{1}_{[0,1]} \otimes u_0 \in C^1([0,1], A), \text{ we obtain } \widetilde{G}_0(\Phi(\lambda_0, \mathbf{p})) = 1 \text{ and } \widetilde{G}_0(\Phi(1, \mathbf{p})) = 1$ $0 = \widetilde{G}_0(\Phi(i, \mathbf{p}))$ by (3.8). If we substitute these equalities into (3.5), we get $\lambda_0^{\varepsilon_0(\mathbf{p})} =$ 0, which contradicts $\lambda_0 \in \mathbb{T}$. Consequently, $\psi_{\lambda}(\mathbf{p}) \in {\psi_1(\mathbf{p}), \psi_i(\mathbf{p})}$ for all $\lambda \in \mathbb{T}$.

We next prove that $\psi_1(\mathbf{p}) = \psi_i(\mathbf{p})$. Suppose that $\psi_1(\mathbf{p}) \neq \psi_i(\mathbf{p})$. We set $\lambda_1 = \psi_1(\mathbf{p})$ $(1 + i)/\sqrt{2} \in \mathbb{T}$, and then $\psi_{\lambda_1}(\mathbf{p}) \in {\psi_1(\mathbf{p}), \psi_i(\mathbf{p})}$ by the fact obtained in the last paramalgebra . If $\psi_{\lambda_1}(\boldsymbol{p}) = \psi_1(\boldsymbol{p}), \text{ then we can choose } u_1 \in A \text{ so that }$

$$
u_1(\psi_{\lambda_1}(\mathbf{p})) = 0 = u_1(\psi_1(\mathbf{p}))
$$
 and $u_1(\psi_i(\mathbf{p})) = 1$.

Equality (3.8), applied to $F = \mathbf{1}_{[0,1]} \otimes u_1 \in C^1([0,1], A)$, shows that $\widetilde{F}(\Phi(\lambda_1, \mathbf{p})) =$ $0 = \widetilde{F}(\Phi(1, \mathbf{p}))$ and $\widetilde{F}(\Phi(i, \mathbf{p})) = 1$. By (3.5), we have $0 = i\varepsilon_0(\mathbf{p})$, which is impossible. We can reach a similar contradiction even if $\psi_{\lambda_1}(\mathbf{p}) = \psi_i(\mathbf{p})$. Therefore, we conclude $\psi_1(\mathbf{p}) = \psi_i(\mathbf{p})$. Consequently $\psi_1(\mathbf{p}) = \psi_\lambda(\mathbf{p})$ for all $\lambda \in \mathbb{T}$.

Finally, we show that $\psi_1: D_{\partial A} \to \partial A$ is surjective. Since $\psi: \mathbb{T} \times D_{\partial A} \to \partial A$ is surjective, for each $x \in \partial A$ there exists $(\mu, \mathbf{q}) \in \mathbb{T} \times \widetilde{D}_{\partial A}$ such that $\psi(\mu, \mathbf{q}) = x$. By the last paragraph, we see $x = \psi_{\mu}(\mathbf{q}) = \psi_1(\mathbf{q})$, which shows that ψ_1 is surjective. \Box

Lemma 3.9. *The function* $\varphi_1: \widetilde{D}_{\partial A} \to \partial A$ *is a surjective continuous function with* $\varphi_1(\mathbf{p}) = \varphi_\lambda(\mathbf{p})$ *for all* $\mathbf{p} \in D_{\partial A}$ *and* $\lambda \in \mathbb{T}$ *.*

Proof. Let $p \in \tilde{D}_{\partial A}$. By Lemma 3.8, equality (3.8) is reduced to

$$
\widetilde{F}(\Phi(\lambda,\mathbf{p})) = F(d_1(\mathbf{p}))(\psi_1(\mathbf{p})) + \omega_\lambda(\mathbf{p})F'(d_2(\mathbf{p}))(\varphi_\lambda(\mathbf{p}))
$$
\n(3.9)

for all $F \in C^1([0,1], A)$ and $\lambda \in \mathbb{T}$.

First, we show that $\varphi_\lambda(\mathbf{p}) \in {\varphi_1(\mathbf{p}), \varphi_i(\mathbf{p})}$ for all $\lambda \in \mathbb{T}$. Suppose, on the contrary, that there exists $\lambda_0 \in \mathbb{T} \setminus \{1, i\}$ such that $\varphi_{\lambda_0}(p) \notin \{\varphi_1(p), \varphi_i(p)\}$. Then there exists $u_0 \in A$ such that

$$
u_0(\varphi_{\lambda_0}(\boldsymbol{p}))) = 1
$$
 and $u_0(\varphi_1(\boldsymbol{p})) = 0 = u_0(\varphi_i(\boldsymbol{p})).$

 $\text{For } G_0 = (\text{id} - d_1(\mathbf{p}) \mathbf{1}_{[0,1]}) \otimes u_0 \in C^1([0,1], A), \text{ we obtain } \overline{G}_0(\Phi(\lambda_0, \mathbf{p})) = \omega_{\lambda_0}(\mathbf{p})$ and $\widetilde{G}_0(\Phi(1,\mathbf{p})) = 0 = \widetilde{G}_0(\Phi(i,\mathbf{p}))$ by (3.9). If we substitute these equalities into (3.5), we get $\lambda_0^{\varepsilon_0(\boldsymbol{p})}\omega_{\lambda_0}(\boldsymbol{p}) = 0$, which contradicts $\lambda_0, \omega_{\lambda_0}(\boldsymbol{p}) \in \mathbb{T}$. Consequently, $\varphi_{\lambda}(\boldsymbol{p}) \in {\varphi_1(\boldsymbol{p}), \varphi_i(\boldsymbol{p})}$ for all $\lambda \in \mathbb{T}$.

We next prove that $\varphi_1(\mathbf{p}) = \varphi_i(\mathbf{p})$. Suppose that $\varphi_1(\mathbf{p}) \neq \varphi_i(\mathbf{p})$. Set $\lambda_1 = \mathbf{p}_1 \cdot \mathbf{p}_2$ $(1 + i)/\sqrt{2} \in \mathbb{T}$, and then $\varphi_{\lambda_1}(\mathbf{p}_0) \in {\varphi_1(\mathbf{p}), \varphi_i(\mathbf{p})}$ by the previous paragraph. If $\varphi_{\lambda_1}(\boldsymbol{p}) = \varphi_1(\boldsymbol{p})$, then we can choose $u_1 \in A$ so that

$$
u_1(\varphi_{\lambda_1}(\boldsymbol{p})) = 0 = u_1(\varphi_1(\boldsymbol{p}))
$$
 and $u_1(\varphi_i(\boldsymbol{p})) = 1$.

Equality (3.9), applied to $F = (\text{id} - d_1(\mathbf{p})\mathbf{1}_{[0,1]}) \otimes u_1 \in C^1([0,1], A)$, shows that $\widetilde{F}(\Phi(\lambda_1, \mathbf{p})) = 0 = \widetilde{F}(\Phi(1, \mathbf{p}))$ and $\widetilde{F}(\Phi(i, \mathbf{p})) = \omega_i(\mathbf{p})$. According to (3.5), we get $0 = i\varepsilon_0(\mathbf{p})\omega_i(\mathbf{p})$, which is impossible. We can reach a similar contradiction even if $\varphi_{\lambda_1}(\bm{p}) = \varphi_i(\bm{p}).$ Therefore, we conclude $\varphi_1(\bm{p}) = \varphi_i(\bm{p}).$ Consequently $\varphi_{\lambda}(\boldsymbol{p}) = \varphi_1(\boldsymbol{p})$ for all $\lambda \in \mathbb{T}$.

Finally, we show that $\varphi_1: \widetilde{D}_{\partial A} \to \partial A$ is surjective. Since $\varphi: \mathbb{T} \times \widetilde{D}_{\partial A} \to \partial A$ is surjective, for each $x \in \partial A$ there exists $(\mu, \mathbf{q}) \in \mathbb{T} \times D_{\partial A}$ such that $\varphi(\mu, \mathbf{q}) = x$.

By the last paragraph, we see that $x = \varphi_{\mu}(q) = \varphi_1(q)$, which shows that φ_1 is surjective. \Box

Lemma 3.10. *There exists a continuous function* ε_1 : $\widetilde{D}_{\partial A}$ \rightarrow {±1*} such that* $\omega_i(\mathbf{p}) = \varepsilon_1(\mathbf{p})\omega_1(\mathbf{p})$ *for all* $\mathbf{p} \in \widetilde{D}_{\partial A}$ *.*

Proof. Let $p \in \widetilde{D}_{\partial A}$. According to Lemmas from 3.6 to 3.9, we can write $\Phi(\lambda, p) =$ $((d_1(\mathbf{p}), d_2(\mathbf{p})), \psi_1(\mathbf{p}), \varphi_1(\mathbf{p}), \omega_\lambda(\mathbf{p}))$ for all $\lambda \in \mathbb{T}$. We set $\lambda_0 = (1 + i)$ / *√* 2 *∈* T and $f_0 = id - d_1(\mathbf{p}) \mathbf{1}_{[0,1]} \in C^1([0,1])$. Then $f_0(d_1(\mathbf{p})) = 0$ and $f'_0 = 1$ on [0, 1]. By (3.9), $F_0(\Phi(\mu, \mathbf{p})) = \omega_{\mu}(\mathbf{p})$ for $F_0 = f_0 \otimes \mathbf{1}_X \in C^1([0, 1], A)$ and $\mu = \lambda_0, 1, i$. If we apply these equalities to (3.5), then we obtain $\sqrt{2} \lambda_0^{\varepsilon_0(\mathbf{p})} \omega_{\lambda_0}(\mathbf{p}) = \omega_1(\mathbf{p}) + i\varepsilon_0(\mathbf{p})\omega_i(\mathbf{p})$. As $\omega_{\lambda}(\boldsymbol{p}) \in \mathbb{T}$ for all $\lambda \in \mathbb{T}$,

$$
\sqrt{2} = |\omega_1(\boldsymbol{p}) + i\varepsilon_0(\boldsymbol{p})\omega_i(\boldsymbol{p})| = |1 + i\varepsilon_0(\boldsymbol{p})\omega_i(\boldsymbol{p})\overline{\omega_1(\boldsymbol{p})}|.
$$

Then we get $i\varepsilon_0(\mathbf{p})\omega_i(\mathbf{p})\overline{\omega_1(\mathbf{p})} = i$ or $i\varepsilon_0(\mathbf{p})\omega_i(\mathbf{p})\overline{\omega_1(\mathbf{p})} = -i$. Thus, for each $\mathbf{p} \in$ $\widetilde{D}_{\partial A}$, we derive $\omega_i(\mathbf{p}) = \varepsilon_0(\mathbf{p})\omega_1(\mathbf{p})$ or $\omega_i(\mathbf{p}) = -\varepsilon_0(\mathbf{p})\omega_1(\mathbf{p})$. By the continuity of ω_1 and ω_i , there exists a continuous function $\varepsilon_1: D_{\partial A} \to {\pm 1}$ such that $\omega_i(\mathbf{p}) =$ $\varepsilon_1(\boldsymbol{p})\omega_1(\boldsymbol{p})$ for all $\boldsymbol{p}\in D_{\partial A}$.

