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SURJECTIVE ISOMETRIES ON C! SPACES OF
UNIFORM ALGEBRA VALUED MAPS

HIRONAO KOSHIMIZU AND TAKESHI MIURA

ABSTRACT. Let C'([0,1], A) be the Banach algebra of all continuously differen-
tiable maps from the closed unit interval [0, 1] to a uniform algebra A with respect
to certain norms. We prove that every surjective, not necessarily linear, isometry
on C*([0,1], A) is represented by homeomorphisms on [0, 1] and the maximal ideal
space of A.

1. Introduction and Preliminaries

The purpose of this paper is to characterize surjective isometries on C'([0,1], A),
the set of all continuously differentiable maps from the closed unit interval [0, 1]
to a uniform algebra A with respect to certain norms. The main result of this
paper generalizes the result of [7] for some of those norms. We will investigate the
structure of isometries on C*([0,1], A) to clarify the difference between the Banach
algebra C1([0,1]) and a uniform algebra A. For a strictly convex Banach space
E, surjective linear isometries on C* spaces of E-valued continuously differentiable
maps are characterized in [2, 9, 10]: uniform algebras are not strictly convex.

Let C(X) be the Banach algebra of all continuous complex valued functions on a
compact Hausdorff space X with respect to supremum norm ||u||x = sup,cy |u(x)]
for w € C(X). A uniformly closed subalgebra A of C'(X) is said to be a uniform
algebra on X if A contains the constants and separates the points of X in the
following sense: For each distinct points x,y € X there exists u € A such that
u(z) # u(y). We denote by Ran(u) the range of a function u € A. The peripheral
range Ran,(u) of u € A is defined by Ran,(u) = {z € Ran(u) : |z] = ||u||x}. An
element u € A is said to be a peaking function of A if Ran,(u) = {1}. A peak set E
of A is a compact subset of X such that £ = {z € X : u(x) = 1} for some peaking
function u € A. The strong boundary of A, denoted by b(A), is the set of all x € X
such that {z} is the intersection of a family of peak sets of A. It is well-known that
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the strong boundary b(A) of A has the following properties (see, for example [12,
Propositions 2.2 and 2.3]).

(1) For each € > 0, x € b(A) and open neighborhood O of z in X there exists a
peaking function u € A such that u(z) =1 = |lu||x and |u| <eon X\ O.
(2) For each u € A there exists © € b(A) such that |u(z)| = |Jul|x.

We denote by 0A the Shilov boundary of A, i.e., the smallest closed subset of X
with the property that sup,cy4 |u(z)| = ||ul|x for u € A. It is well known that b(A)
is contained in 0A and that b(A) is dense in A (cf. [3, Corollary 2.2.10]).

If A is a uniform algebra on X, then it is a commutative Banach algebra with
the supremum norm || - ||x. We denote by M4 the maximal ideal space of A, and
then M 4 is a compact Hausdorff space with the relative weak *-topology. We may
regard X as a subspace of M 4. The Gelfand transform @ of u € A is a continuous
function on My, defined by @(n) = n(u) for every n € M 4. Let e, be the point
evaluation functional, defined by e,(u) = u(x) for u € A and x € X. Then the map
x +— e, is a homeomorphism from X onto {e, : x € X} C My. Identifying X with
{e; : x € X}, we may and do assume X C My. Because ||u|am, = [Jullx = [|ulloa
for u € A, we observe that AA is a boundary for A = {u : u € A}.

For a uniform algebra A on X, we denote by C'([0,1], A) a complex linear space
of all A-valued continuously differentiable maps on [0, 1] in the following sense: For
each F € C'([0,1], A) there exists a continuous map F’: [0,1] — A such that, for
each ¢ € [0, 1],

F(t+h)— F(t) _o
h X ’
if t = 0,1, then the limit means the right-hand and left-hand one-sided limit, respec-

~F(1)

lim
h—0

tively. If X is a singleton, then we may regard A as C, and we write C''([0, 1]) instead
of C*(]0,1],C). For each F € C'([0,1],A) and z € X, the mapping F: [0,1] — C,
defined by F,(t) = F(t)(z), belongs to C'([0,1]) with (F,)'(t) = F'(t)(z); in fact,
for each t € [0, 1],

F.(t+h)— F.(t)
h

F(t+h) — F(t)

Y — 0

- F’(t)(x)\ < H 0

X
as h — 0.

Let T = {z € C: |z| = 1} be the unit circle and D a compact connected subset
of [0,1] x [0,1]. We denote by 7; the projection from D to the j-th coordinate of
0,1] x [0,1] for j = 1,2. For each F' € C'([0,1], A), we define || F||(p) by

1y = sup ([[F(t)[[x + [1F"(22) ] x)-

(tl,tQ)ED

If m9(D) = [0, 1], then we see that || - ||py is a norm on C*([0,1], A). For example, if
Dy = {(t,t) € [0,1]x[0,1] : £ € [0, 1]} then [[Fll(p,) = sup,epo,y (1F() [ x + 1 F7(#)] x)-



Cambern [4] characterized surjective complex linear isometries on C* ([0, 1]) with this
norm. I Dy = [0, 1] [0, 1] then [|Fll o = supy, e ()]l x +5upyyeo |1F/(82) .
for which Rao and Roy [14] gave the characterization of surjective complex linear
isometries on C'*(]0, 1]). Kawamura and the authors [7] of this paper introduced the
norm || - ||(py for unifying those norms.

The following is the main result of this paper. Theorem 1 says that every sur-
jective isometry on C'([0,1], A) is represented by homeomorphisms on [0, 1] and
the maximal ideal space of A. This implies that the Banach algebra C*(]0, 1]) and
a uniform algebra A have different structures. On the other hand, if we consider
C(X,C(Y)), the Banach space of all C(Y') valued continuous maps on X with the
supremum norm, then we may regard C'(X,C(Y)) as C(X x Y). By the Banach-
Stone theorem, every unital, surjective complex linear isometry from C'(X; x Y} ) onto
C(X3 x Y3) is induced by a homeomorphism from X, x Y5 onto X; x Y;. Generally
speaking, neither X; and X, nor Y; and Y5 are homeomorphic to each other.

Theorem 1. Let A be a uniform algebra on X, and D a compact connected subset
of [0,1] x [0,1] such that m (D) = m(D) = [0,1]. If T: C'([0,1], A) — C(]0,1], A)
1S a surjective isometry with respect to
1Flpy = sup (I[F(E)]lx + [1F7(t2)]]x)

(tl,tz)GD
for F e C'([0,1], A), then there exist an invertible element 5 € A with |3] =1 on
M, a homeomorphism o: M — My and closed and open, possibly empty, subsets
M, My, M™*, M~ C My with Mi" UM UMY UM—, = My, M 0 M7 =0 for
j==41and M, UMZ = My \ (M;"U M), such that

(B(p)F(t)(a(p)) — peMf
B(p)F(t)((p)) p €M

B(p)F(1—t)(a(p)) pe M

B(p)F(1—t)(a(p)) peE M,

for all F € C'([0,1], A) and t € [0,1], where To =T — T(0).
Conversely, if Ty is a map of the above form, then T = Ty + Fy is a surjective
isometry with respect to || - ||(py for every Fy € C*([0,1], A).

2. Characterization of extreme points

Throughout this paper, we denote D x K x K x T by Dy for each subset K of M 4.
Then Dy, is a compact Hausdorff space with respect to the product topology. For



each F € C'([0,1], A), we define the function F' on Dyy by

F(ty,ty, w1, 29, 2) = F(t1)(x1) + 2F(t2)(x2) (2.1)

for (t1,t, 21,29, 2) € Daa; for the sake of simplicity, we shall write (¢1,t2, 21, x9, 2)
instead of ((t1,t2), 21,29, 2). Then F' is a continuous function on Dy, with

HﬁHf)aA = sup [F(ty, 2, 21,23, 2)]
(tl,tz,xl,xQ,Z)EDaA
= sup |F(t1)(x1) + 2F (t2)(22)].

(tl,tg,xl,xg,z)eﬁaA
We may regard F' € C*([0,1],A) and F’: [0,1] — A as continuous functions on
[0,1] x X. Since A is a boundary for A, there exist (s1,$2) € D and y;,y, € 0A
such that
sup ([F(t)llx + [1F'(t2)l1x) = [F(s1) ()| + [F'(s2)(y2)]-
(t1,t2)ED

We can choose zp € T so that [F(s1)(y1)|+ |F'(s2)(y2)| = |F(s1)(y1) + 20F" (s2)(y2)],
and thus
£l oy = . SJI)PD(HF(tl)HX +F'(t2)lx) = [F(s1)(11) + 20F"(52) (1)
1,t2)€

< sup |F(t1) (1) + 2F'(t5) (22)]

(t1,t2,21,22,2)€Dpa

< sup ([|[F(t)llx + [[F'(t2)llx) = [|Fllpy-

(t1,t2)€D

Therefore, || F[|(p) = sup, |F(t1)(z1) + 2F'(t2)(x2)], and hence

tl,tg,xhxg,Z)ElN)@A

1Py = I1Fllp,, — (FeC(0,1],4)). (2.2)
Let 1, be constant function on a set K such that 1x(z) =1 for all z € K. Then
1p1 € C'([0,1]) and 1x € A. In the rest of this paper, we denote 1j1) ® 1x by 1.
We set

B={F € C(Dya): FeC0,1],4)}.
Then we see that B is a linear subspace of C'(Dys) with 1 € B. We define the
mapping U: (C'([0,1], A), || - llipy) = (B, || - I5,,) by

UF)=F (FeC([0,1],A)). (2.3)
Equalities (2.1) and (2.2) show that U is a surjective complex linear isometry.
For each f € C'([0,1]) and u € A, we define f @ u € C'([0,1], A) by

(f@u)t)(z) = ftulx)  (e[0,1], zcX).

By the definition of the derivative, we see that

(f @) (t)(x) = f'(t)u(z)



for all f € C1([0,1]), ue A, t €[0,1] and z € X.

We show that B separates the points of Dgaa. Let p = (t1,ta,21,29,2) € Dya and
q = (81,82, Y1, Y2, w) € Dya with p # q.

If 1 # s1, then choose f; € C*([0,1]) so that fi(t1) # fi(s1) and fi(t2) = fi(s2)
0. Let F, = fi ® 1x € C'([0,1], A), and then F} € B satisfies Fy(p) = fi(t1)
fi(s1) = Fi(g) by (2.1).

We now consider the case when ¢; = s; and ¢y # sy. There exists fo € C*([0,1])
such that fo(t1) = 0 = fao(s1), fa(te) = 1 and fy(s2) = 0. For I, = fo ® 1x €
C*([0,1], A), we have Fy(p) = z # 0 = Fy(q).

Suppose that ¢; = s; for j = 1,2 and 21 # y;. Since A separates the points of X,
there exists v; € A such that vy(z1) = 1 and vy(y1) = 0. Then Gy = 1 ® v; €
C([0,1], A) satisfies G1(p) = 1 # 0 = G1(q).

Now we suppose s # y2. We may assume that ¢; = s; for j = 1,2 and z; = y;.

Sl

We can choose vy € A with vy(z2) = 1 and va(y2) = 0 = va(x1) = ve(y1). Let id be
the identity function on [0,1]. If we define G5 = (id — t11}91) ® v2 € C([0,1], A),
then Ga(p) = z # 0 = Ga(q).

Finally, if z # w, then we may and do assume that t; = s; and z; = y; for j = 1, 2.
Then the function G3 = (id —t11p1)) ® 1x € C([0,1], A) satisfies Gs(p) =z #w =
ég(q). From the above arguments we have proven that B separates the points of
55,4, as is claimed.