Notation. In the rest of this paper, we denote $a + ib\varepsilon$ by $[a + ib]^{\varepsilon}$ for $a, b \in \mathbb{R}$ and $\varepsilon \in {\pm 1}$. Therefore, $[\lambda \mu]^\varepsilon = [\lambda]^\varepsilon [\mu]^\varepsilon$ for all $\lambda, \mu \in \mathbb{C}$. If, in addition, $\lambda \in \mathbb{T}$, then $[\lambda]^\varepsilon = \lambda^\varepsilon.$

Lemma 3.11. *For each* $F \in C^1([0,1], A)$ *and* $p \in D_{\partial A}$ *,*

$$
S(\widetilde{F})(p) = [\alpha_1(p)F(d_1(p))(\psi_1(p))]^{\varepsilon_0(p)} + [\alpha_1(p)\omega_1(p)F'(d_2(p))(\varphi_1(p))]^{\varepsilon_0(p)\varepsilon_1(p)}.
$$
 (3.10)

Proof. Let $F \in C^1([0,1], A)$ and $p \in D_{\partial A}$. By the definition (3.3) of S_* , we have $\text{Re}\left[S_*(\chi)(\overline{F})\right] = \text{Re}\left[\chi(S(\overline{F}))\right]$ for every $\chi \in B^*$. Taking $\chi = \delta_p$ and $\chi = i\delta_p$ into the last equality, we get

$$
\operatorname{Re}\left[S_*(\delta_{\mathbf{p}})(\widetilde{F})\right] = \operatorname{Re}\left[S(\widetilde{F})(\mathbf{p})\right] \quad \text{and} \quad \operatorname{Re}\left[S_*(i\delta_{\mathbf{p}})(\widetilde{F})\right] = -\operatorname{Im}\left[S(\widetilde{F})(\mathbf{p})\right],
$$

respectively, where Im *z* is the imaginary part of a complex number *z*. Therefore,

$$
S(\widetilde{F})(p) = \text{Re}\left[S_*(\delta_p)(\widetilde{F})\right] - i \text{Re}\left[S_*(i\delta_p)(\widetilde{F})\right].\tag{3.11}
$$

By definition, $S_*(\delta_p) = \alpha_1(p)\delta_{\Phi(1,p)}$, and $S_*(i\delta_p) = i\varepsilon_0(p)\alpha_1(p)\delta_{\Phi(i,p)}$ by Lemma 3.4. Substitute these two equalities into (3.11) to obtain

$$
S(\widetilde{F})(p) = \text{Re} [\alpha_1(p)\widetilde{F}(\Phi(1,p))] + i \,\text{Im} [\varepsilon_0(p)\alpha_1(p)\widetilde{F}(\Phi(i,p))]. \tag{3.12}
$$

Lemmas from 3.6 to 3.10 imply that $\Phi(1,p) = (\phi_1(p), \psi_1(p), \varphi_1(p), \omega_1(p))$ and $\Phi(i, \mathbf{p}) = (\phi_1(\mathbf{p}), \psi_1(\mathbf{p}), \varphi_1(\mathbf{p}), \varepsilon_1(\mathbf{p})\omega_1(\mathbf{p}))$. It follows from (2.1) that

$$
\widetilde{F}(\Phi(1,\boldsymbol{p})) = F(d_1(\boldsymbol{p})(\psi_1(\boldsymbol{p})) + \omega_1(\boldsymbol{p})F'(d_2(\boldsymbol{p}))(\varphi_1(\boldsymbol{p})), \n\widetilde{F}(\Phi(i,\boldsymbol{p})) = F(d_1(\boldsymbol{p}))(\psi_1(\boldsymbol{p})) + \varepsilon_1(\boldsymbol{p})\omega_1(\boldsymbol{p})F'(d_2(\boldsymbol{p}))(\varphi_1(\boldsymbol{p})).
$$

Applying these two equalities to (3.12), we derive

$$
S(\widetilde{F})(p)=[\alpha_1(p)F(d_1(p))(\psi_1(p))]^{\varepsilon_0(p)}+[\alpha_1(p)\omega_1(p)F'(d_2(p))(\varphi_1(p))]^{\varepsilon_0(p)\varepsilon_1(p)}.
$$

This completes the proof. □

4. Properties of induced maps

In this section, we shall simplify equality (3.10). By (3.2), $S(\widetilde{F}) = T_0(F)$ for $F \in$ $C^1([0, 1], A)$. Applying (2.1) , we can rewrite (3.10) as

$$
T_0(F)(t_1)(x_1) + zT_0(F)'(t_2)(x_2)
$$

= $[\alpha_1(\mathbf{p})F(d_1(\mathbf{p}))(\psi_1(\mathbf{p}))]^{\varepsilon_0(\mathbf{p})} + [\alpha_1(\mathbf{p})\omega_1(\mathbf{p})F'(d_2(\mathbf{p}))(\varphi_1(\mathbf{p}))]^{\varepsilon_0(\mathbf{p})\varepsilon_1(\mathbf{p})} (4.1)$

for all $F \in C^1([0,1], A)$ and $p = (t_1, t_2, x_1, x_2, z) \in \tilde{D}_{\partial A}$.

Lemma 4.1. Let $(t_1, t_2) \in D$, $x_1, x_2 \in \partial A$ and $\mathbf{p}_z = (t_1, t_2, x_1, x_2, z) \in \widetilde{D}_{\partial A}$ for each $z \in \mathbb{T}$ *. Then* $\phi_1(\mathbf{p}_{z_1}) = \phi_1(\mathbf{p}_{z_2})$ for each $z_1, z_2 \in \mathbb{T}$ *.*

Proof. Let $z_1, z_2, z_3 \in \mathbb{T}$. We first show that $d_1(\mathbf{p}_{z_k}) = d_1(\mathbf{p}_{z_l})$ for some $k, l \in \{1, 2, 3\}$ with $k \neq l$. To this end, it is enough to consider the case when z_1, z_2, z_3 are mutually distinct. Suppose that $d_1(\mathbf{p}_{z_1}), d_1(\mathbf{p}_{z_2}), d_1(\mathbf{p}_{z_3})$ are mutually distinct. There exists $f_0 \in C^1([0,1])$ such that

$$
f_0(d_1(\mathbf{p}_{z_1})) = 1
$$
, $f_0(d_1(\mathbf{p}_{z_2})) = 0 = f_0(d_1(\mathbf{p}_{z_3}))$
and $f'_0(d_2(\mathbf{p}_{z_j})) = 0$ $(j = 1, 2, 3)$.

Equality (4.1), applied to $F_0 = f_0 \otimes \mathbf{1}_X \in C^1([0,1], A)$, implies that

$$
T_0(F_0)(t_1)(x_1) + z_1 T_0(F_0)'(t_2)(x_2) = [\alpha_1(\mathbf{p}_{z_1})]^{\varepsilon_0(\mathbf{p}_{z_1})},
$$

\n
$$
T_0(F_0)(t_1)(x_1) + z_j T_0(F_0)'(t_2)(x_2) = 0
$$
 (j = 2, 3).

Since $z_2 \neq z_3$, we have $T_0(F_0)'(t_2)(x_2) = 0 = T_0(F_0)(t_1)(x_1)$. This is impossible $|\alpha_1(\mathbf{p}_{z_1})|=1$, which shows that $d_1(\mathbf{p}_{z_k})=d_1(\mathbf{p}_{z_l})$ for some $k, l \in \{1, 2, 3\}$ with $k \neq l$.

Next, we prove that $d_2(\mathbf{p}_{z_m}) = d_2(\mathbf{p}_{z_n})$ for some $m, n \in \{1, 2, 3\}$ with $m \neq n$. Suppose not, that is, $d_2(\mathbf{p}_{z_1}), d_2(\mathbf{p}_{z_2})$ and $d_2(\mathbf{p}_{z_3})$ are all distinct. There exists $f_1 \in$ $C^1([0,1])$ such that

$$
f'_1(d_2(\mathbf{p}_{z_1})) = 1
$$
, $f'_1(d_2(\mathbf{p}_{z_2})) = 0 = f'_1(d_2(\mathbf{p}_{z_3}))$
and $f_1(d_1(\mathbf{p}_{z_j})) = 0$ $(j = 1, 2, 3)$.

Let $F_1 = f_1 \otimes \mathbf{1}_X \in C^1([0,1], A)$. According to (4.1), we obtain

$$
T_0(F_1)(t_1)(x_1) + z_1 T_0(F_1)'(t_2)(x_2) = [\alpha_1(\mathbf{p}_{z_1})\omega_1(\mathbf{p}_{z_1})]^{\varepsilon_0(\mathbf{p}_{z_1})\varepsilon_1(\mathbf{p}_{z_1})},
$$

\n
$$
T_0(F_1)(t_1)(x_1) + z_j T_0(F_1)'(t_2)(x_2) = 0 \qquad (j = 2, 3).
$$

Since $z_2 \neq z_3$, we have $T_0(F_1)'(t_2)(x_2) = 0 = T_0(F_1)(t_1)(x_1)$. This contradicts $\alpha_1(\mathbf{p}_{z_1}), \omega_1(\mathbf{p}_{z_1}) \in \mathbb{T}$, and consequently $d_2(\mathbf{p}_{z_m}) = d_2(\mathbf{p}_{z_n})$ for some $m, n \in \{1, 2, 3\}$ with $m \neq n$.

Let $z_1, z_2 \in \mathbb{T}$. Now we prove $\phi_1(\mathbf{p}_{z_1}) = \phi_1(\mathbf{p}_{z_2})$. Suppose, on the contrary, $d_j(\mathbf{p}_{z_1}) \neq d_j(\mathbf{p}_{z_2})$ for some $j \in \{1, 2\}$. By the fact prove in the last paragraph, we get $d_j(\mathbf{p}_z) \in \{d_j(\mathbf{p}_{z_1}), d_j(\mathbf{p}_{z_2})\}$ for all $z \in \mathbb{T}$. Note that ϕ_1 is continuous by the definition (see Definition 3.2). Since \mathbb{T} is connected and the map $z \mapsto d_i(\mathbf{p}_z) = \pi_i(\phi_1(\mathbf{p}_z))$ is continuous on T, the image of T under this map is connected as well. This contradicts $d_j(\mathbf{p}_{z_1}) \neq d_j(\mathbf{p}_{z_2})$. We thus conclude that $d_j(\mathbf{p}_{z_1}) = d_j(\mathbf{p}_{z_2})$ for $j = 1, 2$. $\text{Hence }\phi_1(\boldsymbol{p}_{z_1})=(d_1(\boldsymbol{p}_{z_1}),d_2(\boldsymbol{p}_{z_1}))=\phi_1(\boldsymbol{p}_{z_2})$). \Box

Lemma 4.2. Let $(t_1, t_2) \in D$, $x_1, x_2 \in \partial A$ and $\mathbf{p}_z = (t_1, t_2, x_1, x_2, z) \in \widetilde{D}_{\partial A}$ for each $z \in \mathbb{T}$ *. Then* $\psi_1(\mathbf{p}_{z_1}) = \psi_1(\mathbf{p}_{z_2})$ and $\varphi_1(\mathbf{p}_{z_1}) = \varphi_1(\mathbf{p}_{z_2})$ for each $z_1, z_2 \in \mathbb{T}$ *.*

Proof. Let $z_1, z_2, z_3 \in \mathbb{T}$. We first show that $\psi_1(\mathbf{p}_{z_k}) = \psi_1(\mathbf{p}_{z_l})$ for some $k, l \in$ $\{1, 2, 3\}$ with $k \neq l$. To do this, we need to consider the case when z_1, z_2, z_3 are mutually distinct. Suppose that $\psi_1(\mathbf{p}_{z_1}), \psi_1(\mathbf{p}_{z_2}), \psi_1(\mathbf{p}_{z_3})$ are mutually distinct. There exists a function $u_0 \in A$ such that

$$
u_0(\psi_1(\mathbf{p}_{z_1})) = 1
$$
 and $u_0(\psi_1(\mathbf{p}_{z_2})) = 0 = u_0(\psi_1(\mathbf{p}_{z_3})).$

Let $F_0 = \mathbf{1}_{[0,1]} \otimes u_0 \in C^1([0,1], A)$. As an application of (4.1) to $F = F_0$ shows

$$
T_0(F_0)(t_1)(x_1) + z_1 T_0(F_0)'(t_2)(x_2) = [\alpha_1(\mathbf{p}_{z_1})]^{\varepsilon_0(\mathbf{p}_{z_1})},
$$

\n
$$
T_0(F_0)(t_1)(x_1) + z_j T_0(F_0)'(t_2)(x_2) = 0
$$
 (j = 2, 3).

Since $z_2 \neq z_3$, we obtain $T_0(F_0)'(t_2)(x_2) = 0 = T_0(F_0)(t_1)(x_1)$. This is impossible $|\alpha_1(\mathbf{p}_{z_1})| = 1$. This yields $\psi_1(\mathbf{p}_{z_k}) = \psi_1(\mathbf{p}_{z_l})$ for some $k, l \in \{1, 2, 3\}$ with $k \neq l$.

Next, we prove that $\varphi_1(\mathbf{p}_{z_m}) = \varphi_1(\mathbf{p}_{z_n})$ for some $m, n \in \{1, 2, 3\}$ with $m \neq n$. Suppose not, and then, $\varphi_1(\mathbf{p}_{z_1}), \varphi_1(\mathbf{p}_{z_2})$ and $\varphi_1(\mathbf{p}_{z_3})$ are mutually distinct. Choose $u_1 \in A$ so that

$$
u_1(\varphi_1(\mathbf{p}_{z_1})) = 1
$$
 and $u_1(\varphi_1(\mathbf{p}_{z_2})) = 0 = u_1(\varphi_1(\mathbf{p}_{z_3})).$

Notice, by Lemma 4.1, that $d_1(\mathbf{p}_{z_j})$ and $d_2(\mathbf{p}_{z_j})$ are independent of *j*. There exists $f_1 \in C^1([0,1])$ such that

$$
f_1(d_1(\mathbf{p}_{z_j})) = 0
$$
 and $f'_1(d_2(\mathbf{p}_{z_j})) = 1$.

Let $F_1 = f_1 \otimes u_1 \in C^1([0,1], A)$. According to (4.1), we obtain

$$
T_0(F_1)(t_1)(x_1) + z_1 T_0(F_1)'(t_2)(x_2) = [\alpha_1(\mathbf{p}_{z_1})\omega_1(\mathbf{p}_{z_1})]^{\varepsilon_0(\mathbf{p}_{z_1})\varepsilon_1(\mathbf{p}_{z_1})},
$$

$$
T_0(F_1)(t_1)(x_1) + z_j T_0(F_1)'(t_2)(x_2) = 0 \qquad (j = 2, 3).
$$

Since $z_2 \neq z_3$, we get $T_0(F_1)'(t_2)(x_2) = 0 = T_0(F_1)(t_1)(x_1)$. This contradicts $\alpha_1(\pmb{p}_{z_1}), \omega_1(\pmb{p}_{z_1}) \in \mathbb{T}$, and consequently $\varphi_1(\pmb{p}_{z_m}) = \varphi_1(\pmb{p}_{z_n})$ for some $m, n \in \{1, 2, 3\}$ with $m \neq n$, as is claimed.