By (2.1), we sce that 1 € B is the constant function with 1(p) = 1 for all p € Dy,
In other words, B is a function space on lN)a 4. We denote by B the closed unit ball
of the dual space B* of (B, | |5, ,)- The set of all extreme points of By is denoted

by ext(B}). Let 6, be the point evaluation at p € Dyy, that is, 6,(F) = F(p) for
cach F' € B. We define the Choquet boundary for the function space B by the set
of all points p € 53,4 with the property that ¢, is an extreme point of Bf. We
may regard uniform algebras as function spaces. By [3, Theorem 2.3.4], the strong
boundary b(A) coincides with the Choquet boundary Ch(A) for a uniform algebra
A.

By the Riesz representation theorem, for each € B* there exists a regular Borel
measure p on Dys such that Inllop = [|p]| and n(F) = /~ Fdpy for all F € B,

Daa
where || - ||op and || - || are the operator norm and the total variation of a measure,

respectively.

Lemma 2.1. Let p = (t1,t2,71,%2,21) € ﬁb(A) and | a representing measure for
Op. Then p({DN([0,1] x {t2})} x 0OAx A x T) = 1.

Proof. Let p = (t1,ta, 1,29, 21) € l~)b(A) C EaA be an arbitrary point. There exists
a regular Borel measure p such that ||p|| = ||6pl/op and 5p(ﬁ) = /~ F dy for every
Dpa



F € B. Since 0,(1) = 1 = ||0,)lop, any representing measure for d, is a probability
measure (see, for example, [3, p. 81]). Let ¢ > 0 be an arbitrary positive real
number and Ny C [0, 1] an open neighborhood of t; € [0, 1]. There exists a function
fo € C1([0,1]) such that

Feloapnwve =0, | fellog) <&, and  fo(ts) =1 = | f3llp- (2.4)
Here we notice that
foljo.\w, = 0. (2.5)

Let Fy = f, ® 1x € C'([0,1], A), and then F} = f} ® 1x. By the choice of p,
/; ﬁQdM:(sp(-/F\;?) :ﬁQ(tthaxlal‘Q)Zl)
Daa
= Fy(t1)(21) + 21 Fy(t2) (22)
= fo(t1) + 21f5(ta) = fo(t1) + 21.
Equality (2.4) shows that

1—e<

/~ j28 dﬂ‘ . (2.6)
Doa

Recall that Doy = D x dA x A x T with D € [0,1] x [0,1]. Let N§ = [0,1] \ Ny
and set, for each N C [0, 1],

Oy ={DN([0,1] x N)} x 0A x 0A x T.
Then Dy = Oy, UOns and Oy, NOpg = 0. By equalities (2.4) and (2.5), we obtain

[ Bdi= [ (20 106)(@) + 28 © L)O@) du =0
Ong Ong
Therefore, we have
/~ ﬁgdu—/ ﬁgdﬂ‘i‘/ Fydp = {f2(s) + 2f45(t)} dpa.
Doa On, 01\12C Ony
It follows from (2.4) and (2.6) that

1—e<

/~ F du‘ < (e+ Du(On,).

Doa

By the liberty of the choice of €, we get 1 < u(Op,). Because p is a probability
measure, (On,) < (Dos) = 1, and hence p(Oy,) = 1. Since p is a regular
measure and N, is an arbitrary open neighborhood of t3, we conclude 1 = p(Oyy,y) =
p({DN([0,1] x {ta})} x DA x DA x T). O

Lemma 2.2. Let p = (tl,tg,xl,xg,zl) € ﬁb(A) and p a representing measure for
Op. Then p({t1} x {t2} x 0Ax 0A X T) = 1.



Proof. Let Ny C [0, 1] be an open neighborhood of ¢; € [0,1] and NY = [0,1] \ N;.
Choose a function f; € C*([0,1]) with

fitt) =1=|filloy, S

ne =a for some 0 < a <1, (2.7)

and

fi(t2) = filne = 0. (2.8)
Let F} = fi ® 1x € C1(]0,1], A). For each N C [0, 1], we set

Py =[DN (N x {t2})] x 0A x 0A x T.
By Lemma 2.1, pu(Po,1)) = 1t(Dya) = 1. Equalities (2.1), (2.7) and (2.8) yield

/ fl(s)d,u—i—/ zf{(t)du:/ ﬁld,u:/~ Fidu
Plo,1) Ppo,1 Ppo,1) Doa

= 6p(F1) = fit) + 21 fi(t2) = 1.
As Py, U Pye = P and Py, N Pye = {), it follows from (2.7) and (2.8) that

| e
Pro,1)

fi(s) du

Pye
Nl

1< fi(s)dp

P,y

+

< fi(s) dp

P,
< :U/(PNl) + a:u<PNf)'
Since p(Py,) + p(Pye) = p1(Po,yy) = 1, we get (1 —a)u(Pye) < 0. Recall that a < 1,

and thus (1 — a)u(Pye) = 0. Therefore, yu(Pye) = 0, and hence u(Py,) = 1. By the
regularity of u, we have p(Pp,y) = 1, that is, p({t1} x {t2} x 0Ax 0AXT) =1. O

+

Lemma 2.3. Let p = (t1,t2,71,29,21) € lN?b(A) and [ a representing measure for
Op. Then p({t:} x {t2} x {z1} x 0A x T) = 1.

Proof. Let Wi C X be an open neighborhood of z; € b(A). For each W C X, we
define Qw by
Qw = {t1} x {ta} x (WNIA) x 0A x T.

Set Wi = X \ W1, and then Qu, UQwe = Qoa and Qw, NQwe = (). Since z; € b(A)
there exists v; € A such that

vi(z1) =1=|vi|lx and |v1| <e on Wf. (2.9)

We set Gi = 11 @ v; € C*([0,1], A). By Lemma 2.2, u(Qoa) =1 = 1(Dsa), and
then

/ él d,u: /~ él d,uzép(él) :Ul(l'l) =1
Qoa Dpa



by (2.1). According to (2.9), |G| = [(Ljo,1) @ v1) + 21(1)g ;) ® v1)| < 1 on Quyy, and

|G| < € on Qwe. These imply that
QWl C?W{3

+

/ G d,u‘ <
QoA

< pu(Qwy) + ep(Quy).

Since € > 0 is arbitrary, we obtain 1 < p(Qw,), and then u(Qw,) = 1. By the
regularity of p1, we get p(Qya,y) = 1, that is, u({t:1} x {t2} x {z1} x0AxT) =1. O

Lemma 2.4. Let p = (t,t9, 71, %9,21) € ﬁb(A). Then the Dirac measure concen-
trated at p is the unique representing measure for dp.

Proof. Let Wy C X be an open neighborhood of zy € b(A), and let u be a rep-
resenting measure for d,. We will prove that p is the Dirac measure concentrated
at p. For each W C X, we set Ry = {t1} X {t2} x {z1} x (W NOA) x T and
Ws = X \ W,. Then Ry, U Rwe = Rpa and Ry, N Rye = (). For each € > 0 there
exist g € C'*(]0,1]) and vy € A such that

gl <& ¢'(f2) =1 =llg'lloay,  valwa) =1 =llvallx and Joof <& on W3,
/ ég d,U,
RW2c

ég d/JJ + ég d,u = 52 d/L = (Sp(ég) = g(tl)’U2<$1) + 2.

Ry, Ry Rga

It follows that

We set G = g ®@ vy € C1([0,1], A), and then < 2ep(Ryyg). Lemma 2.3

shows 11(Roa) = 1 = i(Dy4), and hence

1 —e—2ep(Rwg) < Gy du| < (e + 1)u(Rw,).

R,

Since ¢ > 0 is arbitrary, 1 < u(Ry,) and thus p(Ry,) = 1. By the regularity of p,
we conclude p({t:} x {t2} x {z1} x {22} x T) = 1.

Let J = {t1} x {ta} x {z1} x {x2}, and then u(J x T) = 1. We finally prove that
w(J x {z1}) = 1. If we choose f3 € C'([0,1]) so that

fg(tl) = O, and fé(tz) = 1,
then the function F3 = f3 ® 1x € C*([0, 1], A) satisfies

21 = 517(?3) = /5 ﬁg du
A

= [ {(Fs @ 1)) (1) + 2(fs @ 1) () (w2) } dpt = / sy,

JxT JXT



Since p(JxT) = 1, we obtain /
JxT
Because p is a probability measure,

/mr(l — Re (z12)) di = Re / (1—Z12) du = 0.

JxT

(z—21)dp = 0, and therefore/ (1—Zz12) dp = 0.

JxT

Note that 1 — Re (Z1z) > 0 for all z € T, and thus there exists Z C J x T such that
w(Z)=0 and 1—Re(z1z)=0 on (JxT)\Z

This shows Z = J x (T \ {#1}). Since u(Z) = 0 and u(J x T) = 1, we obtain
pu(p) = p(J x {z1}) = 1. We have proven that p is a Dirac measure concentrated at
p = (t1,t2, 21,29, 21), as is claimed. d

Lemma 2.5. The Choquet boundary Ch(B) contains ﬁb(A).

Proof. Let p € lN)b(A). We will prove 6, € ext(B}). Let n,nm2, € Bf be such that

dp = (m +n2)/2. Recall that 1 =1y ® 1x € C*([0,1], A). Then (1) +12(1) =
26,(1) = 2 by (2.1). Because n; € B}, |n;(1)| < 1 and thus n;(1) = 1 = ||n;|| for

j = 1,2, where || - || is the operator norm on B*. Let v; be a representing measure
for n;, that is, nj(ﬁ ) = /~ F dv; for F € B. Then v;j is a probability measure
Dya

as mentioned in Proof of Lemma 2.1. Because (v; + 11)/2 is also a representing
measure for d,, it follows from Lemma 2.4 that (v; +12)/2 = 7,, the Dirac measure
concentrated at p. Since v; is a positive measure, v;(E) = 0 for each Borel set £
with p € E. Hence v; = 7, for j = 1,2, and consequently 1, = 1,. Therefore, d,, is
an extreme point of B}, and thus lN)b( 4) C Ch(B) as is claimed. O

Lemma 2.6. The set ext(By) is {\op: A€ T, pe Eb(A)}.