We show that $\psi_1(\mathbf{p}_{z_1}) = \psi_1(\mathbf{p}_{z_2})$ and $\varphi_1(\mathbf{p}_{z_1}) = \varphi_1(\mathbf{p}_{z_2})$ for each $z_1, z_2 \in \mathbb{T}$. Let $z_1, z_2 \in \mathbb{T}$. Note that ψ_1 and φ_1 are continuous by the definition (see Definition 3.2). Since the maps $z \mapsto \psi_1(\mathbf{p}_z)$ and $z \mapsto \varphi_1(\mathbf{p}_z)$ are continuous on the connected set T, the ranges $\{\psi_1(\mathbf{p}_z): z \in \mathbb{T}\}\$ and $\{\varphi_1(\mathbf{p}_z): z \in \mathbb{T}\}\$ are both connected sets. If $\psi_1(\mathbf{p}_{z_1}) \neq \psi_1(\mathbf{p}_{z_2})$, then $\psi_1(\mathbf{p}_z) \in \{\psi_1(\mathbf{p}_{z_1}), \psi_1(\mathbf{p}_{z_2})\}$ for all $z \in \mathbb{T}$ by the fact proved above. This contradicts the connectedness of the set $\{\psi_1(\mathbf{p}_z): z \in \mathbb{T}\}\$. We thus conclude $\psi_1(\mathbf{p}_{z_1}) = \psi_1(\mathbf{p}_{z_2})$. By a similar reasoning, we get $\varphi_1(\mathbf{p}_{z_1}) = \varphi_1(\mathbf{p}_{z_2})$. \Box

Proposition 4.3. Let $\lambda, \mu \in \mathbb{C}$. If $|\lambda + z\mu| = 1$ for all $z \in \mathbb{T}$, then $\lambda \mu = 0$ and $|\lambda| + |\mu| = 1$.

Proof. Suppose, on the contrary, that $\lambda \mu \neq 0$. Choose $z_1 \in \mathbb{T}$ so that $\mu z_1 =$ $\lambda |\mu||\lambda|^{-1}$, and set $z_2 = -z_1$. By hypothesis, $|\lambda + z_1 \mu| = 1 = |\lambda + z_2 \mu|$, that is,

$$
\left|\lambda + \frac{\lambda|\mu|}{|\lambda|}\right| = 1 = \left|\lambda - \frac{\lambda|\mu|}{|\lambda|}\right|.
$$

These equalities yield $|\lambda| + |\mu| = ||\lambda| - |\mu||$. This implies that $\lambda = 0$ or $\mu = 0$, which contradicts the hypothesis that $\lambda \mu \neq 0$. Thus $\lambda \mu = 0$, and then $|\lambda| + |\mu| = 1$. \Box

Recall that $\mathbf{1}_K$ denotes the constant function on a set K with $\mathbf{1}_K(x) = 1$ for *x* ∈ *K*. We also note that **1** = **1**_[0,1] ⊗ **1***X* ∈ *C*¹([0,1]*, A*).

Lemma 4.4. Let $\lambda \in \{1, i\}$. Then $T_0(\lambda \mathbf{1})'(t)(x) = 0$ for all $t \in [0, 1]$ and $x \in \partial A$.

Proof. Let $\lambda \in \{1, i\}$. For each $(t_1, t_2) \in D$, $x \in \partial A$ and $z \in \mathbb{T}$, we set $p =$ $(t_1, t_2, x, x, z) \in D_{\partial A}$. By the equality $(4.1), T_0(\lambda \mathbf{1})(t_1)(x) + zT_0(\lambda \mathbf{1})'(t_2)(x) =$ $[\lambda \alpha_1(\boldsymbol{p})]^{\varepsilon_0(\boldsymbol{p})}$, and thus

$$
|T_0(\lambda \mathbf{1})(t_1)(x) + zT_0(\lambda \mathbf{1})'(t_2)(x)| = 1
$$

 $-60-$

for all $z \in \mathbb{T}$. Proposition 4.3 shows that

$$
T_0(\lambda \mathbf{1})(t_1)(x) \cdot T_0(\lambda \mathbf{1})'(t_2)(x) = 0,\t(4.2)
$$

$$
|T_0(\lambda \mathbf{1})(t_1)(x)| + |T_0(\lambda \mathbf{1})'(t_2)(x)| = 1
$$
\n(4.3)

for each $(t_1, t_2) \in D$ and $x \in \partial A$. Let $x \in \partial A$, and we set

$$
D_1(x) = \{(t_1, t_2) \in D : T_0(\lambda \mathbf{1})(t_1)(x) = 0 \text{ and } |T_0(\lambda \mathbf{1})'(t_2)(x)| = 1\},
$$

\n
$$
D_2(x) = \{(t_1, t_2) \in D : T_0(\lambda \mathbf{1})'(t_2)(x) = 0 \text{ and } |T_0(\lambda \mathbf{1})(t_1)(x)| = 1\}.
$$

Equalities (4.2) and (4.3) show that $D_1(x) \cup D_2(x) = D$ and $D_1(x) \cap D_2(x) = \emptyset$. Since the functions $t \mapsto T_0(\lambda \mathbf{1})(t)(x)$ and $t \mapsto T_0(\lambda \mathbf{1})'(t)(x)$ are continuous on [0, 1], $D_1(x)$ and $D_2(x)$ are both closed subsets of *D*. By the connectedness of *D*, we derive $D_1(x) = D$ or $D_2(x) = D$. Suppose that $D_1(x) = D$, and hence $(t_1, t_2) \in D$ implies $T_0(\lambda 1)(t_1)(x) = 0$ and $|T_0(\lambda 1)'(t_2)(x)| = 1$. Therefore,

$$
T_0(\lambda \mathbf{1})(t)(x) = 0 \quad (\forall t \in \pi_1(D)).
$$

Since $\pi_1(D) = [0, 1]$, we obtain

$$
T_0(\lambda \mathbf{1})(t)(x) = 0 = T_0(\lambda \mathbf{1})'(t)(x) \quad (\forall t \in [0, 1]).
$$

This contradicts (4.3), and hence $D_2(x) = D$. By the liberty of the choice of $x \in \partial A$, we get $D_2(x) = D$ for all $x \in \partial A$. Since $\pi_2(D) = [0, 1]$, we conclude $T_0(\lambda \mathbf{1})'(t)(x) = 0$ for all $t \in [0, 1]$ and $x \in \partial A$.

Lemma 4.5. *The values* $\varepsilon_0(t_1, t_2, x_1, x_2, z)$ *and* $\varepsilon_1(t_1, t_2, x_1, x_2, z)$ *, as in Lemmas 3.4 and 3.10, respectively, are independent of variables* $(t_1, t_2) \in D$ *and* $z \in \mathbb{T}$ *; we shall write* $\varepsilon_k(t_1, t_2, x_1, x_2, z) = \varepsilon_k(x_1, x_2)$ *for* $k = 0, 1$ *.*

Proof. Let $k = 0, 1$ and $x_1, x_2 \in \partial A$. The function $\varepsilon_k(\cdot, \cdot, x_1, x_2, \cdot)$, which sends (t_1, t_2, z) to $\varepsilon_k(t_1, t_2, x_1, x_2, z)$, is continuous on the connected set $D \times \mathbb{T}$. Hence, the image of $D \times \mathbb{T}$ under the function is a connected subset of $\{\pm 1\}$. Then we deduce that the value $\varepsilon_k(t_1, t_2, x_1, x_2, z)$ is independent of $(t_1, t_2) \in D$ and $z \in \mathbb{T}$. \Box

Lemma 4.6. (1) *The value* $\varepsilon_0(x_1, x_2)$ *is independent of* $x_2 \in \partial A$ *; we shall write* $\varepsilon_0(x_1, x_2) = \varepsilon_0(x_1)$.

- (2) *There exists* $\beta \in A$ *with* $|\beta| = 1$ *on* ∂A *such that*
	- (a) $T_0(1)(t)(x) = \beta(x)$ *for all* $t \in [0,1]$ *and* $x \in \partial A$ *,*
	- (b) $T_0(i\mathbf{1})(t)(x) = i\varepsilon_0(x)T_0(\mathbf{1})(t)(x) = i\varepsilon_0(x)\beta(x)$ for all $t \in [0,1]$ and $x \in$ *∂A,*

(c)
$$
[\alpha_1(\mathbf{p})]^{\varepsilon_0(x_1)} = \beta(x_1)
$$
 for all $\mathbf{p} = (t_1, t_2, x_1, x_2, z) \in D_{\partial A}$.

Proof. Let $\lambda \in \{1, i\}$. For each $x \in \partial A$, the function $T_0(\lambda \mathbf{1})_x : [0, 1] \to \mathbb{C}$, defined by $T_0(\lambda \mathbf{1})_x(t) = T_0(\lambda \mathbf{1})(t)(x)$ for $t \in [0,1]$, is continuously differentiable with $(T_0(\lambda \mathbf{1})_x)'(t) = T_0(\lambda \mathbf{1})'(t)(x)$ for all $t \in [0,1]$. Thus, Lemma 4.4 shows that

 $(T_0(\lambda \mathbf{1})_x)'(t) = 0$ for all $t \in [0,1]$. Hence, $T_0(\lambda \mathbf{1})_x$ is constant on [0, 1]. There exists $\beta_{\lambda}(x) \in \mathbb{C}$ such that $T_0(\lambda \mathbf{1})_x = \beta_{\lambda}(x)$. We may regard β_{λ} as a function on *X*. Since $T_0(\lambda \mathbf{1}) \in C^1([0,1], A)$, we obtain $\beta_{\lambda} \in A$.

Let $(t_1, t_2) \in D$, $x_1, x_2 \in \partial A$ and $z \in \mathbb{T}$. Then $T_0(\lambda \mathbf{1})'(t_2)(x_2) = 0$ by Lemma 4.4. According to (4.1), we get $\beta_{\lambda}(x_1) = T_0(\lambda \mathbf{1})(t_1)(x_1) = [\lambda \alpha_1(t_1, t_2, x_1, x_2, z)]^{\varepsilon_0(x_1, x_2)}$. This implies $|\beta_{\lambda}| = 1$ on ∂A with

$$
\beta_i(x_1) = [i\alpha_1(t_1, t_2, x_1, x_2, z)]^{\varepsilon_0(x_1, x_2)}
$$

=
$$
[i]^{\varepsilon_0(x_1, x_2)}[\alpha_1(t_1, t_2, x_1, x_2, z)]^{\varepsilon_0(x_1, x_2)} = i\varepsilon_0(x_1, x_2)\beta_1(x_1),
$$

that is, $\beta_i(x_1) = i\varepsilon_0(x_1, x_2)\beta_1(x_1)$ for all $x_1, x_2 \in \partial A$. This shows that the value $\varepsilon_0(x_1, x_2)$ is independent of the variable $x_2 \in \partial A$. If we write $\varepsilon_0(x_1)$ instead of $\varepsilon_0(x_1, x_2)$, then $[\alpha_1(t_1, t_2, x_1, x_2, z)]^{\varepsilon_0(x_1)} = \beta_1(x_1)$ for all $(t_1, t_2, x_1, x_2, z) \in \widetilde{D}_{\partial A}$. By the choice of $\beta_{\lambda} \in A$, we have $T_0(1)(t)(x) = \beta_1(x)$ and $T_0(i1)(t)(x) = \beta_i(x)$ $i\varepsilon_0(x)\beta_1(x)$ for all $t \in [0,1]$ and $x \in \partial A$.

For the function $\beta \in A$ as in Lemma 4.6, we set

$$
\beta_0(x) = [\beta(x)]^{\varepsilon_0(x)} \qquad (x \in \partial A). \tag{4.4}
$$

Then $\alpha_1(\mathbf{p}) = [\beta(x_1)]^{\varepsilon_0(x_1)} = \beta_0(x_1)$ for $\mathbf{p} = (t_1, t_2, x_1, x_2, z) \in \widetilde{D}_{\partial A}$. By the help of Lemmas 4.1, 4.2, 4.5 and 4.6, we can rewrite (4.1) as

$$
T_0(F)(t_1)(x_1) + zT_0(F)'(t_2)(x_2) = [\beta_0(x_1)F(d_1(\mathbf{p}_1))(\psi_1(\mathbf{p}_1))]^{\varepsilon_0(x_1)} + [\beta_0(x_1)\omega_1(\mathbf{p}_2)F'(d_2(\mathbf{p}_1))(\varphi_1(\mathbf{p}_1))]^{\varepsilon_0(x_1)\varepsilon_1(x_1,x_2)} \quad (4.5)
$$

for $F \in C^1([0,1], A)$ and $p_z = (t_1, t_2, x_1, x_2, z) \in D_{\partial A}$.