Proof. According to the Arens-Kelley theorem, we see that ext(B}) = {\dp : A €
T, p € Ch(B)} (see [5, Corollary 2.3.6 and Theorem 2.3.8]). By Lemma 2.5, we
need to prove that Ch(B) C lN)b(A). To this end, let p € Ch(B), and then J, is an
extreme point of Bf. There exist (t1,t3) € D, x1,29 € OA and 2y € T such that
p = (t1,t2,m1,29,2). Let e, be a point evaluational functional on A at x € X,
defined by e, (u) = u(z) for u € A. We denote by Aj the closed unit ball of the dual
space of A. Let (;,&; € A} be such that e,, = ({1 + (2)/2 and e,, = (&1 + &) /2. We
show that ¢; = (3 and & = &. We define ;: B — C by

ni(F) = GIF () + 206,(F' (1)) (5 =1,2) (2.10)

for F € C'([0,1], A). Here, we recall that the map U: C*([0,1], A) — B, defined by
U(F) = F, is a surjective complex linear isometry (see (2.1), (2.2) and (2.3)). Then



n; is a well defined, complex linear functional on B. Since (j,§; € A}, we have, for
each ' € B,

i ()| = |G (F(t1)) + 208 (F'(£2))|
< NGIEE)x + NEIHIE (E)]x
< [[FE)x + 1F(E)lx < [1Fllw) = 1F]5,,
where we have used (2.2). Therefore, n; € B for j = 1,2. Since e, = (1 + (2)/2
and e, = ({1 + &)/2,
(m +m)(F) = (G + Q) (F(t) + 20(& + &) (F'(t2))
= 2¢q, (F(t1)) + 220€q, (F'(12))
= 2F<t1)(l’1) + QZoF/(t2>(ZE2)
= 2F(p) = 26,(F)
for all F' € B, where we have used (2.1). It follows that dp = (m +n2)/2. By the
choice of p, 0, is an extreme point of B, and thus 7, = ;. Let F, = 1) ® u €
C'([0,1], A) for each u € A. Taking F = F, in (2.10), we have n;(F,) = (;(u).
As mp =19, (1(u) = ((u) for all u € A, and hence (; = (5. This implies that e,,
is an extreme point of Af, i.e. z; € b(A). By the help of (2.10), we now derive
E1(F'(ty)) = &(F'(tp)) for all F € C1([0,1], A). Taking F = id ® u € C([0,1], A)
in the last equality, we obtain & (u) = & (u) for all w € A. This shows & = &, and

therefore e,, is an extreme point of A% as well. Hence xo € b(A), and consequently
p = (t1,t2, 21, T2, 2) € Dyay. We have shown that Ch(B) C Dya), as is claimed. [

3. Auxiliary lemmas

Let T be a surjective isometry on (C*([0,1], A), | - [l(py). Recall that B = {F ¢

C(Dga) : F € C'([0,1], A)}. Define a mapping Ty: C1([0,1], A) — C*([0,1], A) by
T, = T — T(0). (3.1)

By the Mazur-Ulam theorem [11, 17], Ty is a surjective, real linear isometry on

(C([0,1], A), || l(py)- Recall, by (2.3), that U: (C*([0, 1],A),ﬂ- lpy) = (B. [ 1I5,,)

is the surjective complex linear isometry, defined by U(F) = F for F' € C'([0,1], A).

Denote UToU ! by S; the mapping S: B — B is well defined since U is a surjective
complex linear isometry.

cY([0,1], A) —2 cY([0, 1], A)

al |v

B —_— B



The equality S = UTyU ! is equivalent to
S(F)=Ty(F) (F€B). (3.2)

By the definition of S, we see that S is a surjective real linear isometry on (B, [|-||5, ,)-
We define S,: B* — B* by

S.(0)(F) = Re [\(S(F)] = iRe [x(S(iF))]  (x€ B FeB), (33

where Re z is the real part of a complex number z. We see that S, is a surjective
real linear isometry with respect to the operator norm (see [15, Proposition 5.17]).

Let B ={\o, € B : A€ T,pe 153,4} be a topological subspace of Bf with the
relative weak *-topology. We define a map h: T x Dos — B by h(\,p) = A\, for
()\,p) eTx 53,4.

Lemma 3.1. The map h: T X 153/; — B is a homeomorphism. In particular,
h(T X D(?A) =B.

Proof. Since B contains the constant function 1 and separates the points of 155 A, WE
see that h is injective. By the definition of the map h, we observe that h is continuous
from the compact space T x lN)a A with the product topology onto the Hausdorff space
B with the relative weak *-topology. Hence it is a homeomorphism. 0

Lemma 3.2. The map S, preserves B, that is, S.(B) = B.

Proof. Since S, is a surjective real linear isometry on B}, we see that S*(ext(B})) =
ext(B}). Let h be the homeomorphism defined in Lemma 3.1. By Lemma 2.6,
ext(By) = {Mp : A € T,p € Dyay} = h(T x Dyay). Hence S.(h(T x Dyay)) =
h(T x 13b(A)) C h(T x Dy,) = B, and therefore, S, (h(T x Eb(A))) C B. We denote
by cl(E) the closure of a set E. Because b(A) is dense in 0A, we obtain B =
h(T x Daa) = h(T x cl(Dyay)) = cl(h(T x Dya))), and thus B = cl(h(T x Dyay)).
Since S,.: B — DBj is a surjective isometry with respect to the operator norm,
it is a homeomorphism with the relative weak *-topology on Bj. It follows that
S.(B) = S.(cl(h(T x Dyay))) = cl(S.(h(T x Dyay))) C cl(B) = B. Therefore,
S.(B) C B. By the same arguments, applied to (S,)™!, we see that (S,)~(B) C B,
and consequently S,(B) = B. O

Definition 3.1. Suppose that h: T x 5(9,4 — B is the homeomorphism defined
in Lemma 3.1. Let pr: T x lN)aA — T and py: T x lN)aA — lN)aA be the natural
projections from T x Dy to the first and second coordinate, respectively. We define
two maps a: T x Dys — T and ®: TxDaA%DaAbya_ploh 1685, 0oh and
®=py,oh oS, oh.



T x 153A — T x 153A
h| [
B — ‘B
By the definitions of maps o and @, (h™'o S, oh)(\,p) = (a()\,p),®(\,p)) for
all (\,p) € T x Dya. Thus, (S, oh)(A,p) = h(a(\,p), (A, p)), which is described

as S.(Adp) = a(A,p)ds(rp). For the sake of simplicity of notation, we shall write
a(\, p) = ax(p). Then we can write

S (Adp) = ax(p)da(rp) (3.4)

for all (A\,p) € T x lN?a 4. Here, we notice that both o and ® are surjective continuous
maps since h and S, are homeomorphisms.

Lemma 3.3. For each p € Dya, oy(p) = iay(p) or a;(p) = —icy (p).

Proof. Let p € ﬁaA, and we set \g = (1 +1)/v/2 € T. By the real linearity of S,,
we obtain

\/500\0 (p>6<1’(>\o,p) = S*(\/i)‘odp) = S*@p) + S*<i5p>
= a1(p)da(1,p) + ®i(P)ds(ip)-

Hence /2 ay, (P)borop) = 1(P)ds1,p) + ®i(P)da(ip). Evaluating this equality at
1 € B, we get vV2ay,(p) = a1(p) + a;(p). Since |ax(p)] = 1 for A € T, we have

V2 = |ai(p) + ai(p)| = |1 + ai(p)ai(p)|. Then we see that o;(p)ay(p) = i or
a;(p)ay(p) = —i, which implies that a;(p) = ia;(p) or a;(p) = —icy (p). O

Lemma 3.4. There exists a continuous function eg: Dyg — {£1} such that Sy(idp) =
ico(p)on (P)dap) for every p € Day.
Proof. For each p € Dya, o;(p) = icr(p) or ay(p) = —icvy(p) by Lemma 3.3. We
define I, and I_ by

I, ={p € Dya: os(p) = ion(p)} and I_ = {pe€ Doy : ai(p) = —icv(p)}.

Then Dya = I, UI_ and I, N1_ = (. By the continuity of the functions oy = a(1,-)
and a; = «a(i,-), we observe that I, and I_ are both closed subsets of Dy4. Hence,
the function go: Dga — {£1}, defined by

1 p€I+
go(p) = ' ;o
~1 pel

is continuous on Dyy. We obtain a;(p) = igo(p)an(p) for every p € Dgy. This
shows S, (i0p) = ico(p)1(P)da(ip) for all p € Dya. O



Lemma 3.5. Suppose that q is the continuous function defined in Lemma 3.4. For
each A =a+1b € T with a,b € R and p € Dyy,

AP F(D(N,p)) = aF((1,p)) + ibeo(p) F(D(i, p)) (3.5)
for all F € B.

Proof. Let A\ = a4+ ib € T with a,b € R and p € Dys. Recall that S,(5,) =
a1(p)da,p), and S.(idp) = ieo(P)or(P)da(ip) by Lemma 3.4. Because S, is real
linear,

OQ\(p)(Sq)()\’p) = S*<>\(5p) = aS*(5p) + bS* (zép)
= a1 (p)da(1p) + ibeo(P)ou(P)da(ip),
and thus ax(p)dopp) = a1(P){adenp) + ibeo(P)dsip }- The evaluation of this
equality at 1 € B shows that ax(p) = a1(p)(a + ibeo(p)). Because A = a +ib € T
and eo(p) € {£1}, we can write a + ibey(p) = \0P). Hence ay(p) = \°Pa,(p).

We obtain \*0(P) S, p) = ada(1,p) + zbao( )0a(i,p), Which implies \eo(P) F(CID()\,p)) =
aF(®(1,p)) + ibeo(p) F(P(i, p)) for all F € B. O

Definition 3.2. Let ¢ be the projection from Dos = D x A x A x T onto the
k-th coordinate of DaA for k with 1 < k£ < 4. For the > map d: T x DaA — DaA, as in
Definition 3.1, we define ¢: T x DaA — D, ¢: T x DaA — 0A, ¢: T x DaA — 0A,
and w: TXEaA — Thyop=qoP, ) =qgodp=qo0Pandw = q0d, respectively.

For each A € T, we also write gzﬁ( p) = oA(p), v(A, p) = Ua(P), (A, P) = ©r(D)
and w(\, p) = wa(p) for all p € Dyy.

Recall that m;: D — [0,1] is the natural projection of D C [0,1] x [0,1] to
the j-th coordinate for j = 1,2. By the definition of ¢, ¥, ¢ and w, we have
(m1(oa(p)), m2(da(p))) € D and

D(X, p) = (0a(D), VA(D), ©r(P), wr(P))
for every (A, p) € T x Dya. By (2.1),

F(@(A\,p)) = F(m(6x(0)) (@r(P)) + wx(p)F'(m2(0x(P) (2a(P)  (3.6)

for all F' € C'([0,1], A) and (\,p) € T x Daa. Note that ¢, 1, ¢ and w are surjective
and continuous since so is ¢ (see Definition 3.1).

Lemma 3.6. The function 7 o ¢ : ﬁaA — [0,1] is a surjective continuous function
with T (P1(p)) = m1(da(p)) for all p € Dos and X € T.

Proof. Let p € Dya. We will prove w1 (¢x(p)) € {mi(é1(p)), 71 (¢:(p))} for all A € T.
To do this, suppose, on the contrary, that there exists Ay € T \ {1,¢} such that



1 (dr (P)) & {m1(01(P)), m1(05(p))}. Choose fo € C([0,1]) so that

folm(dx(P)) =1, fo(m(¢i(p)) = 0 = fo(mi(¢s(p)))
and  fo(ma(du(p)) =0 (1= Ao, 1,4).

We set Iy = fo ® 1x € C'([0,1], A). By (3.6), Fo(®(Xg, p)) = 1 and FO( (1,p)) =
0 = Fy(®(i,p)). Substituting these equalities into (3.5) to get \’*’ = 0, which
contradicts A\g € T. Consequently, we obtain 7 (¢x(p)) € {m1(¢1(p)), m1(¢i(p))} for

all A e T.
We next prove that m1(¢1(p)) = m1(¢i(p)). To this end, suppose that 7 (¢1(p)) #

mi(¢i(p)). Weset A = (14+4)/v2 € T. We obtain m (5, (p)) € {mi(61(p)), m1(¢i(p))}
as proved above. We consider the case when m (o), (p)) = m(¢1(p)). Choose

f1 € CY([0,1]) so that

film(ep) =1,  film(o(p))) =
and  f{(m2(du(p)) =0  (n= A, L,4).