Lemma 4.7. *Let* $id \in C^1([0,1])$ *be the identity function. Then*

$$
\pi_1(\phi_1(t_1, t_2, x_1, x_2, z)) = [\beta_0(x_1)]^{-\varepsilon_0(x_1)} T_0(\mathrm{id} \otimes \mathbf{1}_X)(t_1)(x_1) \tag{4.6}
$$

for all $(t_1, t_2) \in D$ *, x*₁*, x*₂ $\in \partial A$ *and* $z \in \mathbb{T}$ *.*

Proof. Let $(t_1, t_2) \in D$, $x_1, x_2 \in \partial A$ and $p_z = (t_1, t_2, x_1, x_2, z) \in \tilde{D}_{\partial A}$ for each $z \in \mathbb{T}$. Set $G = (\text{id} - d_1(\mathbf{p}_1) \mathbf{1}_{[0,1]}) \otimes \mathbf{1}_X \in C^1([0,1], A)$. Then, we see that $G(d_1(\mathbf{p}_1)) = 0$ on *X* and $G'(t) = \mathbf{1}_X$ for all $t \in [0,1]$. According to (4.5),

$$
T_0(G)(t_1)(x_1) + zT_0(G)'(t_2)(x_2) = [\beta_0(x_1)\omega_1(\mathbf{p}_z)]^{\varepsilon_0(x_1)\varepsilon_1(x_1,x_2)} \tag{4.7}
$$

for all $z \in \mathbb{T}$. Since $|\beta_0(x_1)| = |\omega_1(\mathbf{p}_z)| = 1$, we obtain

$$
|T_0(G)(t_1)(x_1) + zT_0(G)'(t_2)(x_2)| = 1
$$

for all $z \in \mathbb{T}$. By Proposition 4.3, $T_0(G)(t_1)(x_1) \cdot T_0(G)'(t_2)(x_2) = 0$ and $|T_0(G)(t_1)(x_1)| +$ $|T_0(G)'(t_2)(x_2)| = 1.$

We prove that $T_0(G)(t_1)(x_1) = 0$. Suppose not, and then we have $T_0(G)'(t_2)(x_2) =$ 0. Thus, $T_0(G)(t_1)(x_1) = [\beta_0(x_1)\omega_1(\mathbf{p}_z)]^{\varepsilon_0(x_1)\varepsilon_1(x_1,x_2)}$ for all $z \in \mathbb{T}$ by (4.7). It follows that the function ω_1 is independent of $z \in \mathbb{T}$. Hence we may write $\omega_1(\mathbf{p}_z) = w_0$ for all $z \in \mathbb{T}$. Let $h \in C^1([0,1])$ be such that $h(t_1) = 0$ and $h'(t_2) = 1$. Since *T*₀ is surjective, there exists $H \in C^1([0,1], A)$ such that $T_0(H) = h \otimes \mathbf{1}_X$. Then $T_0(H)(t_1)(x_1) = 0$ and $T_0(H)'(t_2)(x_2) = 1$. Equality (4.5), applied to $F = H$, shows that

$$
z = T_0(H)(t_1)(x_1) + zT_0(H)'(t_2)(x_2)
$$

= $[\beta_0(x_1)H(d_1(\mathbf{p}_1))(\psi_1(\mathbf{p}_1))]^{\varepsilon_0(x_1)} + [\beta_0(x_1)w_0H'(d_2(\mathbf{p}_1))(\varphi_1(\mathbf{p}_1))]^{\varepsilon_0(x_1)\varepsilon_1(x_1,x_2)}$

for all $z \in \mathbb{T}$. This is impossible, since the rightmost hand side of the above equalities does not depend on $z \in \mathbb{T}$. Consequently $T_0(G)(t_1)(x_1) = 0$ as is claimed.

By the choice of *G*, $T_0(G) = T_0(\text{id} \otimes \mathbf{1}_X) - T_0(d_1(\mathbf{p}_1)\mathbf{1}_{[0,1]} \otimes \mathbf{1}_X)$. Recall that $d_1(\mathbf{p}) \in [0,1]$ for all $\mathbf{p} \in D_{\partial A}$ by Definition 3.2. Since $T_0(G)(t_1)(x_1) = 0$, the real linearity of T_0 implies that

$$
T_0(\mathrm{id} \otimes \mathbf{1}_X)(t_1)(x_1) = d_1(\mathbf{p}_1)T_0(\mathbf{1}_{[0,1]} \otimes \mathbf{1}_X)(t_1)(x_1) = d_1(\mathbf{p}_1)T_0(\mathbf{1})(t_1)(x_1).
$$

Notice that $T_0(1)(t_1)(x_1) = [\beta_0(x_1)]^{\varepsilon_0(x_1)}$ by Lemma 4.6 with (4.4). This implies $T_0(\text{id} \otimes \mathbf{1}_X)(t_1)(x_1) = d_1(\mathbf{p}_1)[\beta_0(x_1)]^{\varepsilon_0(x_1)}$. By the liberty of the choice of $(t_1, t_2) \in D$ and $x_1, x_2 \in \partial A$, we conclude that

$$
\pi_1(\phi_1(t_1, t_2, x_1, x_2, z)) = [\beta_0(x_1)]^{-\varepsilon_0(x_1)} T_0(\mathrm{id} \otimes \mathbf{1}_X)(t_1)(x_1)
$$

for all $(t_1, t_2) \in D$, $x_1, x_2 \in \partial A$ and $z \in \mathbb{T}$.

By Lemma 4.7, $\pi_1(\phi_1(t_1, t_2, x_1, x_2, z))$ is independent of variables $t_2 \in [0, 1], x_2 \in$ *∂A* and $z \in \mathbb{T}$. We will write

$$
d_1(t_1, t_2, x_1, x_2, z) = d_1(t_1)(x_1) \qquad (t_1, t_2, x_1, x_2, z) \in D_{\partial A}.
$$
 (4.8)

By the definition of *d*1,

$$
d_1(t)(x) \in [0, 1] \qquad (t \in [0, 1], \, x \in \partial A) \tag{4.9}
$$

(see Definition 3.2), where we have used our hypothesis $\pi_1(D) = [0, 1]$. We may regard d_1 as a map from [0, 1] to $C(\partial A)$. Recall, by Lemma 4.6, that $\beta \in A$ satisfies $|\beta| = 1$ on ∂A . By equalities (4.4) and (4.6), d_1 : [0, 1] → $C(\partial A)$ is a continuously differentiable map with

$$
T_0(\mathrm{id} \otimes \mathbf{1}_X)(t)(x) = \beta(x)d_1(t)(x) \tag{4.10}
$$

for all $t \in [0, 1]$ and $x \in \partial A$.

 $-63-$

Lemma 4.8. *Let* $F_1 = id \otimes 1_X \in C^1([0,1], A)$ *and* $\kappa(t)(x) = T_0(F_1)'(t)(x)$ *for* $t \in [0, 1]$ *and* $x \in \partial A$ *. Then*

$$
\omega_1(\boldsymbol{p}_z) = \overline{\beta_0(x_1)} \left[z \kappa(t_2)(x_2) \right]^{\varepsilon_0(x_1)\varepsilon_1(x_1,x_2)} \n= \left[z \right]^{\varepsilon_0(x_1)\varepsilon_1(x_1,x_2)} \omega_1(\boldsymbol{p}_1)
$$
\n(4.11)

for each $p_z = (t_1, t_2, x_1, x_2, z) \in \widetilde{D}_{\partial A}$. In particular, $|\kappa(t)(x)| = 1$ for all $t \in [0,1]$ *and x ∈ ∂A.*

Proof. Let $F_1 = id \otimes \mathbf{1}_X$, $(t_1, t_2) \in D$ and $x_1, x_2 \in \partial A$. Set $p_z = (t_1, t_2, x_1, x_2, z) \in D$ $\widetilde{D}_{\partial A}$ for each $z \in \mathbb{T}$. Equalities (4.5) and (4.8), applied to *F* = *F*₁, yield

$$
T_0(F_1)(t_1)(x_1) + zT_0(F_1)'(t_2)(x_2)
$$

= $[\beta_0(x_1)d_1(t_1)(x_1)]^{\varepsilon_0(x_1)} + [\beta_0(x_1)\omega_1(\mathbf{p}_z)]^{\varepsilon_0(x_1)\varepsilon_1(x_1,x_2)}.$

By (4.4) , (4.9) and (4.10) , we derive

$$
T_0(F_1)(t_1)(x_1) = \beta(x_1)d_1(t_1)(x_1) = [\beta_0(x_1)d_1(t_1)(x_1)]^{\varepsilon_0(x_1)}.
$$

Hence

$$
zT_0(F_1)'(t_2)(x_2)=[\beta_0(x_1)\omega_1(\pmb{p}_z)]^{\varepsilon_0(x_1)\varepsilon_1(x_1,x_2)}.
$$

We thus obtain

$$
\omega_1(\mathbf{p}_z) = \overline{\beta_0(x_1)} \left[zT_0(F_1)'(t_2)(x_2) \right]^{\varepsilon_0(x_1)\varepsilon_1(x_1,x_2)} \n= \overline{\beta_0(x_1)} \left[z\kappa(t_2)(x_2) \right]^{\varepsilon_0(x_1)\varepsilon_1(x_1,x_2)} = [z]^{\varepsilon_0(x_1)\varepsilon_1(x_1,x_2)} \omega_1(\mathbf{p}_1).
$$

In particular, $|\kappa(t_2)(x_2)| = |\omega_1(\mathbf{p}_z)| = 1$ for all $t_2 \in [0,1]$ and $x_2 \in \partial A$. □

By (4.11) , equality (4.5) is reduced to

$$
T_0(F)(t_1)(x_1) + zT_0(F)'(t_2)(x_2)
$$

= $[\beta_0(x_1)F(d_1(t_1)(x_1))(\psi_1(\mathbf{p}_1))]^{\varepsilon_0(x_1)} + z\kappa(t_2)(x_2)[F'(d_2(\mathbf{p}_1))(\varphi_1(\mathbf{p}_1))]^{\varepsilon_0(x_1)\varepsilon_1(x_1,x_2)}$

for all $F \in C^1([0,1], A)$, $p_1 = (t_1, t_2, x_1, x_2, 1) \in D_{\partial A}$ and $z \in \mathbb{T}$. Comparing *z*-term and constant term in the last equality, we get

$$
T_0(F)(t_1)(x_1) = [\beta_0(x_1)F(d_1(t_1)(x_1))(\psi_1(\mathbf{p}_1))]^{\varepsilon_0(x_1)}
$$
(4.12)

$$
T_0(F)'(t_2)(x_2) = \kappa(t_2)(x_2)[F'(d_2(\mathbf{p}_1))(\varphi_1(\mathbf{p}_1))]^{\varepsilon_0(x_1)\varepsilon_1(x_1,x_2)}
$$

for all $F \in C^1([0,1], A)$ and $p_1 = (t_1, t_2, x_1, x_2, 1) \in D_{\partial A}$.

Lemma 4.9. If $x \in \partial A$, then either $d'_1(t)(x) = 1$ for all $t \in [0,1]$, or $d'_1(t)(x) = -1$ *for all* $t \in [0, 1]$ *.*

Proof. Fix $x_0 \in \partial A$ arbitrarily, and let $F_1 = id \otimes \mathbf{1}_X \in C^1([0,1], A)$. Lemma 4.8 shows

$$
|T_0(F_1)'(t)(x_0)| = |\kappa(t)(x_0)| = 1
$$
\n(4.13)

for all $t \in [0, 1]$. According to (4.10) , we derive

$$
T_0(F_1)'(t) = (\beta d_1(t))' = \beta d'_1(t)
$$

for all $t \in [0, 1]$, and then the map which sends t to $d'_{1}(t)(x_{0})$ is continuous on $[0, 1]$, since $d'_{1}(t)(x_{0}) = \beta(x_{0})T_{0}(F_{1})'(t)(x_{0})$ for $t \in [0,1]$. Equality (4.13) yields

 $|d'_{1}(t)(x_{0})| = |T_{0}(F_{1})'(t)(x_{0})| = 1$

for $t \in [0, 1]$. For each $t \in [0, 1]$, $|d'_{1}(t)(x_{0})| = 1$ implies $d'_{1}(t)(x_{0}) \in \{\pm 1\}$. The map $t \mapsto d'_{1}(t)(x_{0})$ is continuous on the connected set [0, 1], and then $d'_{1}(t)(x_{0}) = 1$ for all $t \in [0, 1]$, or $d'_{1}(t)(x_{0}) = -1$ for all $t \in [0, 1]$.

Lemma 4.10. *The value* $\psi_1(t_1, t_2, x_1, x_2, 1)$ *is independent of variables* $t_2 \in [0, 1]$ *and* $x_2 \in \partial A$ *; we will write* $\psi_1(t_1, t_2, x_1, x_2, 1) = \psi_1(t_1, x_1)$ *. Then* (4.12) *is reduced to*

$$
T_0(F)(t_1)(x) = [\beta_0(x)F(d_1(t_1)(x))(\psi_1(t_1, x))]^{\varepsilon_0(x)}
$$
\n(4.14)

for all $F \in C^1([0,1], A)$ *,* $t_1 \in [0,1]$ *and* $x \in \partial A$ *.*

Proof. Let $(t_1, t_2), (t_1, s_2) \in D$ and $x_1, x_2, y_2 \in \partial A$. We set $p_1 = (t_1, t_2, x_1, x_2, 1)$ and $q_1 = (t_1, s_2, x_1, y_2, 1)$. We will prove $\psi_1(p_1) = \psi_1(q_1)$. Let $F_u = \mathbf{1}_{[0,1]} \otimes u \in$ $C^1([0,1], A)$ for each $u \in A$. Equality (4.12) yields

$$
[\beta_0(x_1)u(\psi_1(\mathbf{p}_1))]^{\varepsilon_0(x_1)} = T(F_u)(t_1)(x_1) = [\beta_0(x_1)u(\psi_1(\mathbf{q}_1))]^{\varepsilon_0(x_1)},
$$

and therefore $u(\psi_1(\mathbf{p}_1)) = u(\psi_1(\mathbf{q}_1))$. Since A separates the points of ∂A , we obtain $\psi_1(\mathbf{p}_1) = \psi_1(\mathbf{q}_1)$. Hence, ψ_1 is independent of variables $t_2 \in [0,1]$ and $x_2 \in \partial A$. □

Let $C^1([0,1])$ be the normed linear space with

$$
||f||_{\langle D \rangle} = \sup_{(t_1, t_2) \in D} (|f(t_1)| + |f'(t_2)|) \qquad (f \in C^1([0, 1])).
$$

For each $x \in \partial A$, we define a linear map $V_x: A \to C^1([0,1])$ by

$$
V_x(u)(t) = T_0(\mathbf{1}_{[0,1]} \otimes u)(t)(x) \qquad (u \in A, \ t \in [0,1]).
$$

If we identify $f \in C^1([0,1])$ with $f \otimes \mathbf{1}_X \in C^1([0,1], A)$, we may regard $C^1([0,1])$ as a normed linear subspace of $C^1([0,1], A)$. We note, by (4.14) , that

$$
V_x(u)(t) = [\beta_0(x)u(\psi_1(t,x))]^{\varepsilon_0(x)} \qquad (u \in A, \ t \in [0,1]) \tag{4.15}
$$

for each $x \in \partial A$.

Lemma 4.11. For each $x \in \partial A$, the map $V_x: A \to C^1([0,1])$ is a bounded linear *operator with* $||V_x||_{op} \leq 1$.

Proof. For each $x \in \partial A$ and $u \in A$,

$$
||V_x(u)||_{\langle D\rangle} = \sup_{(t_1,t_2)\in D} (|T_0(\mathbf{1}_{[0,1]}\otimes u)(t_1)(x)| + |T_0(\mathbf{1}_{[0,1]}\otimes u)'(t_2)(x)|)
$$

\n
$$
\leq \sup_{(t_1,t_2)\in D} (||T_0(\mathbf{1}_{[0,1]}\otimes u)(t_1)||_X + ||T_0(\mathbf{1}_{[0,1]}\otimes u)'(t_2)||_X)
$$

\n
$$
= ||T_0(\mathbf{1}_{[0,1]}\otimes u)||_{\langle D\rangle} = ||\mathbf{1}_{[0,1]}\otimes u||_{\langle D\rangle}
$$

\n
$$
= \sup_{(t_1,t_2)\in D} (||(\mathbf{1}_{[0,1]}\otimes u)(t_1)||_X + ||(\mathbf{1}_{[0,1]}\otimes u)'(t_2)||_X) = ||u||_X,
$$

where we have used that T_0 is a real linear isometry on $C^1([0,1], A)$ with respect to *∥ · ∥⟨D⟩* . Thus, *V^x* is a bounded linear map with the operator norm *∥Vx∥*op *≤* 1. □

Recall that e_y denotes the point evaluation at $y \in \partial A$, defined by $e_y(u) = u(y)$ for $u \in A$. For each $t \in [0,1]$, we define a map Δ_t : $C^1([0,1]) \to \mathbb{C}$ by $\Delta_t(f) = f(t)$ for $f \in C^1([0,1])$. Then we observe that Δ_t is a bounded linear functional on $(C^1([0,1]), \|\cdot\|_{\langle D \rangle})$. In fact, for each $t \in [0,1]$ there exists $s \in [0,1]$ such that $(t, s) \in D$, since $\pi_1(D) = [0, 1]$. By the definition of $||f||_{\langle D \rangle}$,

$$
|\Delta_t(f)| \le |f(t)| + |f'(s)| \le ||f||_{\langle D \rangle}
$$

for all $f \in C^1([0,1])$. Hence, $||\Delta_t||_{op} = 1$ for all $t \in [0,1]$.

Lemma 4.12. For each $x \in \partial A$ and $s_1, s_2 \in [0, 1]$, let $y_j = \psi_1(s_j, x)$ for $j = 1, 2$. *Then* $||e_{y_1} - e_{y_2}||_{op} \leq 2|s_1 - s_2|$.

Proof. Let $x \in \partial A$ and $s_1, s_2 \in [0, 1]$. We need to consider the case when $s_1 \neq s_2$. Then

$$
||e_{y_1} - e_{y_2}||_{op} = \sup_{||u||_X \le 1} |u(y_1) - u(y_2)|
$$

=
$$
\sup_{||u||_X \le 1} |u(\psi_1(s_1, x)) - u(\psi_1(s_2, x))|
$$

=
$$
\sup_{||u||_X \le 1} |V_x(u)(s_1) - V_x(u)(s_2)|
$$

=
$$
\sup_{||u||_X \le 1} |\Delta_{s_1}(V_x(u)) - \Delta_{s_2}(V_x(u))|,
$$

where we have used equality (4.15) with $|\beta_0(x)| = 1$. By Lemma 4.11, the adjoint operator $V_x^*: C^1([0,1])^* \to A^*$ of V_x between the dual spaces of $C^1([0,1])$ and A is well defined with $||V_x^*||_{op} = ||V_x||_{op} \le 1$. It follows that

$$
||e_{y_1} - e_{y_2}||_{op} = \sup_{||u||_X \le 1} |V_x^*(\Delta_{s_1})(u) - V_x^*(\Delta_{s_2})(u)|
$$

\n
$$
= ||V_x^*(\Delta_{s_1} - \Delta_{s_2})||_{op} \le ||V_x^*||_{op} ||\Delta_{s_1} - \Delta_{s_2}||_{op}
$$

\n
$$
\le ||\Delta_{s_1} - \Delta_{s_2}||_{op} = \sup_{||f||_{\langle D\rangle} \le 1} |\Delta_{s_1}(f) - \Delta_{s_2}(f)|
$$

\n
$$
= \sup_{||f||_{\langle D\rangle} \le 1} |f(s_1) - f(s_2)|,
$$

and consequently, we obtain

$$
||e_{y_1} - e_{y_2}||_{\text{op}} \le \sup_{||f||_{\langle D \rangle} \le 1} |f(s_1) - f(s_2)|. \tag{4.16}
$$

Let $f \in C^1([0,1])$ be such that $||f||_{\langle D \rangle} \leq 1$. By the definition of $||f||_{\langle D \rangle}$ with $\pi_2(D) =$ [0, 1], we see that $||f'||_{[0,1]} \leq ||f||_{\langle D \rangle}$, and hence $||f'||_{[0,1]} \leq 1$. Since $s_1, s_2 \in [0,1]$ with $s_1 \neq s_2$, the mean value theorem shows that

$$
\frac{|f(s_1) - f(s_2)|}{|s_1 - s_2|} \le \frac{|\text{Re } f(s_1) - \text{Re } f(s_2)|}{|s_1 - s_2|} + \frac{|\text{Im } f(s_1) - \text{Im } f(s_2)|}{|s_1 - s_2|}
$$

$$
\le ||\text{Re } f'||_{[0,1]} + ||\text{Im } f'||_{[0,1]}
$$

$$
\le 2||f'||_{[0,1]} \le 2.
$$

It follows that $|f(s_1) - f(s_2)| \leq 2|s_1 - s_2|$ for all $f \in C^1([0,1])$ with $||f||_{\langle D \rangle} \leq 1$. Therefore, by equality (4.16), $||e_{y_1} - e_{y_2}||_{op} \leq 2|s_1 - s_2|$.

Lemma 4.13. *The function* $\psi_1(t_1, x_1)$ appeared in Lemma 4.10 is independent of *the variable* $t_1 \in [0,1]$ *; we will write* $\psi_1(t_1, x_1) = \psi_1(x_1)$ *.*

Proof. Let $x \in \partial A$. We set $I = \{t_1 \in [0,1] : \psi_1(t_1, x) = \psi_1(0, x)\}$. Then $0 \in I$ and thus $I \neq \emptyset$. Since ψ_1 is continuous, *I* is a closed subset of [0, 1]. Put $I^c = [0, 1] \setminus I$. We will prove that I^c is a closed set as well. Let $\{s_n\}$ be a sequence in I^c converging to $s_0 \in [0,1]$. We need to show that $s_0 \in I^c$, that is, $\psi_1(s_0, x) \neq \psi_1(0, x)$. Set $y_n = \psi_1(s_n, x)$ for $n \in \mathbb{N} \cup \{0\}$. By the choice of $\{s_n\}$, $y_n \neq \psi_1(0, x)$ for all *n* ∈ N. Lemma 4.12 shows that $||e_{y_n} - e_{y_0}||_{op} \leq 2|s_n - s_0|$ for all $n \in \mathbb{N}$. Because ${s_n}$ converges to *s*₀, there exists *m* \in N such that $||e_{y_m} - e_{y_0}||_{op} \leq 1$. By [3, Lemma 2.6.1], we obtain $e_{y_m} = e_{y_0}$ (see also [13, Lemma 6]). That is, $u(y_m) =$ $e_{y_m}(u) = e_{y_0}(u) = u(y_0)$ for all $u \in A$. We derive $y_m = y_0$ since A separates the points of *X*. By the choice of $\{s_n\}$, $\psi_1(0, x) \neq y_m = y_0 = \psi_1(s_0, x)$, and consequently, $\psi_1(0, x) \neq \psi_1(s_0, x)$ as is claimed.

Because *I* and $I^c = [0, 1] \setminus I$ are both disjoint closed subsets of the connected set $[0,1]$ with $I \neq \emptyset$, we have $I = [0,1]$. Therefore $\psi_1(t_1, x) = \psi_1(0, x)$ for all $t_1 \in [0,1]$, and hence ψ_1 does not depend on the variable $t_1 \in [0, 1]$.

5. Proof of the main theorem

By Lemmas 3.8 and 4.13 with (4.4) and (4.14), there exists a surjective continuous map ψ_1 : $\partial A \rightarrow \partial A$ such that

$$
T_0(F)(t)(x) = \beta(x)[F(d_1(t)(x))(\psi_1(x))]^{\varepsilon_0(x)}
$$
\n(5.1)

for all $F \in C^1([0, 1], A)$, $t \in [0, 1]$ and $x \in \partial A$.

Recall, by Lemma 4.9, that for each $x \in \partial A$, either $d'_{1}(t)(x) = 1$ for all $t \in [0,1]$, or $d'_{1}(t)(x) = -1$ for all $t \in [0, 1]$. For $j \in \{\pm 1\}$, we define

$$
K_j = \{ x \in \partial A : d'_1(t)(x) = j \quad (\forall t \in [0,1]) \}.
$$

Let $j \in \{\pm 1\}$ and $x_0 \in K_j$. By the definition of K_j , $d'_1(t)(x_0) = j$ for all $t \in [0,1]$. There exists $k \in \mathbb{R}$ such that $d_1(t)(x_0) = jt + k$ for all $t \in [0,1]$. Recall, by the definition of d_1 , that $d_1(t)(x_0) \in [0,1]$ for all $t \in [0,1]$. We have $k, j + k \in [0,1]$, which implies that $k = 0$ if $j = 1$, and $k = 1$ if $j = -1$. Consequently,

$$
d_1(t)(x) = \begin{cases} t & x \in K_1 \\ 1 - t & x \in K_{-1} \end{cases}
$$
 (5.2)

for all $t \in [0, 1]$.