Let Fi = 1i®1x € Cl([O 1], A). Substituting these equalities into (3.6), we get
Fi(®(i,p) = 1 and Fy(®(\;,p)) = 0 = Fy(2(1,p)). By (3.5), we obtain 0 = igo(p),
which contradicts g9(p) € {£1}. By a similar arguments, we reach a contradiction
even if m1(¢x, (p)) = m1(¢i(p)). Thus, we get m1(¢1(p)) = m1(¢4(p)) for all p € D,
and consequently 71 (¢1(p)) = m1(pa(p)) for all A € T and p € Dgya.

We show that m; o ¢ is surjective. Let ¢; € m(D), and then 7 (t) = ¢; for some
t € D. Since ¢ is surjective, there exists (u,q) € T x Daa such that ¢ = o(p,q) =
¢,(q). By the fact proved in the last paragraph, m(¢1(q)) = m1(¢.(q)) = m1(t) = t1.
This yields the surjectivity of 7 o ¢;. U

By a similar argument to Lemma 3.6, we can prove that m(¢a(p)) = ma(P1(p))
forall A € T and p € Dg4. Just for the sake of completeness, here we give its proof.

Lemma 3.7. The function o0 ¢ : E@A — [0,1] is a surjective continuous function

with m5(¢1(p)) = m2(dx(p)) for all p € Dy and X € T.

Proof. Let p € Dya. By Lemma 3.6, ¢x(p) = (m1(¢1(p)), m2(6a(p))) and &(X, p) =
(@r(P), ¥a(P), pA(P), wa(p)) for A € T. Equality (3.6) is reduced to

F(®(\,p)) = F(m(61(p)(a(p) +wr(P)F'(ma(6(0)) (02(P))  (3.7)

for all F' € C*([0,1], A) and A € T.
First, we show that ma(dr(p)) € {ma(é1(p)), m2(i(p))} for all X € T. Suppose,
on the contrary, that ma (¢, (p)) &€ {m2(¢d1(p)), m2(pi(p))} for some \g € T\ {1,i}.



Then there exists fo € C*([0,1]) such that

fo(mi(d1(p))) =0,  fi(ma(dr(p))) =1
and  fo(m2(d1(p))) = 0 = fo(ma(d(p)))-

For Fy = fo® 1x € CY([0,1], A), Fo(®(A\o,p)) = wy(p) and Fy(®(1,p)) = 0 =
Fo(®(i, p)) by (3.7). If we substitute these equalities into (3.5), we have A ®Pw, (p) =
0, which contradicts Ao, wy, (p) € T. Consequently, mo(dr(p)) € {ma(é1(p)), m2(d:(P)) }
for all A € T.

We next prove ma(¢1(p)) = ma(¢i(p)). Suppose that mo(p1(p)) # ma(di(p)). For
M= (1+1)/V2 €T, m(d () € {ma(¢1(p), ma(i(p))} by the last paragraph. If
we assume (¢, (p)) = m(¢1(p)), then we can choose f; € C'([0,1]) so that

fi(m(o1(p)) = 0= fi(m(¢1(p))) and  fi(m(ei(p))) = 1.

Applying these equalities to (3.7), we obtain Fy(®(i,p)) = wi(p) and Fy(®(1,p)) =
0= F(®(\,p)) for Fy = i ® 1x € C([0,1], A), where we have used my(¢y, (p)) =
mo(d1(p)). By (3.5), we have 0 = igg(p)w;(p), which is impossible. We reach
a similar contradiction even if (¢, (p)) = m2(¢;(p)). Therefore, we conclude
Ta(d1(p)) = m2(¢i(p)). Consequently ma(¢1(p)) = m2(da(p)) for all A € T.

Finally, since ¢ is surjective, for each ty € [0,1] = mo(D) there exists (i, q) €
T x Daa such that mo(d(1,q)) = ta. By the last paragraph, we see that to
m2(¢.(q)) = m2(¢1(q)), which shows the surjectivity of 75 o ¢1.

ool

Notation. For the sake of simplicity of notation, we will write m1(¢1(p)) = di(p)
and m(¢1(p)) = da(p) for p € Dya. Then ¢1(p) is written as (di(p), d2(p)).

Lemma 3.8. The function 1 : IN)aA — 0A is a surjective continuous function with
1 (p) = Ua(p) for allp € Doy and X € T.

Proof. Let p € Daa. By Lemma 3.7, equality (3.7) is reduced to

F(®(\,p)) = F(di(p))(¥a(p)) + wr(p)F'(d2(p))(@r(p)) (3.8)

for all F' € C*([0,1], A) and A € T.

First, we show that ¥\(p) € {¢¥1(p),v:(p)} for all A € T. Suppose, on the
contrary, that there exists Ao € T \ {1,7} such that ,,(p) &€ {¢1(p), ¥i(p)}. Then
there exists ug € A such that

uo(a(p))) =1 and  up(¥1(p)) = 0 = uo(i(p))-

For Gy = 1pp1] ® up € C*([0, 1], 4), we obtain Go(®(Ao, p)) = 1 and Go(®(1,p))
0 = Go(®(i,p)) by (3.8). If we substitute these equalities into (3.5), we get AP =
0, which contradicts A\g € T. Consequently, ¥(p) € {¢1(p), ¢:(p)} for all X € T.



We next prove that 11(p) = ¥;(p). Suppose that ©;(p) # 1;(p). We set A\ =
(1+14)/v/2 € T, and then ¥y, (p) € {¢1(p),¥:(p)} by the fact obtained in the last
paragraph. If ¢y, (p) = ¥1(p), then we can choose u; € A so that

ur(Yn, (p)) = 0 =ui(¢1(p)) and wi(s(p)) = 1.

Equality (3.8), applied to F = 1j1 ® uy € C*([0,1], A), shows that F(®(\;,p)) =
0 = F(®(1,p)) and F(®(i,p)) = 1. By (3.5), we have 0 = ig(p), which is impos-
sible. We can reach a similar contradiction even if ¥, (p) = ¥;(p). Therefore, we
conclude ¥ (p) = ¥;(p). Consequently ¥ (p) = ¥x(p) for all A € T.

Finally, we show that v;: Dys — 0A is surjective. Since ¢: T X Dys — OA is
surjective, for each z € JA there exists (i, q) € T x Dy such that ¥(p,q) = x. By
the last paragraph, we see * = 1,,(q) = 11(q), which shows that ¢, is surjective. 0O

Lemma 3.9. The function ¢ : Daa — OA is a surjective continuous function with
©1(p) = oa(p) for allp € Dya and A € T.

Proof. Let p € Dy4. By Lemma 3.8, equality (3.8) is reduced to

F(®(A,p)) = F(di(p))(¥1(p)) + wa(p) F" (d2(p)) (a(P)) (3.9)

for all F' € C*([0,1], A) and A € T.

First, we show that ¢\(p) € {p1(p),p:i(p)} for all A € T. Suppose, on the
contrary, that there exists Ao € T \ {1,¢} such that ¢),(p) € {¢1(p), vi(p)}. Then
there exists ug € A such that

uo(ro(p))) =1 and  wuo(p1(p)) = 0 = uo(i(p)).
For Gy = (id — di(p)1pa)) ® up € C*([0,1], A), we obtain &(@(Ao,p)) = wy,(p)

and @?)(q)(l,p)) =0= évo(@(i,p)) by (3.9). If we substitute these equalities into
(3.5), we get AP wy, (p) = 0, which contradicts Ao, wy,(p) € T. Consequently,
ea(p) € {e1(p), pi(p)} for all A € T.

We next prove that ¢1(p) = ¢;(p). Suppose that ¢1(p) # ¢i(p). Set A\ =
(1+14)/v/2 € T, and then ¢y, (po) € {©1(p),¢i(p)} by the previous paragraph. If
o) (P) = p1(p), then we can choose u; € A so that

ui(px, () = 0=wui(p1(p)) and wi(pi(p)) = 1.

Equality (3.9), applied to F' = (id — di(p)1pa)) ® v € C*([0,1], A), shows that
ﬁ(CI)()\l,p)) =0 = f(@(l,p)) and F(®(i,p)) = wi(p). According to (3.5), we
get 0 = igo(p)w;(p), which is impossible. We can reach a similar contradiction
even if ¢y, (p) = ¢i(p). Therefore, we conclude ¢;(p) = ¢i(p). Consequently
ea(p) = ¢1(p) forall A € T. B

Finally, we show that ¢1: Dga — OA is surjective. Since ¢: T X Dgs — 0A is
surjective, for each z € 0A there exists (u,q) € T X Daa such that o(u,q) = x.



By the last paragraph, we see that * = ¢,(q) = ¢i(q), which shows that ¢y is
surjective. ]

Lemma 3.10. There exists a continuous function &;: Doa — {£1} such that
wi(p) = e1(p)wi(p) for all p € Dyy.

Proof. Let p € Daa. According to Lemmas from 3.6 to 3.9, we can write ®(\, p) =
((di(p), da(p)), U1 (P), w1(p), wa(p)) for all X € T. We set \g = (1414)/v/2 € T and
fo=1d — di(p)1p € C*([0,1]). Then fo(di(p)) =0 and f; =1 on [0,1]. By (3.9),
Fo(®(p, p)) = wu(p) for Fy = fo®1x € C'([0,1],A) and u = A, 1,i. If we apply
these equalities to (3.5), then we obtain v2 AP wy, (p) = wi(p) + ico(p)wi(p). As
wy(p) € T for all A € T,

V2 = |wi(p) + igo(P)wi(p)| = 1 + ico(p)wi(p)wi (P)].

Then we get ico(p)w;(p)wi(p) = i or ico(p)w;(p)wi(p) = —i. Thus, for each p €
Dy, we derive w;(p) = go(p)wi(p) or wi(p) = —eo(p)wi(p). By the continuity of
w1 and w;, there exists a continuous function &1 : ﬁa 4 — {£1} such that w;(p) =
e1(p)wi(p) for all p € Dy.. O

Notation. In the rest of this paper, we denote a + ibe by [a + ib]® for a,b € R and
e € {£1}. Therefore, [Au]® = [A\°[u]® for all \,u € C. If, in addition, A € T, then
[A]F = A

Lemma 3.11. For each F € C*([0,1], A) and p € Dy,

S(F)(p) = [on(p)F(di(p))(¢1(p))] ™
+ [on(p)wi (P) F'(d2(p)) (1 (p))] PP (3.10)

Proof. Let F e C'([0,1],A) and p € Dya. By the definition (3.3) of S,, we have
Re [S«(x)(F)] = Re [x(S(F))] for every x € B*. Taking x = d,, and x = id, into the
last equality, we get

Re[S.(5)(F)] = Re[S(F)(p)] and Re[S.(idp)(F)] = —Tm [S(F)(p)],
respectively, where Im z is the imaginary part of a complex number z. Therefore,
S(F)(p) = Re[S.(3p)(F)] — i Re[S.(id,)(F)]. (3.11)

By definition, S.(dp) = a1 (P)da(1,p), and Sy(idp) = ico(P)a1(P)da(ip) by Lemma 3.4.
Substitute these two equalities into (3.11) to obtain

S(F)(p) = Rela1(p)F(®(1,p))] + ilm [go(p)as (p) F (P (7, p))]- (3.12)



Lemmas from 3.6 to 3.10 imply that ®(1,p) = (é1(p), ¥1(p), v1(p),w1(p)) and
O(i,p) = (61(P), Y1(P), p1(P), e1(p)wi(p)). It follows from (2.1) that

F(®(1,p)) = F(di(p)(¢1(p)) + wi(p) F'(ds(P)) (1 (P)),

F(®(i,p)) = F(di(p))(¥1(p)) + £1(p)wi (p) F'(d2(p)) (1 (p)).-

Applying these two equalities to (3.12), we derive

S(F)(p) = [01(p)F(di()) (1 ()P + [ (p)or (B) ' (da(p)) (01 ()] P (7).