Lemma 5.1. *The function* $\beta \in A$ *is invertible.*

Proof. We set $Y = [0, 1] \times \partial A$. We may and do assume that $C^1([0, 1], A|_{\partial A}) \subset C(Y)$. Under this identification, let

$$
\mathcal{A} = \{ F|_Y \in C(Y) : F \in C^1([0,1], A) \};
$$

we will write $F(t, x)$ instead of $F(t)(x)$ for $F \in C^1([0, 1], A)$, $t \in [0, 1]$ and $x \in \partial A$. We define a map $\mathcal{U}: \mathcal{A} \to \mathcal{A}$ by

$$
\mathcal{U}(F|_{Y}) = T_{0}(F)|_{Y} \qquad (F \in C^{1}([0, 1], A)).
$$

Since ∂A is a boundary for *A*, we observe that *U* is a well defined, surjective real linear isometry on $(A, \|\cdot\|_Y)$. Equality (5.1) shows

$$
\mathcal{U}(F|_{Y})(t,x) = \beta(x)[F(d_{1}(t)(x), \psi_{1}(x))]^{\varepsilon_{0}(x)} \qquad (F|_{Y} \in \mathcal{A}, \ (t,x) \in Y). \tag{5.3}
$$

Let $cl(A)$ be the uniform closure of A in $C(Y)$. We see that $cl(A)$ is a uniform algebra on *Y*. Let \hat{U} be the unique extension of U to cl(A). Then \hat{U} is a surjective real linear isometry on $(cl(A), \|\cdot\|_Y)$. Let $\partial(cl(A))$ be the Shilov boundary for cl(*A*). By [6, Theorem 3.3], there exist a continuous function $K: \partial(cl(A)) \to \mathbb{T}$, a homeomorphism $\rho: \partial(cl(A)) \to \partial(cl(A))$ and a closed and open set *N* of $\partial(cl(A))$ such that

$$
\widetilde{\mathcal{U}}(\mathcal{F})(y) = \begin{cases}\n\mathcal{K}(y)\mathcal{F}(\varrho(y)) & y \in N \\
\mathcal{K}(y)\overline{\mathcal{F}(\varrho(y))} & y \in \partial(\mathrm{cl}(\mathcal{A})) \setminus N\n\end{cases} (5.4)
$$

for all $\mathcal{F} \in \text{cl}(\mathcal{A})$. Then $\mathcal{K} = \mathcal{U}(1|_Y) = 1_{[0,1]} \otimes (\beta|_{\partial A})$ on $\partial(\text{cl}(\mathcal{A}))$ by (5.3). Without loss of generality, we may assume $K = \mathbf{1}_{[0,1]} \otimes (\beta|_{\partial A})$ on *Y*, and then $K \in \text{cl}(\mathcal{A})$. Since *U* is surjective, there exists $G \in cl(A)$ such that $U(G) = 1|_Y$. By (5.4), $K \cdot \widetilde{\mathcal{U}}(\mathcal{G}^2) = {\widetilde{\mathcal{U}}(\mathcal{G})}^2 = 1|_Y$ on $\partial(\mathrm{cl}(\mathcal{A}))$. Since $\partial(\mathrm{cl}(\mathcal{A}))$ is a boundary for $\mathrm{cl}(\mathcal{A})$, we have that $K = \mathbf{1}_{[0,1]} \otimes (\beta|_{\partial A})$ is invertible in cl(*A*). For $K^{-1} \in \text{cl}(\mathcal{A})$, there exists $G \in C^1([0,1], A)$ such that $||G||_Y - K^{-1}||_Y < 1$. Note that $||F(0)||_{\partial A} =$ $\sup_{x\in\partial A}|F(0)(x)|\leq \sup_{(t,x)\in Y}|F(t)(x)|=\|F|_Y\|_Y$ for all $F|_Y\in\mathcal{A}$. We set $g=G(0),$ and then $q \in A$. It follows that

$$
\|\beta g - \mathbf{1}_X\|_X = \|\beta g - \mathbf{1}_X\|_{\partial A} = \|\mathcal{K}(0)(G(0) - \mathcal{K}^{-1}(0))\|_{\partial A}
$$

\n
$$
\leq \|\mathcal{K}(G|_Y - \mathcal{K}^{-1})\|_Y = \|G|_Y - \mathcal{K}^{-1}\|_Y < 1,
$$

where we have used $|\beta| = 1$ on ∂A . Hence, $\beta g \in A^{-1}$, and there exists $h \in A$ such that $\beta gh = \mathbf{1}_X$ on *X*. Consequently $\beta \in A^{-1}$, as is claimed. □

Lemma 5.2. *The Gelfand transform* $\widehat{\beta}$ *of* β *is of modulus one on the maximal ideal space* \mathcal{M}_A *of* A *.*

Proof. Note that $||\hat{\beta}||_{\mathcal{M}_A} = ||\beta||_X = ||\beta||_{\partial A} = 1$, and therefore $|\hat{\beta}| \leq 1$ on \mathcal{M}_A . Because β is invertible, $\widehat{\beta}\beta^{-1} = 1$ on \mathcal{M}_A . In particular, $|\beta^{-1}| = 1$ on ∂A because *|β|* = 1 on *∂A*. Thus,

$$
\left\| \frac{1}{\hat{\beta}} \right\|_{\mathcal{M}_A} = \| \widehat{\beta^{-1}} \|_{\mathcal{M}_A} = \| \beta^{-1} \|_{\partial A} = 1,
$$

and hence $|1/\hat{\beta}| \leq 1$ on \mathcal{M}_A . Consequently, $|\hat{\beta}| = 1$ on \mathcal{M}_A .

Lemma 5.3. Let $F_1 = id \otimes 1_X \in C^1([0,1], A)$, $v_1 = \beta^{-1}T_0(F_1)(1) \in A$ and $v_{-1} =$ $1_X - v_1 \in A$. We set $\gamma_1(t) = t$ and $\gamma_{-1}(t) = 1 - t$ for $t \in [0, 1]$. For each $j \in \{\pm 1\}$

$$
T_0(F)(t)(x)v_j(x) = \beta(x)[F(\gamma_j(t))(\psi_1(x))]^{\varepsilon_0(x)}v_j(x)
$$
\n(5.5)

for all $F \in C^1([0,1], A)$ *,* $t \in [0,1]$ *and* $x \in \partial A$ *.*

Proof. By (5.1), we obtain $v_1 = [d_1(1)]^{\epsilon_0}$ on ∂A . Equality (5.2) implies that $v_1 = 1$ on K_1 and $v_1 = 0$ on K_{-1} . Hence $v_j^2 = v_j$ on ∂A for $j = \pm 1$. Since ∂A is a boundary for \widehat{A} , we see that $\widehat{v_j}^2 = \widehat{v_j}$ on \mathcal{M}_A , that is, both $\widehat{v_1}$ and $\widehat{v_{-1}}$ are idempotents for \widehat{A} . We define

$$
M_j = \{ \rho \in \mathcal{M}_A : \hat{v}_j(\rho) = 1 \} \qquad (j = \pm 1). \tag{5.6}
$$

We observe that both M_1 and M_{-1} are, possibly empty, closed and open subsets of *M*_{*A*} such that $M_{-1} \cup M_1 = M_A$ and $M_{-1} \cap M_1 = ∅$. By (5.2), $K_j \subset M_j$ for $j = ±1$. Since $v_j = 1$ on $\partial A \cap M_j$ and $v_j = 0$ on $\partial A \cap M_{-j}$, we obtain

$$
T_0(F)(t)(x)v_j(x) = \beta(x)[F(\gamma_j(t))(\psi_1(x))]^{\varepsilon_0(x)}v_j(x) \qquad (j = \pm 1)
$$

for all $F \in C^1([0,1], A)$, $t \in [0,1]$ and $x \in \partial A$.

Lemma 5.4. *The map* ψ_1 *is injective.*

Proof. Since T_0^{-1} has the same properties as T_0 , there exist $\beta_{-1} \in A^{-1}$, ρ_{-1} : [0, 1] \times $\partial A \to [0,1], \psi_{-1}: \partial A \to \partial A$ and $\varepsilon_{-1}: \partial A \to \{\pm 1\}$ such that

$$
T_0^{-1}(F)(t)(x) = \beta_{-1}(x)[F(\rho_{-1}(t)(x))(\psi_{-1}(x))]^{\varepsilon_{-1}(x)}
$$

for all $F \in C^1([0,1], A)$, $t \in [0,1]$ and $x \in \partial A$ (see (5.1)). Let $F_u = \mathbf{1}_{[0,1]} \otimes u \in$ $C^1([0,1], A)$ for each $u \in A$. If we set $s = d_1(t)(x)$ and $y = \psi_1(x)$, then

$$
u(x) = F_u(t)(x) = T_0(T_0^{-1}(F_u))(t)(x)
$$

\n
$$
= \beta(x)[T_0^{-1}(F_u)(d_1(t)(x))(\psi_1(x))]^{\varepsilon_0(x)} = \beta(x)[T_0^{-1}(F_u)(s)(y)]^{\varepsilon_0(x)}
$$

\n
$$
= \beta(x)\left[\beta_{-1}(y)[F_u(\rho_{-1}(s)(y))(\psi_{-1}(y))]^{\varepsilon_{-1}(y)}\right]^{\varepsilon_0(x)}
$$

\n
$$
= \beta(x)\left[\beta_{-1}(y)[u(\psi_{-1}(y))]^{\varepsilon_{-1}(y)}\right]^{\varepsilon_0(x)},
$$

and thus $[\beta^{-1}(x)u(x)]^{\varepsilon_0(x)} = \beta_{-1}(\psi_1(x))[u(\psi_{-1}(\psi_1(x)))]^{\varepsilon_{-1}(\psi_1(x))}$. If $\psi_1(x_1) = \psi_1(x_2)$, then the last equality shows that

$$
[\beta^{-1}(x_1)u(x_1)]^{\varepsilon_0(x_1)} = [\beta^{-1}(x_2)u(x_2)]^{\varepsilon_0(x_2)}
$$

for all $u \in A$. If $x_1 \neq x_2$, then we could choose $u \in A$ so that $u(x_1) = \beta(x_1)$ and $u(x_2) = 0$, which contradicts the above equality. Hence, we have $x_1 = x_2$, and consequently ψ_1 is injective. \Box

Lemma 5.5. *We define*

$$
A_{\varepsilon_0} = \{ u \circ \psi_1 : u \in A \} \subset C(\partial A).
$$

Then the map $\Psi: A \rightarrow A_{\epsilon_0}$ *, defined by*

$$
\Psi(u) = u \circ \psi_1 \qquad (u \in A), \tag{5.7}
$$

is a complex algebra isomorphism.

Proof. Equality (5.1) impiles that $\beta^{-1} \cdot T_0(\mathbf{1}_{[0,1]}\otimes u)(0) = [u \circ \psi_1]^{\varepsilon_0}$ on ∂A for all *u* $∈$ *A*. Since *A* separates the points of $∂A$ and since $ψ$ ₁ is injective, we see that A _{*ε*0} separates the points of ∂A , as well. We observe that A_{ε_0} is a uniform algebra on ∂A . The mapping $\Psi: A \to A_{\varepsilon_0}$, defined by (5.7) is a complex algebra homomorphism on *A*. Since *∂A* is a boundary for *A* and since *ψ*¹ is surjective on *∂A* (see Lemmas 3.8, 4.10 and 4.13), we see that Ψ is injective. \Box

Lemma 5.6. *Let* Ψ^* : $(A_{\varepsilon_0})^* \to A^*$ *be the adjoint of* Ψ *and let* $\mathcal{M}_{A_{\varepsilon_0}}$ *be the maximal ideal space of* A_{ε_0} . We define $\varepsilon_A = -i\beta^{-1}T_0(\mathbf{1}_{[0,1]}\otimes (i\mathbf{1}_X))(0) \in A$. Then $\Psi^*|_{\mathcal{M}_{A_{\varepsilon_0}}} : \mathcal{M}_{A_{\varepsilon_0}} \to \mathcal{M}_A$ is a homeomorphism with $\Psi^* = \psi_1$ on ∂A and

$$
\widehat{T_0(F)(t)} \cdot \widehat{v_j} = \widehat{\beta} \cdot [\widehat{F(\gamma_j(t))} \circ \Psi^*]^{\widehat{\epsilon_A}} \cdot \widehat{v_j} \tag{5.8}
$$

on ∂A *for all* $F \in C^1([0,1], A)$ *and* $t \in [0,1]$ *.*

Proof. By definition, Ψ*[∗]* is continuous with respect to the weak *-topology. Since Ψ is a homomorphism, $\Psi^*(\eta)$ is multiplicative, that is, $\Psi^*(\eta)(uv) = \Psi^*(\eta)(u) \cdot \Psi^*(\eta)(v)$ for all $\eta \in M_{A_{\varepsilon_0}}$, the maximal ideal space of A_{ε_0} , and $u, v \in A$. Then we see that $\Psi^*(\mathcal{M}_{A_{\varepsilon_0}}) \subset \mathcal{M}_A$. By the surjectivity of Ψ , we observe that $(\Psi^{-1})^*: A^* \to (A_{\varepsilon_0})^*$ is well defined with $(\Psi^{-1})^*(\mathcal{M}_A) \subset \mathcal{M}_{A_{\varepsilon_0}}$. Note that $(\Psi^{-1})^* = (\Psi^*)^{-1}$, and hence $\Psi^*|_{\mathcal{M}_{A_{\varepsilon_0}}} \colon \mathcal{M}_{A_{\varepsilon_0}} \to \mathcal{M}_A$ is a homeomorphism with the relative weak *-topology. We have

$$
\widehat{u}(\Psi^*(\zeta)) = \Psi^*(\zeta)(u) = \zeta(\Psi(u)) = \zeta(u \circ \psi_1)
$$

for all $u \in A$ and $\zeta \in M_{A_{\varepsilon_0}}$. Under the identification of ∂A with $\{e_x \in M_{A_{\varepsilon_0}} : x \in A\}$ ∂A [}], we obtain $\hat{u} \circ \Psi^* = u \circ \psi_1$ on ∂A for all $u \in A$. Since A separates the points of \mathcal{M}_A , we see that $\Psi^* = \psi_1$ on ∂A . By (5.1), we see that $\varepsilon_A = \varepsilon_0$ on ∂A . Equality (5.5) is rewritten as

$$
\widehat{T_0(F)(t)} \cdot \widehat{v_j} = \widehat{\beta} \cdot [\widehat{F(\gamma_j(t))} \circ \Psi^*]^{\widehat{\varepsilon}_A} \cdot \widehat{v_j}
$$

on ∂A for all $F \in C^1([0,1], A)$ and $t \in [0,1]$. □

Lemma 5.7. Let $A|_{\partial A} = \{u|_{\partial A} : u \in A\}$. Then $A|_{\partial A} = \{[u \circ \psi_1]^{\varepsilon_0} : u \in A\}$.

Proof. For each $u \in A$, we have $T_0(\mathbf{1}_{[0,1]}\otimes u) = \mathbf{1}_{[0,1]}\otimes (\beta \cdot [u \circ \psi_1]^{\varepsilon_0})$ on ∂A by (5.1) . Because $T_0(\mathbf{1}_{[0,1]}\otimes u) \in C^1([0,1], A)$, we see that $[u \circ \psi_1]^{\varepsilon_0} \in A|_{\partial A}$ for all $u \in A$. Hence $\{ [u \circ \psi_1]^{\varepsilon_0} : u \in A \} \subset A |_{\partial A}$. Conversely, for each $u \in A$ there exists $G_u \in C^1([0,1], A)$ such that $T_0(G_u) = \mathbf{1}_{[0,1]} \otimes \beta u$, since T_0 is surjective. Equality (5.5) shows $T_0(G_u)(t) \cdot v_j = \beta \cdot [G_u(\gamma_j(t)) \circ \psi_1]^{\varepsilon_0} \cdot v_j$ on ∂A for $j = \pm 1$ and $t \in [0, 1]$. By the choice of G_u , we have $u \cdot v_j = [G_u(\gamma_j(t)) \circ \psi_1]^{\varepsilon_0} \cdot v_j$ on ∂A for $j = \pm 1$ and $t \in [0, 1]$. This implies that $[G_u(t) \circ \psi_1]^{\varepsilon_0} = u$, and therefore, $G_u = \mathbf{1}_{[0,1]} \otimes [u \circ \psi_1^{-1}]^{\varepsilon_0 \circ \psi_1^{-1}}$ on $[0, 1] \times \partial A$. It follows that

$$
[u \circ \psi_1^{-1}]^{\varepsilon_0 \circ \psi_1^{-1}} \in A|_{\partial A} \qquad (u \in A). \tag{5.9}
$$

Now choose $v \in A$ arbitrarily, and then $[v \circ \psi_1^{-1}]^{\epsilon_0 \circ \psi_1^{-1}} \in A|_{\partial A}$ by (5.9). There exists $v_{\varepsilon_0} \in A$ such that $[v \circ \psi_1^{-1}]^{\varepsilon_0 \circ \psi_1^{-1}} = v_{\varepsilon_0}|_{\partial A}$. By the choice of v_{ε_0} , we obtain $[v_{\varepsilon_0} \circ \psi_1]^{\varepsilon_0} = \left[[v \circ \psi_1^{-1}]^{\varepsilon_0 \circ \psi_1^{-1}} \circ \psi_1 \right]^{\varepsilon_0} = v \text{ on } \partial A$, which shows that $v|_{\partial A} \in \{ [u \circ \psi_1]^{\varepsilon_0} :$ $u \in A$ for all $v \in A|_{\partial A}$. We thus conclude that $A|_{\partial A} = \{ [u \circ \psi_1]^{\varepsilon_0} : u \in A \}.$

Lemma 5.8. *Let* ε_A *be the element of A defined in Lemma 5.6. For each* $\xi \in M_{A|a_A}$, *we define a map* $\xi_{\epsilon_0}: A_{\epsilon_0} \to \mathbb{C}$ *by*

$$
\xi_{\varepsilon_0}(u \circ \psi_1) = \left[\xi([u \circ \psi_1]^{\varepsilon_0})\right]^{\xi(\varepsilon_A|_{\partial A})}
$$
(5.10)

 $for u \circ \psi_1 \in A_{\varepsilon_0}.$ *Then* $\xi_{\varepsilon_0} \in \mathcal{M}_{A_{\varepsilon_0}}.$

Proof. Recall that $\varepsilon_A = \varepsilon_0$ on ∂A by (5.1). Because $\varepsilon_0(x) \in \{\pm 1\}$ for $x \in \partial A$, we get $\{(\varepsilon_A + \mathbf{1}_X)/2\}^2 = (\varepsilon_A + \mathbf{1}_X)/2$ on ∂A . As ∂A is a boundary for \widehat{A} , we obtain $\widehat{\varepsilon_A}(\rho) \in \{\pm 1\}$ for $\rho \in \mathcal{M}_A$. Therefore, $(\varepsilon_A|_{\partial A})^2 = \mathbf{1}_X|_{\partial A}$, the unit element of $A|_{\partial A}$. We obtain $\{\xi(\varepsilon_A|_{\partial A})\}^2 = \xi(\mathbf{1}_X|_{\partial A}) = 1$ for all $\xi \in \mathcal{M}_{A|_{\partial A}}$. For each $\xi \in M_{A|_{\partial A}}$, let $\xi_{\varepsilon_0}: A_{\varepsilon_0} \to \mathbb{C}$ be the map described in (5.10). Here we notice that $A|_{\partial A} = \{ [u \circ \psi_1]^{\varepsilon_0} : u \in A \},$ and hence ξ_{ε_0} is well defined. By definition, ξ_{ε_0} is a non-zero, real linear and multiplicative functional on A_{ε_0} . We will prove that ξ_{ε_0} is complex linear. Since $\varepsilon_0 = \varepsilon_A|_{\partial A}$, we see that $[i\mathbf{1}_X \circ \psi_1]^{\varepsilon_0} = i\varepsilon_A|_{\partial A}$, and hence $\xi([i\mathbf{1}_X\circ\psi_1]^{\varepsilon_0})=\xi(i\varepsilon_A|_{\partial A})=i\xi(\varepsilon_A|_{\partial A})$ for $\zeta\in\mathcal{M}_{A|_{\partial A}}$. By the definition of ξ_{ε_0} , we derive $\xi_{\varepsilon_0}(i\mathbf{1}_X \circ \psi_1) = [i\xi(\varepsilon_A|_{\partial A})]^{\xi(\varepsilon_A|_{\partial A})} = i$. Since ξ_{ε_0} is real linear, we now obtain

$$
\xi_{\varepsilon_0}(\lambda \mathbf{1}_X \circ \psi_1) = \lambda \xi_{\varepsilon_0}(\mathbf{1}_X \circ \psi_1) = \lambda [\xi(\mathbf{1}_X |_{\partial A})]^{\xi(\varepsilon_A |_{\partial A})} = \lambda
$$

for $\lambda \in \mathbb{C}$. By the multiplicativity of ξ_{ε_0} , we get

$$
\xi_{\varepsilon_0}(\lambda(u \circ \psi_1)) = \xi_{\varepsilon_0}(\lambda \mathbf{1}_X \circ \psi_1) \xi_{\varepsilon_0}(u \circ \psi_1) = \lambda \xi_{\varepsilon_0}(u \circ \psi_1)
$$

for $u \in A$ and $\lambda \in \mathbb{C}$. This shows that ξ_{ε_0} is complex linear, and thus $\xi_{\varepsilon_0} \in \mathcal{M}_{A_{\varepsilon_0}}$. \Box

 $\textbf{Lemma 5.9.}$ $\textit{Define } \Gamma \colon \mathcal{M}_{A|_{\partial A}} \rightarrow \mathcal{M}_{A_{\varepsilon_0}}$ by

$$
\Gamma(\xi) = \xi_{\varepsilon_0} \qquad (\xi \in \mathcal{M}_{A|_{\partial A}}).
$$

Then Γ *is an injective and continuous map with the relative weak *-topology.*

Proof. Suppose that $\xi_1 \neq \xi_2$ for $\xi_1, \xi_2 \in \mathcal{M}_{A|_{\partial A}}$. Then there exists $u_0 \in A$ such that $\xi_1([u_0 \circ \psi_1]^{\varepsilon_0}) = 1$ and $\xi_2([u_0 \circ \psi_1]^{\varepsilon_0}) = 0$; this is possible since $A|_{\partial A} = \{[u \circ \psi_1]^{\varepsilon_0} : A|_{\partial A} = 0\}$ $u \in A$ }. By the definition of Γ with (5.10), we have $\Gamma(\xi_1)(u_0 \circ \psi_1) = 1 \neq 0$ Γ(*ξ*₂)(*u*₀ \circ *ψ*₁), which shows the injectivity of the map Γ. Now let {*ξ*_{*θ*}} be a net in $\mathcal{M}_{A|_{\partial A}}$ converging to $\xi_0 \in \mathcal{M}_{A|_{\partial A}}$. Because $(\varepsilon_A|_{\partial A})^2 = \mathbf{1}_X|_{\partial A}$, $(\xi_\vartheta(\varepsilon_A|_{\partial A}))^2 = 1$ $(\xi_0(\varepsilon_A|_{\partial A}))^2$, and thus for each ϑ , $\xi_{\vartheta}(\varepsilon_A|_{\partial A}) = \xi_0(\varepsilon_A|_{\partial A})$ or $\xi_{\vartheta}(\varepsilon_A|_{\partial A}) = -\xi_0(\varepsilon_A|_{\partial A})$. Since $\{\xi_{\vartheta}(\varepsilon_A|_{\partial A})\}$ converges to $\xi_0(\varepsilon_A|_{\partial A})$, we may assume that $\xi_{\vartheta}(\varepsilon_A|_{\partial A}) = \xi_0(\varepsilon_A|_{\partial A})$ for all ϑ . By the definition of Γ with (5.10),

$$
\Gamma(\xi_{\vartheta})(u \circ \psi_1) = [\xi_{\vartheta}([u \circ \psi_1]^{\varepsilon_0})]^{\xi_0(\varepsilon_A|_{\partial A})} \to [\xi_0([u \circ \psi_1]^{\varepsilon_0})]^{\xi_0(\varepsilon_A|_{\partial A})}
$$

$$
= \Gamma(\xi_0)(u \circ \psi_1)
$$

for each $u \in A$. This shows that the net $\{\Gamma(\xi_{\vartheta})\}$ converges to $\Gamma(\xi_0)$ with respect to the relative weak *-topology, and hence $\Gamma: \mathcal{M}_{A|_{\partial A}} \to \mathcal{M}_{A_{\varepsilon_0}}$ is continuous. \Box

Lemma 5.10. *The map* Γ *as in Lemma 5.9 is a homeomorphism with* $\Gamma(x) = x$ *for x ∈ ∂A.*

Proof. We need to prove that Γ is surjective. By (5.9), $\varepsilon_A \circ \psi_1^{-1} = [\varepsilon_A \circ \psi_1^{-1}]^{\varepsilon_0} \in A|_{\partial A}$. Then there exists $u_{\varepsilon_A} \in A$ such that $u_{\varepsilon_A}|_{\partial A} = \varepsilon_A \circ \psi_1^{-1}$; such a function u_{ε_A} is uniquely determined since ∂A is a boundary for A . Take $\zeta \in M_{A_{\varepsilon_{0}}}$ arbitrarily. Since $u_{\varepsilon_A} \circ \psi_1 = (\varepsilon_A \circ \psi_1^{-1}) \circ \psi_1 = \varepsilon_A |_{\partial A}$, we get

$$
\varepsilon_A|_{\partial A} = u_{\varepsilon_A} \circ \psi_1 \in A_{\varepsilon_0},
$$

and thus $\zeta(\varepsilon_A|_{\partial A}) = \zeta(u_{\varepsilon_A} \circ \psi_1)$. By the choice of ε_A , we obtain $(\varepsilon_A|_{\partial A})^2 = \mathbf{1}_X|_{\partial A}$, and then $\zeta(\varepsilon_A|_{\partial A}) \in \{\pm 1\}$. Now we define a map $\xi_{\zeta}: A|_{\partial A} \to \mathbb{C}$ by

$$
\xi_{\zeta}([u \circ \psi_1]^{\varepsilon_0}) = [\zeta(u \circ \psi_1)]^{\zeta(\varepsilon_A|_{\partial A})} \qquad (u \in A);
$$

the map ξ_{ζ} is well defined, since $A|_{\partial A} = \{ [u \circ \psi_1]^{\varepsilon_0} : u \in A \}$. Then ξ_{ζ} is non-zero, since $\zeta(u_1 \circ \psi_1) \neq 0$ for some $u_1 \circ \psi_1 \in A_{\varepsilon_0}$. We observe that ξ_{ζ} is a real linear and multiplicative functional on $A|_{\partial A}$. Recall $\varepsilon_A|_{\partial A} = \varepsilon_0$, and then $i = [i\varepsilon_A|_{\partial A}]^{\varepsilon_A|_{\partial A}} =$ $[iu_{\varepsilon_A} \circ \psi_1]^{\varepsilon_0} \in A|_{\partial A}$. Because $\zeta \in \mathcal{M}_{A_{\varepsilon_0}}$, we have

$$
\xi_{\zeta}(i) = \xi_{\zeta}([iu_{\varepsilon_A} \circ \psi_1]^{\varepsilon_0}) = [\zeta(iu_{\varepsilon_A} \circ \psi_1)]^{\zeta(\varepsilon_A|_{\partial A})}
$$