This completes the proof. 0

4. Properties of induced maps

—~——

In this section, we shall simplify equality (3.10). By (3.2), S(F) = Ty(F) for F €
C1([0,1], A). Applying (2.1), we can rewrite (3.10) as

To(F)(t1) (1) + 2To(F) (t2)(x2)
= [a1(p) F(di (p)) (1 (R))]*™ + [ (p)or (p) ' (d2(p)) (1.(p)) PP (4.1)
for all F € C'([0,1], A) and p = (t1,ts, ¥1, 73, 2) € Daa.

Lemma 4.1. Let (t1,t3) € D, x1,29 € 0A and p, = (t1,t2, 71, %2, 2) € Daa for each
z € T. Then ¢1(p,,) = ¢1(ps,) for each z1,z, € T.

Proof. Let 21, 29, z3 € T. We first show that d;(p,,) = di(p,,) for some k,1 € {1,2,3}
with k # [. To this end, it is enough to consider the case when z1, 23, z3 are mutually

distinct. Suppose that dyi(p.,), d1(ps,), d1(p.,) are mutually distinct. There exists
fo € C*([0,1]) such that

foldi(p2y)) =1, foldi(p=,)) = 0= fo(di(p,))
and f(/)(d2(pzj)) =0 (] = 17273)’
Equality (4.1), applied to Fy = fo ® 1x € C*(]0, 1], A), implies that

To(Fo)(t1) (1) + 21 To(Fo)'(t2) (w2) = [aa (p, )] 0P,
To(Fo)(tr)(21) + 2To(Fo)' (t2) (22) = 0 (J=2,3).

Since zo # z3, we have Ty(Fp)' (t2)(ze) = 0 = To(Fp)(t1)(z1). This is impossible
since |a1(p., )| = 1, which shows that d;(p.,) = di(p,,) for some k,l € {1,2,3} with

k1.
Next, we prove that dy(p,,,) = dao(p,,) for some m,n € {1,2,3} with m # n.
Suppose not, that is, da(p.,), d2(p,,) and da(p.,) are all distinct. There exists fi €



C1([0, 1]) such that

filda(p:))) =1, fi(da(p=,)) = 0 = fi(da(p:,))
and  fi(di(p.,;)) =0 (7 =1,2,3).
Let F} = f1 ® 1x € C([0,1], A). According to (4.1), we obtain

To(F1) () (1) + 2 To(F1) (t2) (22) = [ (pay Jwr (p2, )] P51 =0,
To(F1)(t1) (1) + 2, To(F1) (t2)(22) = 0 (7 =2,3).

Since zy # z3, we have To(Fy) (t2)(x2) = 0 = To(F1)(t1)(z1). This contradicts
a1(p,,),w1(ps,) € T, and consequently ds(p., ) = da(p., ) for some m,n € {1,2,3}
with m # n.

Let z1,20 € T. Now we prove ¢1(p,,) = ¢1(p.,). Suppose, on the contrary,
d;(p:, ) # d;(ps,) for some j € {1,2}. By the fact prove in the last paragraph, we get
di(p.) € {d;(p.,),d;(p.,)} for all z € T. Note that ¢, is continuous by the definition
(see Definition 3.2). Since T is connected and the map z — d;(p.) = 7;(¢1(p2))
is continuous on T, the image of T under this map is connected as well. This
contradicts d;(p,,) # d;(p.,). We thus conclude that d;(p,,) = d;(p.,) for j =1, 2.

Hence ¢1(pz1) = (dl(pzl)7d2(pzl)) = ¢1(pz2)' .

Lemma 4.2. Let (t;,t3) € D, x1,29 € 0A and p, = (t1,t2, 21,22, 2) € Daa for each
z €T. Then 1(p,,) = U1(P,) and p1(p.,) = ©1(P.,) for each z1, 2 € T.

Proof. Let zy,29,23 € T. We first show that ¢;(p,,) = ¥1(p,,) for some k,l €
{1,2,3} with k # [. To do this, we need to consider the case when zj, z9, 23 are

mutually distinct. Suppose that ¥y (p.,), ¥1(Ps,), ¥1(pPs,) are mutually distinct.
There exists a function uy € A such that

up(1(pz)) =1 and  ug(¥1(p2,)) = 0 = uo(¥1(p=))-
Let Fo =11 ® up € C*([0,1], A). As an application of (4.1) to F' = F, shows

To(Fo)(t1)(w1) + 21 To(Fo) (t2) (22) = [0 (p2, )P0,
To(Fo)(t1) (1) + 2 To(Fo) (t2) (v2) = 0 (j=2,3).
Since zo # z3, we obtain Ty (Fy) (t2)(xe) = 0 = To(Fp)(t1)(z1). This is impossible

since |aq(ps, )] = 1. This yields ¢y (p.,) = ¥1(p,,) for some k,I € {1,2,3} with

k#1.

Next, we prove that ¢1(p., ) = ¢1(p.,) for some m,n € {1,2,3} with m # n.
Suppose not, and then, ¢1(p., ), ¥1(pP.,) and ;1 (p.,) are mutually distinct. Choose
u; € A so that

ui(pi(pz)) =1 and  wi(p1(p2,)) = 0 = wi(p1(p=y))-



Notice, by Lemma 4.1, that d(p.;) and da(p.,) are independent of j. There exists
f1 € C'([0,1]) such that

fi(di(p-)) =0 and  f{(ds(p-,)) = 1.

Let Fy = f1 ® u; € C*([0,1], A). According to (4.1), we obtain

To(F1)(t1) (1) + 21T (F1) (t2) (w2) = [a1(pay )wr (pzl)]m(pzl)s1(pzl)7
To(F1)(t1)(z1) + 2z, To(Fh) (t2)(x2) = 0 (j=2,3).

Since zp # z3, we get To(Fy) (t2)(we) = 0 = To(F1)(t1)(z1). This contradicts
a1(ps, ), wi(p,,) € T, and consequently ¢1(p.,. ) = ¢1(p,,) for some m,n € {1,2,3}
with m # n, as is claimed.

We show that 11(p.,) = ¥1(p.,) and ¢1(p.,) = @1(p.,) for each z1, 2, € T. Let
21,29 € T. Note that ¢, and ¢, are continuous by the definition (see Definition 3.2).

Since the maps z — ¥;(p.) and z — ¢1(p,) are continuous on the connected set
T, the ranges {¢1(p,) : z € T} and {¢1(p.) : = € T} are both connected sets. If

wl (pzl) 7é wl(pza)a then ¢1(pz) S {¢1(pz1)7 ?/11 (pz2>} forall z €T by the fact pI‘OVGd
above. This contradicts the connectedness of the set {¢y(p.) : z € T}. We thus

conclude 91(p-,) = ¢1(p,). By a similar reasoning, we get 01(p:,) = ¢1(p,). U

Proposition 4.3. Let \,u € C. If [N+ zu| =1 for all z € T, then A\u = 0 and
(Al + [l = 1.

Proof. Suppose, on the contrary, that Ay # 0. Choose z; € T so that pz; =
Alp||A[7, and set zp = —2;. By hypothesis, | + 21| = 1 = |\ + 2ou/, that is,

Al ‘ Al
p NI Lol U R A (ol
' Al Al

These equalities yield [A|+ |u| = [[A] = |p||. This implies that A = 0 or 1 = 0, which
contradicts the hypothesis that Ay # 0. Thus A\p = 0, and then |A| + |u|=1. O

Recall that 1x denotes the constant function on a set K with 1x(x) = 1 for
x € K. We also note that 1 = 1p1; ® 1x € C'([0,1], A).

Lemma 4.4. Let A\ € {1,i}. Then To(A1)'(t)(x) =0 for all t € [0,1] and x € OA.

Proof. Let A € {1,i}. For each (t1,t3) € D, v € 0A and z € T, we set p =
(t1,t2,7,2,2) € Dya. By the equality (4.1), To(A1)(t1)(x) + 2To(A1) (t2)(z) =
[Aay(p)]®°®), and thus

[To(AL)(t1) () + 2To (A1) (t2) (2) = 1



for all z € T. Proposition 4.3 shows that
To(A1)(t1)(z) - To(A1)'(t2)(z) = 0, (4.2)
[To(AL)(t2) ()] + |To(A1) (t2) (z)] = 1

for each (t1,t2) € D and « € 0A. Let € 0A, and we set

Di(x) = {(t1,t2) € D : To(A1)(t1)(z) =0 and |To(A1)(t2)(z)] = 1},

DQ([L’) = {(tl,tg) eD: To()\]_)/(t2>($) =0 and |T0()\1)(t1)($)| = 1}
Equalities (4.2) and (4.3) show that D;(z) U Dy(x) = D and D;(z) N Dy(x) = 0.
Since the functions ¢ — Ty(A1)(¢)(z) and ¢ — TH(A1)'(¢)(z) are continuous on [0, 1],
D, (x) and Do(z) are both closed subsets of D. By the connectedness of D, we derive
Di(z) = D or Dy(x) = D. Suppose that D;(z) = D, and hence (t1,%2) € D implies
To(A1)(t1)(x) = 0 and |To(A1) (t2)(z)| = 1. Therefore,

To(A1)(t)(x) =0 (Vt € m(D)).
Since (D) = [0, 1], we obtain
To(AL)(1)(x) = 0 = To(AL)'()(x) (vt €[0,1]).

This contradicts (4.3), and hence Dy(z) = D. By the liberty of the choice of x € 0A,

we get Do(x) = D forallz € JA. Since ma(D) = [0, 1], we conclude To(A1) (t)(z) =0
for all t € [0,1] and z € 0A. O

Lemma 4.5. The values eq(ty, ta, x1, X2, 2) and &1(ty, ta, 1, X2, 2), as in Lemmas 3./
and 3.10, respectively, are independent of variables (t1,t3) € D and z € T; we shall
write ey (t1,ta, 1, x9, 2) = ex(x1, x2) for k =0,1.

Proof. Let k = 0,1 and x1,29 € JA. The function ex(-,-, z1, %2, ), which sends
(t1,t9, 2) to ex(t1,ta, x1, T2, 2), is continuous on the connected set D x T. Hence, the
image of D x T under the function is a connected subset of {£1}. Then we deduce
that the value e (ty, ta, 1, 2, z) is independent of (t1,¢y) € D and z € T. O

Lemma 4.6. (1) The value eo(x1,x2) is independent of xo € A; we shall write
eo(z1, 2) = €o(x1).
(2) There exists f € A with |5] =1 on A such that
(a) To(1)(t)(x) = B(x) for all t € [0,1] and x € DA,
(b) To(i1)(t)(z) = ieo(x)To(1)(t)(z) = ico(x)B(x) for all t € [0,1] and x €
0A,
(c) [aa(p)]**@) = B(x1) for all p = (t1,ts, 71,22, 2) € Daa.

Proof. Let A € {1,i}. For each x € JA, the function To(A1),: [0,1] — C, de-
fined by To(A\1).(t) = To(A1)(¢t)(x) for ¢t € [0,1], is continuously differentiable
with (Tp(A1),)'(t) = To(A1)'(t)(x) for all t € [0,1]. Thus, Lemma 4.4 shows that



(To(A1),)'(t) = 0 for all t € [0,1]. Hence, Ty(A1), is constant on [0, 1]. There exists
Ba(x) € C such that To(A1), = Br(x). We may regard (3, as a function on X. Since
To(A1) € C'([0,1], A), we obtain 3, € A.

Let (t1,t2) € D, 1,29 € 0A and z € T. Then Ty(A1)'(t2)(x2) = 0 by Lemma 4.4.
According to (4].), we get 6)\(1‘1) = T()()\].)(tl)(l’l) = [/\Oél(tl,tQ,CL’l,IQ,Z)]EO(II’xQ).
This implies |3y] = 1 on 0A with

ﬁz(xl) = [7:041 (th tQ, 1,2, Z)]eo(:vl,xz)

= [i]° ™) [y (t1, o, 1, T, 2)]0H™) = dgg (1, 22) Br (1),

that is, fi(z1) = igo(z1, x2)P1(z1) for all z1,29 € OA. This shows that the value
£o(z1,x2) is independent of the variable x5 € 0A. If we write go(x;) instead of
co(z1, T2), then [ay(ty, tg, 11, 29, 2)]70@) = By (21) for all (t1,ty, x1,19,2) € 53,4. By
the choice of 5y € A, we have Ty(1)(¢)(z) = fi(x) and Ty(il)(t)(z) = Bi(x) =
ieo(x)pr(x) for all t € [0,1] and x € DA. O

For the function § € A as in Lemma 4.6, we set
Bo(x) = [B@)*@ (z €9A). (4.4)

Then a;(p) = [B(x1)]%°@) = By(x1) for p = (t1,ts, 21,29, 2) € Daa. By the help of
Lemmas 4.1, 4.2, 4.5 and 4.6, we can rewrite (4.1) as

To(F)(t) (1) + 2To(F) (t2)(22) = [50(351>F<d1(131>>Wl(Pl))]sO(xl)
+ [Bo(w1)wn (pz)F/(d2(p1))(901(191))]50(“)51(‘”1’”32) (4.5)

for F e CY([0,1], A) and p. = (ty, ts, 71, 72, 2) € Dya.
Lemma 4.7. Let id € C'([0,1]) be the identity function. Then

T (1 (t1, b, 1, 2, 2)) = [Bo(w1)] 700V Ty (id @ 1x) (t) (1) (4.6)
for all (t1,t2) € D, 1,29 € 0A and z € T.

Proof. Let (t1,t3) € D, x1,19 € 0A and p, = (ty,t2, 21,29, 2) € ﬁaA for each z € T.
Set G = (id — di(p1)1pp1) ® 1x € C*([0,1], A). Then, we see that G(d;(p;)) =0 on
X and G'(t) = 1x for all t € [0, 1]. According to (4.5),

To(G)(t1)(w1) + 2To(G) (t2) (w2) = [Bo(ar ) (ps) |00t (1e2) (4.7)
for all z € T. Since |fy(z1)| = |wi1(p.)| = 1, we obtain
To(G)(t1) (1) + 2To(G) (t2) (22)| = 1

for all 2 € T. By Proposition 4.3, To(G)(t1)(21)-To(G) (t2)(x2) = 0 and [To(G) (t1) (z1) |+
To(G)' (t2)(w2)] = 1.



We prove that To(G)(t1)(x1) = 0. Suppose not, and then we have To(G)'(t2)(z2) =
0. Thus, To(G)(t1)(x1) = [Bo(w1)wi (p.)]@V51E022) for all 2 € T by (4.7). It follows
that the function w; is independent of z € T. Hence we may write w;(p,) = wo
for all z € T. Let h € C'([0,1]) be such that h(t;) = 0 and A/(t;) = 1. Since
Ty is surjective, there exists H € C*([0,1], A) such that Ty(H) = h ® 1x. Then
To(H)(t1)(z1) = 0 and To(H)'(t2)(z2) = 1. Equality (4.5), applied to F' = H, shows
that

2 =To(H)(t:)(z1) + 2To(H) (t2)(22)
= [Bo(w1) H(di(p1)) (1 (1)) + [Bo (@1 )wo H' (da(p1)) (01 (pr ) )] 0051 (71:72)

for all z € T. This is impossible, since the rightmost hand side of the above equalities
does not depend on z € T. Consequently Ty(G)(t1)(z1) = 0 as is claimed.
By the choice of G, To(G) = To(id ® 1x) — To(di(p1)1jo1 ® 1x). Recall that

di(p) € [0,1] for all p € Dga by Definition 3.2. Since To(G)(t1)(x1) = 0, the real
linearity of Ty implies that
To(id ® 1x)(t1)(21) = di(p1)To(Lpo,) ® 1x)(t1) (1) = di(p1)To(1)(t1)(1).

Notice that Tp(1)(t;)(z1) = [Bo(x1)]°) by Lemma 4.6 with (4.4). This implies
To(id®1x)(t)(z1) = di(p1)[Bo(x1)]°®). By the liberty of the choice of (t1,t,) € D
and x1, 12 € 0A, we conclude that

T (1 (t1, ta, 21, 2, 2)) = [Bo(21)] ) Ty(id ® 1x) (1) (21)
for all (¢1,t2) € D, z1,29 € OA and z € T. O

By Lemma 4.7, 71 (¢1 (1, to, 21, 22, 2)) is independent of variables to € [0,1], 25 €
0A and z € T. We will write

dy(ty,ta, 1,29, 2) = dy(t1) (1) (t1,ta, 1,29, 2) € Daa. (4.8)
By the definition of dy,
L)@ e[0,1]  (te0,1], x € A) (4.9)

(see Definition 3.2), where we have used our hypothesis 7 (D) = [0,1]. We may
regard d; as a map from [0, 1] to C(0A). Recall, by Lemma 4.6, that € A satisfies
|6] = 1 on OA. By equalities (4.4) and (4.6), dy: [0,1] — C(9A) is a continuously
differentiable map with

To(id @ 1x)(t)(x) = Bx)dy(t)(x) (4.10)

for all t € [0,1] and z € 0A.



Lemma 4.8. Let [} = id ® 1x € CY([0,1], A) and x(t)(x) = To(F,) (t)(z) for
t €10,1] and v € 0A. Then

wi(p2) = Bola1) [2k(ts) (o) lwr)r (F1m2) (4.11)
= [2]80(1‘1)51(11@2) wi(p1)

for each p. = (t1,ts,71,22,2) € Dya. In particular, |x(t)(z)] = 1 for all t € [0,1]
and x € 0A.

Proof. Let F} =id ® 1x, (t1,t2) € D and x1,x9 € 0A. Set p, = (t1,t2,71,%2,2) €
Dgy4 for each z € T. Equalities (4.5) and (4.8), applied to F' = Fy, yield
To(F1)(t) (1) + 2To(F1) (t2)(22)
= [Bo(1)dy (1) (1)) + [Bo (w1 )ws (p.)] 01 172),
By (4.4), (4.9) and (4.10), we derive
To(Fy)(t) (1) = Bla1)di(t1) (1) = [Bo(w)dy (t1) ()],
Hence

2To(Fy) (t2) (22) = [Bo(1)wi (p)]0lr0e nm2),
We thus obtain

w1 (p.) = Bo(m1) [2To(FL) (t2) ()]0 1) (@122)
= ﬁo(xl) I:Z[{/(t2)(xZ)]€O($1)51($1,$2) — [Z]eo(ﬂﬁl)el(gjl’m2) Wl(p1).

In particular, |k(t2)(z2)| = |wi(p.)| = 1 for all t, € [0, 1] and 25 € 0A. O
By (4.11), equality (4.5) is reduced to
To(F)(t) (1) + 2To(F) (t2)(x2)

= [Bo(1) F(di (1) (1)) (1 (p1))]*) + z(t2) (22) [F (da(p1)) (1 (p1))] 0 1 (12)

for all F € CY([0,1], A), p1 = (t1,to, 1, 2,1) € Dya and z € T. Comparing z-term
and constant term in the last equality, we get

To(F)(t1) (1) = [Bo(w) P (da(t) (@) (en (pr)) (4.12)
To(F)'(t2)(w2) = w(t2) (@2) [F (da(p1)) (01 (1)) 1 )

for all F € C'([0,1], A) and p; = (t1,t2, 21,22, 1) € Daa.

Lemma 4.9. If z € 0A, then either d\(t)(z) =1 for all t € [0,1], or d|(t)(x) = —1
for all t € [0, 1].



Proof. Fix xy € OA arbitrarily, and let F}; = id ® 1x € C'([0,1], A). Lemma 4.8
shows

[ To(Fu)'(8)(wo)| = [K(t)(wo)| = 1 (4.13)
for all t € [0,1]. According to (4.10), we derive

To(F1)'(t) = (Bda(t))" = Bdi(t)
for all ¢ € [0, 1], and then the map which sends ¢ to d}(t)(x¢) is continuous on [0, 1],
since d(t)(zo) = B(xo)To(F1) (t)(xo) for t € [0,1]. Equality (4.13) yields

| (t) (o) = [To(F1)' () (wo)| = 1

for t € [0,1]. For each ¢t € [0,1], |d}(t)(xo)| = 1 implies d;(t)(zo) € {£1}. The map
t — dy(t)(xg) is continuous on the connected set [0, 1], and then d/(¢)(z¢) = 1 for
all t € [0,1], or d(t)(zg) = —1 for all ¢ € [0, 1]. O

Lemma 4.10. The value 1 (ty,ta, 21, x2,1) is independent of variables ty € [0, 1]
and xo € 0A; we will write 1 (t1,ts, x1,x2,1) = Y1(t1,x1). Then (4.12) is reduced
to

To(F)(t1)(2) = [Bo(2) F(du(t1) (2)) (¢1 (11, 2)) ) (4.14)
for all F € C'([0,1], A), t; € [0,1] and x € JA.

PT’OOf. Let (tl,t2)7(t1,82> € D and T1,T2,Ys € 0A. We set P1 = (tth,Il,Jfg,l)
and q; = (t1,52,21,%2,1). We will prove ¢1(p1) = ¢1(q1). Let F, = 1o @ u €
C*([0,1], A) for each u € A. Equality (4.12) yields

[60(x1>“(1/’1(p1))]60(m1) =T(F,)(t1)(21) = [50($1>U(¢1(Q1))]60($1)7

and therefore u(v1(p1)) = u(11(q1)). Since A separates the points of A, we obtain
1(p1) = ¥1(qq). Hence, 1 is independent of variables t5 € [0,1] and x5 € 0A. O

Let C'([0,1]) be the normed linear space with
Ifllipy = sup (If(t)[+[f'(t2)))  (f € CH([0,1])).

(t1,t2)€D

For each = € A, we define a linear map V,: A — C'([0,1]) by
() = To(loy @ w(B()  (ue A, te 1),

If we identify f € C*([0,1]) with f ® 1x € C'([0,1], A), we may regard C*([0, 1]) as
a normed linear subspace of C'([0, 1], A). We note, by (4.14), that

Ve(u)(t) = [,Bo(x)u(wl(t,$))]5°(x) (ue A, te|0,1]) (4.15)
for each z € JA.

Lemma 4.11. For each x € OA, the map Vy: A — CY([0,1]) is a bounded linear
operator with ||Vy|lop < 1.