= $[i\zeta(u_{\varepsilon_A} \circ \psi_1)]^{\zeta(\varepsilon_A|_{\partial A})} = [i\zeta(\varepsilon_A|_{\partial A})]^{\zeta(\varepsilon_A|_{\partial A})} = i.$

For each $u \in A$, the multiplicativity of ξ_{ζ} shows that

$$
\xi_{\zeta}(i[u \circ \psi_1]^{\varepsilon_0}) = \xi_{\zeta}(i) \xi_{\zeta}([u \circ \psi_1]^{\varepsilon_0}) = i \xi_{\zeta}([u \circ \psi_1]^{\varepsilon_0}).
$$

Hence $\xi_{\zeta}(i[u\circ\psi_1]^{\varepsilon_0})=i\xi_{\zeta}([u\circ\psi_1]^{\varepsilon_0})$ for all $[u\circ\psi_1]^{\varepsilon_0}\in A|_{\partial A}$. By the real linearity of *ξ*_{*ζ*}, we infer that *ξ*_{*ζ*} is complex linear, and thus ξ _{*ζ*} \in *M*_{*A*|*∂A*. Since ε _{*A*}|*∂A* = *u*_{ε *A*} \circ *ψ*₁,} we get $\zeta(u_{\varepsilon_A} \circ \psi_1) \in \{\pm 1\}$. This shows that

$$
\zeta(\varepsilon_A|_{\partial A}) = \zeta(u_{\varepsilon_A} \circ \psi_1) = [\zeta(u_{\varepsilon_A} \circ \psi_1)]^{\zeta(\varepsilon_A|_{\partial A})}
$$

$$
= \xi_\zeta([u_{\varepsilon_A} \circ \psi_1]^{\varepsilon_0}) = \xi_\zeta(\varepsilon_A|_{\partial A})
$$

by the definition of ξ_ζ , that is, $\zeta(\varepsilon_A|_{\partial A}) = \xi_\zeta(\varepsilon_A|_{\partial A})$. We derive

$$
\Gamma(\xi_{\zeta})(u \circ \psi_1) = [\xi_{\zeta}([u \circ \psi_1]^{\varepsilon_0})]^{\xi_{\zeta}(\varepsilon_A|_{\partial A})} = [[\zeta(u \circ \psi_1)]^{\zeta(\varepsilon_A|_{\partial A})}]^{\zeta(\varepsilon_A|_{\partial A})}
$$

$$
= \zeta(u \circ \psi_1)
$$

for all $u \in A$. We thus conclude that Γ is surjective. Therefore, $\Gamma: \mathcal{M}_{A|_{\partial A}} \to \mathcal{M}_{A_{\varepsilon_0}}$ is a homeomorphism. In particular, if we identify $x \in \partial A$ with the evaluation functional e_x , then for each $u \in A$,

$$
\Gamma(x)(u \circ \psi_1) = \left[[u(\psi_1(x))]^{\varepsilon_0(x)} \right]^{\varepsilon_A(x)} = u(\psi_1(x))
$$

by (5.10), where we have used $\varepsilon_0 = \varepsilon_A|_{\partial A}$. Namely, $\widehat{u \circ \psi_1}(\Gamma(x)) = (u \circ \psi_1)(x)$ for all $u \in A$, and hence $\Gamma(x) = x$ for $x \in \partial A$.

Proof of Theorem. Let $\mathcal{R}: A \to A|_{\partial A}$ be the restriction, which maps $u \in A$ to $u|_{\partial A}$. Since *∂A* is a boundary for *A*, *R* is a complex algebra isomorphism. For the adjoint R^* of R , we see that $R^*|_{\mathcal{M}_{A|_{\partial A}}}$ is a homeomorphism from $\mathcal{M}_{A|_{\partial A}}$ onto \mathcal{M}_A with the relative weak *-topology. For each $u \in A$ and $\xi \in \mathcal{M}_{A|_{\partial A}}$,

$$
\widehat{u|_{\partial A}}(\xi) = \xi(\mathcal{R}(u)) = \mathcal{R}^*(\xi)(u) = \widehat{u}(\mathcal{R}^*(\xi)).
$$

If $x \in \partial A$, then $u(x) = u|_{\partial A}(x) = \hat{u}(\mathcal{R}^*(x))$ for all $u \in A$. Thus we see that $\mathcal{R}^*(x) =$ $x \text{ for } x \in \partial A$. Recall that the maps $\Psi^*|_{\mathcal{M}_{A_{\varepsilon_0}}} \colon \mathcal{M}_{A_{\varepsilon_0}} \to \mathcal{M}_A$, $\Gamma: \mathcal{M}_{A|_{\partial A}} \to \mathcal{M}_{A_{\varepsilon_0}}$ and $\mathcal{R}^*|_{\mathcal{M}_{A|_{\partial A}}} \colon \mathcal{M}_{A|_{\partial A}} \to \mathcal{M}_A$ are all homeomorphisms. We infer $(\mathcal{R}^*|_{\mathcal{M}_{A|_{\partial A}}})^{-1} =$ $(\mathcal{R}^{-1})^*|_{\mathcal{M}_A}$. Thus, the map $\sigma: \mathcal{M}_A \to \mathcal{M}_A$, defined by $\sigma = (\Psi^*|_{\mathcal{M}_{A_{\varepsilon_0}}}) \circ \Gamma \circ$ $(R^{-1})^*|_{\mathcal{M}_A}$, is a well defined homeomorphism on \mathcal{M}_A . For each $x \in \partial A$, $\Gamma(x) = x =$ $\mathcal{R}^*(x)$, and thus $\sigma = \Psi^*$ on ∂A . Therefore, (5.8) is rewritten as

$$
\widehat{T_0(F)(t)} \cdot \widehat{v_j} = \widehat{\beta} \cdot \widehat{F(\gamma_j(t))} \circ \sigma^{\widehat{\epsilon}_A} \cdot \widehat{v_j}
$$
\n(5.11)

on ∂A for all $F \in C^1([0,1], A)$ and $t \in [0,1]$.

Let $F \in C^1([0,1], A)$, $t \in [0,1]$ and $\rho \in \mathcal{M}_A$. We set $v = F(\gamma_j(t)) \in A$. By the definition of σ , $\sigma(\rho) = \Psi^*(\Gamma((\mathcal{R}^{-1})^*(\rho)))$. Hence

$$
\widehat{v}(\sigma(\rho)) = \sigma(\rho)(v) = \Gamma((\mathcal{R}^{-1})^*(\rho))(\Psi(v)).
$$

According to (5.7), $\Psi(v) = v \circ \psi_1$. Thus $\sigma(\rho)(v) = \Gamma((\mathcal{R}^{-1})^*(\rho))(v \circ \psi_1)$. By the definition of the map Γ with (5.10),

$$
\Gamma((\mathcal{R}^{-1})^*(\rho))(v \circ \psi_1) = [(\mathcal{R}^{-1})^*(\rho)([v \circ \psi_1]^{\varepsilon_0})]^{(\mathcal{R}^{-1})^*(\rho)(\varepsilon_A|_{\partial A})}
$$

=
$$
[\rho(\mathcal{R}^{-1}([v \circ \psi_1]^{\varepsilon_0}))]^{\rho(\mathcal{R}^{-1}(\varepsilon_A|_{\partial A}))}.
$$

Here, we notice $\mathcal{R}^{-1}(\varepsilon_A|_{\partial A}) = \varepsilon_A$ by the definition of the map \mathcal{R} . Therefore,

$$
[\widehat{v}(\sigma(\rho))]^{\widehat{\epsilon_A}(\rho)} = [[\rho(\mathcal{R}^{-1}([v \circ \psi_1]^{\epsilon_0}))]^{\rho(\epsilon_A)}]^{\rho(\epsilon_A)} = \rho(\mathcal{R}^{-1}([v \circ \psi_1]^{\epsilon_0}))
$$

= $\mathcal{R}^{-1}([v \circ \psi_1]^{\epsilon_0})(\rho).$

It follows that $[F(\gamma_j(t)) \circ \sigma]^{\varepsilon_A} = [\hat{v} \circ \sigma]^{\varepsilon_A} = \mathcal{R}^{-1}([v \circ \psi_1]^{\varepsilon_0}) \in \widehat{A}$. Equality (5.11) is valid on the boundary ∂A for \widehat{A} , we observe that (5.11) holds on \mathcal{M}_A . We set

$$
L_{+} = \{ \rho \in \mathcal{M}_{A} : \widehat{\varepsilon_{A}}(\rho) = 1 \}, \quad \text{and} \quad L_{-} = \{ \rho \in \mathcal{M}_{A} : \widehat{\varepsilon_{A}}(\rho) = -1 \}.
$$

By the continuity of $\widehat{\epsilon}_A$, both L_+ and L_- are closed and open sets satisfying $L_+ \cup$ $L_- = \mathcal{M}_A$ and $L_+ \cap L_- = \emptyset$. We define $M_j^+ = M_j \cap L_+$ and $M_j^- = M_j \cap L_-$ for

 $j = \pm 1$ (see (5.6)). Then we obtain

$$
\overline{T_0(F)(t)}(\rho) = \begin{cases}\n\widehat{\beta}(\rho)\widehat{F(t)}(\sigma(\rho)) & \rho \in M_1^+ \\
\widehat{\beta}(\rho)\overline{\widehat{F(t)}(\sigma(\rho))} & \rho \in M_1^- \\
\widehat{\beta}(\rho)\overline{F(1-t)}(\sigma(\rho)) & \rho \in M_{-1}^+ \\
\widehat{\beta}(\rho)\overline{\widehat{F(1-t)}(\sigma(\rho))} & \rho \in M_{-1}^- \\
\end{cases}
$$

for all $F \in C^1([0,1], A)$ and $t \in [0,1]$.

Acknowledgement. The authors are grateful to the referee for his/her valuable comments and suggestions which improved the manuscript.

References

- [1] S. Banach, Theory of linear operations, Translated by F. Jellett, Dover Publications, Inc. Mineola, New York, 2009.
- [2] F. Botelho and J. Jamison, Surjective isometries on spaces of differentiable vector-valued functions, Studia Math. **192** (2009), 39–50.
- [3] A. Browder, Introduction to function algebras, W.A. Benjamin Inc. New York, 1969.
- [4] M. Cambern, *Isometries of certain Banach algebras*, Studia Math. **25** (1964- 1965), 217–225.
- [5] R. Fleming and J. Jamison, *Isometries on Banach spaces: function spaces*, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 129. Chapman & Hall/CRC, Boca Raton, FL, 2003.
- [6] O. Hatori and T. Miura, *Real linear isometries between function algebras. II*, Cent. Eur. J. Math. **11** (2013), 1838–1842.
- [7] K. Kawamura, H. Koshimizu and T. Miura, *Norms on* $C^1([0,1])$ and *their isometries*, Acta Sci. Math. (Szeged) **84** (2018), 239–261. DOI: 10. 14232/actasm-017-331-0
- [8] H. Koshimizu, *Linear isometries on spaces of continuously differentiable and Lipschitz continuous functions*, Nihonkai Math. J. **22** (2011), 73–90.
- [9] L. Li and R. Wang, *Surjective isometries on the vector-valued differentiable function spaces*, J. Math. Anal. Appl. **427** (2015), 547–556.
- [10] L. Li, D. Chen, Q. Meng and Y.-S. Wang, *Surjective isometries on vector-valued differentiable function spaces*, Ann. Funct. Anal. **9** (2018), 334–343.
- [11] S. Mazur and S. Ulam, *Sur les transformationes isométriques d'espaces vectoriels norm´es*, C. R. Acad. Sci. Paris **194** (1932), 946–948.

- [12] T. Miura, *Real-linear isometries between function algebras*, Cent. Eur. J. Math. **9** (2001), 778–788. DOI: 10.2478/s11533-011-0044-9
- [13] S. Oi, *Homomorphisms between algebras of Lipschitz functions with the values in function algebras*, J. Math. Anal. Appl. **444** (2016), 210–229.
- [14] N.V. Rao and A.K. Roy, *Linear isometries of some function spaces*, Pacific J. Math. **38** (1971), 177–192.
- [15] W. Rudin, Real and complex analysis. Third edition. McGraw-Hill Book Co., New York, 1987.
- [16] M.H. Stone, *Applications of the theory of Boolean rings to general topology*, Trans. Amer. Math. Soc. **41** (1937), 375–481.
- [17] J. Väisälä, *A proof of the Mazur-Ulam theorem*, Amer. Math. Monthly, **110-7** (2003), 633–635.

(Hironao Koshimizu) National Institute of Technology, Yonago College, Yonago 683-8502, Japan *Email address*: koshimizu@yonago-k.ac.jp

(Takeshi Miura) Department of Mathematics, Faculty of Science, Niigata University, Niigata 950- 2181, Japan

Email address: miura@math.sc.niigata-u.ac.jp

Received 2019.10.31 Revised 2020.1.10