Proof. For each x € 0A and u € A,

Ve(u)llipy = sup (|To(1,) @ w)(tr)(2)] + [To(Lo,1) @ u)' (t2)(x)])

(t1,t2)€D

< sup ([[To(1p,y @ u)(ta)llx + [[To(Lpo,y ® w)'(t2)]|x)
(tl,tg)GD

= [[To(Ljo,y @ u)|l(py = || 10,1 @ ull(py
= sup ([[(Ljo,y ®@u)(t)llx + [[(Xjo,y ® u)'(t2)llx) = l|ullx,

(t1,t2)€D

where we have used that Tj is a real linear isometry on C'([0, 1], A) with respect to
| - |l¢py- Thus, V, is a bounded linear map with the operator norm ||V, |lop < 1. O

Recall that e, denotes the point evaluation at y € 0A, defined by e,(u) = u(y)
for u € A. For each t € [0, 1], we define a map A;: C*([0,1]) — C by A,(f) = f(¢)
for f € C*([0,1]). Then we observe that A; is a bounded linear functional on
(CY([0,1]), | - llipy)- In fact, for each t € [0,1] there exists s € [0,1] such that
(t,s) € D, since m (D) = [0, 1]. By the definition of || f||(py,

AN < FO+ ] < 1 f 1)
for all f € C'(]0,1]). Hence, ||A;llop =1 for all ¢ € [0, 1].

Lemma 4.12. For each x € 0A and s1,s2 € [0,1], let y; = ¢ (sj,x) for j =1,2.
Then [ley, — ey, llop < 2[s1 — 2.

Proof. Let © € 0A and sy, s2 € [0,1]. We need to consider the case when s; # so.
Then

ey — €pllop = e u(yr) — u(ys)|
= S |u(tr(s1,2)) — u(thr(s2, )|
= S |Va(u)(s1) = Va(u)(s2)]
= sw Ay, (Vi () — Asy (Vi (u))],

where we have used equality (4.15) with |5y(z)| = 1. By Lemma 4.11, the adjoint
operator V*: C*([0,1])* — A* of V, between the dual spaces of C'([0,1]) and A is



well defined with ||V |lop = [|[Villop < 1. It follows that

leys = epllop = sup V(A )(w) = V7 (As,)(u)]

x
flullx<1

= [V (As; — As)llop < IV llop 145, — Asyllop
< ||A51 - A52||0p = Sup |A81(f) - A52(f)|

I1fll¢py <1
= sup |[f(s1) — f(s2)];
If1l¢py <1
and consequently, we obtain
ey, — epallop < sup [ f(s1) = f(s2)]. (4.16)
If1l¢py <1

Let f € C'([0,1]) be such that || f||(py < 1. By the definition of || f||py with mo(D) =
[0, 1], we see that || f'||0,1] < [|f|l(py, and hence || f'||jo,1) < 1. Since s1, s2 € [0, 1] with
S1 # S9, the mean value theorem shows that
[f(s1) = Flso) - [Re f(s1) = Re f(sq)]  |fm f(s1) — Im f(s)]
51— 82| T |51 — o |51 — o
< |IRe f'llo,1y + [[Tm ffljo,1
<2/l < 2

It follows that |f(s1) — f(s2)] < 2|s1 — so| for all f € C*([0,1]) with ||f]l(py < 1.
Therefore, by equality (4.16), ||ey, — ey, [lop < 2|51 — 52| O

Lemma 4.13. The function 1 (t1,z1) appeared in Lemma 4.10 is independent of
the variable t, € [0, 1]; we will write Yn (t1,x1) = 1 (x1).

Proof. Let © € 0A. We set I = {t; € [0,1] : ¢ (t1,2) = ¥1(0,2)}. Then 0 € I and
thus I # (). Since v is continuous, I is a closed subset of [0,1]. Put I¢ = [0,1]\ I.
We will prove that 1€ is a closed set as well. Let {s,} be a sequence in /¢ converging
to so € [0,1]. We need to show that sy € I¢ that is, (s, z) # 1¥1(0,x). Set
Yn = U1(spn, ) for n € N U {0}. By the choice of {s,}, y, # ¥1(0,z) for all
n € N. Lemma 4.12 shows that |le,, — ey llop < 2|5, — so| for all n € N. Because
{sn} converges to sg, there exists m € N such that |le,, — eyllop < 1. By [3,
Lemma 2.6.1], we obtain e, = e, (see also [13, Lemma 6]). That is, u(y,) =
ey (U) = ey, (u) = u(yp) for all u € A. We derive y,, = yo since A separates the
points of X. By the choice of {s,,}, ¥1(0,2) # ym = yo = ¥1(50, *), and consequently,
1(0, z) # 11(s0, x) as is claimed.

Because I and ¢ = [0, 1]\ I are both disjoint closed subsets of the connected set
[0,1] with I # 0, we have I = [0,1]. Therefore v (t1,z) = 11(0, z) for all t; € [0, 1],
and hence 1; does not depend on the variable ¢; € [0, 1]. O



5. Proof of the main theorem

By Lemmas 3.8 and 4.13 with (4.4) and (4.14), there exists a surjective continuous
map 1 : 0A — 0A such that

To(F)(1)(x) = B(@)[F(di(t)(2)) (¥ ()] (5.1)
for all F € C*([0,1],A), t € [0,1] and z € JA.
Recall, by Lemma 4.9, that for each x € 0A, either d(t)(z) = 1 for all ¢ € [0, 1],
or dj(t)(x) = —1 for all t € [0,1]. For j € {£1}, we define

Kj={r€dA:dt)x)=5 (Vtel[0,1])}.

Let j € {£1} and z € K;. By the definition of K, d}(t)(zo) = j for all t € [0,1].
There exists k& € R such that d;(t)(xg) = jt + k for all ¢ € [0,1]. Recall, by the
definition of dy, that di(t)(x¢) € [0,1] for all ¢ € [0,1]. We have k,j + k € [0, 1],
which implies that k =0if j =1, and k = 1 if j = —1. Consequently,

di(t)(x) = {t reh (5.2)

1—-t x€ K_1
for all ¢t € [0, 1].
Lemma 5.1. The function 5 € A is invertible.

Proof. We set Y = [0,1] x 9A. We may and do assume that C1([0,1], A|s4) € C(Y).
Under this identification, let

A={Fly € C(Y): F € C'(0, 1], A)};

we will write F'(¢,z) instead of F(t)(z) for F € C*([0,1], A), t € [0,1] and = € JA.
We define a map U: A — A by

U(Fly) =To(F)ly  (FeC([0,1],4)).

Since 0A is a boundary for A, we observe that U is a well defined, surjective real
linear isometry on (A, || - ||y). Equality (5.1) shows

U(Fly)(t,z) = B@)[F(di(t) (), 1 ()] (Fly € A (L) €Y).  (5.3)

Let cl(A) be the uniform closure of A in C(Y). We see that cl(A) is a uniform
algebra on Y. Let U be the unique extension of U to cl(A). Then Uis a surjective
real linear isometry on (cl(A),|| - |ly). Let d(cl(A)) be the Shilov boundary for
cl(A). By [6, Theorem 3.3], there exist a continuous function K: d(cl(A)) — T, a
homeomorphism p: d(cl(A)) — 9(cl(A)) and a closed and open set N of 9(cl(A))
such that

Gy = K(y)F(oly)) yeN )

K(y)F(oly)) v e d(cl(A)\ N



for all F € cl(A). Then K =U(1]y) = 1101 @ (Blaa) on O(cl(A)) by (5.3). Without
loss of generality, we may assume K = 1p1 ® (Bloa) on Y, and then IC € cl(A).
Since U is surjective, there exists G € cl(A) such that U(G) = 1|y. By (5.4),
K-U(G?*) = {U(G)}* = 1|y on I(cl(A)). Since d(cl(A)) is a boundary for cl(A),
we have that K = 1j1) ® (B]sa) is invertible in cl(A). For K~! € cl(A), there
exists G € C*([0,1], A) such that |G|y — K|y < 1. Note that ||[F(0)|ga =
supgeaa [F(0)(2)] < suppyey [F (1) (@) = [|Fly[ly forall Fly € A. Weset g = G(0),
and then g € A. Tt follows that

189 — 1xllx = 189 — 1xloa = IK(0)(G(0) = K~1(0))]loa
< [K(Gly =K )lly = IGly = K7y < 1,

where we have used |3| = 1 on OA. Hence, 8g € A™!, and there exists h € A such
that Bgh = 1x on X. Consequently 8 € A~!, as is claimed. O

Lemma 5.2. The Gelfand transform B\ of B is of modulus one on the maximal ideal
space M 4 of A.

Proof. Note that ||B||MA = ||ﬁ||X = [|flloa = 1, and therefore |ﬁ| < 1 on My.
Because [ is invertible, ﬂﬁ -1 =1 on M. In particular, |37 = 1 on A because
|| =1 on OA. Thus,

1 -1 —
= =18 s =187 loa = 1,
Bllag,
and hence |1/§] <1 on M. Consequently, |3 =1 on M4 O

Lemma 5.3. Let I} =id ® 1x € C'([0,1], A), v; = 87 To(F1)(1) € A and v_y =
1x —v, € A. We set v1(t) =t and y_1(t) =1 —t fort € [0,1]. For each j € {£1}

To(F)(t)(w)v;(x) = Bla)[F (7 (t)) (W ()] () (5.5)
for all F € C'([0,1], A), t € [0,1] and z € OA.

Proof. By (5.1), we obtain vy = [dl( )% on 0A. Equality (5.2) implies that v; = 1
on K; and v; =0 on K, Hence v =v; on 0A for j = £1. Since 0A is a boundary

for A we see that 0; v] = 0; on MA, that is, both 07 and v_; are idempotents for A

We define
My={peMa:i(p) =1} (= =+1). (5.6)
We observe that both M; and M_; are, possibly empty, closed and open subsets of
M4 such that M_; UM, = My and M_yNM; = 0. By (5.2), K; C M; for j = £1.
Since v; = 1 on 0AN M, and v; = 0 on JAN M_;, we obtain
To(F)(t)(x)v; () = B(@)[F(7;() (o ()] Doy (x) (5 = £1)
for all F € C'([0,1], A), t € [0,1] and z € JA. O



Lemma 5.4. The map 1), is injective.

Proof. Since T; ' has the same properties as Ty, there exist f_, € A7, p_;: [0,1] x
0A —[0,1],¢_1: 0A — 0A and e_;: OA — {£1} such that

Ty (F)(t)(x) = By () [F(p_r(8)(2)) (1 (x))]®)

(2
for all F e C'([0,1],A), t € [0,1] and = € DA (see (5.1)). Let F, = 1jp; @ u €
C*([0,1], A) for each u € A. If we set s = dy(t)(z) and y = ¢ (z), then

u(@) = Fu(t)(z) = To(Tg ' (F.))(8)(2)
= B(@)[T5 ' (F)(da (8) (@) (91 (2))]*) = B)[T5 (F) (s) ()]

eo(x)
= fB(x) {ﬁl(y)[Fu(pl(s)(y))(w1@))]5_1@)}

eo(x)
— B(a) {ﬁxy)[u(wmwﬂe—*w] ,

and thus [87 (z)u(2)]® = B_1 (Y1 () [u(y—1 (1 ()T 1) TE g (21) = i (22),
then the last equality shows that

87 )l = (57 (au(a) )

for all w € A. If x; # x9, then we could choose u € A so that u(xy) = 5(z1)
and u(xg) = 0, which contradicts the above equality. Hence, we have z; = x5, and
consequently 1; is injective. 0

Lemma 5.5. We define
A, ={uo:ue A} C C(0A).
Then the map ¥: A — A.,, defined by
U(u) =uoy (ue A, (5.7)
15 a complex algebra isomorphism.

Proof. Equality (5.1) impiles that 871 - Ty(1j1 ® u)(0) = [u o ¢1]® on 9A for all
u € A. Since A separates the points of 0A and since v is injective, we see that A,
separates the points of 0A, as well. We observe that A., is a uniform algebra on 0A.
The mapping U: A — A_,, defined by (5.7) is a complex algebra homomorphism on
A. Since 0A is a boundary for A and since 1); is surjective on 0A (see Lemmas 3.8,
4.10 and 4.13), we see that ¥ is injective. O

Lemma 5.6. Let U*: (A,)* — A* be the adjoint of ¥ and let Ma, be the maz-
imal ideal space of A.,. We define eq = —iff " Tp(1pa ® (i1x))(0) € A. Then



\Il*|MAEO : M., — Ma is a homeomorphism with ¥* = ¢, on A and

To(F)(t) - 55 = B - [F(;(1)) 0 WA - 3 (5.8)
on DA for all F € C*([0,1],A) and t € [0,1].

Proof. By definition, ¥* is continuous with respect to the weak *-topology. Since ¥
is a homomorphism, ¥*(n) is multiplicative, that is, U*(n)(uv) = ¥*(n)(u)-¥*(n)(v)
for all n € My, , the maximal ideal space of A, and u,v € A. Then we see that
U*(Ma,,) C Ma. By the surjectivity of ¥, we observe that (W=1)*: A* — (A.,)*
is well defined with (U=')*(M,4) C My, . Note that (U~1)* = (¥*)~", and hence
U*| v Aey M., — Ma is a homeomorphism with the relative weak *-topology. We
have
u(Pr(Q)) = () (u) = ¢(¥(u) = C(uo )

for all u € A and ¢ € My, . Under the identification of 0A with {e, € My, 1z €
0A}, we obtain @ o W* = w oy on A for all u € A. Since A separates the points
of M4, we see that U* =4, on JA. By (5.1), we see that ¢4 = 9 on 0A. Equality
(5.5) is rewritten as

To(F)(t) -5 = B+ [F(y(1) o ¥ - 75
on A for all F € C'(]0,1], A) and ¢ € [0, 1]. O
Lemma 5.7. Let Alga = {uloa : u € A}. Then Alga = {[uo¢1]® 1 u € A}.

Proof. For each v € A, we have Ty(1p ® u) = L1 ® (8- [u o ¥1]*) on A by
(5.1). Because Ty(1j1 ® u) € C*([0,1], A), we see that [u o 1] € Al for all
u € A. Hence {[uo)1]® : u € A} C Alga. Conversely, for each u € A there exists
G, € C'(]0,1], A) such that Ty(G,) = 1j1 ® Bu, since Ty is surjective. Equality
(5.5) shows Ty (Gy,) (t)-v; = B-[Gu(7;(t)) o] -v; on A for j = £1and t € [0, 1]. By
the choice of G, we have u-v; = [G,(v;(t))oy1]|*-v; on dA for j = £1 and t € [0, 1].
This implies that [G,(t) o 91| = u, and therefore, G, = 191 ® [u 0 Yo on
[0,1] x OA. Tt follows that

oyl = € Algs  (u € A). (5.9)

Now choose v € A arbitrarily, and then [v o ¢; %" € Alps by (5.9). There
exists v., € A such that [vo wl_l]food’fl = Vg loa. By the choice of v.,, we obtain
[vey o] = [[v opy 1Foovn ot)1]™" = v on OA, which shows that v[sa € {[uo]® :
u € A} for all v € Alga. We thus conclude that Alga = {[uo 1] :u € A}. O

Lemma 5.8. Let 4 be the element of A defined in Lemma 5.6. For each § € My, ,,
we define a map &, : A, = C by

Eco(wothy) = [E([u o gy]@)]“E4lor (5.10)



Joruoiy € Ae. Then & € My, .

Proof. Recall that ¢4 = g9 on 0A by (5.1). Because go(x) € {£1} for x € JA,
we get {(e4 4+ 1x)/2}% = (e4 + 1x)/2 on A. As OA is a boundary for A, we
obtain €4(p) € {£1} for p € M. Therefore, (e4]94)*> = 1x|sa, the unit element
of Alpa. We obtain {£(caloa)}® = &(1x|oa) = 1 for all £ € My,,. For each
£ € My, let &, A,y — C be the map described in (5.10). Here we notice that
Alga = {[uo 1] : u € A}, and hence &, is well defined. By definition, &, is a
non-zero, real linear and multiplicative functional on A.,. We will prove that &,
is complex linear. Since gy = 4|94, we see that [i1lx o ¢1]°° = ica|ga, and hence
E([ilx o Yn]*0) = &(icaloa) = i€(caloa) for ¢ € Myy,,. By the definition of &, we
derive &, (ilx o 11) = [i€(caloa)]EEAl04) = 4. Since &, is real linear, we now obtain

650()‘1X © %) = )\550(1)( o 1/}1) = )\[5(1X|8A)]E(EA|6A) =

for A € C. By the multiplicativity of &, we get
560 ()‘(u ° wl)) = §60 (/\1X °© ¢1) 560 (u © 7vb1> - )\550 (u © 1/J1)

foru € Aand A € C. This shows that &, is complex linear, and thus §., € M, . U
Lemma 5.9. Define I': My,, = Ma_ by

F(é) = & (f € MA\@A)'

Then T is an injective and continuous map with the relative weak *-topology.

Proof. Suppose that & # & for &,& € My),,. Then there exists ug € A such that
&1 ([ug o 11]%0) = 1 and & ([ug o ¥1]%°) = 0; this is possible since Alga = {[u o Y] :
u € A}. By the definition of I" with (5.10), we have I'(&)(ugo¢y) = 1 # 0 =
['(&)(ug o 1), which shows the injectivity of the map I'. Now let {{y} be a net in
My, converging to & € My,,. Because (caloa)® = 1x|oa, (o(caloa))® =1 =
(€o(ealoa))?, and thus for each ¥, £y(calan) = &o(caloa) or o(caloa) = —Eo(ealoa)-
Since {€y(caloa)} converges to &y(ealoa), we may assume that Ey(ealoa) = o(caloa)
for all ¥. By the definition of I' with (5.10),

T(&5) (w0 ) = [€o([u o tr]0)] Y 5 [g([u 0 py]o0)) @14l

= I'(&)(uovy)
for each u € A. This shows that the net {I'(§y)} converges to I'(§y) with respect to
the relative weak *-topology, and hence I': My, — M A., s continuous. 0

Lemma 5.10. The map I" as in Lemma 5.9 is a homeomorphism with I'(z) = x for
x € 0A.



Proof. We need to prove that I is surjective. By (5.9), eq0; " = [e409; '] € Alga.
Then there exists u., € A such that wu.,|spa = €4 0 ¢f1; such a function u., is
uniquely determined since JA is a boundary for A. Take ( € My, arbitrarily.

Since u., o = (ea 0 ;') 0 hy = £4lga, We get
ealoa = uc, 0 € A,

and thus ((e4lpa) = C(uc, o 11). By the choice of €4, we obtain (4]p4)? = 1x/|oa,
and then ((c4lg4) € {£1}. Now we define a map & : Alpa — C by

Elfuopn]™) = [((uoyy) 4l (u e A);

the map & is well defined, since Alps = {[uo 1] : u € A}. Then & is non-zero,
since ((uy o ¢y) # 0 for some uy o ¢y € A,;. We observe that & is a real linear and
multiplicative functional on A|gs. Recall e4lpa = €0, and then i = [iea|ga]™4104 =
[iuc, 0 1]% € Alga. Because ¢ € My, , we have

Ec(i) = &clliue, 0 91]™) = [C(iuc, 0 ¢hy)]*Elo4)
= [i{(ue, o ¢1)] (ealoa) _ [ZC(€A|3A)]<(5A‘3A) —

For each u € A, the multiplicativity of £ shows that

Eelifuon]™) = &c(i) &c([u o n]™) = i&c([uo¢n]™).

Hence & (tluothy]|0) = i & (Juoh ) for all [uoyn|® € Alsa. By the real linearity of
&, we infer that & is complex linear, and thus { € My,,. Since €4lpa = ue, © VY1,
we get ((ue, o)1) € {£1}. This shows that

C<€A|8A) = C(UEA o ¢1) = [C(UaA o ¢1)] (ealoa)
= éC([uaA © @Dl]eo) = 5{(5A|8A)
by the definition of &, that is, ((c4loa) = &c(€aloa). We derive
L(&c)(uothr) = [E([uoyy ]50)} c(ealoa) _ = [[¢(u o)) (caloa) :|C(5A|8A)
= ((uo )

for all u € A. We thus conclude that I' is surjective. Therefore, I': My, — M Acy
is a homeomorphism. In particular, if we identify x € 0A with the evaluation
functional e,, then for each u € A,

L(x)(uo ) = [[u(vr(x))]® I)TA = u((x))

by (5.10), where we have used €y = €4|pa. Namely, m(l“(aj)) = (uo)(x) for
all u € A, and hence I'(z) = z for z € 0A. O



Proof of Theorem. Let R: A — Alga be the restriction, which maps u € A to ulga.
Since 0A is a boundary for A, R is a complex algebra isomorphism. For the adjoint
R* of R, we see that R*|aq,,  is a homeomorphism from Myj,, onto M4 with the
relative weak *-topology. For each v € A and £ € My, ,,

—

uloa(§) = E(R(u)) = R*(§)(u) = u(R*(£)).

If z € A, then u(x) = u/]a\A(x) = u(R*(z)) for all u € A. Thus we see that R*(x) =
x for x € OA. Recall that the maps \I]*’MAEO P Ma,, = Ma, T My, — Ma,
and R*|m,,  + Maj,, = Ma are all homeomorphisms. We infer (R*\MAlaA)_l =
(R7™)*|m,. Thus, the map o: M4 — My, defined by o = (UM, ) o T o
(R™1)*| a1, is a well defined homeomorphism on M 4. For each z € 0A, T'(x) =z =

R*(x), and thus o = ¥* on 0A. Therefore, (5.8) is rewritten as

To(F)(t) - T = B - [F(r;(1)) 0 0] - 5 (5.11)

on OA for all FF € C*([0,1],A) and ¢ € [0,1].
Let F € C'([0,1], A), t € [0,1] and p € My. We set v = F(v;(t)) € A. By the
definition of o, o(p) = ¥*(I'((R™1)*(p))). Hence

According to (5.7), ¥(v) = vo ;. Thus o(p)(v) = T((R™H)*(p))(v o ey). By the
definition of the map I with (5.10),

(R () (v 0 vn) = (R (p)([v 0 1] )] R WEalo)
=[p(R Y[vo wl]so))]p(R‘l(m\aA))_

Here, we notice R™(e4]g4) = €4 by the definition of the map R. Therefore,

(fo o NP = p(R7 ([0 0 ]*))

(o)) = [[p(R
R ([v o gu])(p).

It follows that [F'(;(t)) o a]EAA =[vo a]EAA = R*mso) € A. Bquality (5.11) is
valid on the boundary A for A, we observe that (5.11) holds on M 4. We set

Ly={peMuy:es(p)=1}, and L_={pe Ma:ea(p) =—1}.

By the continuity of €4, both L, and L_ are closed and open sets satisfying L, U
= My and Ly N L_ = (. We define M;” = M; N Ly and M; = M; N L_ for



j = %1 (see (5.6)). Then we obtain

(B(p)F(t)(a(p)) p € M
BOFWb)(o(p)  peM;
To(F)(t)(p) = §
B(p)F(1—t)(a(p) pe M
Bp)F(1—t)(o(p) peE M,
for all F € C*([0,1],A) and ¢ € [0, 1]. O
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